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Tutorial Outline

• Introduction
• Fundamentals and Overview (William Wang)
• Deep Reinforcement Learning for Dialog (Jiwei Li)
• Challenges (Xiaodong He)
• Conclusion
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Introduction
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DRL for Atari Games 
(Mnih et al., 2015)
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AlphaGo Zero (Oct., 2017)
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Reinforcement Learning

• RL is a general purpose framework for decision making
• RL is for an agent with the capacity to act
• Each action influences the agent’s future state
• Success is measured by a scalar reward signal
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Big three: action, state, reward

Some slides adapted from David Silver.



Agent and Environment
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Major Components in an RL 
Agent
• An RL agent may include one or more of these components

• Policy: agent’s behavior function
• Value function: how good is each state and/or action
• Model: agent’s representation of the environment

8Some slides adapted from David Silver.



Reinforcement Learning Approach

• Policy-based RL
• Search directly for optimal policy

• Value-based RL
• Estimate the optimal value function

• Model-based RL
• Build a model of the environment
• Plan (e.g. by lookahead) using model
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is the policy achieving maximum future reward 

is maximum value achievable under any policy

Some slides adapted from David Silver.



RL Agent Taxonomy

10Some slides adapted from David Silver.



Deep Reinforcement Learning

• Idea: deep learning for reinforcement learning
• Use deep neural networks to represent

• Value function
• Policy
• Model

• Optimize loss function by SGD

11Some slides adapted from David Silver.



Value-Based Deep RL
Estimate How Good Each State and/or Action is

12Some slides adapted from David Silver.



Value Function Approximation

• Value functions are represented by a lookup table

• too many states and/or actions to store
• not able to learn the value of each entry individually

• Values can be estimated with function approximation

13Some slides adapted from David Silver.



Q-Networks

• Q-networks represent value functions with weights 

• generalize from seen states to unseen states
• update parameter for function approximation

14Some slides adapted from David Silver.



Q-Learning

• Goal: estimate optimal Q-values
• Optimal Q-values obey a Bellman equation

• Value iteration algorithms solve the Bellman equation
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learning target

Some slides adapted from David Silver.



Deep Q-Networks (DQN)

• Represent value function by deep Q-network with weights  

• Objective is to minimize MSE loss by SGD
• Starts with initial state s, takes a, gets r, and sees 𝑠"
• but we want w to give us better Q early in the game.

• Leading to the following Q-learning gradient

16Some slides adapted from David Silver.



Stability Issues with Deep RL

• Naive Q-learning oscillates or diverges with neural nets
1. Data is sequential

• Successive samples are correlated, non-iid
(independent and identically distributed)

2. Policy changes rapidly with slight changes to Q-values
• Policy may oscillate
• Distribution of data can swing from one extreme 

to another
3. Scale of rewards and Q-values is unknown

• Naive Q-learning gradients can be unstable when 
backpropagated

17Some slides adapted from David Silver.



Stable Solutions for DQN

18

• DQN provides a stable solutions to deep value-based RL
1. Use experience replay

• Break correlations in data, bring us back to iid
setting

• Learn from all past policies
2. Freeze target Q-network

• Avoid oscillation
• Break correlations between Q-network and target

3. Clip rewards or normalize network adaptively to sensible 
range

• Robust gradients

Some slides adapted from David Silver.



Policy-Based Deep RL
Estimate How Good An Agent’s Behavior is

19Some slides adapted from David Silver.



Deep Policy Networks

• Represent policy by deep network with weights 

• Objective is to maximize total discounted reward by 
SGD

20

stochastic policy deterministic policy

Some slides adapted from David Silver.



Policy Gradient

• The gradient of a stochastic policy                         is given by

• The gradient of a deterministic policy                   is given by

21Some slides adapted from David Silver.



Actor-Critic (Value-Based + Policy-Based)

• Estimate value function 
• Update policy parameters     by SGD

• Stochastic policy

• Deterministic policy

22Some slides adapted from David Silver.



Reinforcement Learning in Action
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DRL4NLP: Overview of Applications

• Information Extraction
• Narasimhan et al., EMNLP 2016

• Relational Reasoning
• DeepPath (Xiong et al., EMNLP 2017)

• Sequence Learning
• MIXER (Ranzato et al., ICLR 2016)

• Text Classification
• Learning to Active Learn (Fang et al., EMNLP 2017)
• Reinforced Co-Training (Wu et al., NAACL 2018)
• Relation Classification (Qin et al., ACL 2018)
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DRL4NLP: Overview of Applications

• Coreference Resolution
• Clark and Manning (EMNLP 2016)
• Yin et al., (ACL 2018)

• Summarization
• Paulus et al., (ICLR 2018)
• Celikyilmaz et al., (ACL 2018)

• Language and Vision
• Video Captioning (Wang et al., CVPR 2018)
• Visual-Language Navigation (Xiong et al., IJCAI 2018)
• Model-Free + Model-Based RL (Wang et al., ECCV 

2018)
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Tutorial Outline

• Introduction
• Fundamentals and Overview (William Wang)
• Deep Reinforcement Learning for Dialog (Jiwei Li)
• Challenges (Xiaodong He)
• Conclusion
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Fundamentals and Overview

• Why DRL4NLP?
• Important Directions of DRL4NLP.
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Why does one use (D)RL in NLP?

