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1 Preliminaries

In this note we will show general techniques for establishing spectral independence. As we saw in
the previous lectures of Kuikui Liu, this will imply O(n log n) mixing time of the Glauber dynamics
for constant-degree graphs. We will focus on two techniques. In the first part we will show that
correlation decay approaches as used in Weitz’s algorithm [Wei06] imply spectral independence. In
the second part we will show that stability of the partition function, so-called zero-freeness, also
implies spectral independence; such conditions were used in the approximate counting algorithm
introduced by Barvinok [Bar16].

1.1 Hardcore model

For a graph G, let I(G) denote the collection of all independent sets of G. The hardcore model on
a graph G = (V,E) describes a distribution µG,λ over I(G), called the Gibbs distribution, with the
density of each independent set I ∈ I(G) given by

µG,λ(I) =
λ|I|

ZG(λ)
, (1)

where λ > 0 is a parameter called the fugacity and ZG(λ) is the partition function (also called the
independence polynomial) defined as

ZG(λ) =
∑

I∈I(G)

λ|I|. (2)

We say a vertex v ∈ V is occupied if v ∈ I, and unoccupied otherwise. The occupancy ratio RG,λ(v)
at v is defined as

RG,λ(v) =
µG,λ(v)

µG,λ(v̄)
, (3)

where “v” represents the event “v is occupied” and “v̄” represents “v is unoccupied”.
In some cases we use Greek characters σ, τ, ξ... to represent independent sets where we view

σ = 1I ∈ {0, 1}V as an indicator vector. For a subset Λ ⊆ V of vertices, a partial configuration
τ ∈ {0, 1}Λ is feasible if it can be extended to an independent set of G (i.e., τ is an independent set
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of G[Λ]). We call τ a pinning if it is a feasible partial configuration. We further define the hardcore
model conditional on a pinning τ ∈ {0, 1}Λ by considering only independent sets with Λ fixed to
be τ ; this allows us to define the conditional Gibbs distribution µτG,λ = µG,λ(· | XΛ = τ) and the
corresponding partition function ZτG(λ) and occupancy ratios RτG,λ(v). Observe that conditioning
on τ is equivalent to removing all unoccupied vertices in Λ and removing all occupied vertices in Λ
together with their neighbors from G. Finally, notice that the occupancy ratio can be written as

RG,λ(v) =
λZvG(λ)

Z v̄G(λ)
, (4)

where “v” represents the pinning τ(v) = 1 on Λ = {v}, and “v̄” represents the pinning τ(v) = 0.

1.2 Tree-uniqueness threshold

Fix an integer d ≥ 2 and a real λ > 0. Consider the hardcore model on a complete d-ary tree of
height h, denoted by Th = Td,h. The tree recursion is a function F = Fd,λ that can be used to
compute the occupancy ratio at the root, defined as

F : R≥0 → R≥0, F (R) =
λ

(1 +R)d
. (5)

Denote by Rh = Rd,λ,h the root occupancy ratio for Th; e.g., R0 = λ, R1 = λ/(1+λ)d. Then one can
easily show that Rh = F (Rh−1). A natural and important question is whether the sequence {Rh}
converges when h tends to infinity, which is closely related to the Gibbs measure on the infinite
d-ary tree. The answer to this question is determined by whether the (unique) fixed point of F is
attractive or repulsive. Denote the unique positive fixed point of F by R∗, i.e., R∗(1 + R∗)d = λ.
Define the critical fugacity by

λc(∆) =
(∆− 1)∆−1

(∆− 2)∆
, (6)

where ∆ = d+1 is the maximum degree of complete d-ary trees. It can be shown that if λ ≤ λc(∆)
then the fixed point R∗ is attractive and Rh → R∗ as h → ∞, and if instead λ > λc(∆) then the
fixed point R∗ is repulsive and R2h−1 → R′, R2h → R′′ as h→∞ for some R′ < R∗ < R′′.

