Quantitative Policy Repair for Access Control on the Cloud

William Eiers
University of California Santa Barbara
Santa Barbara, CA, USA
weiers@cs.ucsb.edu

Ganesh Sankaran
University of California Santa Barbara
Santa Barbara, CA, USA
ganesh@cs.ucsb.edu

Tevfik Bultan
University of California Santa Barbara
Santa Barbara, CA, USA
bultan@cs.ucsb.edu

ABSTRACT

With the growing prevalence of cloud computing, providing secure access to information stored in the cloud has become a critical problem. Due to the complexity of access control policies, administrators may inadvertently allow unintended access to private information, and this is a common source of data breaches in cloud-based services. In this paper, we present a quantitative symbolic analysis approach for automated policy repair in order to fix overly permissive policies. We encode the semantics of the access control policies using SMT formulas and assess their permissiveness using model counting. Given a policy, a permissiveness bound, and a set of requests that should be allowed, we iteratively repair the policy through permissiveness reduction and refinement, so that the permissiveness bound is reached while the given set of requests is still allowed. We demonstrate the effectiveness of our automated policy repair technique by applying it to policies written in Amazon’s AWS Identity and Access Management (IAM) policy language.¹

ACM Reference Format:

1 INTRODUCTION

It is critical to protect privacy of the data stored in software services that run on compute clouds like Amazon Web Services (AWS) since data breaches in the cloud can have significant negative impact on millions of users. AWS Identity and Access Management (IAM) service [15] allows administrators to write policies that specify authorization and access control rules for the resources available in a software service. Although IAM provides a convenient language for writing policies, specification errors in manually written complex policies are bound to happen, leading to unintended and unauthorized access to data. Indeed, errors in access control policies in cloud storage services have already resulted in the exposure of millions of customers’ data to the public, such as the exposure of the data records (including names, addresses, account information, email addresses, and last four digits of credit card numbers) of more than 2 million Dow Jones & Co. customers [7], and exposure of account records of 14 million Verizon customers [26].

The access control policy analysis and repair problems are inherently quantitative since the issue is not whether an access control policy allows access to data resources, but how much access it allows. We call this the permissiveness of an access control policy. In particular, we investigate the problem of quantitative policy repair where the goal is not to completely eliminate all access to data (which would not be a feasible fix) but to reduce permissiveness to an acceptable level specified by the service administrator.

In this paper, we present a quantitative symbolic analysis approach for automated policy repair in order to reduce the permissiveness of access control policies. Our repair approach is sound, i.e., it guarantees that the repaired policy meets the given permissiveness constraints. Our contributions are the following:

- Formalization of the access control policy repair problem.
- A quantitative and symbolic policy repair algorithm for automatically reducing the permissiveness of a given access control policy.
- Access control policy permissiveness localization and reduction techniques, including a regular expression generalization technique for characterizing the set of resources based on a given set of access control requests.
- Experimental evaluation of our quantitative policy repair approach.

The rest of the paper is organized as follows. In Section 2 we formalize the policy repair problem and demonstrate its applicability through motivating examples, in Section 3 we discuss the policy model for analyzing the semantics of access control policies, in Section 4 we introduce our novel approach for policy repair through a quantitative policy repair algorithm, in Section 5 we discuss how our approach can be applied to the AWS IAM policy language, in Section 6 we experimentally evaluate our approach, in Section 7 we discuss related work, and in Section 8 we conclude the paper.

2 MOTIVATION AND OVERVIEW

In this section we give an overview of the access control policy repair problem and provide motivating examples. From a security perspective, access control policies should grant only the permissions required to perform a task. Overly permissive policies, which
grant more permissions than necessary, can allow attackers un-
challenged access to secure data if the associated role or users are
compromised. Thus, overly permissive policies should be modified,
or repaired, to allow only those requests which are necessary.

2.1 Policy Repair Problem

Access control policies grant permissions to users or services by
allowing requests. The more permissions granted by a policy, the
more requests it allows. The fewer permissions granted by a policy,
the lower the number of requests it allows. In this sense, we can
think of the number of permissions granted, or requests allowed,
by the policy as defining the permissiveness of the policy. A natural
question then is, given an overly permissive policy, is it possible to
modify, or repair the policy so that it is no longer overly permissive?

This gives rise to the Policy Repair Problem: Given an access control
policy, ensure that it only allows the requests necessary to achieve
its intended purpose. However, this is difficult to ensure as complex
policy specifications are difficult to craft and the set of requests to
be allowed or denied may not be explicitly defined or known.

In this paper, we introduce and formalize the following varia-
tion of the access control policy repair problem: Given a policy, a
permissiveness bound, and a set of must-allow requests, check that
the policy meets the permissiveness bound while allowing all the
requests in the must-allow set, or repair it such that it meets the
permissiveness bound and allows all the requests in the must-allow
set. Note that permissiveness bound puts an upper bound on the
desired level of permissiveness while the must-allow request set
puts a lower bound on the desired level of permissiveness.

Permissiveness Bound. The permissiveness bound is a restriction
on the permissiveness of the policy. That is, it is a restriction on
the maximum number of requests allowed by the policy. If the
permissiveness of the policy (number of requests allowed by the
policy) is greater than the permissiveness bound, then we call this
policy an overly permissive policy. Our approach aims to repair
overly permissive policies by reducing the permissiveness of the
policy so that the permissiveness of the policy is less than or equal
to the permissiveness bound. While in this paper we assume that such
a permissiveness bound is given a priori, we also discuss methods
for automatically finding permissiveness bounds later in the paper.

Must-Allow Request Sets. The set of must-allow requests are re-
quests which must be allowed by the policy. Without a must-allow
request set, a policy that does not allow any requests would meet
any permissiveness bound and would be a viable (but meaningless)
solution to the policy repair problem. The must-allow request set
is used to guide the algorithm towards a less permissive but still
useful policy. In our approach, we assume that the set of must-allow
requests is given as input to the policy repair algorithm.

In our approach we assume that the policy developer has access
to a set of must-allow requests. We assume that the policy developer
has knowledge of, and access to, what kinds of requests should be
definitely allowed by the policy. The concept of a must-allow re-
quest set is analogous to the concept of whitelists from the security
domain which explicitly enumerate what should be allowed (e.g., a
firewall only allowing requests from a certain domain). Typically,

```
"Statement": [{
  "Effect": "Allow",
  "Action": "s3::GetObject",
  "Resource": "arn:aws:s3:::examplebucket/*"
},
{
  "Effect": "Allow",
  "Action": "s3:PutObject"
},
{
  "Effect": "Allow",
  "Action": "s3:DeleteObject"
},
{
  "Effect": "Allow",
  "Action": "s3:ListBucket"
},
{
  "Effect": "Allow",
  "Action": "s3:PutObject"
}
]
```

```
"Statement": [{
  "Effect": "Allow",
  "Action": "s3:ListBucket",
  "Resource": "arn:aws:s3:::examplebucket/*"
},
{
  "Effect": "Allow",
  "Action": "s3:PutObject"
},
{
  "Effect": "Allow",
  "Action": "s3:DeleteObject"
},
{
  "Effect": "Allow",
  "Action": "s3:GetObject",
  "Resource": "arn:aws:s3:::examplebucket/*"
}
]
```

2.2 Motivating Examples

The goal of the repair algorithm is to find a policy repair that
satisfies both of the above constraints (permissiveness bound and
must-allow requests). To illustrate the policy repair problem con-
cretely, we discuss a couple of motivating examples below.

