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Introduction



DRL for Atari Games
(Mnih et al., 2015)
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AlphaGo Zero (Oct., 2017)

Elo Rating

40 days — AlphaGo Zero surpasses all
previous versions, becomes the best
Go player in the world

-

36 hours — AlphaGo Zero 72 hours — AlphaGo Zero

reaches level of Alpha Go beats Alpha Go Lee, 100:0
Lee, which beat world e

champion Lee Sedol in 2016

Training days

5 10 15 20 25 30 35 40

wee AlphaGo Zero 40 blocks  «=«« AlphaGo Lee «=ee AlphaGo Master



Reinforcement Learning

* RL is a general purpose framework for decision making
* RL is for an agent with the capacity to act
* Each action influences the agent’s future state
* Success is measured by a scalar reward signal

...........................................................................

Some slides adapted from David Silver.



Agent and Environment
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Some slides adapted from David Silver.



Major Components in an RL
Agent

* An RL agent may include one or more of these components

* Policy: agent’s behavior function
* Value function: how good is each state and/or action
* Model: agent’s representation of the environment

Some slides adapted from David Silver.



Reinforcement Learning Approach

* Policy-based RL
e Search directly for optlmal pO|IC)’ 7T

........................................................................

* Value-based RL
* Estimate the optlmal value function Q (5 a)

................................................................................

* Model-based RL
* Build a model of the environment
* Plan (e.g. by lookahead) using model

Some slides adapted from David Silver.



RL Agent Taxonomy

Value Function

pdel-Baset

Some slides adapted from David Silver.




Deep Reinforcement Learning

* |dea: deep learning for reinforcement learning

* Use deep neural networks to represent
* Value function
* Policy
* Model

* Optimize loss function by SGD

Some slides adapted from David Silver.



Value-Based Deep RL

Estimate How Good Each State and/or Action is



Value Function Approximation

* Value functions are represented by a lookup table

Q(s,a) V¥s,a

* too many states and/or actions to store
* not able to learn the value of each entry individually

* Values can be estimated with function approximation

Some slides adapted from David Silver.



Q-Networks

* Q-networks represent value functions with weightsw

Qs,a,w) = Q(s, a)

* generalize from seen states to unseen states
* update parameter W for function approximation

Q(s,a,w) S,a,,,W)

R
~ ) )

e

Some slides adapted from David Silver.



Q-Learning

* Goal: estimate optimal Q-values
* Optimal Q-values obey a Bellman equation

Q(s,a) = ES/[T +y max Q*(s', a’)]\ s, al

a

learning target

e Value iteration algorithms solve the Bellman equation

' ) = By - ,7 / 9
&8, a) = Ey[r + ymaxQgs’, @) | s, q

Some slides adapted from David Silver.



Deep Q-Networks (DQN)

* Represent value function by deep Q-network with weights 11/

Qs,a,w) = Q(s,a)
* Objective is to minimize MSE loss by SGD
« Starts with initial state s, takes a, gets r,and sees s’

* but we want w to give us better Q early in the game.

Lw)=E

92
a

* Leading to the following Q-learning gradient

OL(w) = E [(7“ +ymax Q(s', ', w) — Q(s, a, w))
ow !

0Q(s, a,w)
ow ]

Some slides adapted from David Silver.



Stability Issues with Deep RL

* Naive Q-learning oscillates or diverges with neural nets

|. Data is sequential

* Successive samples are correlated, non-iid
(independent and identically distributed)

2. Policy changes rapidly with slight changes to Q-values

* Policy may oscillate

* Distribution of data can swing from one extreme
to another

3. Scale of rewards and Q-values is unknown

* Naive Q-learning gradients can be unstable when
backpropagated

Some slides adapted from David Silver.



Stable Solutions for DOQN

* DQN provides a stable solutions to deep value-based RL
|.  Use experience replay

* Break correlations in data, bring us back to iid
setting
* Learn from all past policies
2. Freeze target Q-network
* Avoid oscillation
* Break correlations between Q-network and target

3. Clip rewards or normalize network adaptively to sensible
range
* Robust gradients

Some slides adapted from David Silver.



Policy-Based Deep RL

Estimate How Good An Agent’s Behavior is



Deep Policy Networks

* Represent policy by deep network with weights ‘U
a=m(al|su) a=m(s, u)
stochastic policy deterministic policy

* Objective is to maximize total discounted reward by
SGD

Lu) =FE |[r +yra+ s+ | 7(, u)]

Some slides adapted from David Silver.



Policy Gradient

* The gradient of a stochastic policy 7T(CL ’ S, u) is given by

OL(u)
ou

Ologm(a | s, u)
ou

Q" (s, a)

* The gradient of a deterministic policy 7T(S, U) is given by

OL(u) 0Q7(s,a)0a]
ou da  Ou

a=m(s, u)

Some slides adapted from David Silver. 21



Actor-Critic (Value-Based + Policy-Based)

* Estimate value function Q(S, a, w) ~ QW(S, CL)

* Update policy parametersy;, by SGD

* Stochastic policy

OL(u)
ou

* Deterministic policy

OL(u)
ou

Some slides adapted from David Silver.
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Reinforcement Learning in Action

23



DRL4NLP: Overview of Applications

* Information Extraction
 Narasimhan et al.,, EMNLP 2016

* Relational Reasoning
* DeepPath (Xiong et al., EMNLP 2017)

* Sequence Learning
* MIXER (Ranzato et al., ICLR 2016)

* Text Classification
* Learning to Active Learn (Fang et al., EMNLP 2017)
* Reinforced Co-Training (Wu et al.,, NAACL 2018)
* Relation Classification (Qin et al., ACL 2018)



DRL4NLP: Overview of Applications

e Coreference Resolution
* Clark and Manning (EMNLP 2016)
* Yin et al., (ACL 2018)

* Summarization
* Paulus et al., (ICLR 2018)
* Celikyilmaz et al., (ACL 2018)

* Language and Vision
* Video Captioning (Wang et al., CVPR 2018)
* Visual-Language Navigation (Xiong et al,, |JCAI 2018)

* Model-Free + Model-Based RL (Wang et al., ECCV
2018)



Tutorial Outline

* Introduction

* Fundamentals and Overview (William Wang)
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* Conclusion



Fundamentals and Overview

* Why DRL4NLP?
* Important Directions of DRL4NLP.



Why does one use (D)RL in NLP?

|. Learning to search and reason.

2. Instead of minimizing the surrogate loss (e.g., XE,
hinge loss), optimize the end metric (e.g., BLEU,

ROUGE) directly.
3. Select the right (unlabeled) data.
4. Back-propagate the reward to update the model.




Learning to Search and Reason



SEARN (Daume Il et al., 2009):
Learning to Search

|. use a good initial policy at training time to
produce a sequence of actions (e.g., the choice of
the next word)

2. a search algorithm is run to determine the
optimal action at each time step

3. a new classifier (a.k.a. policy) is trained to predict
that action



Reasoning on Knowledge Graph
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DeepPath: DRL for KG Reasoning
(Xiong et al., EMNLP 2017)
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Components of MDP

* Markov decision process < §,A4,P,R >
e S:continuous states represented with embeddings

e A:action space (relations)
* P(S;y1 =5"|S; =s,A; = a): transition probability
* R(s,a): reward received for each taken step

* With pretrained KG embeddings

* st =e D (etarget — €t)
e« A ={r,n,..,1}, all relations in the KG



Reward Functions

* Global Accuracy

+1, if the path reaches etqrget
r —
GLOBAL —1, otherwise

* Path Efficiency

1
length(p)

T'EFFICIENCY —

* Path Diversity

| F|
1
TI'DIVERSITY — — m Z COS(p’ pi)
1=1



Training with Policy Gradient

* Monte-Carlo Policy Gradient (REINFORCE,
William, 1992)

VoJ(0) =) > w(als;;0)Velogm(alse; 0)R (st ar)

t acA

~ Vy Z log m(a = 7¢|s¢; 0) R(s¢, ay)
t

R(Sta at) — A1"aglobal + )\ZTefficiency + )\BTdiversity



Learning Data Selection Policy
with DRL



DRL for Information Extraction
(Narasimhan et al., EMNLP 201 6)

'ShooterName Scott Westerhuis |
'Nuszlled 6 |

— e — — — — = - - = - — — — — — — — — — — — — — — — — — — — — — — — -

| A couple and four children found dead in their
| burnmg South Dakota home had been shot in an
| apparent murder-suicide, officials said Monday.

wound with manner of death as suspected sui-

I
I eee
i Scott Westerhuis’s cause of death was "shotgun
I
| 1de," 1t added 1n a statement.