Let ∆ ≥ 3 be an integer, and let G∆ be the family of all graphs of maximum degree at most ∆.
The critical fugacity λc(∆) captures phase transitions for the hardcore model in multiple aspects.

• When λ ≤ λc(∆) there exists a unique Gibbs measure on the infinite d-array tree; meanwhile,
when λ > λc(∆) there are multiple Gibbs measures. For this reason the critical value λc(∆)
is called the tree-uniqueness threshold.

• When λ < λc(∆), for complete d-ary trees we have |Rh − Rh−1| = exp(−Θ(h)), which can
be viewed as the difference of root occupancy ratios on Th+1 between fixing all leaves to be
unoccupied (corresponding to Rh on Th) and fixing all leaves to be occupied (corresponding to
Rh−1 on Th−1). This describes a spatial mixing/correlation decay property with exponential
decay rate, which fails when λ > λc(∆).

More generally, when λ < λc(∆), for any graph G ∈ G∆ of maximum degree at most ∆,
for any vertex v ∈ V and any two pinnings σ, τ on a subset of vertices Λ ⊆ V \ v, it holds
|Rσ(v)− Rτ (v)| = exp(−Ω(`)) where ` is the distance from v to a closest vertex u ∈ Λ such
that σ(u) 6= τ(u). This is known as the strong spatial mixing property with exponential decay
rate; see [Wei06].
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• There exists an open set Γ of complex numbers containing the interval [0, λc(∆)) such that,
for all G ∈ G∆, one has ZG(λ) 6= 0 whenever λ ∈ Γ. Meanwhile, the (complex) zeros of ZG(λ)
can be arbitrarily close to λc(∆) for G ∈ G∆. See [PR19].

• When λ < λc(∆), there exists a fully polynomial-time approximation scheme (FPTAS) for
the partition function ZG(λ) for all G ∈ G∆ [Wei06, Bar16, PR17], and the Glauber dynamics
for sampling from µG,λ converges in O(n log n) steps (see Theorem 1 below). Meanwhile,
when λ > λc(∆) there is no FPTAS/FPRAS for estimating the partition function for G ∈ G∆

assuming RP 6= NP [Sly10, SS14, GŠV16], and the Glauber dynamics has exponential mixing
time on random ∆-regular bipartite graphs. The behavior at the critical point λ = λc(∆) is
still not fully understood yet.

1.3 Spectral independence

Consider the hardcore model on a graph G = (V,E) with fugacity λ > 0. For two distinct vertices
u, v ∈ V , the (pairwise) influence of u on v is defined by

ΨG,λ(u→v) = µG,λ(v | u)− µG,λ(v | ū). (7)

We also define ΨG,λ(u→u) = 0.1 For a pinning τ , we also define the influence matrix Ψτ
G,λ for the

conditional Gibbs distribution µτG,λ, where we let Ψτ
G,λ(u→v) = 0 if τ forces u to be unoccupied

(note that in this case Ψτ
G,λ(v→u) = 0 by definition). The Gibbs distribution µG,λ is said to be

η-spectrally independent if for any pinning τ , the maximum eigenvalue of the influence matrix Ψτ
G,λ

is at most η. Note that all eigenvalues of Ψτ
G,λ are reals, see [ALO20].

The main purpose of this note is to establish the following spectral independence result for the
hardcore model in the tree-uniqueness regime.

Theorem 1. Let ∆ ≥ 3 be an integer and δ ∈ (0, 1) be a real. There exists a constant η > 0, such
that for any graph G ∈ G∆, any vertex u ∈ V (G), and any λ ≤ (1− δ)λc(∆), it holds∑

v∈V
|ΨG,λ(u→v)| ≤ η. (8)

As a consequence, for any graph G ∈ G∆ the hardcore distribution µG,λ is η-spectrally independent,
and the mixing time of the Glauber dynamics for µG,λ is O(n log n) where n = |V (G)|.