Consider the role of an automated log consolidator in the Ama-
zon Web Services (AWS) cloud, hereafter referred to as simply logger,
which routinely gathers logs and consolidates them into a single
log file for further analysis. The permissions granted to the logger
role are given by the policy attached to the role. The initial policy
attached to the logger role is given in Figure 1(a). This policy gives
varied access to the "backend" AWS S3 bucket: The first statement
allows the logger role to list objects within the bucket and gives
read and write access to the "logs" object, while the second state-
ment allows the logger role to read all objects within the "backend"
bucket. Note that broad access is achieved through the use of the
wildcard symbol ‘*’ (representing any string) within the resource
description "backend/*". Though not present in this first policy, the
‘?’ symbol is used similarly to represent any character.
Essentially, this second statement allows the logger role to gather all logs in the bucket, while the first statement allows the logger role to consolidate those logs into a single logs file. This policy allows the logger role to accomplish its tasks. However, the policy gives the logger role read access to all objects in the “backend” bucket using the S3:GetObject action, regardless of whether or not the object is a log file. Ideally, the policy should be repaired so that it only allows access to log files within the “backend” bucket.

Repairing the permissiveness of the policy in 1(a) requires some information to be known regarding the requests fielded (allowed or denied) by the policy. Without such domain specific knowledge, the best repair would be to modify the policy to allow no requests.

Suppose that the following requests, which specify action and resource pairs, should be allowed by the policy:

- s3:ListBucket, “backend”
- s3:GetObject, “backend/logs”
- s3:GetObject, “backend/user44012/status.log”
- s3:GetObject, “backend/user00000/status.log”
- s3:GetObject, “backend/user12345/status.log”
- s3:GetObject, “backend/user91232/status.log”
- s3:GetObject, “backend/admin12/status.log”
- s3:GetObject, “backend/admin02/status.log”
- s3:GetObject, “backend/admin43/status.log”
- s3:GetObject, “backend/admin3/status.log”

These requests represent what kind of actions and resources should be allowed by the original policy, which we refer to as the must-allow request set. Any repaired policy must allow these requests.

The simplest way to repair the policy is to explicitly enumerate the allowed requests within a statement in the policy, as shown in Figure 1(b). Instead of specifying “bucket/*” in the second statement (which specified all objects within the bucket), the list of known resources is explicitly specified by explicitly enumerating them. While this is a valid repair and does in fact reduce permissiveness, it does not handle other log files which may exist but were not captured in the must-allow request set. It simply makes the must-allow set the policy. In our approach, we remedy this by generalizing the allowed requests using resource characterization techniques.

The policies in Figure 2 show two repairs which our quantitative repair approach generates. Both policies reduce the permissiveness of the original policy. However, the second and third repaired policies generalize the resources from the must-allow request set.

The second repaired policy (Figure 2(a)) generalizes requests containing the “user” and “admin” strings, but is more restrictive for resources containing the “user” string: It allows resources such as bucket/user44012/status.log which is in the must-allow request set, but does not allow bucket/user123456789/status.log which is not in the must-allow request set. The third repaired policy (Figure 2(b)) also generalizes requests containing the “user” and “admin” strings, but is equally as restrictive in both cases. Based on the input permissiveness constraints and parameters, our approach can generate repairs with different levels of permissiveness while meeting the permissiveness constraints. We discuss this further in Section 4.

Permissiveness Bound Example. In this example we discuss the importance of the permissiveness bound in the repair process. Recall that the permissiveness of a policy is the number of requests allowed by the policy. Given a permissiveness bound, a policy is determined to be overly permissive if the permissiveness of the policy is greater than the permissiveness bound. For example, if the desired permissiveness bound is 1,000 (maximum of 1,000 distinct requests allowed), and the permissiveness of a given policy is 10,000, then the permissiveness of the policy exceeds the permissiveness bound and is in need of repair. While the permissiveness bound is a bound on the maximum number of requests allowed by the policy, it can also be used to interpret the maximum number of wild characters allowed within the policy; that is, the number of characters which are allowed to be unspecified in the policy.

Consider the policies in Figure 3 together with the following set of must-allow requests:

- s3:putObject, “backend/logs/user00102”
- s3:putObject, “backend/logs/user94319”
- s3:GetObject, “backend/logs/user22212”
- s3:GetObject, “backend/logs/user30100”
- s3:GetObject, “backend/logs/user49763”

Let us assume that the desired permissiveness bound is 5 wild characters, which corresponds to a maximum of $256^5 = 1.1 \times 10^{12}$ distinct requests which can be allowed by the policy. Note that the number of wild characters can be obtained by taking the log_{256} of the desired permissiveness (since each wild character corresponds to 256 possible characters). Additionally, assume only ASCII characters are allowed in the resource field, and the length of resources can be at most 30 characters long. The first policy (Figure 3(a)) has a permissiveness of 9.6×10^{52}, or 22 wild characters, which far exceeds the permissiveness bound. The second policy (Figure 3(b)) is a partially repaired version of the first policy, which further restricts the requests allowed by the policy. The permissiveness of this second policy is 2.0×10^{31}, or 13 wild characters which still exceeds the permissiveness bound. The third policy (Figure 3(c)) shows a fully repaired policy with a permissiveness of 1.1×10^{12}, or 5 wild characters, which does not exceed the permissiveness bound, and is thus repaired. In this case, note that the resource field in the policy “Resource”: “backend/logs/user?????” limits the number of wildcard characters to 5, which meets the permissiveness bound.

Figure 3: Original policy (top left, (a)), partially repaired policy (top right, (b)), fully repaired policy (bottom, (c))

3 Modeling Access Control Policies

In this section we present a semantic model for access control policies and the encoding of this semantic model as SMT formulas. The model and its encoding are expressive enough to capture complex policy specifications from cloud services; E.g, policies written in the AWS Identity and Access Management (IAM) policy language.
3.1 Policy Model
An access control policy specifies who can do what under which conditions. We define an access control model in which declarative policies field access requests from a dynamic environment, and all requests are initially denied.

We use the policy model from [10] where an access request is a tuple \((\delta, a, r, e) \in \Delta \times A \times R \times E\), \(\Delta\) is the set of all possible principals making a request, \(R\) is the set of all possible resources which access is allowed or denied, \(A\) is the set of all possible actions, and \(E\) is the environment attributes involved in an access request.