1. Learning to search and reason.
2. Instead of minimizing the surrogate loss (e.g., XE, 

hinge loss), optimize the end metric (e.g., BLEU, 
ROUGE) directly.

3. Select the right (unlabeled) data.
4. Back-propagate the reward to update the model.
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Learning to Search and Reason
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SEARN (Daume III et al., 2009):
Learning to Search

1. use a good initial policy at training time to 
produce a sequence of actions (e.g., the choice of 
the next word)

2. a search algorithm is run to determine the 
optimal action at each time step 

3. a new classifier (a.k.a. policy) is trained to predict 
that action
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Reasoning on Knowledge Graph

Query node: Band of brothers
Query relation: tvProgramLanguage

tvProgramLanguage(Band of Brothers, ?)
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DeepPath: DRL for KG Reasoning
(Xiong et al., EMNLP 2017)
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Components of MDP

• Markov decision process < 𝑆, 𝐴, 𝑃, 𝑅 >
• 𝑆: continuous	states	represented	with	embeddings
• 𝐴:	action	space	(relations)
• 𝑃 𝑆@AB = 𝑠" 𝑆@ = 𝑠, 𝐴@ = 𝑎 :	transition	probability
• 𝑅 𝑠, 𝑎 : reward	received	for	each	taken	step

• With	pretrained KG	embeddings
• 𝑠@ = 𝑒@ ⊕ (𝑒@KLMN@ 	− 𝑒@)
• 𝐴 = 𝑟B, 𝑟Q, … , 𝑟S ,	all	relations	in	the	KG
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Reward Functions

• Global Accuracy

• Path Efficiency

• Path Diversity
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Training with Policy Gradient
• Monte-Carlo Policy Gradient (REINFORCE, 

William, 1992)
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Learning Data Selection Policy 
with DRL
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DRL for Information Extraction 
(Narasimhan et al., EMNLP 2016)
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DRL for Information Extraction 
(Narasimhan et al., EMNLP 2016)
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Can DRL help select unlabeled data for 
semi-supervised text classification?
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A Classic Example of Semi-Supervised Learning

• Co-Training (Blum and Mitchell, 1998)
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Challenges
• The two classifiers in co-training have to be 

independent.
• Choosing highly-confident self-labeled examples 

could be suboptimal.
• Sampling bias shift is common.
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Reinforced SSL

• Assumption: not all the unlabeled data are useful. 
• Idea: performance-driven semi-supervised learning 

that learns an unlabeled data selection policy with 
RL, instead of using random sampling.

• 1. Partition the unlabeled data space
• 2. Train a RL agent to select useful unlabeled data
• 3. Reward: change in accuracy on the validation set
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Reinforced Co-Training
(Wu et al., NAACL 2018)

4
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Directly Optimization of the Metric
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MIXER (Ranzato et al., ICLR 2016)

• Optimize the cross-entropy loss and the BLEU 
score directly using REINFORCE (Williams, 1992).
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Backprop Reward via One-Step RL
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One-Step Reinforcement Learning in Action
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KBGAN: Learning to Generate High-
Quality Negative Examples
(Cai and Wang, NAACL 2018)
Idea: use adversarial learning to iteratively learn better 
negative examples.
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KBGAN: Overview

• Both G and D are KG embedding models.

• Input:
• Pre-trained generator G with score function 𝑓U ℎ, 𝑟, 𝑡 .
• Pre-trained discriminator D with score function 𝑓Y ℎ, 𝑟, 𝑡 .

• Adversarial Learning: 
• Use softmax to score and rank negative triples.
• Update D with original positive examples and highly-ranked negative 

examples.
• Pass the reward for policy gradient update for G.

• Output:
• Adversarially trained KG embedding discriminator D.
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KBGAN: Adversarial Negative Training

For each positive triple from the minibatch:
1. Generator: Rank negative examples.

2. Discriminator: Standard margin-based update.
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KBGAN: One-Step RL for 
Updating the Generator
3. Compute the Reward for the Generator.

r = −𝑓Y ℎ′, 𝑟, 𝑡′ .

4. Policy gradient update for the Generator.

The baseline b is total reward sum / mini-batch size.
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Important Directions in DRL

•Learning from Demonstration.
•Hierarchical DRL.
•Inverse DRL.
•Sample-efficiency.
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Learning from Demonstration
53



Motivations

• Exploitation vs exploration.
• Cold-start DRL is very challenging.
• Pre-training (a.k.a. demonstration is common).
• Some entropy in an agent’s policy is healthy. 
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Scheduled Policy Optimization 
(Xiong et al., IJCAI-ECAI 2018)
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Hierarchical Deep Reinforcement Learning
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Hierarchical Deep Reinforcement Learning for 
Video Captioning (Wang et al., CVPR 2018)
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Inverse Deep Reinforcement Learning
58



No Metrics Are Perfect: 
Adversarial Reward Learning 
(Wang et al., ACL 2018)

• Task: visual storytelling (generate a story 
from a sequence of images in a photo 
album).