Remark 2. To see why Eq. (8) implies spectral independence, notice that for any G ∈ G∆ the
maximum eigenvalue of ΨG,λ is upper bounded by ‖ΨG,λ‖∞ = maxu∈V

∑
v∈V |ΨG,λ(u→v)|, which

is at most η by Eq. (8). Meanwhile, for any pinning τ ∈ {0, 1}Λ, the conditional Gibbs distribution
corresponds to the hardcore model on a smaller graph (removing Λ and neighbors of occupied
vertices in Λ) which is also in G∆. Since Eq. (8) applies to all graphs in G∆, the maximum
eigenvalue of Ψτ

G,λ is at most η also. Hence, η-spectral independence follows and optimal mixing
of the Glauber dynamics follows from a sequence of recent works, see [CLV21a] for constant-degree
graphs and more recently [CFYZ22, CE22] for unbounded maximum degree.

1.4 Relating influences and occupancy ratios

Here we give a lemma relating the influences of a vertex u and the occupancy ratio at u. It is
helpful to consider a more general setting where every vertex v has a distinct fugacity λv. Let

1In [CLV20] or Kuikui Liu’s lectures it was defined differently as ΨG,λ(u→u) = 1.
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λ = (λv)v∈V be a vector of fugacity, and the hardcore distribution is then defined by

µG,λ(I) =

∏
v∈I λv

ZG(λ)
, (9)

where the multivariate partition function (independence polynomial) is defined as

ZG(λ) =
∑

I∈I(G)

∏
v∈I

λv. (10)

Viewing the influences and the occupancy ratios as rational functions of λ, we have the following
relationship.

Claim 3. For two distinct vertices u, v ∈ V , we have

ΨG(u→v;λ) =
∂ logRG(u;λ)

∂ log λv
=

λv
RG(u;λ)

∂RG(u;λ)

∂λv
.

Proof. Similarly as Eq. (4), we have

RG(u;λ) =
λuZ

u
G(λ)

Z ūG(λ)
, (11)

and hence
∂ logRG(u;λ)

∂ log λv
=

∂

∂ log λv
log (ZuG(λ))− ∂

∂ log λv
log
(
Z ūG(λ)

)
.

We compute that

∂

∂ log λv
log (ZuG(λ)) =

λv
ZuG(λ)

∂

∂λv
ZuG(λ)

=
λv

ZuG(λ)

∑
I∈I(G):u∈I

∂

∂λv

∏
w∈I\{u}

λw

=
λv

ZuG(λ)

∑
I∈I(G):u,v∈I

∏
w∈I\{u,v}

λw

=
λvZ

uv
G (λ)

ZuG(λ)
= µG,λ(v | u).

Similarly, we have
∂

∂ log λv
log
(
Z ūG(λ)

)
= µG,λ(v | ū).

Therefore, we conclude that

∂ logRG(u;λ)

∂ log λv
= µG,λ(v | u)− µG,λ(v | ū) = ΨG(u→v;λ),

as claimed.

Since the occupancy ratios were intensively studied in previous works for establishing properties
like correlation decay or zero-freeness, by Claim 3 we can transform these properties or their proof
approaches into results for influences and thus establish spectral independence.
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2 Spectral Independence via Correlation Decay

In this section, we show Theorem 1 for η = O(1/δ) using an approach based on the strong spa-
tial mixing (correlation decay) property, which appeared in [ALO20, CLV20] and was based on
techniques in [Wei06, LLY13].

2.1 Proof approach

• We need to show that for any graph G ∈ G∆ and any vertex u ∈ V (G) it holds∑
v∈V
|ΨG(u→v)| = O(1/δ).

• For a graph G ∈ G∆ and a vertex u ∈ V (G), we associate them with a tree rooted at u called
the self-avoiding walk tree T = Tsaw(G, u), which enumerates all self-avoiding walks starting
from u. The tree T is in general exponentially large and each vertex of G can appear multiple
times in T . The maximum degree of T is at most ∆ as well. We can define a hardcore model
on T , such that

– The occupancy ratio at u is preserved:

RG(u) = RT (u).