An access control policy \(\mathcal{P} = \{\rho_0, \rho_1, \ldots, \rho_n\}\) consists of a set of rules \(\rho_i\) where each rule is defined as a partial function \(\rho : \Delta \times A \times R \times E \mapsto \{\text{Allow, Deny}\}\). The set of principals specified by a rule \(\rho\) is
\[
\rho(\delta) = \{\delta \in \Delta : \exists a, r, e : (\delta, a, r, e) \in \rho\} \tag{1}
\]
\(\rho(a)\) for \(a \in A\), \(\rho(r)\) for \(r \in R\), \(\rho(e)\) for \(e \in E\) are similarly defined.

Given a policy \(\mathcal{P} = \{\rho_0, \rho_1, \ldots, \rho_n\}\), a request \((\delta, a, r, e)\) is granted access if and only if
\[
\exists \rho_i \in \mathcal{P} : \rho_i(\delta, a, r, e) = \text{Allow} \land \exists \rho_j \in \mathcal{P} : \rho_j(\delta, a, r, e) = \text{Deny}
\]

The policy grants access if and only if the request is allowed by a rule in the policy and is not revoked by any other rule in the policy. If a request is allowed by one rule and denied by another rule, the request is denied, i.e., the explicit denies overrules explicit allows.

The set of allow rules and deny rules for \(\mathcal{P}\) are defined as follows:
\[
\mathcal{P}_{\text{Allow}} = \{\rho_i \in \mathcal{P} : (\delta, a, r, e) \in \rho_i \land \rho_i(\delta, a, r, e) = \text{Allow}\} \tag{2}
\]
\[
\mathcal{P}_{\text{Deny}} = \{\rho_j \in \mathcal{P} : (\delta, a, r, e) \in \rho_j \land \rho_j(\delta, a, r, e) = \text{Deny}\} \tag{3}
\]

Given a policy \(\mathcal{P}\), the requests allowed by the policy are those in which a policy rule grants the access through an \(\text{Allow}\) effect and is not revoked by any policy rule with a \(\text{Deny}\) effect:
\[
\text{Allow}(\mathcal{P}) = \{\delta, a, r, e) : (\delta, a, r, e) \in \Delta \times A \times R \times E \}
\]
\[
\exists \rho_i \in \mathcal{P} : (\delta, a, r, e) \in \rho_i \land \rho_i(\delta, a, r, e) = \text{Allow}
\land \exists \rho_j \in \mathcal{P} : (\delta, a, r, e) \in \rho_j \land \rho_j(\delta, a, r, e) = \text{Deny}\} \tag{4}
\]

The set of principals, resources, or actions allowed by a policy is
\[
\text{Allow}(\mathcal{P}, A) = \{\delta \in \Delta : (\delta, a, r, e) \in \text{Allow}(\mathcal{P})\} \tag{5}
\]
\[
\text{Allow}(\mathcal{P}, R) = \{r \in R : (\delta, a, r, e) \in \text{Allow}(\mathcal{P})\} \tag{6}
\]
\[
\text{Allow}(\mathcal{P}, P) = \{a \in A : (\delta, a, r, e) \in \text{Allow}(\mathcal{P})\} \tag{7}
\]

Combining Policies. Recall that a policy \(\mathcal{P}\) consists of a set of rules \(\{\rho_0, \ldots, \rho_n\}\). Two policies \(\mathcal{P}_1\) and \(\mathcal{P}_2\) can be combined into a single policy \(\mathcal{P}_3\) by combining the set of rules in \(\mathcal{P}_1\) with the set of rules in \(\mathcal{P}_2\) as \(\mathcal{P}_3 = \mathcal{P}_1 \cup \mathcal{P}_2\). Based on the policy semantics we defined above, the allowed requests of \(\mathcal{P}_3\) is the set of requests allowed by either \(\mathcal{P}_1\) or \(\mathcal{P}_2\) that are not denied by \(\mathcal{P}_1\) and not denied by \(\mathcal{P}_2\).

3.2 Symbolic Encoding of Policies
Access control policies can be translated to SMT formulas in order to enable symbolic analysis using constraint solvers [10]. The set of possible requests are encoded by introducing variables \((\delta_{\text{smt}} \in \Delta, r_{\text{smt}} \in R, a_{\text{smt}} \in A, e_{\text{smt}} \in E)\) in the generated SMT formula.

Figure 4: Flow of repair algorithm. The inputs are Initial Policy, Permissiveness Bound, Must-Allow Request Set

The SMT encoding of a policy \(\mathcal{P}\) is given by \([\mathcal{P}]\) and represents the set of requests allowed by \(\mathcal{P}\):
\[
[\mathcal{P}] = \left(\bigwedge_{\rho \in \mathcal{P}_{\text{Allow}}} \text{Allow}(\rho) \right) \land \left(\bigwedge_{\rho \in \mathcal{P}_{\text{Deny}}} \neg\text{Deny}(\rho) \right) \tag{8}
\]
\[
[\rho] = \left(\bigvee_{\delta \in \mathcal{P}} \delta_{\text{smt}} = \delta \right) \land \left(\bigvee_{a \in \mathcal{P}} a_{\text{smt}} = a \right) \land \left(\bigvee_{r \in \mathcal{P}} r_{\text{smt}} = r \right) \land \left(\bigvee_{e \in \mathcal{P}} e_{\text{smt}} = e \right) \tag{9}
\]

Policy rules are encoded as values for sets of \((\delta, a, r, e)\), where each value set potentially grants or revokes permissions. Satisfying solutions to \([\mathcal{P}]\) correspond to requests allowed by the policy, i.e.,
\[
\text{Allow}(\mathcal{P}) = \{ (\delta, a, r, e) : (\delta, a, r, e) \models [\mathcal{P}] \} \tag{10}
\]

4 QUANTITATIVE POLICY REPAIR
Recall that policy repair has three inputs: 1) a permissiveness bound, 2) a set of must-allow requests, and 3) a policy to be repaired. The goal is to create a revised (repaired) version of the input policy in which all must-allow requests are allowed and the permissiveness bound is not exceeded.

Our policy repair algorithm consists of three main stages: (1) Goal Validation, (2) Permissiveness Localization, and (3) Permissiveness Refinement. Figure 4 shows the overall flow of the repair algorithm. Algorithm 1 is the core repair algorithm corresponding to the flowchart shown in Figure 4. Given a policy (consisting of one or more rules), a permissiveness bound, and set of requests, the repair algorithm first checks if the permissiveness goals are met using Goal Validation. If they are met, then the algorithm stops and returns the policy. Otherwise, it finds the most permissive elements of the policy through Permissiveness Localization, then reduces permissiveness and refines the policy elements through Permissiveness Refinement. The algorithm then goes back to Goal Validation and repeats the process until the policy is successfully repaired meeting the permissiveness constraints. In the following sections, we will discuss the algorithms corresponding to each of the stages.

