TCS@UCSB Summer School on Spectral Independence

August 8-12, 2022
Practice Problems

These are practice problems accompanying the 2022 Summer School on New tools for optimal mixing of Markov chains: Spectral independence and entropy decay, which was held at the University of California, Santa Barbara (UCSB) from August 8, 2022 to August 12, 2022. More information on the summer school is available at: https://sites.cs.ucsb.edu/~vigoda/School/

1 Exercises

1.1 Linear Algebra

Definition 1. A matrix norm is a non-negative function $\|\cdot\| \rightarrow \mathbb{R}$ that satisfies the following properties

- $\|A\|=0$ implies that A is the zero matrix,
- $\|c A\|=|c| \cdot\|A\|$,
- $\|A+B\| \leq\|A\|+\|B\|$,
- $\|A B\| \leq\|A\|\|B\|$.

Exercise 2. Show that max-row sum norm

$$
\|A\|_{\infty}=\max _{i \in[n]} \sum_{j=1}^{n}\left|A_{i j}\right|
$$

is a matrix norm.
Definition 3. For a $n \times n$ matrix A the spectral radius $\rho(A)$ of A is

$$
\rho(A)=\max _{\lambda}|\lambda|,
$$

where the maximum is over all eigenvalues of A.
Exercise 4. For any matrix norm $\|\cdot\|$ we have

$$
\rho(A) \leq\|A\| .
$$

Exercise 5. Suppose that A is a symmetric matrix. Let v be a row of A. Show that $\|v\|_{2}$ is a lower bound on the spectral radius $\rho(A)$.
Fact 1 (Courant-Fisher-Weyl Variational Characterization of Eigenvalues). For a symmetric $n \times n$ matrix A the k-th largest eigenvalue λ_{k} is given by the following Rayleigh quotient.

$$
\min _{L \leq \mathrm{R}^{n}} \max _{x \in L, x \neq 0} \frac{x^{T} A x}{\|x\|_{2}^{2}}
$$

where the first minimization is over $n+1-k$-dimensional subspaces L of \mathbb{R}^{n}.
Exercise 6. Let A, B be $n \times n$ symmetric matrices. Suppose that B is positive semidefinite. Then for every $k \in[n]$

$$
\lambda_{k}(A-B) \leq \lambda_{k}(A) .
$$

1.2 Markov Chain Fundamentals

In the below problems, unless otherwise specified assume that we are considering a finite, discrete, ergodic Markov chain on state space Ω with unique stationary distribution π and transition matrix P.

Exercise 7. Suppose P is the transition matrix of an ergodic reversible Markov chain with stationary distribution π. Let λ_{2} be the second largest eigenvalue of P. Let $Q=\operatorname{diag}(\pi) P$ be the so-called ergodic flow matrix (note that Q is symmetric, since the chain is reversible). Show that

$$
Q-\pi \pi^{T} \preceq \lambda_{2} \operatorname{diag}(\pi) .
$$

Show that

$$
Q-\pi \pi^{T} \preceq \lambda_{2}\left(\operatorname{diag}(\pi)-\pi \pi^{T}\right) .
$$

Exercise 8. Prove that for a lazy reversible Markov chain the spectral gap $1-\lambda_{2}$ is given by

$$
1-\lambda_{2}=\min _{f} \frac{\mathcal{E}(f, f)}{\operatorname{Var}_{\pi}(f)},
$$

where the minimization is over non-constant f.
Exercise 9. Use Jensen's inequality to show that, for any $A \subset V$,

$$
\operatorname{Ent}_{A}(f) \leq \operatorname{Cov}_{A}(f, \log f),
$$

where $\operatorname{Cov}(f, g)=\mu_{A}[f g]-\mu_{A}(f) \mu_{A}(g)$ and $\operatorname{Ent}_{A}(f)=\mu_{A}[f \log f]-\mu_{A}[f] \mu_{A}[\log f]$. Then, use this fact to show that approximate tensorization implies MLSI (modified log-Sobolev) is $\Omega(1 / n)$ for the Glauber dynamics. (More generally, block factorization for a weighting α implies MLSI for the heat-bath block dynamics defined by α.)