Q.




DRL for Information Extraction
(Narasimhan et al., EMNLP 201 6)

: ShooterName __ Scott
: Westerhuis
NumKilled 4

: NumWounded 2

City Platte
: ShooterName _ Scoft
: Westerhuis
NumKilled 6

: NumWounded 0

State 1

A )

DAILY NEWS  NewYoRK © NEWs  poLTics

SPORTS  ENTERTAINMENT

S.D. dad killed wife, four kids with shotgun
before setting house ablaze and killing self:
authorities

: o
: ShooterName _ Scott
. . Westerhuis :
Reconcile NumKilled 6
: NumWounded 2
City Platte
select Q ...........................
—_—) rrereeeaseeaieiiiiiiaaes
query : ShooterName _ Scoft
search extract : Westerhuis :
NumKilled 5

: NumWounded 0

Current Values:

ShooterName — Scott Westerhuis

NumKilled — 4
NumWounded — 2
City — Platte

New Values:

ShooterName — Scott Westerhuis

NumKilled — 6
NumWounded — 0
City — Platte

State:
(0.3,0.2,0.5,0.1,
0.4,0.6,0.2,0.4,
1,0,0,1,0,1,1,0,

0.2,0.3,...,0.1,0.5,

0.65)

< currentConf
+ newConf

< matches

+ contextWords
< document tf-idf similarity

38




Can DRL help select unlabeled data for
semi-supervised text classification?



A Classic Example of Semi-Supervised Learning

* Co-Training (Blum and Mitchell, 1998)

GGiven:

e a set L of labeled training examples

e a set U of unlabeled examples

Create a pool U’ of examples by choosing u examples at random from U

Loop for k iterations:

Use L to train a classifier hy that considers only the x1 portion of z
Use L to train a classifier hs that considers only the x5 portion of #
Allow hy to label p positive and n negative examples from U’
Allow hs to label p positive and n negative examples from U’

Add these self-labeled examples to L

Randomly choose 2p + 2n examples from U to replenish U’




Challenges
* The two classifiers in co-training have to be
independent.

* Choosing highly-confident self-labeled examples
could be suboptimal.

* Sampling bias shift is common.




Reinforced SSL

* Assumption: not all the unlabeled data are useful.

* |dea: performance-driven semi-supervised learning
that learns an unlabeled data selection policy with
RL, instead of using random sampling.

* |. Partition the unlabeled data space
* 2.Train a RL agent to select useful unlabeled data

* 3. Reward: change in accuracy on the validation set



Reinforced Co-Training
(Wu et al.. NAACL 2018)
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Labeled by
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-

unlabeled subsets {U;}

(r 7))

0
@)
#1 #2 | |EEE Olu.,
...... o @ .| @
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= Sl L——s|ctassifier |-
- / 8 Labeled by | - 2o ner L21==
——/ Classifier 1
A A A 4 shingling A —
: . I 2.Min-Hashing ' action
. . . 3.LSH ' a: é
E E E reward |
- : ' E ti
o . L S [Validation Sei]q valuation
@ | @ |
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unlabeled set



Directly Optimization of the Metric



MIXER (Ranzato et al., ICLR 2016)

* Optimize the cross-entropy loss and the BLEU
score directly using REINFORCE (Williams, 1992).

h{—> > > —> [wfl’ w%]

.....




Backprop Reward via One-Step RL



One-Step Reinforcement Learning in Action

47



KBGAN: Learning to Generate High-

Quality Negative Examples
(Cai and Wang, NAACL 2018)

|dea: use adversarial learning to iteratively learn better
negative examples.

LocatedIn(NewOrleans,?)

.

China —>
BarackObama —»
StarTrek —»

Google —>

—>»p=0.6

—>»p=0.3

G —>»p=0.02

—>» p=0.03

—>»p=0.05

> d=1.0 —~



KBGAN: Overview

* Both G and D are KG embedding models.

* Input:
* Pre-trained generator G with score function f;(h,,t).
* Pre-trained discriminator D with score function f(h,1,t).

* Adversarial Learning;
* Use softmax to score and rank negative triples.

* Update D with original positive examples and highly-ranked negative
examples.

* Pass the reward for policy gradient update for G.

* Output:
* Adbversarially trained KG embedding discriminator D.



KBGAN: Adversarial Negative Training

For each positive triple from the minibatch:
|. Generator: Rank negative examples.

€xXp fG'(hla r, t,)
aQ h',r,t' h,r,t) =
pelhs I Tot) = S~ b falh )

(h*a T t*) < Neg(h'a r, t)

2. Discriminator: Standard margin-based update.

Lp= Y [fo(h,rt)— fo(t,r,t)+7]+
(h,rt)ET

(W' r,t") ~pg(h,r,t'|h,r,t) (3)



KBGAN: One-Step RL for
Updating the Generator

3. Compute the Reward for the Generator.
r=—fp(h',r,t).

4. Policy gradient update for the Generator.
Gg +— Gg + (7“ — b)V@G log ps;

The baseline b is total reward sum / mini-batch size.



Important Directions in DRL

*[earning from Demonstration.
*Hierarchical DRL.

*Inverse DRL.
*Sample-efficiency.



Learning from Demonstration



Motivations

* Exploitation vs exploration.
* Cold-start DRL is very challenging.
* Pre-training (a.k.a. demonstration is common).

* Some entropy in an agent’s policy is healthy.



Scheduled Policy Optimization
(Xiong et al, |JCAI-ECAI 2018)

Training Algorithm

’ PPO Update

Direction
5 @,
Conv Layers | O
. @,
2/ O
o
Embedding Layers m O
Command s,
I ] ! Q Environment
Model Architecture , | 8 Reward 1 :
o @ : J
—®— e - —©® ! Block ID

RNN Layers D2

[ B

Place the Pepsi block so that its
top left corner touches the lower
right corner of the McDonalds
block.

Optimization Scheduler

LfD Update
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Hierarchical Deep Reinforcement Learning



Hierarchical Deep Reinforcement Learning for
Video Captioning (Wang et al., CVPR 2018)

Caption #1: A woman
Caption #2: A woman and sharing food with her dog.
Caption #3: A woman

Caption: A person and puts a laptop into a bag.

The person stands up, puts the bag on one shoulder, and
walks out of the room.

57



Inverse Deep Reinforcement Learning



No Metrics Are Perfect:
Adversarial Reward Learning

(Wang et al,,ACL 2018)

* Task: visual storytelling (generate a story
from a sequence of images in a photo
album).

* Difficulty: how to quantify a good story?
* |dea: given a policy, learn the reward function.



No Metrics Are Perfect: Adversarial

Reward Learning
(Wang et al,,ACL 2018)

Environment

Images )
Imagesl references
----------------------- \
[ \ 4
Adversarial [€ fR 4 Model I Sampled [ Policy Model
Objective |euuereererennerennss >‘ eward viode Story l olicy Mode
A
Inverse RL :

—————————————————

[

----------------------------



When will IRL work?

* When the optimization target is
complex.