Since our repair approach uses a greedy strategy to quantitatively repair overly permissive policies, it is not guaranteed to produce an optimum repair. However, we believe that a greedy repair strategy...
Algorithm 1 PolicyRepair

Input: Policy \(P \), Permissiveness bound \(\eta \), must-allow requests \(Q \), length threshold \(\alpha \), depth threshold \(\omega \), refinement threshold \(\epsilon \), map \(M \)

Output: Repaired Policy \(P \)

1: \(P' = P \)
2: \(\eta = \text{GetPermissiveness}(P') \)
3: while \((\eta > \eta) \land \text{HasUnrefinedResources}(M) \) do
4: \((p, a, r, \rho) = \text{Localize}(P', M) \)
5: \(P' = \text{ReduceRule}(p, a, r, \rho) \)
6: \(P' = (P' \backslash \{p\}) \cup \{p'\} \)
7: \(Q' = \text{ValidateRequests}(P', Q) \)
8: if \(Q' \neq P' \) then
9: \(R = \text{GenerateResourceCharacterization}(Q', \alpha, \omega) \)
10: \(P\text{_refined} = \text{GenerateRevisedRule}(p, a, \rho, P') \)
11: \(P\text{_refined} = (P' \backslash \{p\}) \cup \{P\text{_refined}\} \)
12: if \(\text{GetPermissiveness}(P\text{_refined}) \geq \eta - \epsilon \) then
13: \(\text{MakeRuleResourceAsRefined}(M, P\text{_refined}) \)
14: else \(P' = P\text{_refined} \)
15: end if
16: end if
17: \(\eta = \text{GetPermissiveness}(P') \)
18: end while
19: if \(\eta > \eta \) then \(P' = \text{EnumerateRequests}(P', Q) \)
20: end if
21: return \(P' \)

Algorithm 2 ValidateRequests

Input: Policy \(P \), Request set \(Q \subseteq \Delta \times A \times R \times E \)

Output: Requests not allowed by policy \(P \)

1: \(Q\text{_allowed} = \emptyset \)
2: \([P] = \text{Encode}(P) \)
3: for \((\delta, a, r, e) \in Q \) do
4: if \((\delta, a, r, e) \in [P] \) then \(Q\text{_allowed} = Q\text{_allowed} \cup \{(\delta, a, r, e)\} \)
5: end if
6: end for
7: return \(Q \setminus Q\text{_allowed} \)

Algorithm 3 Localize

Input: Policy \(P \), map \(M \)

Output: Most permissive rule and elements in policy

1: \(\rho_{\text{max}} = \rho_{\text{empty}} \)
2: \(\alpha_{\text{max}}, \rho_{\text{max}} = (\) \)
3: \(\eta_{\text{max}} = 0 \)
4: for \(p \in P\text{_allowed} \) do
5: if \(\text{IsRuleRefined}(M, \rho) \) then continue
6: end if
7: \(\eta = \text{GetPermissiveness}(\rho) \)
8: if \(\eta > \eta_{\text{max}} \) then
9: \(\eta_{\text{max}} = \eta \)
10: \(\rho_{\text{max}} = \rho \)
11: end if
12: end for
13: \(\eta_{\text{max}} = 0 \)
14: for \((a_i, r_i) \in \rho_{\text{max}}(a) \times \rho_{\text{max}}(r) \) do
15: if \(\text{IsResourceRefined}(M, r_i) \) then continue
16: end if
17: \(\rho = \text{CreateRule}(\rho_{\text{max}}(\delta), a_i, r_i, \rho_{\text{max}}(e), \text{Allow}) \)
18: \(\eta = \text{GetPermissiveness}(\rho) \)
19: if \(\eta > \eta_{\text{max}} \) then
20: \(\eta_{\text{max}} = \eta \)
21: \(\rho_{\text{max}}, \alpha_{\text{max}}, \rho_{\text{max}} = (a_i, r_i) \)
22: end if
23: end for
24: return \((\rho_{\text{max}}, \alpha_{\text{max}}, \rho_{\text{max}}) \)

4.1 Repair Goal Validation

Recall that the main goal of policy repair is to reduce the permissiveness of the given policy to meet the given permissiveness bound while preserving the set of must-allow requests. Validating that the repair goal is reached requires two steps: (1) quantitatively assessing that the permissiveness of the repaired policy is within the given permissiveness bound, and (2) verifying that the given set of must-allow requests are allowed by the repaired policy. When both of these goal validation steps are achieved, the repair algorithm stops and we return the repaired policy. Note that it may not be possible to achieve the permissiveness bound without changing the policy to only allow the requests that are in the must-allow set. In such a scenario we generate a policy that corresponds to explicit enumeration of the requests in the must-allow set.

In cases where permissiveness cannot be reached without enumeration of the must-allow set, our approach uses a stopping condition where only rules that have not been previously refined (from the permissiveness refinement stage) are eligible for refinement; the repair algorithm stops if there are no rules left to refine, regardless of whether the permissiveness goal has been reached.

To simplify the presentation of our policy repair algorithm, we assume that the permissiveness level required by the must-allow set is not more than the input permissiveness bound (which would correspond to an unsatisfiable set of permissiveness constraints),
and furthermore, we assume that the initial policy does allow all the requests in the must-allow set. We can easily get rid of these assumptions with extra checks.

The permissiveness goal is checked on lines 2 and 3 in the repair Algorithm 1 through the GetPermissiveness function. A policy \mathcal{P} is first encoded into an SMT formula $[\mathcal{P}]$ then sent to a model counter which returns number of satisfying solutions to $[\mathcal{P}]$, which corresponds to the number of requests allowed by policy \mathcal{P}. Recall that the number of requests allowed by \mathcal{P} corresponds to the permissiveness of \mathcal{P}. If the permissiveness is less than the bound, then the permissiveness goal has been reached and the algorithm returns the current policy. Otherwise, it gets in the while loop starting in line 3 in order to modify the current policy to reduce its permissiveness.

Algorithm 2 shows how the set of must-allow requests \mathcal{Q} are checked against a policy \mathcal{P}. For each request (δ, a, r, e) in the must-allow set, we have to determine if $(\delta, a, r, e) \models [\mathcal{P}]$, i.e., does \mathcal{P} allow (δ, a, r, e)? This is done by generating the SMT formula $[(\delta, a, r, e)] \wedge [\mathcal{P}]$ and checking if it is satisfiable using an SMT solver. Note that $[(\delta, a, r, e)]$ corresponds to SMT encoding of the request (δ, a, r, e) and $[\mathcal{P}]$ is the SMT encoding of all the requests allowed by \mathcal{P}. So, if SMT solver reports that $[(\delta, a, r, e)] \wedge [\mathcal{P}]$ is satisfiable, then we know that the request (δ, a, r, e) is among the requests allowed by \mathcal{P}. If the SMT solver reports that it is not satisfiable, then we know that the request (δ, a, r, e) is not allowed by \mathcal{P}. By encoding requests and policies as SMT formulas, we can implement the goal validation step using an SMT solver, and without requiring access to an access control policy evaluation engine.

