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Why Bayesian Deep Learning?
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Controversial opinion: Bayesian NNs
make no sense. You only want to use
Bayes rule if you have a reasonable prior
of what the parameters should be.
Nobody knows what is encoded by any
prior over the weights of a NN. So why
would we use such a prior? 1/4
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Sure many have a Bayesian i but everyone and

their mama has an interpretation of what regularizations do. The question is:
What did we gain from it being Bayesian? 2/4
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You could say that BNNs allow us to empirically find regularizations which can't
be implemented as anything other than Bayesian priors. Yes, but what is the
reason to believe that this space of regularizations is more interesting than any
other? Others are easier to work with 3/4
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Another way BNNs could be used is as a Bayesian-meta-learning framework,
where we meta learn a prior so that the learning of a new task's weights is fast.
Potentially useful but again, no reason to believe this will be a better meta-
learning framework than any other. 4/4

Qs n1 Q 69

Federico Vaggi v

i‘ ' Andrew Gordon Wilson
- Follow

7 &Y

Bayesian methods are *especially*
compelling for deep neural networks.
The key distinguishing property of a
Bayesian approach is marginalization
instead of optimization, not the prior, or
Bayes rule. This difference will be
greatest for underspecified models like
DNNs. 1/18
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In particular, the predictive distribution we often want to find is p(y|x,D) = \int
Dlylx,w) p(w|D) dw. 'y"is an output, ' an input, W' the weights, and D the data.
This is not a controversial equation, it is simply the sum and product rules of
probability. 2/18
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Rather than betting everything on a single hypothesis, we want to use every
setting of parameters, weighted by posterior probabilities. This procedure is
known as a Bayesian model average (BMA). 3/18
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Why Bayesian Deep Learning?
[Wilson 2019]

e Bayesian is marginalization instead of optimization

® The prior that matters is the prior in function space, not
parameter space

e Priors without marginalization are simply regularization, but

Bayesian methods are not about regularization



Why Bayesian Deep Learning?
[Ghahramani 2016]

e Calibrated model and prediction uncertainty: getting systems
that know when they don’t know

e Automatic model complexity control and structure learning
(Bayesian Occam’s Razor)



Why Bayesian Deep Learning?
[Teh 2017]
e A normative account of “best” learning given model and data

e Explicit expression of all prior knowledge/inductive biases in
model

e Unified treatment of uncertainties

e Common language with statistics, applied sciences
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Bayesian Learning
Given data set

X ={e N,V = {y Y,

In many situations, we want to model the distribution of y given an
input x and all the observations

p(ylz, X,Y)

so that we could predict y for any new input x



Bayesian Learning

Notice the distribution can be written as

pylz, X,Y) = / p(yle, w)p(w| X, Y)dw

w

where w is the set of weights for a function f(x;w)



Bayesian Learning
Depending on the task, we have different definitions for p(y|x,w):
e Regression:

p(ylz, w) = N (y; f(z;w),07)

e Classification:

exp( fx(z;w))
>_iexp(fi(r;w))

p(y = klz,w) =



Bayesian Learning

In this context, model training becomes finding the posterior

distribution of w:
p(w|X,Y)

This term is closely related to maximum a posteriori (MAP)
optimization. So is MAP Bayesian? No



Bayesian Inference

The true posterior distribution of w usually can not be solved
analytically.

e Markov Chain Monte Carlo [Neal 1995, Welling & Teh 2011]
e Variational Inference [Hinton & van Camp 1993]



Variational Inference

ldea: propose a variational distribution of the variable and push it
close to the true posterior

0" = argmin KL(g(w|0)[|p(w| X, Y))
Minimizing the KL divergence is equivalent to maximizing the

evidence lower bound (ELBO)

0" = arg min KL(q(w]6) [p(w)) ~ Eyguip) log p(Y] X, w)]
L {H

Complexity cost Likelihood cost UC S B



Variational Inference
What are the challenges?