* There are no easy formulations of the
reward.

* If you can clearly define the reward,
don’t use IRL and it will not work.



Improving Sample Efficiency:
Combine Model-Free and Model-Based RL



Vision and Language Navigation
(Anderson et al.,, CVPR 2018)

Walk beside the outside doors and behind the chairs across the room.
Turn right and walk up the stairs. Stop on the seventh step.

63



Look Before You Leap:

Combine Model-Free and Model-Based RL for

Look-Ahead Search
(Wang et al., ECCV 2018)

(a) RPA Architecture

Walk beside the
outside doors and
behind the chairs ...
Language
Encoder
{Wi} i
Y y ' l
Recurrent Look- Look- Look-
Policy . | Ahead || Ahead e Ahead
Model ' | Module || Module Module
Aggregation

Model-free Path\ e rced path

Action Predictor

(b) Look-Ahead Module

St
1 ] r’
eoeticed IRl 2w t
. > Encoder
Policy Model ;
S|t+1
| ; : r ‘
a t+1
Look-Ahead t+1 Env
Policy Model Encoder
S|t+2
l ’ l r’ l
-1
Look-Ahead at+m-1 Env tHm —~
. —_— Encoder
Policy Model ;
St+m

Look-Ahead Trajectory t4j




Conclusion of Part |

* We provided a gentle introduction to DRL.

* We showed the current landscape of DRL4NLP
research.

* What do (NLP) people use DRL for?
* Intriguing directions in DRL4NLP.



Open-sourced software:

* DeepPath: https://github.com/xwhan/DeepPath

* KBGAN: https://github.com/cai-Iw/KBGAN

* Scheduled Policy Optimization:
https://github.com/xwhan/walk _the_blocks

* AREL: https://github.com/littlekobe/AREL
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* Fundamentals and Overview (William Wang)

* Deep Reinforcement Learning for Dialog
(Jiwei Li)

* Challenges (Xiaodong He)
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Seq2Seq Models for Response Generation
(Sutskever et al., 2014; Jean et al., 2014; Luong et al., 2015)

Loss = — log p(response|message)

I'm fine . EOS

A S E

0000 > 0000 > 0000 > 0000 0000 SFYYY) > 000 @ > 0000
A 1 4 A A A 1 A
Encoding Decoding
0000 0000 0000 0000 0000 0000 0000 0000

how are you ? eos I'm fine



Seq2Seq Models for Response Generation
(Sutskever et al., 2014; Jean et al., 2014; Luong et al., 2015)

Loss = — log p(response|message)
Encoding

how are you ?



Seq2Seq Models for Response Generation
(Sutskever et al., 2014; Jean et al., 2014; Luong et al., 2015)

Loss = — log p(response|message)
I'm
Encoding Decoding

how are you ? eos



Seq2Seq Models for Response Generation
(Sutskever et al., 2014; Jean et al., 2014; Luong et al., 2015)

Loss = — log p(response|message)
I'm fine
Encoding Decoding
how are you ? eos I'm

71



Seq2Seq Models for Response Generation

(Sutskever et al., 2014; Jean et al., 2014; Luong et al., 2015)

Loss = — log p(response|message)
I'm fine .
Encoding Decoding
how are you ? eos I'm fine

72



Seq2Seq Models for Response Generation
(Sutskever et al., 2014; Jean et al., 2014; Luong et al., 2015)

Loss = — log p(response|message)

I'm fine . EOS

A S E

0000 > 0000 > 0000 > 0000 0000 SFYYY) > 000 @ > 0000
A 1 4 A A A 1 A
Encoding Decoding
0000 0000 0000 0000 0000 0000 0000 0000

how are you ? eos I'm fine



Issues

How do we handle long-term dialogue success?

* Problem |: Repetitive responses.



Two bots talk with each other
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Repetitive responses.

Shut up !
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Repetitive responses.

Shut up !
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Repetitive responses.

Shut up !

No, you shut up !

i&f

'Y (4
)Y
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Repetitive responses.
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Shut up ! %
No, you shut up ! E
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Repetitive responses. o

Shut up !
No, you shut up ! ?( '

No, you shut up !

No, you shut up !

-

i ffud
) =
o)ed
o =
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Repetitive responses.

Shut up !
No, you shut up !
No, you shut up !
-
jm No, you shut up !
4@ mu Q No, you shut up !
-
o)ns
- 00



Repetitive responses.

See you later !

See you later !

See you later !
-

CIC)

j(\ix See you later !

W gvan (b See you later !

-

Dl

-k o)

Y ¥



Issues

How do we handle long-term dialogue success?

* Problem |: Repetitive responses.
* Problem 2: Short-sighted conversation decisions.



Short-sighted conversation decisions

How old are you ?



Short-sighted conversation decis’~&"

.
How old are you ? '«m ~’

i'ml16.

He=

(o

85



) 7
How old are you ? % f

i'ml16.

(o

16 ?

Al

 gywa i)

b
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Short-sighted conversation decisions

(og e q\ﬂ(
How old are you ? ‘@g; - 9,(0
i'm16.
16?2

i don 't know what you 're
talking about
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Short-sighted conversation decisions

(o x \»"&(‘
How old are you ? ‘@5&; - ﬂgg"o

i'ml16.

16 ? o (] ]
i don 't know what you 're

=2 talking about

L2
L ) '; g you don 't know what you 're saying
>

xR

w_/'-
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Short-sighted conversation decisions
How old are you ? [ﬁ |
i'ml6.

16 ? o (] ]
i don 't know what you 're

IS SU2 - i talking about
. - [l =
8¢ a == You don 't know what you 're sayin
A 2 /15) Yy y ying
*R i don 't know what you 're

talking about
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Short-sighted conversation deC|S|ons

How old are you ?

i'ml16.

16 ? o (] ]
i don 't know what you 're
IS ST . i talking about
: g b=
8. ¢ ﬂ == You don 't know what you 're sayin
A 2 ) __) Yy Yy ying
R i don 't know what you 're

talking about

you don 't know what you 're saying



Short-sighted conversation decisions

A bad action ‘m . \Z ‘\a
How old are you ? l [@E S «QQ*'O
i'ml16.

16 ? o (] ]
i don 't know what you 're

[ W2 “"ﬁ talking about
|
8¢ g -/ ’) you don 't know what you 're saying
LS re
>3 i don 't know what you 're

talking about

you don 't know what you 're saying

91



Short-sighted conversation decisions

e
How old are you ? [@’Y - 9*'0
i'ml16.

16 ? o (] ]
i don 't know what you 're

talking about

\-ﬂ\

\l

) you don 't know what you 're saying

\Jl =

/ =2
T
v, )

I i don 't know what you 're

talking about
Outcome does not emerge

don 't kn hat 're sayin .
you cdo ow what you y/Ing until a few turns later
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Reinforcement Learning



Notations: State

ri—1

How old are you ?

0000 > 0000 » 0000 0000
4 A 4 A
0000 0000 0000 0000
how old are you
Encoding
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Reward

96



Reward

|. Ease of answering

r(response) = — log(dull utterances|response)
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Reward

|. Ease of answering

r(response) = — log(dull utterances|response)

”’l don’t know what you are talking about”
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Reward

2. Information Flow
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Reward

2. Information Flow

See you later !

X ffuj
) See you later !

See you later !

See you later !
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Reward

2. Information Flow

See you later !

I

See you later !

