
TCS@UCSB Summer School on Spectral Independence August 8-12, 2022

Practice Problems

These are practice problems accompanying the 2022 Summer School on New tools for optimal
mixing of Markov chains: Spectral independence and entropy decay, which was held at the University
of California, Santa Barbara (UCSB) from August 8, 2022 to August 12, 2022. More information
on the summer school is available at: https://sites.cs.ucsb.edu/∼vigoda/School/

1 Exercises

1.1 Linear Algebra

Definition 1. A matrix norm is a non-negative function ∥ · ∥ → R that satisfies the following
properties

• ∥A∥ = 0 implies that A is the zero matrix,

• ∥cA∥ = |c| · ∥A∥,

• ∥A+B∥ ≤ ∥A∥+ ∥B∥,

• ∥AB∥ ≤ ∥A∥ ∥B∥.

Exercise 2. Show that max-row sum norm

∥A∥∞ = max
i∈[n]

n∑
j=1

|Aij |

is a matrix norm.

Definition 3. For a n× n matrix A the spectral radius ρ(A) of A is

ρ(A) = max
λ

|λ|,

where the maximum is over all eigenvalues of A.

Exercise 4. For any matrix norm ∥ · ∥ we have

ρ(A) ≤ ∥A∥.

Exercise 5. Suppose that A is a symmetric matrix. Let v be a row of A. Show that ∥v∥2 is a lower
bound on the spectral radius ρ(A).

Fact 1 (Courant-Fisher-Weyl Variational Characterization of Eigenvalues). For a symmetric n×n
matrix A the k-th largest eigenvalue λk is given by the following Rayleigh quotient.

min
L≤Rn

max
x∈L,x̸=0

xTAx

∥x∥22
,

where the first minimization is over n+ 1− k-dimensional subspaces L of Rn.

Exercise 6. Let A,B be n× n symmetric matrices. Suppose that B is positive semidefinite. Then
for every k ∈ [n]

λk(A−B) ≤ λk(A).
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1.2 Markov Chain Fundamentals

In the below problems, unless otherwise specified assume that we are considering a finite, dis-
crete, ergodic Markov chain on state space Ω with unique stationary distribution π and transition
matrix P .

Exercise 7. Suppose P is the transition matrix of an ergodic reversible Markov chain with station-
ary distribution π. Let λ2 be the second largest eigenvalue of P . Let Q = diag(π)P be the so-called
ergodic flow matrix (note that Q is symmetric, since the chain is reversible). Show that

Q− ππT ⪯ λ2diag(π).

Show that
Q− ππT ⪯ λ2

(
diag(π)− ππT

)
.

Exercise 8. Prove that for a lazy reversible Markov chain the spectral gap 1− λ2 is given by

1− λ2 = min
f

E(f, f)
Varπ(f)

,

where the minimization is over non-constant f .

Exercise 9. Use Jensen’s inequality to show that, for any A ⊂ V ,

EntA(f) ≤ CovA(f, log f),

where Cov(f, g) = µA[fg] − µA(f)µA(g) and EntA(f) = µA[f log f ] − µA[f ]µA[log f ]. Then, use
this fact to show that approximate tensorization implies MLSI (modified log-Sobolev) is Ω(1/n) for
the Glauber dynamics. (More generally, block factorization for a weighting α implies MLSI for the
heat-bath block dynamics defined by α.)

Exercise 10. Let µi be a distribution on a finite set Ωi, i = 1, 2. Let µ = µ1 × µ2 be the product
distribution on Ω = Ω1 × Ω2.

(a) Prove that, for any f : Ω → R we have:

Varµ(f) ≤ µ2(Varµ1(f)) + µ1(Varµ2(f)).

Note that Varµ2(f) is a function from Ω1 → R where Varµ2(f)(x) = Vary∼µ2f(x, y) is the
variance of f(x, y) where y is picked from µ2.

(b) Analogously for entropy show

Entµ(f) ≤ µ2(Entµ1(f)) + µ1(Entµ2(f)).

(c) Use part (b) to prove approximate tensorization of entropy for the uniform distribution over
the n-dimensional hypercube {0, 1}n.

Exercise 11. Let π be a distribution on Ω. For f : Ω → R>0 let

Varπ(f) = Eπ(f
2)− Eπ(f)

2,

and
Entπ(f) = Eπ(f log f)− Eπ(f) log(Eπ(f)).

Show that
lim
c→∞

Entπ((c+ f)2) = 2Varπ(f).
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Exercise 12. Let π be a distribution on Ω and f : Ω → R>0. Show that

Entπ(1 + f/c) =
1

2
c−2

(
Varπ(f) + o(1)

)
,

and
E(1 + f/c, log(1 + f/c)) = c−2

(
E(f, f) + o(1)

)
.

Let α be the Poincaré constant

α = inf
f ;Varπ(f)>0

E(f, f)
Varπ(f)

and ρ0 be the modified log-Sobolev constant

ρ0 = inf
f ;Entπ(f)>0

E(f, log f)
Entπ(f)

.

Show that ρ0 ≤ 2α.