e How to evaluate the gradient of the expectation?
e How to choose prior and posterior distribution family?
e How to adapt to large scale training data?
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Bayesian Neural Networks

Earlier attempts [Hinton & van Camp 1993, Barber & Bishop 1998,
Graves 2011] face challenges with scaling to more complex neural
network structures. More recent works:

e Bayes by Backprop [Blundell et al. 2015]
e Monte Carlo Dropout [Gal & Ghahramani 2016]



Bayes by Backprop

e Applies reparameterization trick to obtain unbiased
low-variance estimate of the gradients

e Allows for broader prior and posterior families without
closed-form complexity cost

0 0 ,0) 0 0 ,0



Bayes by Backprop

Classification Error Rates on MNIST

2.5

B 500k @ 2.4m
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Monte Carlo Dropout

DNNs with dropout layers trained with SGD perform variational
inference.




Monte Carlo Dropout
Pros:

e Exactly the same model implementation if dropout is present
e Number of parameters is the same instead of 2x

Cons:

e There might be underlying assumptions that are not obvious

[Osband 2016]
UCSB
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Non-Bayesian Approaches

e Model Calibration [Guo et al. 2017]

e Out-Of-Distribution Input Detection [Hendrycks & Gympel
2016, Liang et al. 2017]

e Deep Ensembles [Lakshminarayanan et al. 2017]



Types of Uncertainties

Law of total variance:
Var(y) = Var (Ely|z]) + E [Var(y|x)]

e Epistemic (model) uncertainties arise from the uncertainties
about the model parameters

e Aleatoric (data) uncertainties are inherent uncertainties in the

data or the measurement
UCSB



How to Quantify Uncertainties?

Epistemic Uncertainty

e Bayesian Neural Networks (BNN) model weights as Gaussian

random variables

e Sample weights from the posterior distribution and measure
output variance. e.g. MC Dropout [Gal & Ghahramani 2016]



How to Quantify Uncertainties?
Aleatoric Uncertainty

e Model outputs a Gaussian distribution instead of a point
estimate

y ~ N (u(x),0(x)?)



How to Quantify Uncertainties?
Aleatoric Uncertainty

e Minimizing the negative log likelihood instead of the
conventional MSE

Lon(W) = - 3 logplualu(x:), o(x:)

1=1



What About Classification?

e Measure variance in the logit space [Kendall & Gal 2017]

e Decompose entropy [Depeweg et al. 2018]

Hy. [x.] = Eqom) [H(y« W, x,)] = I(y, W)

e Dirichlet Prior Networks [Malinin & Gales 2018]



Uncertainty Quantification

e What Uncertainties Do We Need in Bayesian Deep Learning
for Computer Vision? [Kendall & Gal 2017]

e Deep and Confident Prediction for Time Series at Uber [Zhu &
Laptev 2017]



Kendall & Gal 2017

Semantic Segmentation IoU Depth Regression RMS on
on NYUv2 40-class NYUv2 Depth
37.5 0.52
0.515
0.51
I I ) I I
0.5
DenseNet +Aleatoric +Epistemic DenseNet +Aleatoric +Epistemic
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Kendall & Gal 2017

Train Test Aleatoric | Epistemic Train Test Aleatoric | Epistemic logit
dataset dataset | RMS | variance | variance dataset dataset | IoU | entropy | variance (x10~%)
Make3D /4 | Make3D | 5.76 0.506 7.73 CamVid /4 | CamVid | 57.2 0.106 1.96
Make3D /2 | Make3D | 4.62 0.521 438 CamVid /2 | CamVid | 62.9 0.156 1.66
Make3D Make3D | 3.87 0.485 2.78 CamVid CamVid | 67.5 0.111 1.36
Make3D /4 | NYUv2 - 0.388 15.0 CamVid /4 | NYUv2 - 0.247 10.9
Make3D NYUv2 - 0.461 4.87 CamVid NYUv2 - 0.264 11.8
(a) Regression (b) Classification