Algorithm 3 accumulates the requests in \mathcal{Q} that are allowed by \mathcal{P} in the set $\mathcal{Q}_{\text{allowed}}$. At the end it returns the set difference $\mathcal{Q} \setminus \mathcal{Q}_{\text{allowed}}$, i.e., the set of requests in \mathcal{Q} that are not allowed by \mathcal{P}. These requests are used in the permissiveness refinement step.

4.2 Permissiveness Localization

We use a greedy strategy in repairing the permissiveness of a policy. We quantitatively assess permissiveness by first finding the most permissive rule in the policy, then finding the most permissive elements within the rule. This is done using calls to a model counter.

Permissiveness Analysis. Recall from Section 3 that $\text{ALLOW}(\mathcal{P})$ is the set of all requests allowed by \mathcal{P}. It follows then that $\{\text{ALLOW}(\mathcal{P})\}$ is the number of such requests. Following the work from [10], the permissiveness of \mathcal{P} is the number of requests allowed by \mathcal{P}, which corresponds to the number of solutions to the formula encoding \mathcal{P}, which is $[\mathcal{P}]$, i.e., $\{\text{ALLOW}(\mathcal{P})\} = [\mathcal{P}]$. Thus, a lower permissiveness corresponds to a lower number of allowed requests, while a higher permissiveness corresponds to a higher number of allowed requests.

Permissiveness Localization. Similar to fault localization techniques in traditional repair algorithms, we introduce the notion of permissiveness localization for policy repair to find the most permissive sections of a policy. Our permissiveness localization technique consists of a two-step process: (1) a coarse-grained approach which first finds the most permissive rules in a policy, and (2) a fine-grained approach is used to find the most permissive elements within each rule. In the course-grained approach each rule is analyzed independently of other rules within the policy: each rule $\rho_i \in \mathcal{P}$ is treated as an independent policy $\mathcal{P}_i = \{\rho_i\}$. The permissiveness of each \mathcal{P}_i is assessed using a model counter, where the most permissive rule in \mathcal{P} corresponds to the most permissive policy \mathcal{P}_i. A rule contains principals, actions, resources, and environment conditions. In order to better analyze the permissive elements of the most permissive rule, we use a fine-grained approach to determine the greatest source of permissiveness. More specifically, we analyze the actions and resources within the rule, as in our observations these tend to be the most permissive elements. Once this is done, the repair algorithm refines the permissiveness of the rule and its elements.

Algorithm 3 shows how the repair is localized. First, in lines 4-12 the most permissive rule is found by iterating through the allow rules (those that allow requests) in the policy. Only rules which contain unrefined resources are considered; additionally, we do not consider deny rules (those that deny requests) as by definition deny rules cannot increase permissiveness. We keep track of which parts of a policy is already refined by using a map M.

The GetPermissiveness function encodes the given policy as a SMT formula using the techniques in Section 3 and calls the model counter on the formula. The GetPermissiveness function is called on a policy consisting only of the given rule. Next, on lines 14-23 the most permissive action, resource pairs are located within the rule.

This is done by iterating over all action, resource pairs and creating a new rule where the action, resource pair is allowed with any combination of the principals and environment attributes specified in the most permissive rule. Note that, as before, only unrefined resources are considered. The permissiveness of the newly created rule is calculated using the GetPermissiveness function. Once found, the most permissive rule and its respective action, resource pair is returned. Note that Algorithm 3 involves numerous calls to a model counter through the GetPermissiveness function, and calls to a model counter can be expensive. This is a concern that we later discuss while presenting our implementation and experiments.

4.3 Permissiveness Refinement

Once the most permissive rule and elements in the rule are found using permissiveness localization, the rule is modified to reduce permissiveness. However reducing permissiveness has the possible effect that some requests in the set of must-allow requests are now not allowed. In this situation, the denied requests are analyzed and the rule is then refined using resource characterization and generalization techniques so that all must-allow requests are allowed.

Algorithm 1 shows how a rule is reduced and refined, while Algorithm 4 and Algorithm 5 show how the resource characterization is generated from the denied requests.

Permissiveness Reduction. Within Algorithm 1, once the most permissive rule and its permissive elements are located using Algorithm 3 on line 4, on line 5 the ReduceRule function modifies the rule so that permissiveness is reduced. Our approach for reducing permissiveness greedily removes the most permissive element of the most permissive rule. The rule is only modified so that the permissive action and resource pair is removed. On line 6, a new policy is created by removing the permissive rule from the original policy and replacing it with the reduced rule from line 5.
While the permissiveness of the rule is clearly reduced using this approach, a clear consequence is that some requests (possibly from the set of must-allow requests) that were previously allowed are now denied. This is an intentional consequence of our approach. It allows us to remove redundant elements of a policy while refining the rule (as we discuss below). The goal is to generate a possibly less permissive characterization of resources while keeping the must-allow requests still valid.

Permissiveness Refinement. Lines 7-17 in Algorithm 1 details how permissiveness is refined through the construction of a new policy. In the case that the permissiveness reduction results in the set of must-allow requests being invalidated, we must refine the permissiveness in order to fix the set of must-allow requests. On line 7, using Algorithm 2 we determine which requests from the set of must-allow requests are denied in the new policy. If the set of must-allow requests are still valid, the current repair iteration ends and the next iteration starts with the modified policy as the policy to be further repaired. Otherwise, the modified policy must first be repaired so that the set of must-allow requests are valid. Lines 9-11 show how this is done. We first generate a characterization of resources from the invalid requests in the must-allow request set. This is done by extracting a regular expression from the finite-state automaton by state elimination [12]. Once the characterization is obtained, the new resources are added into the rule through the GeneralizeRule function which generates a new rule using the newly refined resource and the other existing elements within the rule. However, it can be the case that the newly refined rule does not decrease permissiveness, either at all or by an appreciable amount. If the permissiveness of the refined policy does not appreciably decrease (lines 12-15), the current repair is rolled back and the resource within the rule is marked as not eligible for refinement.

Resource Characterization from Invalid Requests. To finish the permissiveness reduction and refinement step, the modified policy must be further refined so that the set of must-allow requests is valid. Trivially, this can be done by enumerating the invalid requests and adding a new rule to the policy which allows only that specific requests. However this does not generalize for requests not in the must-allow set but were intended to be allowed, and can make the policy more complicated in the case that the must-allow set is large. Thus, we aim to generate a characterization of the invalid requests, but more specifically the resources in the requests, which can be added to the modified rule. Ideally, this characterization will increase permissiveness to fix the invalid requests, but still remain less permissive than previously. To do so, we generate a regular expression characterizing the set of requests.