• Difficulty: how to quantify a good story?
• Idea: given a policy, learn the reward function. 
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No Metrics Are Perfect: Adversarial 
Reward Learning 
(Wang et al., ACL 2018)

60



When will IRL work?

• When the optimization target is 
complex.

• There are no easy formulations of the 
reward.

• If you can clearly define the reward, 
don’t use IRL and it will not work.
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Improving Sample Efficiency:
Combine Model-Free and Model-Based RL
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Vision and Language Navigation
(Anderson et al., CVPR 2018)
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Look Before You Leap:
Combine Model-Free and Model-Based RL for 
Look-Ahead Search
(Wang et al., ECCV 2018)
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Conclusion of Part I

• We provided a gentle introduction to DRL.
• We showed the current landscape of DRL4NLP 

research.
• What do (NLP) people use DRL for?
• Intriguing directions in DRL4NLP.
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Open-sourced software:

• DeepPath: https://github.com/xwhan/DeepPath
• KBGAN: https://github.com/cai-lw/KBGAN
• Scheduled Policy Optimization: 

https://github.com/xwhan/walk_the_blocks
• AREL: https://github.com/littlekobe/AREL
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Outline

• Introduction
• Fundamentals and Overview (William Wang)
• Deep Reinforcement Learning for Dialog 

(Jiwei Li)
• Challenges (Xiaodong He)
• Conclusion
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Seq2Seq Models for Response Generation

how are you ?

I’m fine . EOS

Encoding Decoding

eos I’m fine .

(Sutskever et al., 2014; Jean et al., 2014; Luong et al., 2015)
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Seq2Seq Models for Response Generation

how are you ?

Encoding

(Sutskever et al., 2014; Jean et al., 2014; Luong et al., 2015)
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Seq2Seq Models for Response Generation

how are you ?

I’m

Encoding Decoding

eos

(Sutskever et al., 2014; Jean et al., 2014; Luong et al., 2015)

70



Seq2Seq Models for Response Generation

how are you ?

I’m fine

Encoding Decoding

eos I’m

(Sutskever et al., 2014; Jean et al., 2014; Luong et al., 2015)
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Seq2Seq Models for Response Generation

how are you ?

I’m fine .

Encoding Decoding

eos I’m fine

(Sutskever et al., 2014; Jean et al., 2014; Luong et al., 2015)
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Seq2Seq Models for Response Generation

how are you ?

I’m fine . EOS

Encoding Decoding

eos I’m fine .

(Sutskever et al., 2014; Jean et al., 2014; Luong et al., 2015)
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Issues 

How do we handle long-term dialogue success?

• Problem 1: Repetitive responses.
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Two bots talk with each other
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Shut up !

Repetitive responses.
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Shut up !

Repetitive responses.

77



No, you shut up !

Shut up !

Repetitive responses.
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No, you shut up !

No, you shut up !

Shut up !

Repetitive responses.
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No, you shut up !

No, you shut up !

Shut up !

No, you shut up !

Repetitive responses.
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No, you shut up !

No, you shut up !

Shut up !

No, you shut up !

No, you shut up !

Repetitive responses.

…
… 81



See you later !

See you later !

See you later !

See you later !

See you later !
……

Repetitive responses.
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Issues 

How do we handle long-term dialogue success?

• Problem 1: Repetitive responses.
• Problem 2: Short-sighted conversation decisions.
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How old are you ?

Short-sighted conversation decisions
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How old are you ?

i 'm 16 .

Short-sighted conversation decisions
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How old are you ?

i 'm 16 .

16 ?

Short-sighted conversation decisions
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How old are you ?

i 'm 16 .

16 ?
i don 't know what you 're 

talking about

Short-sighted conversation decisions
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How old are you ?

i 'm 16 .

16 ?
i don 't know what you 're 

talking about

Short-sighted conversation decisions

you don 't know what you 're saying
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How old are you ?

i 'm 16 .

16 ?
i don 't know what you 're 

talking about

Short-sighted conversation decisions

you don 't know what you 're saying

i don 't know what you 're 
talking about
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How old are you ?

i 'm 16 .

16 ?
i don 't know what you 're 

talking about

Short-sighted conversation decisions

you don 't know what you 're saying

i don 't know what you 're 
talking about

you don 't know what you 're saying
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How old are you ?

i 'm 16 .

16 ?
i don 't know what you 're 

talking about

Short-sighted conversation decisions

you don 't know what you 're saying

i don 't know what you 're 
talking about

you don 't know what you 're saying

A bad action
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How old are you ?

i 'm 16 .