Exercise 10. Let μ_{i} be a distribution on a finite set $\Omega_{i}, i=1,2$. Let $\mu=\mu_{1} \times \mu_{2}$ be the product distribution on $\Omega=\Omega_{1} \times \Omega_{2}$.
(a) Prove that, for any $f: \Omega \rightarrow \mathbb{R}$ we have:

$$
\operatorname{Var}_{\mu}(f) \leq \mu_{2}\left(\operatorname{Var}_{\mu_{1}}(f)\right)+\mu_{1}\left(\operatorname{Var}_{\mu_{2}}(f)\right)
$$

Note that $\operatorname{Var}_{\mu_{2}}(f)$ is a function from $\Omega_{1} \rightarrow \mathbb{R}$ where $\operatorname{Var}_{\mu_{2}}(f)(x)=\operatorname{Var}_{y \sim \mu_{2}} f(x, y)$ is the variance of $f(x, y)$ where y is picked from μ_{2}.
(b) Analogously for entropy show

$$
\operatorname{Ent}_{\mu}(f) \leq \mu_{2}\left(\operatorname{Ent}_{\mu_{1}}(f)\right)+\mu_{1}\left(\operatorname{Ent}_{\mu_{2}}(f)\right)
$$

(c) Use part (b) to prove approximate tensorization of entropy for the uniform distribution over the n-dimensional hypercube $\{0,1\}^{n}$.

Exercise 11. Let π be a distribution on Ω. For $f: \Omega \rightarrow \mathbb{R}_{>0}$ let

$$
\operatorname{Var}_{\pi}(f)=E_{\pi}\left(f^{2}\right)-E_{\pi}(f)^{2}
$$

and

$$
\operatorname{Ent}_{\pi}(f)=E_{\pi}(f \log f)-E_{\pi}(f) \log \left(E_{\pi}(f)\right)
$$

Show that

$$
\lim _{c \rightarrow \infty} \operatorname{Ent}_{\pi}\left((c+f)^{2}\right)=2 \operatorname{Var}_{\pi}(f) .
$$

Exercise 12. Let π be a distribution on Ω and $f: \Omega \rightarrow \mathbb{R}_{>0}$. Show that

$$
\operatorname{Ent}_{\pi}(1+f / c)=\frac{1}{2} c^{-2}\left(\operatorname{Var}_{\pi}(f)+o(1)\right)
$$

and

$$
\mathcal{E}(1+f / c, \log (1+f / c))=c^{-2}(\mathcal{E}(f, f)+o(1)) .
$$

Let α be the Poincaré constant

$$
\alpha=\inf _{f ; \operatorname{Var}_{\pi}(f)>0} \frac{\mathcal{E}(f, f)}{\operatorname{Var}_{\pi}(f)}
$$

and ρ_{0} be the modified log-Sobolev constant

$$
\rho_{0}=\inf _{f ; \operatorname{Ent}_{\pi}(f)>0} \frac{\mathcal{E}(f, \log f)}{\operatorname{Ent}_{\pi}(f)} .
$$

Show that $\rho_{0} \leq 2 \alpha$.

1.3 Matroids

Exercise 13. Show that the lazy matroid basis exchange walk is ergodic.
Exercise 14. Let $G=(U \cup V, E)$ be a bipartite graph. Let M_{U} be the family of subsets of E where edges in a subset are not allowed to share an endpoint in U (they are allowed to share an endpoint in V). Argue that $\left(E, M_{U}\right)$ is a matroid. What is $M_{U} \cap M_{V}$ (with M_{V} defined analogously to M_{U})?
Exercise 15. Let M be a matroid of rank 2 over set Ω. Let A be $|\Omega| \times|\Omega|$ matrix with zero diagonal entries and for off-diagonal entries $A_{a, b}=1$ if $\{a, b\} \in M$ and $A_{a, b}=0$ otherwise. Show that $\lambda_{2}(A) \leq 0$.

Exercise 16 (The Structure of Graphs with At Most One Positive Eigenvalue). Let $G=(V, E, c$: $E \rightarrow \mathbb{R}_{>0}$) be a weighted undirected loopless graph without isolated vertices. Let A be its weighted adjacency matrix, and assume A has at most one positive eigenvalue. Prove that G must be supported on a complete multipartite graph, in the sense that there exists a partition $V=V_{1} \sqcup \cdots \sqcup V_{k}$ of the vertices such that $c(u, v)>0$ if and only if u, v lie in different blocks $V_{i} \neq V_{j}$.