Algorithm 4 shows our regular expression and automata-based approach for resource characterization. The algorithm works by constructing a deterministic finite-state automaton (DFA) for each resource and then taking the automata union of all such DFAs (lines 3-6). Each DFA constructed for a resource (line 4) is a DFA that accepts only that resource, which is a constant. Thus, the union of all such DFAs is a DFA with no loops. We then use the state elimination algorithm [12] to obtain a regular expression characterizing the set of resources. It is well known that this regular extraction algorithm can produce arbitrarily complex regular expressions which are often not useful in practice. This is mainly due to the presence of loops within the DFA, and since our DFAs contain no loops, the resulting regular expression contains only concatenation and unions.

Consider the resources from an example must-allow request set: bucket/users/client155, bucket/users/client115, bucket/users/client955, bucket/users/client200, bucket/logs/client544, bucket/logs/client333, bucket/logs/client12, bucket/logs/client411

Figure 5 shows the DFA constructed from the union of these requests, and the initial regular expression extracted from the DFA. The extracted regular expression however is an enumeration of the input resources using disjunctions, and must be generalized.

The recursive GeneralizeRegex algorithm (Algorithm 5) takes the extracted regular expression and transforms the regular expression to a more general regular expression which specifies a broader list of resources. The algorithm works to eliminate some disjunctions in a depth-first manner by replacing them with anychars ("*") and wildcards ("*" when possible). The length threshold controls when strings of the same length should be collapsed into anychar symbols: e.g., if the length threshold is 3, then ”(123|456)” will be simplified to “???” while ”(1234|5678)” will remain the same. The depth threshold controls when nested disjunctions get simplified into the wildcard (anystring) character: the greater the threshold, the deeper the nesting of disjunctions is allowed. Once the generalized regular expression is obtained, the refined resources are gathered by enumerating the leftover disjunctions within the general regular expression. Using a length threshold of 3, depth threshold of 2, we obtain a more general, more permissive regular expression: bucket/((logs/client*)|users/client???)

Note that different values for the thresholds yield different regular expressions. For example, length threshold of 3, depth threshold of 4 yields the less general, less permissive regular expression: bucket/((logs/client(((123)|333)|411)|544)|users/client???)

5 POLICY REPAIR FOR THE CLOUD

Currently, our policy repair approach works on the policy model we introduced in Section 3. This policy model abstracts away the implementation and intricacies of modern policy languages used in the cloud. In this section, we show how our policy model can be applied to one of the most popular policy languages for the cloud, that of Amazon Web Services (AWS), and we demonstrate that our approach repairs such policies.

5.1 AWS Policy Language

In the AWS Policy Language, a policy consists of a list of statements which either allow or deny access. A statement consists of Principal, an Effect, Action, Resource, and Condition, where:

- Principal is a list of users or other entities specifying who or what is requesting access.
- Effect ∈ {Allow, Deny} specifying allows or denies access.
- Action is a list of actions specifying what operations on the resources are being requested.
- Resource is a list of resources specifying what is being accessed.
- Condition is a list of conditions specifying additional constraints on how access is governed.
Recall that our approach localizes permissiveness to the most permissive action, resource pair and then mutates it when possible. We cannot directly apply the approach to AWS IAM policies that may contain NotPrincipals, NotActions, NotResources, and/or negative condition operators like StringNotEquals because such elements let policy developers specify the complements of allowed values. If we directly applied our approach, then removing policy elements would increase permissiveness, straying away from the repair goal. To avoid this and to avoid complicating the repair approach, we transform original policies, removing “negative” policy elements.

Algorithm 6 shows how an AWS statement ρ is transformed. In the algorithm, p.keys refers to the Principal, Action, and Resource (or their negations) which exist in the statement. This is done in two passes. In the first pass on lines 4-8, the NotPrincipals, NotActions, and/or NotResources are removed (there is no NotCondition in the AWS IAM policy language). This is not enough, however, because condition operators like StringNotLike or StringNotEquals may be used to specify complements of allowed condition values. In the second pass on lines 10-20, these negative condition operators are removed similarly.

Figure 6 shows the transformation applied to an AWS IAM policy. Figure 6(a) shows the original policy, which has one statement with a NotAction element and a StringNotEquals condition operator (top, (a)); Transformed policy with three statements (bottom, (b)).

While Principal, Action, Resource, Condition also contains a condition key and condition value corresponding to elements of the access request. For more information on the AWS policy language, we refer the reader to [15]. Each field or element in the policy are ASCII strings (aside from some condition keys and condition values), with two special characters: the wildcard '*' character, and the wild/anychar '?' character. The wildcard character represents any string; the wild/anychar character represents any character. This allows policy developers to specify sets of strings within elements using these two special characters. Given an access request and a policy, the policy allows the access request if and only if there is a statement in the policy which allows the request and there is no statement in the policy which denies the request.

Modeling AWS Policies. For each statement an AWS policy, we create a rule that captures the semantics of the statement. The principals, resources, actions, and effects map one-to-one from statements to rules, while the environment attributes captures the condition keys and values within a statement. Once the rules for the statements in the policy are created, we can encode the policy into an SMT formula using the techniques from Section 3. Thus, we can model AWS policies within our policy model framework.

5.2 Policy Transformations for Repair

Recall that our approach localizes permissiveness to the most permissive action, resource pair and then mutates it when possible. We cannot directly apply the approach to AWS IAM policies that may contain NotPrincipals, NotActions, NotResources, and/or negative condition operators like StringNotEquals because such elements let policy developers specify the complements of allowed values. If we directly applied our approach, then removing policy elements would increase permissiveness, straying away from the repair goal. To avoid this and to avoid complicating the repair approach, we transform original policies, removing “negative” policy elements.

Algorithm 6 shows how an AWS statement ρ is transformed. In the algorithm, p.keys refers to the Principal, Action, and Resource (or their negations) which exist in the statement. This is done in two passes. In the first pass on lines 4-8, the NotPrincipals, NotActions, and/or NotResources are removed (there is no NotCondition in the AWS IAM policy language). This is not enough, however, because condition operators like StringNotLike or StringNotEquals may be used to specify complements of allowed condition values. In the second pass on lines 10-20, these negative condition operators are removed similarly.