– The influence from u to another vertex v is preserved:

ΨG(u→v) =
∑

w∈CT (v)

ΨT (u→w),

where CT (v) denotes the set of all copies of v in T .

• Then, it suffices to show that for any tree T ∈ G∆ and any vertex u ∈ V (T ) it holds∑
v∈V
|ΨT (u→v)| = O(1/δ).

This can be proved via the potential function method [RST+13, LLY13].

2.2 Self-avoiding walk tree

We now define the self-avoiding walk tree more formally. Suppose that there is a total order “<”
of vertices of G.

Definition 4 (Self-avoiding walk tree). Let G = (V,E) be a connected graph and u ∈ V be a
vertex. The self-avoiding walk (SAW) tree T = Tsaw(G, u) of G rooted at u is a tree consisting of
all self-avoiding walks starting from u, defined as follows.

• The root of T is u;

• Every path from the root u to a leaf corresponds to a “maximal” self-avoiding walk in G.
More precisely, if u = v0-v1-· · · -v`−1-v` = v is a path from u to a leaf v, then it corresponds
to a walk in G (i.e., {vi−1, vi} ∈ E) such that:
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T = TSAW(G, u)
u
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u u
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y y

y
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v

w

w

w

wv

v

u

z x
y

v w

G = (V, E)

ΨG(u → v) = ∑
v′ : copy of v

Ψξ
T(u → v′ )

RG(u) = Rξ
T(u)

Figure 1: An example of the self-avoiding walk tree and the hardcore model on it. Solid red
vertices are those fixed to be occupied in the pinning ξ, and hollow blue vertices are those fixed to
be unoccupied.

– either u = v0, v1, . . . , v`−1, v` = v are all distinct vertices (so they form a self-avoiding
walk), and degG(v) = 1 (so the self-avoiding walk is maximal);

– or u = v0, v1, . . . , v`−1 are all distinct vertices (so they form a self-avoiding walk), and
v = v` = vi for some i ≤ `− 2 (so the last vertex v makes a cycle, and the self-avoiding
walk is “maximal” in some sense).

Remark 5. (1) The maximum degree of T is the same as that of G.

(2) Leaves in T correspond to either “pendant vertices” (those of degree 1) in G or those closing a
cycle.

(3) Each vertex of G possibly appear multiple times in T . We denote the set of all copies in T of
a vertex v ∈ V (G) by CT (v).

(4) If G itself is a tree, then T = G. However, in general T can be exponentially larger than G.

Now for the hardcore model defined on G with the fugacity vector λ = (λv)v∈V , we define an
associated hardcore model on the self-avoiding walk tree with a specific pinning on some leaves.

Definition 6 (Hardcore model on Tsaw(G, u)). Let G = (V,E) be a connected graph and u ∈ V
be a vertex. Let T = Tsaw(G, u) be the SAW tree of G rooted at u. Define the hardcore model on
T with a pinning ξ as follows.

• For each vertex v ∈ V (G), every copy w ∈ CT (v) of v has the same fugacity λw = λv.

• We define a pinning ξ on a subset of leaves in the following way. Let u = v0-v1-· · · -v`−1-v` = v
be a path from u to a leaf v.

– If degG(v) = 1, then v is not pinned;

– Otherwise v = v` = vi for some i ≤ ` − 2, and we fix vi to be occupied if vi+1 < v`−1,
and unoccupied if instead vi+1 > v`−1.
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Remark 7. For a path u-v1-· · · -vi−1-v-vi+1-· · · -v`−1-v from the root u to a leaf v such that v =
v` = vi, there is also a path from u to another copy of v in the SAW tree given by u-v1-· · · -vi−1-v-
v`−1-· · · -vi+1-v, i.e., the order of the cycle is reversed. The pinnings at the two copies of v (both
are leaves) are opposite of each other.