16 ?
i don 't know what you 're 

talking about

Short-sighted conversation decisions

you don 't know what you 're saying

i don 't know what you 're 
talking about

you don 't know what you 're saying
Outcome does not emerge
until a few turns later
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Reinforcement Learning
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Notations: State 

How old are you ?

how old are you

Encoding
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Notations: Action

How old are you ?

i 'm 16 .
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Reward
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Reward

1. Ease of answering
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Reward

1. Ease of answering

”I don’t know what you are talking about”
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Reward

2. Information Flow
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See you later !

See you later !

See you later !

See you later !

Reward

2. Information Flow
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See you later !

See you later !

Reward

2. Information Flow
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How old are you ?

i 'm 16 .

message
response

Reward

3. Meaningfulness

102



Simulation 

A message from training set
Encode
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Simulation 

A message from training set
Encode

s1
Decod
e

…
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Simulation 

A message from training set
Encode

s1
Decod
e

Encode

…
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Simulation 

A message from training set
Encode

s1
Decod
e

Encode

s2
Decod
e

…
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Input
Message

Encode Decod
e

Turn 1

Encode

Turn 2

Decod
e

Encode

…

Decod
e

Turn N

S1 S2 Sn

Compute Accumulated Reward R(S1,S2,…,Sn)
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Input
Message

Encode Decod
e

Turn 1

Encode

Turn 2

Decod
e

Encode

…

Decod
e

Turn N

S1 S2 Sn

REINFORCE Algorithm (William,1992) 
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Evaluation

RL-win RL-lose Tie

Single-Turn Quality 0.40 0.36 0.24

Multi-Turn Quality 0.72 0.12 0.16
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Evaluation

RL-win RL-lose Tie

Single-Turn Quality 0.40 0.36 0.24

Multi-Turn Quality 0.72 0.12 0.16
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Results

Input Mutual
Information 

The RL model

How old are you ? I’m 16. I’m 16. why are you 
asking ?
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Results

Input Mutual
Information 

The RL model

How old are you ? I’m 16. I’m 16. why are you 
asking ?

what is your full 
name ?

i have no idea what 's yours ?
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Results

Input Mutual
Information 

The RL model

How old are you ? I’m 16. I’m 16. why are you 
asking ?

what is your full 
name ?

i have no idea what 's yours ?

I don 't want to go 
home tonight .

Really ? Why ?
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Results

Input Mutual
Information 

The RL model

How old are you ? I’m 16. I’m 16. why are you 
asking ?

what is your full 
name ?

i have no idea what 's yours ?

I don 't want to go 
home tonight .

Really ? Why ?

Do you have any 
feelings for me ?

I don’t know what 
you are talking 
about. 

Would I see you if I 
didn 't ?
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Reward for Good Dialogue

1. Easy to answer
2. Information Flow    
3. Meaningfulness      
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What Should Rewards for Good
Dialogue Be Like ?
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TuringTest

Reward for Good
Dialogue

117



How old are
you ?

I don’t know what you are
talking about

I’m 25.

A human evaluator/ judge

Reward for Good
Dialogue
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How old are
you ?

I don’t know what you are
talking about

I’m 25.

Reward for Good
Dialogue
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How old are
you ?

I don’t know what you are
talking about

I’m 25.

P= 90% human generated

P= 10% human generated

Reward for Good
Dialogue

120



Adversarial Learning in
Image Generation (Goodfellow et al., 2014)
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Model Breakdown
Generative Model (G)

how are you ?

I’m fine . EOS

Encoding Decoding

eos I’m fine .
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Model Breakdown
Generative Model (G)

how are you ?

I’m fine . EOS

Encoding Decoding

eos I’m fine .

Discriminative Model (D)

how are you ? eos I’m fine .

P= 90% human generated
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Model Breakdown
Generative Model (G)

how are you ?

I’m fine . EOS

Encoding Decoding

eos I’m fine .

Discriminative Model (D)

how are you ? eos I’m fine .

Reward P= 90% human generated
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Policy Gradient

REINFORCE Algorithm (William,1992) 

Generative Model (G)

how are you ?

I’m fine EOS

Encoding Decoding

eos I’m fine .
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Adversarial Learning for Neural Dialogue Generation

Update the 
Discriminator 

Update the 
Generator

The discriminator 
forces the generator to 
produce correct 
responses
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Human Evaluation

The previous RL model only
perform better on multi-turn
conversations
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Results: Adversarial Learning Improves Response 
Generation

Human Evaluator 

vs  a vanilla generation model

Adversarial 
Win

Adversarial 
Lose

Tie

62% 18% 20%
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Sample response
Tell me ... how long have you had this falling sickness ? 

System Response
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Sample response
Tell me ... how long have you had this falling sickness ? 

System Response
Vanilla-Seq2Seq I don’t know what you are

talking about.
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Sample response
Tell me ... how long have you had this falling sickness ? 

System Response
Vanilla-Seq2Seq I don’t know what you are

talking about.
Mutual Information I’m not a doctor.
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Sample response
Tell me ... how long have you had this falling sickness ? 