Table 3: Accuracy and aleatoric and epistemic uncertainties for a range of different train and test dataset
combinations. We show aleatoric and epistemic uncertainty as the mean value of all pixels in the test dataset. We
compare reduced training set sizes (1, Y2, ¥4) and unrelated test datasets. This shows that aleatoric uncertainty
remains approximately constant, while epistemic uncertainty decreases the closer the test data is to the training
distribution, demonstrating that epistemic uncertainty can be explained away with sufficient training data (but
not for out-of-distribution data).




Zhu & Laptev 2017
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Figure 2. Daily completed trips in San Francisco during eight months of the
testing set. True values are shown with the orange solid line, and predictions
are shown with the blue dashed line, where the 95% prediction band is

shown as the grey area. Exact values are anonymized.
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Why Use Latent Variables?

e Semi-supervised learning
e Incorporating prior knowledge
e Modeling multimodal distribution

e |[nterpretable representation



Variational Autoencoders

What makes it deep?

p(x|z) and g(z|x) are neural networks ®/




Variational Autoencoders
,C(B, (b, X(Z)) — —DKL(qd)(Z’x(’L))Hpe(Z)) = Eq¢(z|x(i)) [logpg(x(2)|z)}

o e ) 3 Perwme  peree L)

Iy
An) 4 0 x(n) @ I 0
. .
- -

Figure 9: (Left) Traditional variational inference uses variational parameters A\") for each data point x("). (Right)
Amortized variational inference employs a global inference network ¢ that is run over the input x\") to produce the
local variational distributions.

[Kim et al. 2019]




Variational Autoencoder

£(8,¢:x1") = =Dic1 (g (21x )| [po(2)) + Eq o) |log po(x|2)]

How to optimize this? SGvB

Why do we need reparameterization trick? Low variance gradient estimate



Variational Autoencoder for Text

Posterior Collapse / KL Vanishing

e KL annealing [Bowman et al. 2016]
e Drop word [Bowman et al. 2016]

e Different decoders [Miao et al. 2016, Yang et al. 2017]
e Bag-of-word loss [Zhao et al. 2017]



Non-Gaussian Latent Distributions

e Discrete [Maddison et al. 2017, Jang et al. 2017]

e Gaussian Mixture [Dilokthanakul et al. 2017] (Clustering)

e Logistic Normal [Srivastava & Sutton 2017] (Topic Modeling)
e von Mises-Fisher [Davidson et al. 2018, Xu & Durrett 2018]

e Gaussian Process [Tran et al. 2016]

e Stick Breaking Process [Nalisnick & Smyth 2017]

°o ..



Tightening the Gap

ELBO is the lower bound of the evidence (hence the name).

e Normalizing Flow [Rezende & Mohamed 2015]
e Importance Weighted Autoencoders [Burda et al. 2016]



Normalizing Flow

e Transform a simple distribution (e.g. a simple Gaussian) into a complex one
through a chain of invertible transformations.

e Density of the complex variable can be derived using change of variable
theorem (need Jacobian of the invertible transformations).

K 9f-1

20 ~ q(z0 | x; ¢) = N (u(x), 0?(x)) log gk (zx | x; ¢) = logq(zo | x; ¢) + Zlog‘;_;k‘
zg = fx o fk-10---© fi(zo). kzl 9f)
=i ;) — )1 ¢

ogq(aol ) - ) log| 57|




Importance Weighted Autoencoders

1 <~ p(x, hy)
Li(x) = En,,... hy~g(hlx) [log k Z q(h,~>2)] '
i=1 ¢

Theorem 1. For all k, the lower bounds satisfy
laggi(x) = Lpga = L

Moreover, if p(h, x)/q(h|x) is bounded, then L. approaches log p(x) as k goes to infinity.



Thank you!
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