Below we still use λ to denote the fugacity vector for the hardcore model on T . The following
lemma relates the hardcore models on G and on the corresponding SAW tree T .

Lemma 8 ([CLV20]). Let T = Tsaw(G, u) be the SAW tree of G rooted at u. Consider the hardcore
model on T with the pinning ξ as defined in Definition 6.

(1) ZG(λ) divides ZξT (λ). Moreover, there exists a polynomial P (λ) independent of λu, such that

ZξT (λ) = ZG(λ)P (λ).

(2) [Wei06] The occupancy ratio at u is preserved:

RG(u;λ) = RξT (u;λ).

(3) The influence of u on another vertex v is preserved:

ΨG(u→v;λ) =
∑

w∈CT (v)

Ψξ
T (u→w;λ).

Proof of “(2) ⇒ (3)”. We deduce from Claim 3 and the chain rule that

ΨG(u→v;λ) =
∂ logRG(u;λ)

∂ log λv
(Claim 3)

=
∂ logRξT (u;λ)

∂ log λv
(Part (2))

=
∑

w∈CT (v)

∂ logRξT (u;λ)

∂ log λw

∂ log λw
∂ log λv

(Chain rule)

=
∑

w∈CT (v)

Ψξ
T (u→w;λ), (Claim 3)

which shows Part (3).

Remark 9. (1) If w is fixed by ξ, then Ψξ
T (u→w;λ) = 0 by definition.

(2) One can show “(1) ⇒ (2)” using a similar strategy. More generally, it can be shown that the
SAW tree T = Tsaw(G, u) preserves all cumulants involving u.

Consequence of Lemma 8. By the triangle inequality, we deduce that∑
v∈V (G)

|ΨG(u→v)| ≤
∑

w∈V (T )

|ΨT (u→w)| .

Hence, we reduce the problem to trees (albeit a possibly exponentially large tree).
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2.3 Bounding influences on trees

In this subsection, we bound the absolute sum of influences of the root on bounded-degree trees.
In particular, we show the following result.

Lemma 10. Let T ∈ G∆ be a tree rooted at u. For an integer k ∈ N+ and a vertex v ∈ V (T ), let
Lv(k) denote the set of all descendants at distance k from v. Then for all k ∈ N+ we have∑

v∈Lu(k)

|ΨT (u→v)| ≤ a(1− δ)ck

where a, c > 0 are absolute constants.

The following claim is helpful to us.

Claim 11. Let T be a tree and u, v be two distinct vertices. If w is a vertex on the unique path
from u to v, then

ΨT (u→v) = ΨT (u→w) ΨT (w→v).

Proof. Using the Markov property of the hardcore model (i.e., conditional on the value of w, the
two vertices u and v are independent), we deduce that

ΨT (u→v) = µT (v | u)− µT (v | ū)

= µT (w | u)µT (v | w) + µT (w̄ | u)µT (v | w̄)

− µT (w | ū)µT (v | w)− µT (w̄ | ū)µT (v | w̄)

= (µT (w | u)− µT (w | ū))µT (v | w)− (µT (w̄ | ū)− µT (w̄ | u))µT (v | w̄)

= (µT (w | u)− µT (w | ū)) (µT (v | w)− µT (v | w̄))

= ΨT (u→w) ΨT (w→v),

as claimed.

Sketch proof of Lemma 10. By Claim 11 we have∑
v∈Lu(k)

|ΨT (u→v)| =
∑

w∈Lu(k−1)

∑
v∈Lw(1)

|ΨT (u→v)|

=
∑

w∈Lu(k−1)

|ΨT (u→w)|
∑

v∈Lw(1)

|ΨT (w→v)| .

If we can show for all w, ∑
v∈Lw(1)

|ΨT (w→v)| ≤ (1− δ)c (12)

for some constant c > 0, then we are done by induction. This is true in the case of the Ising model
when |β| < βc(∆) in the tree-uniqueness regime. For the hardcore model, Eq. (12) is not true for
all λ ≤ (1− δ)λc(∆), though it is easy to check that Eq. (12) holds when λ ≤ 1−δ

∆−2 which is below
the uniqueness threshold. To overcome this we use the potential function method.