System Response
Vanilla-Seq2Seq I don’t know what you are

talking about.
Mutual Information I’m not a doctor.

Adversarial Learning A few months, I guess.
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Outline

• Introduction
• Fundamentals and Overview (William Wang)
• Deep Reinforcement Learning for Dialog (Jiwei Li)
• Frontiers and Challenges (Xiaodong He)
• Conclusion
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Frontiers and Challenges

• NLP problems that presents new challenges to RL
• An unbounded action space defined by natural language
• Dealing with combinatorial actions and external 

knowledges
• Learning reward functions for NLG

• RL problems that are particularly relevant to NLP
• Sample complexity 
• Model-based vs. model free RL
• Acquiring rewards
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Consider a Sequential Decision 
Making Problem in NLP
• E.g., Playing text-based games, Webpage navigation, task 

completion, …
• At time t:

• Agent observes the state as a string of text , e.g., 
state-text 𝑠@

• Agent also knows a set of possible actions, each is 
described as a string text, e.g., action-texts

• Agent tries to understand the “state text” and all 
possible “action texts”, and takes the right action – to 
maximize the long term reward

• Then, the environment state transits to a new state, 
agent receives an immediate reward, and move to t+1
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RL for Natural Language 
Understanding Tasks
• Reinforcement learning (RL) with a natural language state 

and action space
• Applications such as text games, webpage navigation, dialog 

systems
• Challenging because the potential state and action space are 

large and sparse

• An example: text-based game

State text

Action texts
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DQN for RL in NLP

• LSTM-DQN
• State is represented 

by a continuous 
vector (by a LSTM)

• Actions and objects 
are considered as 
independent 
symbols 

• Tested on a MUD 
style text-based 
game playing 
benchmark

Narasimhan, K., Kulkarni, T. and Barzilay, R., 2015. Language understanding for text-
based games using deep reinforcement learning. EMNLP. 137



Unbounded action space in RL 
for NLP

But, not only the state space is huge, the action space is huge, too.
– Action is characterized by unbounded natural language description. 
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The Reinforcement Learning for 
NL problem
• RL for text understanding

• Unbounded state and action spaces (both in texts)
• Time-varying feasible action set

• At each time, the actions are different texts.
• At each time, the number of actions are different.

𝑠௧ 𝑎௧ଵ …

Relevance

𝑠௧ାଵ 𝑎௧ାଵଵ …

Relevance
𝑝(𝑠௧ାଵ|𝑠௧, 𝑎௧)

𝑟௧ 𝑟௧ାଵ

… …
𝑎௧
|| 𝑎௧ାଵ

|శభ|
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Baselines: Variants of Deep Q-
Network
• Q-function: using a single deep neural network as function 

approximation
• Input: concatenated state-actions (BoW)
• Output: Q-values for different actions

Max-action DQN Per-action DQN
à max over 𝑎@[
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Deep Reinforcement Relevance 
Network (DRRN)
• Similar to the DSSM (deep structured semantic 

model), project both s and a into a continuous space 
• Separate state and action embeddings
• Interaction at the embedding space
•

Motivation:
- Language is different 

in these two contexts.
- Text similarity does 

NOT always lead to 
the best action.

[Huang, He, Gao, Deng, Acero, Heck, 2013. “Learning Deep Structured Semantic Models for for Web Search 
using Clickthrough Data,” CIKM]; [He, Chen, He, Gao, Li, Deng, Ostendorf, 2016. “Deep Reinforcement 
Learning with a Natural Language Action Space,” ACL] 141



Reflection: DRRN
• Prior DQN work (e.g., Atari game, AlphaGo): state space unbounded, 

action space bounded. 

• In NLP tasks, usually the action space is unbounded since it is 
characterized by natural language, which is discrete and nearly 
unconstrained.

• New DRRN: (Deep 
Reinforcement Relevance 
Network)

• Project both the state and the action 
into a continuous space

• Q-function is an relevance function 
of the state vector and the action 
vector
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Experiments: Tasks

• Two text games

• Hand annotate rewards for distinct endings
• Simulators available at: https://github.com/jvking/text-

games

143



Experiments
• Tasks: Text Games/Interactive Fictions

Task 2: 
“Machine of 
Death”

Task 1:     
“Save John”
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Learning curve: DRRN vs. DQN

145



Experiments: Final Performance

-5

0

5

10

15

20

n_hidden=20 n_hidden=50 n_hidden=100

PA	DQN	(L=1) PA	DQN	(L=2) MA	DQN	(L=1)

MA	DQN	(L=2) DRRN	(L=1) DRRN	(L=2)
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n_hidden=20 n_hidden=50 n_hidden=100

PA	DQN	(L=1) PA	DQN	(L=2) MA	DQN	(L=1)

MA	DQN	(L=2) DRRN	(L=1) DRRN	(L=2)

Game 1: “Saving John” Game 2: “Machine of Death”

The DRRN performs consistently better than all baselines, and 
often with a lower variance.
Big gain from having separate state & action embedding spaces 
(DQN vs. DRRN).
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Visualization of the learned continuous 
space
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Experiments: Generalization

• In the testing stage, use unseen paraphrased 
actions

-5

0

5

10

15

n_hidden=20 n_hidden=50 n_hidden=100

PA	DQN	(L=2) MA	DQN	(L=2) DRRN	(L=2)

Game 2: “Machine of Death”
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Q-function example values after 
converged

Text	(with	predicted	Q-values)	

State As	you	move	forward,	the	people	surrounding	you	suddenly	
look	up	with	terror	in	their	faces,	and	flee	the	street.