I

ro = —log Sigmoid(cos(s1, $2))
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Reward

3. Meaningfulness

message How old are you ?
-

CI )

X ﬁﬁﬂ'
)

.EQM r = log p(response|message )+log p(message|response)

response

i'm 6.
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Simulation

Encode

<
A message from training set > 0000 A W
L= ;
=
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Simulation

Encode S
A message from training set > ecoe

Decod r
sl !4- o= = — E\@
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Simulation

Encode S
A message from training set > ecoe

Encode Decod w
....— SI !«h__ E
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Simulation

Encode S
A message from training set > 0000 A ,@6’;
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Encode Decod Mer
® @ 0 ¢ |m— S I ! = = == = ?( =
L

2 6

-
W; Decod
kﬁud-e—> s2 |
"-

Tl

na—'w

106



< 3 <
JoR, S AT,
“gmd Turn | ‘?4 Turn 2 kgg\d Turn N
|nput—> ....+....ﬁ q XX -
Message
Encode Decod Encode Decod Encode Decod
e e e
SI S2 Sn

Compute Accumulated Reward R(S1,S2,...,Sn)
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Encode Decod Encode Decod Encode Decod
e e e
Sl S2 Sn
REINFORCE Algorithm (William,1992) J(0) = E[R(s1, 82, ..., 8N)]
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Evaluation

T TRiwin Rbese e

Single-Turn Quality 0.40 0.36 0.24

Multi-Turn Quality 0.72 0.12 0.16
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Evaluation

T JRlee e

Single-Turn Quality 0.40 0.36 0.24

Multi-Turn Quality 0.72 0.12 0.16
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Results

Input Mutual The RL model
Information

How old areyou? I'm |é. I’'m 16.why are you
asking ?



Results

Input Mutual The RL model
Information

How old areyou? I'm |é. I’'m 16.why are you
asking ?
what is your full i have no idea what 's yours ?

name ?
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Results

Input Mutual The RL model
Information

How old areyou? I'm |é. I’'m 16.why are you
asking ?

what is your full i have no idea what 's yours ?

name !

| don 't want to go  Really ? Why ?

home tonight .
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Results

Input Mutual The RL model
Information

How old are you ?

what is your full
name !

| don 't want to go
home tonight .

Do you have any
feelings for me ?

I’'m 16.
i have no idea
Really ?

| don’t know what
you are talking
about.

I’'m 16.why are you
asking ?

what 's yours ?
Why ?

Would | see you if |
didn 't ?

| 14



Reward for Good Dialogue

|. Easy to answer
2. Information Flow
3. Meaningfulness



What Should Rewards for Good
Dialogue Be Like?



Reward for Good

Dialogue
2 8
TuringTest ® @
A
z
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Reward for Good
Dialogue

I’m 25.

How old are
you ?

bt
‘@
| don’t know what you are.J(\xz

DR*N,
talking about &S?*’

A human evaluator/ judge
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Reward for Good
Dialogue

I’m 25.

How old are
you ?

| don’t know what you are

/ talking about

Iy

-
Jar,

k gyuas

L fan
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Reward for Good

Dialogue
P= 90% human generated @
I’m 25.

How old are
you ?

b
A\
| don’t know what you arew/(\r\,z

P
talking about &fﬁ'd
L

P= 10% human generated /¢ ¢

-
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Adversarial Learning in

Image Generation (Goodfellow et al., 2014)

Latent
Space

[FTE]

Noise

Generative Adversarial

Real
Samples

I

,f'—‘\\ '
‘ J
I G ;
Ganeraior Generated :
A enerato ‘ Fake §
— i

«

Network
’ \“‘t.—: D | 50 |
e Discriminato A

- Samples

Fine Tune Training
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Model Breakdown

I'm fine . EOS
Generative Model (G) T T T T
0000 0000 » 0000 > 0000 —>| 0000 > 0000 > 0000 0000
y A 4 A 4 y 4 A
Encoding Decoding
0000 0000 0000 o000 O 0000 0000 0000 0000
how are you ? eos I'm fine
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Model Breakdown

I'm fine . EOS
Generative Model (G) T T T T
0000 0000 » 0000 > 0000 —>| 0000 > 0000 > 0000 0000
A y
Encoding Decoding
0000 0000 0000 o000 O 0000 0000 0000 0000
how are you ? eos I'm fine

Discriminative Model (D)
P= 90%_h'uman generated

/ /

how are you ? eos I'm fine
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Model Breakdown

I'm fine . EOS
Generative Model (G) T T T T
0000 0000 > 0000 > 0000 —>| 0000 > 0000 > 0000 0000
Encoding Decoding
0000 0000 0000 o000 O 0000 0000 0000 0000
how are you ? eos I'm fine .
Discriminative Model (D) \
Reward P= 90%_h'uman generated

/ /

how are you ? eos I'm fine
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Policy Gradient

Generative Model (G)

I'm fine EOS
0000 > 0000 > 0000 > 0000 —r| o000 > 0000 XXX 0000
A A A A A A A A
Encoding Decoding
0000 0000 0000 0000 0000 0000 0000 0000
how are you ? eos I'm fine

REINFORCE Algorithm (William,1992)

J = E[R(y)]
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Adversarial Learning for Neural Dialogue Generation

For number of training iterations do
For 1=1,D-steps do
Sample (X,Y) from real data
Sample Y ~ G(-|X)
Update D using (X, YY) as positive examples and U!)da.te .the
(X, Y) as negative examples. Discriminator
End

For i=1,G-steps do
Sample (X,Y) from real data
Sample Y ~ G(-|X)
Compute Reward r for (X, Y') using D.
Update G on (X, Y) using reward r

Teacher-Forcing: Update G on (X, Y)
End \ The discriminator

End T~ forces the generator to
produce correct
responses

Update the
Generator
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Human Evaluation

Setting adver-win  adver-lose  tie
single-turn 0.62 0.18 0.20
multi-turn 0.72 0.10 0.18

The previous RL model only
perform better on multi-turn
conversations
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Results: Adversarial Learning Improves Response
Generation

vs a vanilla generation model

Adversarial |Adversarial |[Tie
Win Lose

62% | 8% 20%
Human Evaluator
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Sample response

Tell me ... how long have you had this falling sickness ?
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Sample response

Tell me ... how long have you had this falling sickness ?

Vanilla-Seq2Seq | don’t know what you are
talking about.
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Sample response

Tell me ... how long have you had this falling sickness ?

Vanilla-Seq2Seq | don’t know what you are
talking about.

Mutual Information I’m not a doctor.

131



Sample response

Tell me ... how long have you had this falling sickness ?

Vanilla-Seq2Seq | don’t know what you are
talking about.

Mutual Information I’m not a doctor.

Adversarial Learning A few months, | guess.
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Outline

* Frontiers and Challenges (Xiaodong He)



Frontiers and Challenges

* NLP problems that presents new challenges to RL
* An unbounded action space defined by natural language

* Dealing with combinatorial actions and external
knowledges

* Learning reward functions for NLG

* RL problems that are particularly relevant to NLP
* Sample complexity
* Model-based vs. model free RL
* Acquiring rewards



Consider a Sequential Decision
Making Problem in NLP

* E.g., Playing text-based games, VWebpage navigation, task
completion, ...

e At time t;

* Agent observes the state as a string of text, e.g,,
state-text S;

* Agent also knows a set of possible actions, each is
described as a string text, e.g., action-texts

* Agent tries to understand the “state text” and all
possible “action texts”, and takes the right action — to
maximize the long term reward

* Then, the environment state transits to a new state,
agent receives an immediate reward, and move to t+1



RL for Natural Language
Understanding Tasks

* Reinforcement learning (RL) with a natural language state
and action space

* Applications such as text games, webpage navigation, dialog
systems

* Challenging because the potential state and action space are
large and sparse

* An example: text-based game

State text As you move forward, the people surrounding you suddenly look up with terror in their faces, and flee
the street.

Action texts =




DQN for RL in NLP

* LSTM-DQN
* State is represented

by a continuous
vector (by a LSTM)

* Actions and objects
are considered as
independent
symbols

* Tested on a MUD
style text-based

game playing
benchmark

Q(s, a) Q(s, 0)
................... TT
( Linear ) ( Linear )
( ReLU )i 94
( Linear )

Narasimhan, K., Kulkarni, T. and Barzilay, R., 2015. Language understanding for text-
based games using deep reinforcement learning. EMNLP.