The multivariate tree recursion is a function F = Fd,λ : Rd≥0 → R≥0 given by

R = F (R1, . . . , Rd) :=
λ∏d

i=1(1 +Ri)
,
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which means that for a tree rooted at w with d children v1, . . . , vd, the occupancy ratio RT (w)
at the root is given by RT (w) = F (RT1(v1), . . . , RTd(vd)) where Ti is the subtree rooted at vi and
RTi(vi) is the root occupancy ratio of Ti. It would be helpful to consider the logarithm of occupancy
ratios in the spirit of Claim 3. Writing x = logR and xi = logRi, we define a multivariate function
H = Hd,λ : Rd → R by

x = H(x1, . . . , xd) := log λ−
d∑
i=1

log(1 + exi).

One can check that
∂H

∂xi
= ΨT (w→vi)

which is similar to Claim 3, and therefore

‖∇H‖1 =

d∑
i=1

|ΨT (w→vi)| .

Let ϕ : R→ R be a suitable potential function that is monotone increasing, and we consider the
tree recursion composed with ϕ. That is, let y = ϕ(x) and yi = ϕ(xi), and then for Hϕ = ϕ◦H◦ϕ−1

we have
y = Hϕ(y1, . . . , yd).

Moreover, it is easy to check that

‖∇Hϕ‖1 =

d∑
i=1

ϕ′(x)

ϕ′(xi)
|ΨT (w→vi)| . (13)

Hence, if we choose ϕ nicely such that ‖∇Hϕ‖1 ≤ (1 − δ)c and ϕ′ is bounded, then we can prove
by induction that ∑

v∈Lu(k)

ϕ′(xu)

ϕ′(xv)
|ΨT (u→v)| ≤ (1− δ)ck, (14)

and Lemma 10 follows immediately.

• Base case: For k = 1, we can find constant a > 0 such that∑
v∈Lu(1)

ϕ′(xu)

ϕ′(xv)
|ΨT (u→v)| ≤ a(1− δ)c.

• Inductive step: Suppose Eq. (14) holds for k − 1. Then∑
v∈Lu(k)

ϕ′(xu)

ϕ′(xv)
|ΨT (u→v)| =

∑
w∈Lu(k−1)

ϕ′(xu)

ϕ′(xw)
|ΨT (u→w)|

∑
v∈Lw(1)

ϕ′(xw)

ϕ′(xv)
|ΨT (w→v)|

≤
∑

w∈Lu(k−1)

ϕ′(xu)

ϕ′(xw)
|ΨT (u→w)| · (1− δ)c ≤ a(1− δ)ck,

by Claim 11, Eq. (13), and ‖∇Hϕ‖1 ≤ (1− δ)c.
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Note that u can have ∆ children while any other vertex has at most ∆− 1 children. It remains
to choose a suitable potential function. We mention two choices for the hardcore model.

(1) The first one is from [RST+13]:

ϕ(x) = log

(
ex +

1

∆

)
.

For any integer d ≤ ∆− 1, and for any xi and x = H(x1, . . . , xd), it holds

‖∇Hϕ‖1 =
d∑
i=1

ex

ex + 1
∆

exi + 1
∆

exi + 1
≤ (1− δ)c.

(2) The second is from [LLY13]:

ϕ(x) = log
(
ex/2 +

√
ex + 1

)
.

For any integer d ≤ ∆− 1, and for any xi and x = H(x1, . . . , xd), it holds

‖∇Hϕ‖1 =
d∑
i=1

√
ex

ex + 1

√
exi

exi + 1
≤ (1− δ)c.

In fact, a general construction of potential functions was given in [LLY13] which works for all
two-spin systems, including the hardcore and Ising models, in the tree-uniqueness regime.