Actions	in	the	
original	game

Ignore	the	alarm of	others	and	continue	moving	forward.	(-21.5)	
Look	up.	(16.6)

Paraphrased	actions	
(not	original)

Disregard	the	caution	of	others	and	keep	pushing	ahead.	(-11.9)	
Turn	up	and	look.	(17.5)

Fake	actions	(not	
original)

Stay	there.	(2.8)	Stay	calmly.	(2.0)
Screw	it.	I’m	going	carefully.	(-17.4)	Yell	at	everyone.	(-13.5)
Insert	a	coin.	(-1.4)	Throw	a	coin	to	the	ground.	(-3.6)
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From games to large scale real-
world scenarios

• Task: 
Build an agent runs on real world Reddit dataset 
https://www.reddit.com/

reads Reddit posts
recommends threads in real time with most future popularity

• Approach:
• RL with specially designed Q-function for combinatorial action spaces
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Motivation

• we consider Reddit popularity prediction, which is 
different to newsfeed recommendation in two 
respects:

• Making recommendations based on the anticipated long-
term interest level of a broad group of readers from a 
target community, rather than for individuals. 

• Community interest level is not often immediately clear 
-- there is a time lag before the level of interest starts to 
take off. Here, the goal is recommendation in real time –
attempting to identify hot updates before they become hot to 
keep the reader at the leading edge. 

151



Solution

• Problem fits reinforcement learning paradigm
• Combinatorial action space 

• Sub-action is a post
• Action is a set of interdependent documents

• Two problems: i) potentially high computational complexity, ii) 
estimating the long-term reward (the Q-value in reinforcement 
learning) from a combination of sub-actions characterized by 
natural language. 

• The paper focuses on (ii).
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Problem Setting
• Registered Reddit users initiate a post and 

people respond with comments, Together, the 
comments and the original post form a 
discussion tree. 

• Comments (and posts) are associated with 
positive and negative votes (i.e., likes and 
dislikes) that are combined to get a karma 
score, which can be used as a measure for 
popularity. 

• As in Fig 1., it is quite common that a lower 
karma comment will lead to more 
children and popular comments in the 
future (e.g. “true dat”). 

• In a real-time comment recommendation 
system, the eventual karma of a comment is not 
immediately available, so prediction of 
popularity is based on the text in the 
comment in the context of prior comments in 
the subtree and other comments in the current 
time window.
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Solution 

• State
• the collection of comments previously recommended.

• Action
• Picking a new set of comments. Note that we only consider 

new comments associated with the threads of the discussion 
that we are currently following with the assumption that 
prior context is needed to interpret the comments. 

• Reward
• Long term Reddit voting scores, e.g., Karma scores after the 

thread settles down.

• Environment
• The partially observed discussion tree
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Model 

[He, Ostendorf, He, Chen, Gao, Li, Deng, 2016. “Deep Reinforcement Learning with a Combinatorial Action 
Space for Predicting Popular Reddit Threads,” EMNLP]
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Experiments

• Data and stats
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Results

• On the askscience sub-reddit
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Example

• In table 6, by combining the second sub-action compared to choosing just the first sub-
action alone, DRRN-Sum and DRRN-BiLSTM predict 86% and 26% relative increase in 
action-value, respectively. Since these two sub-actions are highly redundant, we 
hypothesize DRRN-BiLSTM is better than DRRN-Sum at capturing interdependency 
between sub-actions. 
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Results on more sub-reddit
domains 
Average karma score gains over the baseline and 
standard deviation across different subreddits (N = 10,K = 3)
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Incorporating External 
Knowledge
• In many NLP tasks such as Reddit post 

understanding, external knowledge (such as world 
knowledge) is helpful

• How to incorporate the knowledge into a RL 
framework is interesting

• How to retrieve complementary knowledge to enrich 
the state?
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Reinforcement Learning with 
External Knowledge

[He, J., Ostendorf, M. and He, X., 2017. Reinforcement Learning with External Knowledge 
and Two-Stage Q-functions for Predicting Popular Reddit Threads. arXiv:1704.06217.]