Unbounded action space in RL
for NLP

But, not only the state space is huge, the action space is huge, too.
— Action is characterized by unbounded natural language description.

Well, here we are, back home again. The battered front door
leads into the lobby.

The cat is out here with you, parked directly in front of the
door and looking up at you expectantly.

. Step purposefully over the cat and into the lobby
- Return the cat’s stare
. “Howdy, Mittens.”

Example: a snapshot of a text-based game
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The Reinforcement Learning for
NL problem

* RL for text understanding
* Unbounded state and action spaces (both in texts)

* Time-varying feasible action set
* At each time, the actions are different texts.
* At each time, the number of actions are different.

T Tt+1
Relevance Relevance

» P(St+1lSt, at) »
A \Y AN\Y
A ANY
A} AN
AN AY
A W
AY A
A\Y A
W A
A A
A A}
w w

A 1 A
St ag a4l St+1 Ary1 aAexal
t t+1




Baselines:Variants of Deep Q-
Network

* Q-function: using a single deep neural network as function
approximation

* Input: concatenated state-actions (BoVV)

* Output: Q-values for different actions

Q:(s,a) Qi(s,a?) 0, (s, a)
-ttty | ==
@ @ O, : 1@
U Max-action DQN E U Per-action DQN
E - max over a!
h, | h,
hl i hq

i o i




Deep Reinforcement Relevance
Network (DRRN)

* Similar to the DSSM (deep structured semantic
model), project both s and a into a continuous space

* Separate state and action embeddings
* Interaction at the embedding space

* Qs. at: O)=gyg (hL,s- /22,0.) Q.(s,ab)
Motivation: I O - pairwise interaction function
- Language is different / (.8 inner product)
in these two contexts. has h2
- Text similarity does hﬂ .
NOT always lead to ﬁs | .ﬁ'“
the best action. s, a

[Huang, He, Gao, Deng, Acero, Heck, 2013. “Learning Deep Structured Semantic Models for for Web Search
using Clickthrough Data,” CIKM]; [He, Chen, He, Gao, Li, Deng, Ostendorf, 2016. “Deep Relnforcement

Learning with a Natural Language Action Space,” ACL]



Reflection: DRRN

* Prior DQN work (e.g.,Atari game, AlphaGo): state space unbounded,
action space bounded.

* In NLP tasks, usually the action space is unbounded since it is
characterized by natural language, which is discrete and nearly
unconstrained.

* New DRRN: (Deep Prior DQN-RL model | New DRRN-RL model
Reinforcement Relevance Qs at) Quls ad) ; Q(s.a)
N etwo rl() :-C-)- - -9- - -‘;;-: E LQ': pairwise interaction function
* Project both the state and the action ]U - < g' e
into a continuous space ﬁz LT lﬁa
* Q-function is an relevance function II}I ! hﬂ . Mg
of the state vector and the action C s [ a1 @1 10 = 1 [ o |
vector (2) DON i (c) DRRN



Experiments: Tasks

* Two text games

Stats “Saving John” “Machine of Death”
Text game type Choice-based | Choice-based & Hypertext-based
Vocab size 1762 2258
Action vocab size 171 419

Avg. words/description 76.67 67.80

State transitions Deterministic Stochastic
# of states (underlying) > 70 > 200

(Avg., max) steps/episode 14, > 38 83, > 500

* Hand annotate rewards for distinct endings

* Simulators available at: https://github.com/jvking/text-
games

143



Experiments

e Tasks:]

Task I:
“Save John”

Task 2:
“Machine of
Death”

‘ext Games/Interactive Fictions

Reward | Endings (partially shown)
-20 Suspicion fills my heart and I scream. Is she trying to kill me? I don’t trust her one bit...
-10 Submerged under water once more, I lose all focus...
0 Even now, she’s there for me. And I have done nothing for her...
10 Honest to God, I don’t know what I see in her. Looking around, the situation’s not so bad...
20 Suddenly I can see the sky... I focus on the most important thing - that I’'m happy to be alive.
Reward | Endings (partially shown)
-20 You spend your last few moments on Earth lying there, shot through the heart, by the image of
Jon Bon Jovi.
-20 you hear Bon Jovi say as the world fades around you.
-20 As the screams you hear around you slowly fade and your vision begins to blur, you look at the
words which ended your life.
-10 You may be locked away for some time.
-10 Eventually you’re escorted into the back of a police car as Rachel looks on in horror.
-10 Fate can wait.
-10 Sadly, you’re so distracted with looking up the number that you don’t notice the large truck
speeding down the street.
-10 All these hiccups lead to one grand disaster.
10 Stay the hell away from me! She blurts as she disappears into the crowd emerging from the bar.
20 You can’t help but smile.
20 Hope you have a good life.
20 Congratulations!
20 Rachel waves goodbye as you begin the long drive home. After a few minutes, you turn the
radio on to break the silence.
30 After all, it’s your life. It’s now or never. You ain’t gonna live forever. You just want4é live

while you’re alive.




Average reward

Learning curve: DRRN vs. DON

, / —a— DRAN (2-hidden)
I / —4— DRAN (1-hidden)
’ d-4 4 —o- PA DQN (2-hidden)
¥ . —o- MA DQN (2-hidden

500 1000 1500 2000 2500 3000 3500
Number of episodes

(a) Game 1: “Saving John”

Tested on two text games

Average reward

1 5 T T T T T T

—a—DRRN (2-hidden)
—a— DRRN (1-hidden)
—o- PADQN (2-hidden)
10 —o- MA DQN (2-hidden

-15

0 500 1000 1500 2000 2500 3000 3500 4000
Number of episodes

(b) Game 2: “Machine of Death”
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Experiments: Final Performance

Game |:“Saving John” Game 2:“Machine of Death”
20 15
15 10
> I
ot sl Al iftt! | IFHTH T
0 m ] 1l o 1
n_hidden=20 n_hidden=50 n_hidden=100 n_hidden=20 n_hidden=50 n_hidden=100
5 5
B PADQN (L=1) MPADQN (L=2) B MA DQN (L=1) B PADQN (L=1) EMPADQN (L=2) B MA DQN (L=1)
MA DQN (L=2) MDRRN (L=1) M DRRN (L=2) MA DQN (L=2) MDRRN (L=1) M DRRN (L=2)

The DRRN performs consistently better than all baselines, and
often with a lower variance.

Big gain from having separate state & action embedding spaces
(DQN vs. DRRN).
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Visualization of the learned continuous
space

1 1 1 T T . I :
action 2 (-1,30)

or 2o 1 (:0.55) _
after 200 episodes | | state | | | [
1 T T , : . . |

action 1 (+0.91) action 2 (-17.17)
Of 5 > . |
state

after 400 episodes . | | | |
1 I | T T T | [
action 1 (+16.53) action 2 (-22.08)

- £ P __—_/_‘) . |

0 state

after 600 episodes . | | | | |

Figure 2: PCA projections of text embedding vectors for state and associated action vectors after 200,
400 and 600 training episodes. The state is “As you move forward, the people surrounding you suddenly
look up with terror in their faces, and flee the street.” Action 1 (good choice) is “Look up™, and action 2
(poor choice) is “Ignore the alarm of others and continue moving forward.”
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With paraphrased action

Experiments: Generalization

* In the testing stage, use unseen paraphrased
actions

-values scatterplot between state-action pairs .
40 Q o erpe : —=on pat Game 2:“Machine of Death”
—  y==zx0.8540.24, pR* =0.95

1 / — )

20+ . : . 10

10} L gn

4 > I I
i 1" [
o T
—10r n_hidden=20 n_hidden=50  n_hidden=100
—20} -5
EPADQN (L=2) ®MADQN (L=2) ™ DRRN (L=2)

_30_
_40 1 1 1 1 1 1

-30 —20 —10 0 10 20 30 40

With original action
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Q-function example values after

converged
_______ |Text(withpredictedQualues) ______________

State As you move forward, the people surrounding you suddenly
look up with terror in their faces, and flee the street.