1.3 Matroids

Exercise 13. Show that the lazy matroid basis exchange walk is ergodic.

Exercise 14. Let G = (U ∪V,E) be a bipartite graph. Let MU be the family of subsets of E where
edges in a subset are not allowed to share an endpoint in U (they are allowed to share an endpoint
in V ). Argue that (E,MU ) is a matroid. What is MU ∩MV (with MV defined analogously to MU )?

Exercise 15. Let M be a matroid of rank 2 over set Ω. Let A be |Ω| × |Ω| matrix with zero
diagonal entries and for off-diagonal entries Aa,b = 1 if {a, b} ∈ M and Aa,b = 0 otherwise. Show
that λ2(A) ≤ 0.

Exercise 16 (The Structure of Graphs with At Most One Positive Eigenvalue). Let G = (V,E, c :
E → R>0) be a weighted undirected loopless graph without isolated vertices. Let A be its weighted
adjacency matrix, and assume A has at most one positive eigenvalue. Prove that G must be sup-
ported on a complete multipartite graph, in the sense that there exists a partition V = V1 ⊔ · · · ⊔ Vk

of the vertices such that c(u, v) > 0 if and only if u, v lie in different blocks Vi ̸= Vj.

1.4 Spectral Independence and Simplicial Complexes

Exercise 17 (Connectivity of Links and Global Walks). Fix a pure simplicial complex X. Prove
or disprove the following statements.

(a) If the one-skeleton of every link of X is connected, then the global walk at every level of X is
connected.

(b) If the global walk at every level of X is connected, then the one-skeleton of every link of X is
connected.

Exercise 18 (Hardcore Model on Complete Bipartite Graphs). Recall that for a fixed λ > 0 and
a graph G = (V,E), the Gibbs distribution µ = µG,λ of the hardcore model on G with parameter λ
is defined by

µ(σ) ∝ λ#{v:σ(v)=1}, ∀σ ∈ {0, 1}V s.t. {v : σ(v) = 1} ⊆ V is an independent set.

Let λ > 0 be arbitrary, and let µ denote the Gibbs distribution of the hardcore model on the complete
bipartite graph Kn,n.
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(1) Give an explicit formula for the univariate partition function

Z(λ) =
∑

I⊆V independent

λ|I|

for Kn,n.

(2) For each level k, explain intuitively what is the structure of the pinning which yields the
“worst” spectral independence. More specifically, for each 0 ≤ k ≤ 2n− 2, explain intuitively
what choice of S ⊆ V with |S| = k and ξ : S → {0, 1} yields the largest λmax

(
Ψµξ

)
? (Here,

recall Ψµξ denotes the two-sided influence matrix of the conditional distribution µξ.)

(Hint: What happens if ξ maps some vertex to 1?)

(3) Show that for every 0 ≤ k ≤ 2n − 2, there exists a pinning ξ : S → {0, 1} on a subset of
vertices S ⊆ V with |S| = k such that λmax

(
Ψµξ

)
≥ Ωλ(n− k).

(Hint: What is the spectral independence of the worst pinning you constructed in (2)?)

(4) Show that for any fixed λ ≥ Ω(1) independent of n, the Glauber dynamics/down-up walk has
spectral gap (and hence, mixing time) at least exp(Ωλ(n)).

(Hint: What moves are required to get from an independent set contained in the left half of
Kn,n to an independent set contained in the right half of Kn,n? Based on this, can you find
a subset of configurations with poor conductance?)

(5) Conclude that no “average-case local-to-global statement” of the following form can be true
in general:

“Let µ be a probability distribution over
(U
n

)
for a finite set U and positive integer n (i.e. the

facets of some pure simplicial complex of dimension-(n−1)). If for every Ω(log n) ≤ k ≤ n−2,
λmax

(
Ψµξ

)
≤ O(1) with very high probability (e.g. 1− 1

poly(n)) over the choice of ξ drawn from

the induced level-k distribution µk, then the down-up walk has spectral gap Ω(1/poly(n)).”

(Hint: Take µ to be the Gibbs distribution of the hardcore model over Kn,n with parameter
λ > 0. Estimate the probability of sampling a partial pinning on k vertices where no vertex
is mapped to 1. What happens when you take λ → +∞, or λ to be a large constant?)

Exercise 19 (Top-Level Local Eigenvalues for Proper Colorings). Fix a pair of vertices u, v
connected by an edge, and assume that the set of colors available to each u, v is [q] for some
q ≥ 3. We build a graph on vertex-color pairs satisfying the proper coloring constraint where
there is no edge between the pairs (u, c) and (v, c) for any c ∈ [q], nor (w, c) and (w, c′) for any
w ∈ {u, v}, c, c′ ∈ [q] distinct. Compute the second largest eigenvalue of this graph.

Motivation: These graphs can be found as the top links of the following simplicial complex of
proper colorings: Fix a graph G = (V,E) and a number of colors q, take the ground set of the
complex to consist of all vertex-color pairs, with maximal faces in one-to-one correspondence with
complete proper colorings of G.


