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Why Bayesian Deep Learning?
[Wilson 2019]

● Bayesian is marginalization instead of optimization

● The prior that matters is the prior in function space, not 
parameter space

● Priors without marginalization are simply regularization, but 
Bayesian methods are not about regularization



Why Bayesian Deep Learning?
[Ghahramani 2016]

● Calibrated model and prediction uncertainty: getting systems 
that know when they don’t know

● Automatic model complexity control and structure learning 
(Bayesian Occam’s Razor)



Why Bayesian Deep Learning?
[Teh 2017]

● A normative account of “best” learning given model and data

● Explicit expression of all prior knowledge/inductive biases in 
model

● Unified treatment of uncertainties

● Common language with statistics, applied sciences
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Bayesian Learning
Given data set

In many situations, we want to model the distribution of y given an 
input x and all the observations

so that we could predict y for any new input x



Bayesian Learning
Notice the distribution can be written as

where w is the set of weights for a function f(x;w)



Bayesian Learning
Depending on the task, we have different definitions for p(y|x,w):

● Regression: 

● Classification: 



Bayesian Learning
In this context, model training becomes finding the posterior 
distribution of w:

This term is closely related to maximum a posteriori (MAP) 
optimization. So is MAP Bayesian? No



Bayesian Inference
The true posterior distribution of w usually can not be solved 
analytically. 

● Markov Chain Monte Carlo [Neal 1995, Welling & Teh 2011]
● Variational Inference [Hinton & van Camp 1993]



Variational Inference
Idea: propose a variational distribution of the variable and push it 
close to the true posterior

Minimizing the KL divergence is equivalent to maximizing the 
evidence lower bound (ELBO)

Complexity cost Likelihood cost



Variational Inference
What are the challenges?

● How to evaluate the gradient of the expectation?
● How to choose prior and posterior distribution family?
● How to adapt to large scale training data?
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Bayesian Neural Networks
Earlier attempts [Hinton & van Camp 1993, Barber & Bishop 1998, 
Graves 2011] face challenges with scaling to more complex neural 
network structures. More recent works:

● Bayes by Backprop [Blundell et al. 2015]
● Monte Carlo Dropout [Gal & Ghahramani 2016]



Bayes by Backprop

● Applies reparameterization trick to obtain unbiased 
low-variance estimate of the gradients

● Allows for broader prior and posterior families without 
closed-form complexity cost



Bayes by Backprop



Monte Carlo Dropout
DNNs with dropout layers trained with SGD perform variational 
inference.



Monte Carlo Dropout
Pros:

● Exactly the same model implementation if dropout is present
● Number of parameters is the same instead of 2x

Cons:

● There might be underlying assumptions that are not obvious 
[Osband 2016]
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Non-Bayesian Approaches

● Model Calibration [Guo et al. 2017]

● Out-Of-Distribution Input Detection [Hendrycks & Gympel 
2016, Liang et al. 2017]

● Deep Ensembles [Lakshminarayanan et al. 2017]



Types of Uncertainties
Law of total variance:

● Epistemic (model) uncertainties arise from the uncertainties 
about the model parameters

● Aleatoric (data) uncertainties are inherent uncertainties in the 
data or the measurement



How to Quantify Uncertainties?
Epistemic Uncertainty

● Bayesian Neural Networks (BNN) model weights as Gaussian 
random variables

● Sample weights from the posterior distribution and measure 
output variance. e.g. MC Dropout [Gal & Ghahramani 2016]



How to Quantify Uncertainties?
Aleatoric Uncertainty

● Model outputs a Gaussian distribution instead of a point 
estimate



How to Quantify Uncertainties?
Aleatoric Uncertainty

● Minimizing the negative log likelihood instead of the 
conventional MSE



What About Classification?

● Measure variance in the logit space [Kendall & Gal 2017]

● Decompose entropy [Depeweg et al. 2018]

● Dirichlet Prior Networks [Malinin & Gales 2018]



Uncertainty Quantification

● What Uncertainties Do We Need in Bayesian Deep Learning 
for Computer Vision? [Kendall & Gal 2017]

● Deep and Confident Prediction for Time Series at Uber [Zhu & 
Laptev 2017]



Kendall & Gal 2017



Kendall & Gal 2017



Zhu & Laptev 2017
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Why Use Latent Variables?

● Semi-supervised learning

● Incorporating prior knowledge

● Modeling multimodal distribution

● Interpretable representation

● ...



Variational Autoencoders

What makes it deep?

p(x|z) and q(z|x) are neural networks



Variational Autoencoders

[Kim et al. 2019]



Variational Autoencoder

How to optimize this?

Why do we need reparameterization trick?

SGVB

Low variance gradient estimate



Variational Autoencoder for Text

Posterior Collapse / KL Vanishing

● KL annealing [Bowman et al. 2016]

● Drop word [Bowman et al. 2016]

● Different decoders [Miao et al. 2016, Yang et al. 2017]

● Bag-of-word loss [Zhao et al. 2017]

● ...



Non-Gaussian Latent Distributions
● Discrete [Maddison et al. 2017, Jang et al. 2017]

● Gaussian Mixture [Dilokthanakul et al. 2017] (Clustering)

● Logistic Normal [Srivastava & Sutton 2017] (Topic Modeling)

● von Mises-Fisher [Davidson et al. 2018, Xu & Durrett 2018]

● Gaussian Process [Tran et al. 2016]

● Stick Breaking Process [Nalisnick & Smyth 2017]

● ...



Tightening the Gap

ELBO is the lower bound of the evidence (hence the name).

● Normalizing Flow [Rezende & Mohamed 2015]

● Importance Weighted Autoencoders [Burda et al. 2016]



Normalizing Flow

● Transform a simple distribution (e.g. a simple Gaussian) into a complex one 
through a chain of invertible transformations.

● Density of the complex variable can be derived using change of variable 
theorem (need Jacobian of the invertible transformations).



Importance Weighted Autoencoders



Thank you!
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