Actions in the Ignore the alarm of others and continue moving forward. (-21.5)
original game Look up. (16.6)

Paraphrased actions Disregard the caution of others and keep pushing ahead. (-11.9)
(not original) Turn up and look. (17.5)

Fake actions (not Stay there. (2.8) Stay calmly. (2.0)
original) Screw it. I'm going carefully. (-17.4) Yell at everyone. (-13.5)
Insert a coin. (-1.4) Throw a coin to the ground. (-3.6)

Note that, the DRRN generalizes to unseen actions well, e.g., for these “not
original” actions, the model still gives a proper estimate of the Q-value.
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From games to large scale real-
world scenarios

e Task:

Build an agent runs on real world Reddit dataset
https://www.reddit.com/

reads Reddit posts
recommends threads in real time with most future popularity

* Approach:

* RL with specially designed Q-function for combinatorial action spaces



Motivation

* we consider Reddit popularity prediction, which is
different to newsfeed recommendation in two

respects:

* Making recommendations based on the anticipated long-
term interest level of a broad group of readers from a
target community, rather than for individuals.

* Community interest level is not often immediately clear
-- there is a time lag before the level of interest starts to
take off. Here, the goal is recommendation in real time —
attempting to identify hot updates before they become hot to
keep the reader at the leading edge.



Solution

* Problem fits reinforcement learning paradigm

* Combinatorial action space
* Sub-action is a post

* Action is a set of interdependent documents

* Two problems: i) potentially high computational complexity, ii)
estimating the long-term reward (the Q-value in reinforcement
learning) from a combination of sub-actions characterized by
natural language.

* The paper focuses on (ii).



Problem Setting

Registered Reddit users initiate a post and [-] kiknkie__tmumaeni [S][160 points|1 da
people respond With comments,Together, the bonus obamazilla: http://i.imgur.com/Ri2yGvl.png
.. permalink
comments and the original post form a -] e 75 ponis ay ago
discussion tree. looks more like zom-bama
permalink parent
Comments (and posts) are associated with (-] Job_manigm (39 points] cay
. . . . Yeah, politics aside, this one looks much cooler.
positive and negative votes (i.e., likes and permatink parent
dislikes) that are combined to get a karma [~] uliunien__Sowmaent [S][26 points]1 day ag
. thanks! i like it more too, i figured trump would be more popular
score, which can be used as a measure for etk parant
popularity. (] entrepyetsaints (46 poinis] o
You knew very well that the Obama version would get downv
AS in Flg | . itis quite common that a lower make the front page. You're just pandering to the liberal hive
. ermalink arent
karma comment will lead to more ’ ’

o . [-] bukikake___tsunami (S day ac
children and popular comments in the true dat

future (e.g.“true dat”). permaln warent

In a real-time comment recommendation Figure 1: A snapshot of the top of a Reddit discussion tree,
system, the eventual karma of a comment is not where karma scores are shown in red boxes.

immediately available, so prediction of

popularity is based on the text in the

comment in the context of prior comments in

the subtree and other comments in the current

time window.
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Solution

State
* the collection of comments previously recommended.

* Action
* Picking a new set of comments. Note that we only consider
new comments associated with the threads of the discussion
that we are currently following with the assumption that
prior context is needed to interpret the comments.
* Reward
* Long term Reddit voting scores, e.g., Karma scores after the
thread settles down.
* Environment

* The partially observed discussion tree



Q:(s,a) Q:(s,a)

L.?i Ly : pairwise interaction function
O t (e.g. inner product)

h2 h’Z,S é,a
£ # |
h'l hl,S P hi,a
T ) _— * T
S ct ct ct S ct c? o
\ Y J L Y )
at at
(a) Per-action DQN (b) DRRN
Q:(s,a") Qu(s @)
@

,,,,,,,,,,,,,,,,,,

pairwise interaction function
(e-g. inner product) | bidirectional LSTM

h h} h3 h3 n | ! ! |
2,5 2,c 2, 2,c hz,s h%,c h%,c h%,c
T @ i) i) @ T i) T
hl,s h%,c h%,c hic hl,s h%,c ‘ h%,c hic ‘
) i) & i) % @ T T
St ¢t ct ¢t | S | cd || |
L ) L J
at at
(c) DRRN-Sum (d) DRRN-BILSTM

Figure 2: Different deep Q-learning architectures

[He, Ostendorf, He, Chen, Gao, Li, Deng, 2016.“Deep Reinforcement Learning with a Combinatorial Actions5
Space for Predicting Popular Reddit Threads,” EMNLP]



Experiments

Subreddit # Posts (in k) | # Comments (in M)
askscience 0.94 0.32
askmen 4.45 1.06
° todayilearned 9.44 5.11
Da’ta’ an d Sta’ts worldnews 9.88 5.99
nfl 11.73 6.12

Table 1: Basic statistics of filtered subreddit data sets

K Random Upper bound Subreddit Random | Upper bound

2 201.0 (2.1) 1991.3 (2.9) askscience 321.3(7.0) | 2109.0 (16.5)

3 321.3(7.0) 2109.0 (16.5) askmen 132.4 (0.7) 651.4 (2.8)

4 | 447.1(10.8) | 2206.6 (8.2) todayilearned | 390.3 (5.7) | 2679.6 (30.1)

5 | 561.3(18.8) | 2298.0 (29.1) worldnews 205.8 (4.5) | 1853.4 (44.4)
Table 3: Mean and standard deviation of random and upper- nfl 237.1 (1.4) | 1338.2(13.2)
bound performance on askscience, with N = 10 and K = Table 2: Mean and standard deviation of random and upper-
2,3,4,5. bound performance (with N = 10, K = 3) across different

subreddits.
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Results

 On the askscience sub-reddit

K | Linear PA-DQN DRRN DRRN-Sum | DRRN-BILSTM
2 | 553.3(2.8) | 556.8 (14.5) | 553.0 (17.5) || 569.6 (18.4) 573.2 (12.9)
3 | 656.2 (22.5) | 668.3 (19.9) | 694.9 (15.5) || 704.3 (20.1) 711.1 (8.7)
4 | 812.5(23.4) | 818.0(29.9) | 8282 (27.5) || 829.9 (13.2) 854.7 (16.0)
5 | 861.6(28.3) | 884.3 (11.4) | 921.8 (10.7) || 942.3 (19.1) 980.9 (21.1)

Table 4: On askscience, average karma scores and standard deviation of baselines and proposed methods (with N = 10)

K | DRRN-Sum | DRRN-BiLSTM
2 | 538.5(18.9) 551.2 (10.5)
4 | 819.1(14.7) 829.9 (11.1)
5 | 921.6 (15.6) 951.3 (15.7)

Table 5: On askscience, average karma scores and standard de-
viation of proposed methods trained with X = 3 and test with
different K’s
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Example

* In table 6, by combining the second sub-action compared to choosing just the first sub-
action alone, DRRN-Sum and DRRN-BILSTM predict 86% and 26% relative increase in
action-value, respectively. Since these two sub-actions are highly redundant, we
hypothesize DRRN-BILSTM is better than DRRN-Sum at capturing interdependency
between sub-actions.

State text (partially shown)

Are there any cosmological phenomena that we
strongly suspect will occur, but the universe just isn’t
old enough for them to have happened yet?
Comments (sub-actions) (partially shown)

[1] White dwarf stars will eventually stop emitting light
and become black dwarfs. [2] Yes, there are quite a few,
such as: White dwarfs will cool down to black dwarfs.