Figure 6 shows the transformation applied to an AWS IAM policy. Figure 6(a) shows the original policy, which has one statement with a NotAction element and a StringNotEquals condition operator (top, (a)); Transformed policy with three statements (bottom, (b)).
Algorithm 6 TRANSFORMSTMTPRINCIPALACTIONRESOURCE

Input: Statement \(\rho \)
Output: Transformed statement(s) \(\mathcal{P} \)

1: \(\mathcal{P} = \emptyset \)
2: \(K = \{ k : k \in p.keys \cap \text{“Not” in } k \} \)
3: \(p_{allow} = \{ \text{“Effect” : “Allow”} \} \)
4: for \(k \in p.keys \)
5: if \(k \in K \) then \(p_{allow}[\text{Negation}(k)] = \ast \ast \ast \)
6: else \(p_{allow}[k] = p[k] \)
7: end if
8: end for
9: \(\mathcal{P} = \mathcal{P} \cup \{ p_{allow} \} \)
10: for \(k' \in K \)
11: \(p_{deny} = \{ \text{“Effect” : ”Deny”} \} \)
12: for \(k \in p.keys \)
13: if \(k = k' \) then \(p_{deny}[\text{Negation}(k)] = p[k] \)
14: else if \(k \in K \) then \(p_{deny}[\text{Negation}(k)] = \ast \ast \ast \)
15: else \(p_{deny}[k] = p[k] \)
16: end if
17: end for
18: \(\mathcal{P} = \mathcal{P} \cup \{ p_{deny} \} \)
19: end for
20: return \(\mathcal{P} \)

6 EXPERIMENTS

In order to evaluate our repair algorithm, we consider the following research questions:

RQ1: Does the policy repair algorithm successfully find repairs for policies collected from user forums?

RQ2: How does the effectiveness of the algorithm change for varying permissiveness bounds?

RQ3: What factors contribute to the overall performance (execution time/iterations/calls) of the repair algorithm?

We discuss below the policy dataset we use in our approach, how we set up our experiments to answer the research questions, and the results of our experiments. For quantifying the permissiveness, we use the model counter ABC [2, 3]; for validating requests in the must-allow request set we use the SMT solver Z3 from Microsoft, and the QUACKY tool for translating policies into SMT formulas.

6.1 Experimental Setup

AWS Policy Dataset. AWS offers over 200 services. Each service has its own actions and resource types that can be allowed or denied in access control policies. For our repair experiments, we used the policy dataset published in [10], which includes 43 real-world policies collected from using forums from the most popular AWS services, namely IAM, s3, and kC2.

Permissiveness Bounds. Recall that the policy repair problem specifies a permissiveness bound. In general, this permissiveness bound relates to the number of requests allowed by the policy. In our repair algorithm, and in our experiments, we consider a more restrictive permissiveness bound definition in which the permissiveness is determined by the number of actions and requests allowed by a policy. The reason for this is that in the policies we have observed, the most permissive element is the resource element, and since the action and resource elements are tied very closely in the policy semantics (e.g., only S3 actions work on S3 resources) it makes sense to consider them together. Because resources are strings, and strings can be infinitely long, we must bound the maximum length of allowed resources (otherwise the permissiveness of a policy is infinite due to wildcard characters). In our analysis, we bound the maximum length of any resource to be 100. Note that actions are also strings, but there are a finite number of actions (e.g., S3:GetObject is a valid action, S3:FooBar is not). Thus, the maximum number of actions allowed by a policy is the number of possible actions, which in practice is relatively small (a few hundred for the AWS services we consider).

In our experiments, we use the action constraint encoding from [10] which maps constraints on actions into numeric range constraints to simplify the constraint formulas generated in our approach.

In our experiments, the permissiveness bound is given in terms of \(\log_{256} \). Intuitively, since resources are strings where each character in the string can be one of 256 ASCII characters, this gives a measure of uncertainty regarding the number of unknown characters in the resource. For example, the resource “foo12” has a \(\log_{256} \) permissiveness of 0 (all characters in the string are known) while the resource “foo??” has a \(\log_{256} \) permissiveness of 2 (2 characters in the string are unknown) since “?” is a special character denoting any possible character. We bound the maximum length of strings at 100 so giving permissiveness bounds in terms of \(\log_{256} \) gives a...
Table 1: Results for 43 total policies with length threshold of 2 and depth threshold of 3. Policies are repaired using varying permissiveness bounds (given as \log_{256}, interpreted as number of unknown characters allowed in a resource).

<table>
<thead>
<tr>
<th>Permissiveness Bound</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>without enumeration</td>
<td>29</td>
<td>29</td>
<td>31</td>
<td>33</td>
<td>39</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>with enumeration</td>
<td>14</td>
<td>14</td>
<td>12</td>
<td>10</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>% without enumeration</td>
<td>67%</td>
<td>67%</td>
<td>72%</td>
<td>77%</td>
<td>91%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

restriction on how many of characters of the resource be unknown. Note that while this is just an approximate measure (strings can be less than 100 characters) it nevertheless gives a useful measure for bounding the permissiveness of a policy.

Allowed Requests. We augmented the policy dataset we used with sets of allowed requests. We created requests containing only the action and resource field, as our repair approach is currently tailored for reducing permissiveness based on action and resources. Our methodology for synthesizing requests was to create requests which are likely to resemble requests created by actual users. For actions, we focus on the most common actions for the AWS services in our policies (such as S3:GetObject and EC2:RunInstances). For resources, we observed from the policy dataset and AWS online documentation that resources generally have the following structure:

```
resource = service . prefix . middle . suffix
```

The `service` section consists of AWS service, region, and account number. The `prefix` section corresponds to the resource type and is generally dependent on the action in question: e.g., the prefix for S3 resources generally corresponds to the bucket name. The `middle` consists of the intermediate directory structure (usually delimited using '/'). The `suffix` consists of the object, filename, or instance in question. Consider the following resource

```
arn:aws:s3:::mybucket/folder1/folder2/clients.txt
```

where the `service` is "arn:aws:s3:", the `prefix` is "mybucket/", the `middle` is "folder1/folder2", and the `suffix` is "clients.txt". When synthesizing the requests, we observed that the `service` and `prefix` parts of the resource were specific to services for the particular policy, while the `middle` and `suffix` parts of the resource depended on the actions and service being used. For each policy, we constructed 10-20 requests using the base policy as reference, varying the relevant parts for each. An example request for S3 would be:

```
(S3:GetObject)
```

We ran all experiments on a machine with an Intel i5 3.5GHz X4 processor, 32GB DDR3 RAM, a Linux 4.4.0-198 64-bit kernel, Z3 v4.11.1, the latest build of ABC\(^2\), and the latest release of Quacky\(^3\).

6.2 Results

To answer our research questions, we conducted a wide variety of experiments on 43 policies collected from user forums using our quantitative repair algorithm. We now discuss the results and how they answer the aforementioned research questions.

\(^1\)https://github.com/vlab-cs-ucsb/ABC

\(^2\)https://github.com/vlab-cs-ucsb/ABC

\(^3\)https://github.com/vlab-cs-ucsb/quacky

RQ1: Does the policy repair algorithm successfully find repairs for policies collected from user forums? Recall that the policy repair algorithm first tries to find a repair meeting the permissiveness bound through goal validation, permissiveness localization, and permissiveness refinement, and if it cannot then will begin enumerating requests and replacing elements of the policy with these requests. Thus our repair algorithm will always successfully find repairs (so long as the initial assumptions are met, see Section 4). However some of these repairs may be as a result of request enumeration, which is not the ideal case.