Retrieve external knowledge to augment a state-side 
representation
An attention-like approach is used
Not content-based retrieval
But event-based knowledge 
retrieval

Event features:
• Timing feature
• Semantic similarity
• Popularity
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Incorporating external knowledge

DRRN (with different ways of incorporating knowledge) performance gains over 
baseline DRRN (without external knowledge) across 5 different subreddits

• External knowledge helps in general.
• The most useful knowledge not necessarily the most “semantically similar” knowledge!
• Event based knowledge retrieval is effective 162



Examples
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RL in Long Text Generation Tasks

The challenges: 

• Multi-sentence

• Weak correspondence between input and output

• Structural language requires correct order of events and aware of state changes!

Kiddon, Zettlemoyer, Choi. 2016. "Globally coherent text generation with neural checklist models." 
EMNLP

Generating Recipes

• Preheat pan over medium heat. 
• Generously butter one side of a slice of bread. 
• Place bread butter-side-down onto skillet bottom 

and add 1 slice of cheese. 
• Butter a second slice of bread on one side and 

place butter-side-up on top of sandwich. 
• Grill until lightly browned and flip over; continue 

grilling until cheese is melted. 

“Grilled Cheese Sandwich”

Ingredients:

4 slices of white bread
2 slices of Cheddar cheese
3 tablespoons butter, divided

Recipe
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Challenges in Long Form Text 
Generation

Sequence to Sequence Training Methods:
• MLE
• RL (Policy gradient)
• GAN (!)

Issues:
• Designed	for	short	form	generation	(e.g.,	MT	or	dialog	response)
• Loss	functions	does	not	reflect	high-level	semantics	for	long	form
• Not	direct	metric	optimization,	exposure	bias, credit	assignment,	
struggle	maintaining	coherence,	objective	function	balancing,	
……	

RL has been applied in text generation -- the challenge, however, is 
to define a global score that can measure the complex aspects 
of text quality beyond local n-gram patterns. 165



Neural Reward Functions for Long 
Form Text Generation

Goal:  
• Capture individual semantic 

properties of the generation task 
• Capture the coherence and long-

term dependencies among 
sentences

• Generate temporally correct text

Approach: 
• Use Policy Gradients
• Train Neural Reward functions as 

teachers 
• Generate task specific rewards.
• Ensemble of rewards provide a better 

signal ?  

Bosselut, Celikyilmaz, Huang, He, Choi, 2018. “Discourse-
Aware Neural Rewards for Coherent Text Generation”, NAACL

The generator is rewarded for 
imitating the discourse structure 
of the gold sequence
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Train the teacher

The teacher encodes the sentences of the document in the 
forward and reverse order

Two neural teachers that can learn to score an 
ordered sequence of sentences.
1. Absolute Order Teacher

1. evaluates the temporal coherence of the entire generation
2. Relative Order Teacher

1. reward how a sentence fits with surrounding sentences
3. A DSSM like architecture is used in implementation
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Policy Learning to optimize the 
reward
• The model 

generates a recipe 
by sampling 

• Also greedily 
decodes a baseline 
recipe. 

• the teacher yields a 
reward for each 
sentence
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Results
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Challenges and opportunities

• Open questions in RL that are important to NLP

• Sample complexity 
• Model-based RL vs. Model-free RL
• Acquiring rewards for many NLP tasks
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Reducing Sample Complexity
• One of the core problems of RL: estimation with sampling.

• The problem:  High variance and slow convergence

𝛻]𝐽 𝜃 ≈
1
𝑁c𝛻]

d

[eB

log𝜋] 𝜏 𝑟(𝜏)

log𝜋] 𝑎@ 𝑠@ = −
1
2𝜎Q 𝑘𝑠@ − 𝑎@ Q + 𝑐𝑜𝑛𝑠𝑡

𝑟 𝑠@, 𝑎@ = −𝑠@Q − 𝑎@Q

slow convergence
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• Variance reduction using value function

Subtracting a baseline is unbiased in expectation but reduce variance greatly!

Various forms for 𝑏

𝛻]𝐽 𝜃 ≈
1
𝑁c𝛻] 𝑙𝑜𝑔𝜋] 𝜏 [𝑟 𝜏 − 𝑏]

d

[eB

𝐸 𝛻] 𝑙𝑜𝑔𝜋] 𝜏 𝑏 = u𝜋] 𝜏 𝛻]𝜋] 𝜏 𝑏𝑑𝜏
�

�
= u𝛻]𝜋] 𝜏 𝑏𝑑𝜏

�

�
= 𝑏𝛻]∫ 𝜋] 𝜏 𝑑𝜏 = 𝑏𝛻]1 = 0

(1) 𝑏 = B
d
∑ 𝑟(𝜏)d
[eB (2) 𝑏 = 𝑉|,} 𝑠@ : 𝛻]𝐽 𝜃 ≈

1
𝑁cc𝛻] log𝜋] 𝑎@S 𝑠@S

~

@e�

d

SeB

𝐴|,}(𝑠@, 𝑎@)

[GAE, John Schulman et al.2016]