Table 6: An example state and its sub-actions
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Average reward (Karma scores)

Results on more sub-reddit
domains

Average karma score gains over the baseline and
standard deviation across different subreddits (N = 10,K = 3)
140
120

100

. H I I
b [L ailE - T.LI -

0
askscience askmen todayilearned worldnews

M Linear M PA-DQN DRRN DRRN-Sum ® DRRN-BILSTM
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Incorporating External
Knowledge

* In many NLP tasks such as Reddit post
understanding, external knowledge (such as world

knowledge) is helpful

* How to incorporate the knowledge into a RL

framework is interesting
* How to retrieve complementary knowledge to enrich
the state!



Reinforcement Learning with
External Knowledge

Retrieve external knowledge to augment a state-side

representation
An attention-like approach is used

Not content-based retrieval
But event-based knowledge

Augmented state

. State: raw-text s¢,
retrieval time stamp t State embedding World embedding: o;
\ weighted sum
Event features: External knowledge
.. | T
* Timing feature R oYYl E— | - fi-- Y [ — P
—— DOC 2------ | — fo- | Softmax(-B) | p, | |- d,

* Semantic similarity | i
* Popularity i : |
|

document embeddings

p = SOftInaX([].(lay, ]-Wka Usem s upop]'5>

[He, J., Ostendorf, M. and He, X., 2017. Reinforcement Learning with External Knowledge
and Two-Stage Q-functions for Predicting Popular Reddit Threads. arXiv:1704.06217 ]



Incorporating external knowledge

A average reward (karma scores)

80
B w/o external knowledge B w/ past-day w/ past-week

60 B w/ semantic-similar B w/ most-popular proposed w/ attention
40

20 I L

. THEL remcd THEZ NPT | T
J. J- - 4 J- L - - ! T =T = 1 =+
-20
askscience askmen todayilearned askwomen politics

DRRN (with different ways of incorporating knowledge) performance gains over
baseline DRRN (without external knowledge) across 5 different subreddits

External knowledge helps in general.
The most useful knowledge not necessarily the most “semantically similar” knowledge!

Event based knowledge retrieval is effective 0



Examples

state top-1 top-2 top-3 least

Would it || Ultimate Reality TV: A | ‘Alien thigh bone’ on | The Gaia (General Au- | North Korea’s
be pos- || Crazy Plan for a Mars | Mars: Excitement from | thority on Islamic Affairs) | internet is offline;
sible to || Colony - It mightbecome | alien hunters at ‘evi- | and the UAE (United Arab | massive DDOS
artificially the mother of all reality | dence’ of extraterrestrial | Emirates) have issued a | attack presumed.
create shows. Fully 704 can- | life. Mars likely never | fatwa on people living on

an atmo- || didates are soon to be- | had enough oxygen in | mars, due to the religious

sphere like
Earth has

gin competing for a trip
to Mars to establish a

its atmosphere and else-
where to support more

reasoning that there is no
reason to be there.

on Mars? colony there. complex organisms.

Does our || Star Wars: Episode VII | African Pop Star turns | Dwarf planet discovery | Hong Kong democ-
sun have || begins filming in UAE | white (and causes contro- | hints at a hidden Super | racy movement hit
any unique || desert. This can’t pos- | versy) with new line of | Earth in solar system - The | by 2018. The vote
features sibly be a modern Star | skin whitening cream. 1 | body, which orbits the sun | has no standing in
compared Wars movie! I don’t see | would like to see an un- | at a greater distance than | law, by attempting
to any || a green screen in sight! | shopped photo of her in | any other known object, | to sabotage it, the

other star?

Ya, it’s more like Galaxy
news.

natural lighting.

may be shepherded by an
unseen planet.

Chinese(?) are giv-
ing it legitimacy

Table 4: States and documents (partial text) showing how the agent learns to attend to different parts of
external knowledge
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RL in Long Text Generation Tasks

Generating Recipes

/ “Grilled Cheese Sandwich” Recipe \
* Preheat pan over medium heat.

Ingredients: * Generously butter one side of a slice of bread.

. ;’.; * Place bread butter-side-down onto skillet bottom

O ,ﬁ 4 slices of white bread and add | slice of cheese.
L 2 slices of Cheddar cheese * Butter a second slice of bread on one side and

3 tablespoons butter, divided place butter-side-up on top of sandwich.

*  Grill until lightly browned and flip over; continue

\ grilling until cheese is melted. /

The challenges:

¢ Multi-sentence
*  Weak correspondence between input and output

* Structural language requires correct order of events and aware of state changes!

Kiddon, Zettlemoyer, Choi. 2016. "Globally coherent text generation with neural checklist models."
EMNLP |64



Challenges in Long Form Text
Generation

Sequence to Sequence Training Methods:
« MLE
* RL (Policy gradient)
* GAN ()
Issues:
* Designed for short form generation (e.g., MT or dialog response)

* Loss functions does not reflect high-level semantics for long form

* Not direct metric optimization, exposure bias, credit assignment,
struggle maintaining coherence, objective function balancing,

RL has been applied in text generation -- the challenge, however, is
to define a global score that can measure the complex aspects
of text quality beyond local n-gram patterns.



Neural Reward Functions for Long
Form Text Generation

Generated Recipe:

Wash the tomatoes and
cut them length-wise.
Set on plate. Slice the

Goal:

* Capture individual semantic
properties of the generation task

* Capture the coherence and long-
term dependencies among
sentences

* Generate temporally correct text

mozzarella and put on
tomatoes. Add dressing
and serve cold.

Teacher

Reward

The generator is rewarded for

Approach: ) .
- Use Policy Gradients imitating the discourse structure
* Train Neural Reward functions as of the gold sequence
teachers

* Generate task specific rewards.

* Ensemble of rewards provide a better
signal ?

Bosselut, Celikyilmaz, Huang, He, Choi, 2018. “Discourse-
Aware Neural Rewards for Coherent Text Generation”, NAACL
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Train the teacher

Two neural teachers that can learn to score an

ordered sequence of sentences.
|. Absolute Order Teacher
|. evaluates the temporal coherence of the entire generation
2. Relative Order Teacher
|. reward how a sentence fits with surrounding sentences
3. A DSSM like architecture is used in implementation

(‘eru ) o GRU }—> ... ——»f(?)
Sj: I Sj+1: | Sj4/ maxs
.:]:.:DWaoh .:-: Dry [IITT M Toss

+
E-:Djlettuce III:III with i .:.:I:- with

E.:.:. bowl D:l:.:l towel LT serving

f(i?)_ GRU 4—( GRU }~ . { ar )

The teacher encodes the sentences of the document in the
forward and reverse order




Policy Learning to optimize the
reward

® The model F:':‘:.?ci';fk@ r(5n)
generates a recipe  Spies

. Mix spices . Bread chicken
by sampling
2) Greedily decode a sequence y*

-~ -0~ - —-.“'
* Also greedily

1) Sample a sequence ¥ according to model’s distribution
decodes a baseline _
. Combine bag . Dredge wings in spice mix
recipe. RN eaier IRCRICINICY
. 3)C te reward:s
e the teacher yields a ) Compuierenar®

reward for each
sentence
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Results

Title | Royale Casserole
Ings | Broccoli, chopped; butter; flour; salt; black pepper; nutmeg; milk: cheese shredded swiss; lemon juice;
cooked cubed turkey; mushrooms; grated parmesan cheese; biscuits, refrigerated

MLE | Cook broccoli according to package directions. Drain. Melt butter in skillet. Add flour, stirring constantly.
Cook, stirring constantly, until thickened. Add milk, salt, pepper, and nutmeg. Cook over low heat, stirring
constantly, until thickened. Add cheese, salt, pepper and pimento. Cook and stir till thickened. Add cheese,

stirring until melted. Add | broccoli and mushrooms | Cook over low heat for 5 minutes. Add cheese. Cook
and stir until cheese melts. Add cheese. Cook and stir until cheese melts. Add cheese. Cook and stir until
cheese melts. Add cheese and stir until melted. Serve over hot noodles.