We ran the repair algorithm on the dataset of 43 policies with varying permissiveness bounds to determine if the repair algorithm could generate a repair without request enumeration and how often our repair was generated with request enumeration. Table 1 shows the results. The permissiveness bounds ranged from 30 to 90, meaning that the repair algorithm must generate a repaired policy with permissiveness less than the given bound. For each permissiveness bound, we used a length threshold (ω) of 2, depth threshold (α) of 3, and refinement threshold (ϵ) of 0.01.

For lower bounds, request enumeration was required to generate successful repairs, with 14 of the 43 (67%) repairs requiring request enumeration for bounds 30 and 40. As the permissiveness bound increases, the number of repairs generated which required request enumeration decreases. For permissiveness bounds of 80 and 90, 100% of the repairs generated by algorithm were generated without enumerating requests. Intuitively, this makes sense as a lower permissiveness bound requires the policy to more concretely specify the requests allowed by the policy; a higher permissiveness bound means that the policy can be more generalized in what is allowed.

RQ2: How does the effectiveness of the algorithm change for varying permissiveness bounds? As the results in Table 1 show, while the repair algorithm generates repairs for all policies for all given permissiveness bounds, lower permissiveness bounds required the repair algorithm to resort to enumerating requests. This means that while the permissiveness localization algorithm from Section 4 (Algorithm 3) was able to localize where the most permissive elements were, the permissiveness refinement algorithms (Algorithms 4.5) could not generate a resource characterization to reduce the permissiveness enough to meet the permissiveness bound. This could be due to the length (ω) and depth (α) threshold values used in Algorithm 5. Thus, we ran the repair algorithm again on the 43 policies, but this time for a single permissiveness bound but with different threshold values. Table 2 shows the results. We observed that, in general, the length and depth threshold values did not have
Table 2: Results for varying length (α) and depth (ω) thresholds for a single permissiveness bound of 60 (i.e., $\log_{256}(\text{perm}) \leq 60$)

<table>
<thead>
<tr>
<th>α, ω thresholds</th>
<th>Repaired without enum</th>
<th>Repaired with enum</th>
<th>\log_{256} Permissiveness</th>
<th>Total time (s)</th>
<th># ABC calls</th>
<th># Z3 calls</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3</td>
<td>33 (77%)</td>
<td>18 (23%)</td>
<td>17</td>
<td>597.9</td>
<td>780</td>
<td>1415</td>
</tr>
<tr>
<td>2.5</td>
<td>43 (100%)</td>
<td>0 (0%)</td>
<td>11.7</td>
<td>452.4</td>
<td>550</td>
<td>1001</td>
</tr>
<tr>
<td>0.3</td>
<td>33 (77%)</td>
<td>18 (23%)</td>
<td>20.2</td>
<td>602.3</td>
<td>786</td>
<td>1423</td>
</tr>
<tr>
<td>2.3</td>
<td>33 (77%)</td>
<td>18 (23%)</td>
<td>17</td>
<td>597.9</td>
<td>780</td>
<td>1415</td>
</tr>
<tr>
<td>5.3</td>
<td>37 (86%)</td>
<td>6 (14%)</td>
<td>17.7</td>
<td>518</td>
<td>679</td>
<td>1310</td>
</tr>
<tr>
<td>10.3</td>
<td>37 (86%)</td>
<td>6 (14%)</td>
<td>16.6</td>
<td>525</td>
<td>682</td>
<td>1310</td>
</tr>
<tr>
<td>15.3</td>
<td>37 (86%)</td>
<td>6 (14%)</td>
<td>16.5</td>
<td>515</td>
<td>686</td>
<td>1292</td>
</tr>
</tbody>
</table>

RQ3: What factors contribute to the overall performance (execution time/iterations/calls) of the repair algorithm? The repair algorithm utilizes a constraint solver (Z3) and model counter (ABC) for verifying the requests in the must-allow request set and for quantifying permissiveness. Both tools incur significant overhead in the process. **Figure 7(a)** shows the time taken for various permissiveness bounds, while **Figure 7(b)** shows the number of calls to Z3 and ABC for each permissiveness bounds. As the permissiveness bound is increased, the total time taken for repairing the 43 policies significantly decreases. Looking at **Figure 7(b)**, the number of calls to both Z3 and ABC decrease in a similar fashion. Both the number of calls and total time were similar for the lowest few bounds. This may be due to the fact that those policies which required enumeration during the repair process for the bounds of 30, 40, and 50 are the ones which took more time to repair and more calls to Z3/ABC. For the depth and length thresholds, we did not notice a significant increase or decrease in time taken or calls to Z3/ABC when the thresholds were varied against a constant permissiveness threshold.

7 RELATED WORK

There has been much research on access control policies [22–24] and access control policy languages [1, 16–18]. Early work in verification of access control policies exist [8, 14] and there has been some work using the Alloy Analyzer [25, 29].

More recently, there has been interest in the verification of access control policies using SAT/SMT solvers, particularly in analyzing the requests allowed by a policy. In [4], the authors present Zelkova, a closed-source, proprietary tool that can compare AWS IAM policies and tell if one is more permissive than the other. In [10], the authors introduce an approach for quantifying permissiveness of access control policies for AWS and Microsoft Azure and implement it in a tool called QuACKY. Our work uses the authors’ notion of permissiveness for quantitative repair. However, Zelkova cannot quantitatively compare policies like [10] can, and Zelkova does not use policy comparisons to guide policy repair. In [5] the authors use Zelkova to determine if a policy is Trust Safe (i.e., blocks public access and does not allow untrusted requests). Both [10] and [4] draw on the approach in [13], which uses a SAT solver to check XACML policies; recent work has built on this but does not quantitatively analyze nor repair access control policies. Another tool called Margrave [11] is a tool that analyzes XACML policies using a multi-terminal decision diagrams. In later work [21], Margrave incorporates a SAT solver in the analysis of XACML policies to produce solutions to queries and enumerate the possible solutions. While quantitative in nature [10] showed that this type of enumerative approach does not scale for quantitative analysis of access control policies. In [6], the authors present Qclose, which uses a program repair approach based on quantitative objectives. In [27], the authors present an approach for repairing XACML policies by fault localization and mutation-based repair. Our approach is significantly different. We focus on policies and not programs, and our use of symbolic quantitative permissiveness analysis and our iterative repair generation approach differ from both of these prior approaches.

8 CONCLUSION

In this work we present a novel quantitative policy repair algorithm for repairing the permissiveness of access control policies for the cloud. Given a permissiveness bound and must-allow request set, our approach works by iteratively localizing the most permissive elements of the policy using quantitative analysis techniques and reducing and refining these elements using regular expression generalization techniques. Our experiments on 43 AWS IAM policies show that our repair algorithm successfully generates repairs...
As future work, we plan to automate techniques we discussed for determining permissiveness bounds.

REFERENCES