(3) 𝑏 = 𝑏(𝑠@, 𝑎@): 𝛻]𝐽 𝜃 ≈
1
𝑁cc𝛻] log𝜋] 𝑎@S 𝑠@S

�

@e�

d

SeB

𝑄�S,@ − 𝑏 𝑠@�, 𝑎@S +
1
𝑁cc𝛻]𝐸K~|�(K�|���)[𝑏(𝑠@

S, 𝑎@S)]
d

@

d

S

[Q-prop, Gu et al.2016]

Reducing Sample Complexity
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Improve convergence rate via constrained optimization

𝜃 ← 𝜃 +𝛼𝛻]𝐽(𝜃) 𝜋](𝑎@|𝑠@)

Problems with direct SGD: some parameters change probabilities a lot than 
others  
Ø Rescale the gradient with constraint divergence 

𝜃" ← argmax
]�

𝜃" − 𝜃 ~𝛻]𝐽 𝜃 s.t. 𝐷�� 𝜋]�, 𝜋] ≤ 𝜖

𝐷�� 𝜋]�, 𝜋] = 𝐸|�� log𝜋]� − log𝜋] ≈ 𝜃" − 𝜃 ~𝐹(𝜃" − 𝜃)

Fisher-information matrix𝐹 = 𝐸|�[log𝜋] 𝑎 𝑠 log𝜋] 𝑎 𝑠 ~]
Equivalence with natural gradient ! [TRPO, Schulman et al.2015]

Ø Use penalty instead of constraint

min
]
c

𝜋] 𝑎S 𝑠S
𝜋]���(𝑎S|𝑠S)

d

SeB

𝐴�S − 𝛽𝐷��[𝜋]��� , 𝜋]]
Increase/decrease 𝛽 if KL is too high/low

[PPO, Schulman et al.2017]

Reducing Sample Complexity
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Model-based v.s. Model-free RL
• Improve sample-efficiency via fast model-based RL

Pros Cons

Model-free RL Handling arbitrary dynamic 
systems with minimal bias

Substantially less sample-efficient

Model-based RL
Sample-efficient planning when 
given accurate dynamics

Cannot handle unknown dynamical 
systems that might be hard to model

Can we combine model-based and model-free RL? Guided policy 
search

min
]
c𝐸|�(��,��)[𝑙(𝑥@, 𝑢@)]
~

@eB

min
],��,…,��

cc𝐸� 	(��,��)[𝑙(𝑥@, 𝑢@)]
~

@eB

d

[eB

	𝑠. 𝑡		𝑞[ 𝑢@ 𝑥@ = 𝜋] 𝑢@ 𝑥@ 		∀𝑥@, 𝑢@, 𝑡, 𝑖

𝑞[ 𝑢@ 𝑥@ ~𝑁(𝑘@ +𝐾@𝑥@|𝑄��@¥B )

Planning	𝑞[ 𝑢@ 𝑥@ through a local 
approximate dynamics 𝑝 𝑥@AB 𝑥@, 𝑢@ .

Differentiable Dynamic 
Programming(DDP)
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• Improve sample-efficiency via fast model-based RL

[Levine&Abbeel, NIPS 2014]

Model-based v.s. Model-free RL
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Acquiring Rewards
• How can we  rewards for complex real-world tasks?

*Many tasks are easier to provide expert data instead of reward function

Inverse RL: infer reward function from roll-outs of expert 
policy
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• Inverse RL: infer reward function from demonstrations 

given:
- state & action space
- roll-out from 𝜋∗
- dynamics model[sometimes]

goal:
- Recover reward function
- then use reward to get policy

Challenges:
- underdefined problem
- difficult to evaluate a learned reward
- demonstrations may not be precisely 

optimal

• Newest works: combined with generative adversarial networks

[Kalman ’64, Ng & Russell ’00]

Similar to inverse RL, GANs learn an objective for generative 
modeling

[Finn*, Christiano*, et al. ’16]

Acquiring Rewards
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• Generative adversarial inverse RL

Reward/discriminator optimization

[Guided cost learning, Finn et al. ICML ’16]
[GAIL, Ho & Ermon NIPS ’16]

𝐿Y 𝜓 = 𝐸ª~« −𝑙𝑜𝑔𝐷¬ 𝜏 + 𝐸ª~�[− 𝑙𝑜𝑔(1 −𝐷¬ 𝜏 )]

Policy/Generator optimization

𝐿 𝜃 = 𝐸ª~� 𝑙𝑜𝑔(1 −𝐷¬ 𝜏 ) − 𝑙𝑜𝑔(𝐷¬ 𝜏 )

Acquiring Rewards
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Session Summary

• Learn Q function in a common vector space for 
states and actions

• Add external knowledges to help NL understanding
• The reward could be learned to reflect the goal of 

long form text generation
• Open questions in RL that are important to NLP

• Sample complexity 
• Model-based RL vs. Model-free RL
• Acquiring rewards for many NLP tasks
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Conclusion

• Deep Reinforcement Learning is a very natural 
solution for many NLP applications.

• DRL can be interpreted in many different ways.
• We have seen many exciting research directions.
• In particular, DRL for dialog is a very promising 

direction.
• Opportunities and challenges are ahead of us.
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Questions?
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