RO | Melt butter in saucepan. Add flour and cook, stirring constantly, until thickened. Add milk, salt, pepper,
and nutmeg. Cook, stirring constantly, until thickened. Add cheese, salt and pepper. Cook over low heat,
stirring constantly, until mixture is thickened and smooth. Remove from heat. Stir in cheese. Spoon into

greased casserole | Top with cheese. | Bake in 350 f oven for 30 minutes. | Serves 6.

Gold | Preheat oven to 375. Melt butter in saucepan. Blend in flour, salt, pepper, and nutmeg; cook 1-2 minutes.
Gradually add milk; cook, stirring, until slightly thickened. Stir in frozen vegetables. Remove from heat; stir
in cheese until melted. Add lemon juice, turkey, mushrooms and broccoli. Pour mixture into a lightly greased
baking dish; sprinkle with parmesan and top with biscuits. Bake 20 minutes, or until biscuits are golden brown.
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Challenges and opportunities

* Open questions in RL that are important to NLP
* Sample complexity

* Model-based RL vs. Model-free RL
* Acquiring rewards for many NLP tasks

170



Reducing Sample Complexity

* One of the core problems of RL: estimation with sampling.

* The problem: High variance and slow convergence

1
logmg(azlsy) = ~557 (ks —a)* + const
I(Tj y _:Y . T(St, at) = _St? - a?

_ - LT (a)*Vanilla’ policy gradients

p—
1

| b 0Spr AT T T Xl
high variance " P A A AN
ps 043 11 L3 slow convergence
8 0.3 |+ 1 -t,j»a’..gi
. 1 L1 1 ! N
N g 0.2+ I RN
1 < o1 | AN
~ . /
Vo] (6) ~Nz Vo logmg (z) r(7) B ool t L i 441 1]
=1 = T22015 <10 05 00

Controller gain 6=k (image from Peters & Schaal 2008)
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Reducing Sample Complexity

* Variance reduction using value function
1 N
75 (0) ~ NZ Vs logme(D)[r(r) — b]

Subtracting a baseline is unbiased in expectation but reduce variance greatly!

E[Vglogme(T)b] = jT[Q(T)VgT[g (t)bdt = jVQnQ(T)de = bV, [ me(t)dT = bVy1 =0
Various forms for b

N T
1
(b= Z =1 7(7) (2) b = V™Y (s¢): Vg (0) = NZ Z Vo logmg(alt|sf) A™ (s¢, a)
[GAE, John Schulman et al.2016]

N oo
1 1
(3) b =b(sp,ar): Vel (60) = NZ Z Vo 108ﬂe(a?|5t) Qn,e — b(s?, a?)) 5

N
Z VQEa~7rg (a¢lsh) [b (Stn' a?)]
n=1t=0 t

=M=

[Q-prop, Gu et al.2016]



Reducing Sample Complexity

Improve convergence rate via constrained optimization (a) Vanilla’ policy gradients

b 0.5 A" T T X
"'()4\“'%‘ R
< X S
0 <0+alyj(0) g (ac|se) - AT T T I
o 0.3 11—+
. . Bolr VL1 N
Problems with direct SGD: some parameters change probabilities a lot than § 3; P e = -
- U |
others ool L 1 1 1 1 1
2 —Iw -1.0 —()s 0.0

» Rescale the gradient with constraint divergence -2

0’ « argrrng(e’ —0)TVgJ(0) st. Dy (g, mg) < €

Controller ¢

gain 6,=k

(b) Natural pollcv gradlents

s 0.5
]
¢ 0.4}
Dy (g ) = By, logmy: —logreg] ~ (6" — 0)(FYo" — 6) -y
2 02
F = Eg,[logmg(als)logmg(als)"] <— Fisher-information matrix £ o1
2 0.
. . oy ) % ool - > 7 -
Equivalence with natural gradient!  [TRPO, Schulman et al.2015] & 00— "0 =05 0.
» Use penalty instead of constraint Ml
N : : :
, g (ay |Sn) Increase/decrease 3 if KL is too high/low
ann' (a |S ) :BDKL[TEQOMJ 9]
=1 "Ooa\"nlon [PPO, Schulman et al.2017]
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Model-based v.s. Model-free RL

* Improve sample-efficiency via fast model-based RL

Pros

Cons

systems with minimal bias

Model-free RL Handling arbitrary dynamic Substantially less sample-efficient

Sample-efficient planning when | Cannot handle unknown dynamical
Model-based RL given accurate dynamics systems that might be hard to model

Can we combine model-based and model-free RL? | Guided policy

search
mln Z T (X, Ut) l(xb ut)]
ﬂ q; (uelxe)~N (ke + Kexe|Quair)

"u\

0,91,---9N
i=1t=

min ZZ ol u)] . g aucg) = o uelxe) Ve, 1

Planning q; (u;|x;) through a local

approximate dynamics p(x; 1 |x¢, Up).

4

Difterentiable Dynamic
Programming(DDP)
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Model-based v.s. Model-free RL

* Improve sample-efficiency via fast model-based RL

run (v | x,)
=
on robot

collect D = {7;}

t

‘. /0
{x;,u;. x'; }

)

h train o (u,|x;)
it GNMM HE——HE——

next
1teration

prior

it dvnamics

P(Xi|x,a) ==

4 —
DI solve e
\ for (/(n,|x/) :;’ [ updatc 1) ]

\.

\

[Levine& Abbeel, NIPS 2014]
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Acquiring Rewards

* How can we rewards for complex real-world tasks?

Real World Scenarios

Komputer Games
reward robotics dialogue autonomous driving

N

Mnih et al."15
*Many tasks are easier to provide expert data instead of reward function

Inverse RL: infer reward function from roll-outs of expert
policy
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Acquiring Rewards

* Inverse RL: infer reward function from demonstrations
[Kalman ’64, Ng & Russell ’00]

given: goal: Challenges:

- state & action space - Recover reward function - underdefined problem

- roll-out from * - then use reward to get policy - difficult to evaluate a learned reward

- dynamics model[sometimes] - demonstrations may not be precisely
optimal

* Newest works: combined with generative adversarial networks

Similar to inverse RL, GANs learn an objective for generative
modeling

Zhuetal.”17

[Finn*, Christiano¥, et al.’16]
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Acquiring Rewards

* (Qenerative adversarial inverse RL

trajectoryt «— samplex
Inverse RL policy n~q(t) <—> generator G GANs
rewardr =——> discriminator D

data distribution p

Reward/discriminator optimization
policy demonstrations
/—\ Lp(¥) = Er~p [_ log Dz,b (T)] + Er~q [—log(1— DI[) (T))]

generate policy
samples from

) B [©)n8) Policy/Generator optimization
Update reward using

| generator samples & demos
S~ — (discriminator|  Lp 0) = Er~q[l09(1 — Dy (1)) — log(Dy (T))]

update m w.r.t. reward
take 1 iteration of policy opt.

policy reward r . . .
[Guided cost learning, Finn et al. ICML ’16]

update reward in inner loop of policy optimization [GAIL,Ho & Ermon NIPS’16]
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Session Summary

* Learn Q function in a common vector space for
states and actions

* Add external knowledges to help NL understanding

* The reward could be learned to reflect the goal of
long form text generation

* Open questions in RL that are important to NLP

* Sample complexity
* Model-based RL vs. Model-free RL
* Acquiring rewards for many NLP tasks



Conclusion

* Deep Reinforcement Learning is a very natural
solution for many NLP applications.

* DRL can be interpreted in many different ways.
* We have seen many exciting research directions.

* In particular, DRL for dialog is a very promising
direction.

* Opportunities and challenges are ahead of us.



Questions!