3 Spectral Independence via Zero-Freeness

In this section, we prove Theorem 1 using the zero-freeness of the partition function. The approach
here is based on [AASV21] with appropriate modifications and generalizations; see also [CLV21b]
for a more general setting.

3.1 Some preliminaries

For a complex number ζ ∈ C and a real number r > 0, let

D(ζ, r) = {z ∈ C : |z − ζ| < r}

be the open disk around ζ of radius r. Furthermore, for a subset A ⊆ C of complex numbers define

D(A, r) =
⋃
ζ∈A

D(ζ, r).

Let D(ζ, r) and D(A, r) denote their closure.
Consider the multivariate independence polynomial defined by Eq. (10). The following stability

(zero-freeness) result is known and is the basis of our approach.

Theorem 12 ([PR19, Theorem 4.2]). Let ∆ ≥ 3 be an integer. For any δ ∈ (0, 1), there exists
ε > 0 such that for any graph G ∈ G∆, we have Z(λ) 6= 0 whenever λv ∈ D([0, (1− δ)λc(∆)], ε) for
each vertex v.

We also need the following lemma from complex analysis.

Lemma 13 (Schwarz–Pick lemma). Let f : D(0, 1)→ D(0, 1) be a holomorphic function. Then

|f ′(0)| ≤ 1− |f(0)|2 ≤ 1.
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3.2 Proof approach

• We need to show that for any graph G ∈ G∆ and any vertex u ∈ V , it holds∑
v∈V
|ΨG,λ(u→v)| = O(1).

• Consider the multivariate case where every vertex has its own fugacity. For a complex number
ζ ∈ C, define λ(ζ) to be some perturbation of the fugacity vector such that:

– λ(0) = λ1 is the uniform fugacity vector.

– Consider the complex function

f(ζ) = λ log
(
RG (u;λ(ζ))

)
.

Then by Theorem 12 f is holomorphic around 0, and by Claim 3 we have

f ′(0) =
∑
v∈V
|ΨG,λ(u→v)|

for a suitable choice of λ(ζ).

In the actual proof we define f differently from above, so that it is easier to describe the
image of f as needed in the next step.

• Show that the function f is holomorphic in D(0, ε) and the image of f is contained in D(0, B)
where ε,B > 0 are constants. So, Lemma 13, applied to the function g(z) = 1

Bf(εz), implies
that ∑

v∈V
|ΨG,λ(u→v)| = f ′(0) =

B

ε
g′(0) ≤ B

ε
.

3.3 Proofs

Fix the graph G and the vertex u. For each v 6= u define

sv = sgn (ΨG,λ(u→v)) :=

{
1, ΨG,λ(u→v) ≥ 0;

−1, ΨG,λ(u→v) < 0.

Note that |ΨG,λ(u→v)| = svΨG,λ(u→v). We then define the perturbed fugacity vector λ(ζ) by
λv(ζ) = λ+ svζ for v 6= u and λu(ζ) = λ. Consider the complex function

f(ζ) =
λ

RG,λ(u)
RG
(
u;λ(ζ)

)
.

Claim 14. The complex function f is holomorphic in D(0, ε).

Proof. As in Eqs. (4) and (11), we can write

RG
(
u;λ(ζ)

)
=
λZuG

(
λ(ζ)

)
Z ūG
(
λ(ζ)

) .
For any ζ ∈ D(0, ε), we observe that λv(ζ) = λ + svζ ∈ D(λ, ε) ⊆ D([0, (1 − δ)λc(∆)], ε) for any
v 6= u, and hence Z ūG

(
λ(ζ)

)
6= 0 by Theorem 12 (note that Z ūG is the independence polynomial for

the graph G \ u ∈ G∆). Thus, RG
(
u;λ(ζ)

)
is holomorphic in D(0, ε) and so is f .
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Claim 15. We have
f ′(0) =

∑
v∈V
|ΨG,λ(u→v)| .