1.4 Spectral Independence and Simplicial Complexes

Exercise 17 (Connectivity of Links and Global Walks). Fix a pure simplicial complex X. Prove or disprove the following statements.
(a) If the one-skeleton of every link of X is connected, then the global walk at every level of X is connected.
(b) If the global walk at every level of X is connected, then the one-skeleton of every link of X is connected.

Exercise 18 (Hardcore Model on Complete Bipartite Graphs). Recall that for a fixed $\lambda>0$ and a graph $G=(V, E)$, the Gibbs distribution $\mu=\mu_{G, \lambda}$ of the hardcore model on G with parameter λ is defined by

$$
\mu(\sigma) \propto \lambda^{\#\{v: \sigma(v)=1\}}, \quad \forall \sigma \in\{0,1\}^{V} \text { s.t. }\{v: \sigma(v)=1\} \subseteq V \text { is an independent set. }
$$

Let $\lambda>0$ be arbitrary, and let μ denote the Gibbs distribution of the hardcore model on the complete bipartite graph $K_{n, n}$.
(1) Give an explicit formula for the univariate partition function

$$
\mathcal{Z}(\lambda)=\sum_{I \subseteq V} \lambda_{\text {independent }}^{|I|}
$$

for $K_{n, n}$.
(2) For each level k, explain intuitively what is the structure of the pinning which yields the "worst" spectral independence. More specifically, for each $0 \leq k \leq 2 n-2$, explain intuitively what choice of $S \subseteq V$ with $|S|=k$ and $\xi: S \rightarrow\{0,1\}$ yields the largest $\lambda_{\max }\left(\Psi_{\mu} \xi\right)$? (Here, recall $\Psi_{\mu}{ }^{\xi}$ denotes the two-sided influence matrix of the conditional distribution μ^{ξ}.)
(Hint: What happens if ξ maps some vertex to 1 ?)
(3) Show that for every $0 \leq k \leq 2 n-2$, there exists a pinning $\xi: S \rightarrow\{0,1\}$ on a subset of vertices $S \subseteq V$ with $|S|=k$ such that $\lambda_{\max }\left(\Psi_{\mu} \xi\right) \geq \Omega_{\lambda}(n-k)$.
(Hint: What is the spectral independence of the worst pinning you constructed in (2)?)
(4) Show that for any fixed $\lambda \geq \Omega(1)$ independent of n, the Glauber dynamics/down-up walk has spectral gap (and hence, mixing time) at least $\exp \left(\Omega_{\lambda}(n)\right)$.
(Hint: What moves are required to get from an independent set contained in the left half of $K_{n, n}$ to an independent set contained in the right half of $K_{n, n}$? Based on this, can you find a subset of configurations with poor conductance?)
(5) Conclude that no "average-case local-to-global statement" of the following form can be true in general:
"Let μ be a probability distribution over $\binom{\mathcal{U}}{n}$ for a finite set \mathcal{U} and positive integer n (i.e. the facets of some pure simplicial complex of dimension- $(n-1)$). If for every $\Omega(\log n) \leq k \leq n-2$, $\lambda_{\max }\left(\Psi_{\mu \xi}\right) \leq O(1)$ with very high probability (e.g. $\left.1-\frac{1}{\operatorname{poly}(n)}\right)$ over the choice of ξ drawn from the induced level-k distribution μ_{k}, then the down-up walk has spectral gap $\Omega(1 / \operatorname{poly}(n))$."
(Hint: Take μ to be the Gibbs distribution of the hardcore model over $K_{n, n}$ with parameter $\lambda>0$. Estimate the probability of sampling a partial pinning on k vertices where no vertex is mapped to 1 . What happens when you take $\lambda \rightarrow+\infty$, or λ to be a large constant?)

Exercise 19 (Top-Level Local Eigenvalues for Proper Colorings). Fix a pair of vertices u,v connected by an edge, and assume that the set of colors available to each u, v is [q] for some $q \geq 3$. We build a graph on vertex-color pairs satisfying the proper coloring constraint where there is no edge between the pairs (u, c) and (v, c) for any $c \in[q]$, nor (w, c) and (w, c^{\prime}) for any $w \in\{u, v\}, c, c^{\prime} \in[q]$ distinct. Compute the second largest eigenvalue of this graph.

Motivation: These graphs can be found as the top links of the following simplicial complex of proper colorings: Fix a graph $G=(V, E)$ and a number of colors q, take the ground set of the complex to consist of all vertex-color pairs, with maximal faces in one-to-one correspondence with complete proper colorings of G.