Proof. By the chain rule, we have

f ′(0) =
λ

RG,λ(u)

d

dζ
RG
(
u;λ(ζ)

)∣∣∣∣
ζ=0

=
∑
v∈V \u

λ

RG,λ(u)

(
∂

∂λv
RG
(
u;λ(ζ)

)) ∣∣∣∣
ζ=0︸ ︷︷ ︸

=ΨG,λ(u→ v) by Claim 3

(
dλv
dζ

) ∣∣∣∣
ζ=0︸ ︷︷ ︸

=sv

=
∑
v∈V \u

|ΨG,λ(u→v)| ,

as claimed.

Claim 16. The image of f is contained in D
(
0, λ2/(εRG,λ(u))

)
.

Proof. Observe that

RG
(
u;λ(ζ)

)
= y

⇐⇒
λZuG

(
λ(ζ)

)
Z ūG
(
λ(ζ)

) = y

⇐⇒
(
−λ
y

)
ZuG
(
λ(ζ)

)
+ Z ūG

(
λ(ζ)

)
= 0

⇐⇒ ZG
(
ρ(ζ)

)
= 0,

where

ρv(ζ) =

{
λv(ζ), v 6= u;

−λ
y , v = u.

Hence, we deduce from Theorem 12 that

−λ
y
/∈ D([0, (1− δ)λc(∆)], ε).

In particular,

−λ
y
/∈ D(0, ε) =⇒ y ∈ D

(
0,
λ

ε

)
.

The claim then follows.

With the arguments in Section 3.2, we conclude that∑
v∈V
|ΨG,λ(u→v)| ≤ λ2

ε2RG,λ(u)
= O(λ/ε2),

since RG,λ(u) ≥ λ/(1 + λ)∆ = Ω(λ) when λ = O(1/∆) is in the tree-uniqueness regime.

Remark 17. Note that ε2 in the final spectral independence bound comes from two places in
Theorem 12. One of them is the zero-free radius around λ, and the other is around 0.
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[GŠV16] Andreas Galanis, Daniel Štefankovič, and Eric Vigoda. Inapproximability of the par-
tition function for the antiferromagnetic Ising and hard-core models. Combinatorics,
Probability and Computing, 25(4):500–559, 2016.

[LLY13] Liang Li, Pinyan Lu, and Yitong Yin. Correlation decay up to uniqueness in spin sys-
tems. In Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 67–84, 2013.

[PR17] Viresh Patel and Guus Regts. Deterministic polynomial-time approximation algo-
rithms for partition functions and graph polynomials. SIAM Journal on Computing,
46(6):1893–1919, 2017.

[PR19] Han Peters and Guus Regts. On a conjecture of Sokal concerning roots of the indepen-
dence polynomial. The Michigan Mathematical Journal, 68(1):33–55, 2019.

[RST+13] Ricardo Restrepo, Jinwoo Shin, Prasad Tetali, Eric Vigoda, and Linji Yang. Improved
mixing condition on the grid for counting and sampling independent sets. Probability
Theory and Related Fields, 156(1):75–99, Jun 2013.

13



[Sly10] Allan Sly. Computational transition at the uniqueness threshold. In Proceedings of
the 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
287–296, 2010.

[SS14] Allan Sly and Nike Sun. The computational hardness of counting in two-spin models
on d-regular graphs. The Annals of Probability, 42(6):2383–2416, 2014.

[Wei06] Dror Weitz. Counting independent sets up to the tree threshold. In Proceedings of the
38th Annual ACM Symposium on Theory of Computing (STOC), pages 140–149, 2006.

14


	Preliminaries
	Hardcore model
	Tree-uniqueness threshold
	Spectral independence
	Relating influences and occupancy ratios

	Spectral Independence via Correlation Decay
	Proof approach
	Self-avoiding walk tree
	Bounding influences on trees

	Spectral Independence via Zero-Freeness
	Some preliminaries
	Proof approach
	Proofs


