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History of Summer School 
1st MSRA Summer Workshop of Information Extraction: 
 
 
 
  

 

June, 2005 
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IE Course Logistics 
Don’t be afraid of asking questions! 
 
Homepage: 
http://www.cs.cmu.edu/~yww/ss2015.html 
 
Prerequisite: 
•  No previous experience on IE is required. 
•  Some basic knowledge in Machine Learning.  
  

3 



Acknowledgement 

William           
Cohen 

Tom 
Mitchell 

Katie 
Mazaitis 

Some of the slides are also adapted from Andrew McCallum, Sunita Sarawagi, 
Luke Zettlemoyer, Rion Snow, Pedro Domingos, Ralf Grishman, Raphael 
Hoffmann, and many other people.  

4 



Instructor 
William Wang (CMU)  
  
Teaching experience: 
CMU Machine Learning (100+ students) 
CMU Machine Learning for Large Dataset (60+ students) 
 

Affiliations: 
•  Yahoo! Labs NYC (2015) 
•  Microsoft Research Redmond (2012-2013) 
•  Columbia University (2009-2011)  
•  University of Southern California (2010) 

 
5 



Research Interests 
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[SLT 2012] [ASRU 2011] [INTERSPEECH 2011] 
[SIGDIAL 2011] [Book Chapter 2011] 

 6 



What is Information 
Extraction (IE)? 

And why do we care? 
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Named 
Entity 
Recognition 

Relation 
Extraction 

Event 
Extraction 

Temporal IE 

Multilingual 
Information 
Extraction 
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Information Extraction 
Definition:  
 
extracting structured knowledge from unstructured or 
semi-structured data (e.g. free text and tables). 
  
 
In this short course: we will focus on IE from text data. 
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A Relation Extraction View 
Input: documents. 

October 14, 2002, 4:00 a.m. PT 
 
For years, Microsoft Corporation CEO Bill 
Gates railed against the economic philosophy 
of open-source software with Orwellian fervor, 
denouncing its communal licensing as a 
"cancer" that stifled technological innovation. 
 
Today, Microsoft claims to "love" the open-
source concept, by which software code is 
made public to encourage improvement and 
development by outside programmers. Gates 
himself says Microsoft will gladly disclose its 
crown jewels--the coveted code behind the 
Windows operating system--to select 
customers. 
 
"We can be open source. We love the concept 
of shared source," said Bill Veghte, a 
Microsoft VP. "That's a super-important shift 
for us in terms of code access.“ 
 
Richard Stallman, founder of the Free 
Software Foundation, countered saying… 

NAME             Relation   ORGANIZATION 
Bill Gates        CEO      Microsoft 
Bill Veghte       VP       Microsoft 
Richard Stallman  founder  Free Soft.. 

IE 

Output: relation triples. 
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A Broader View of IE 
Information Extraction = 
  segmentation + classification + association + clustering 

As a family 
of techniques: 
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of shared source," said Bill Veghte, a 
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Microsoft Corporation 
CEO 
Bill Gates 
Microsoft 
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VP 
Richard Stallman 
founder 
Free Software Foundation 
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Complexity in IE 
Closed set 

He was born in Alabama… 

Regular set 

Phone: (413) 545-1323 

Complex patterns 

University of Arkansas 
P.O. Box 140 
Hope, AR  71802 

…was among the six houses sold by Hope 
Feldman that year. 

Ambiguous patterns 

The CALD main office can be  
reached at 412-268-1299 

The big Wyoming sky… 

U.S. states (50 states) U.S. phone numbers 

U.S. postal addresses 

Person names 

Headquarters: 
1128 Main Street, 4th Floor 
Cincinnati, Ohio 45210 

Pawel Opalinski, Software 
Engineer at WhizBang Labs. 

15 



Granularity of IE Tasks 

Single entity 

Person:  Jack Welch 

Binary relationship 

Relation:  Person-Title 
Person:   Jack Welch 
Title:   CEO 

N-ary record 

Jack Welch will retire as CEO of General Electric tomorrow.  The top role  
at the Connecticut company will be filled by Jeffrey Immelt. 

Relation:    Company-Location 
Company: General Electric 
Location:   Connecticut 

Relation:    Succession 
Company:  General Electric 
Title:           CEO 
Out:            Jack Welsh 
In:               Jeffrey Immelt 

Person:  Jeffrey Immelt 

Location:  Connecticut 
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IE Applications 
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Question Answering 
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Question Answering 
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Virtual Assistant 
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1. Basic theories and practices on named entity 
recognition: supervised, semi-supervised, 
unsupervised. 

 
2. Recent advances in relation extraction: 

a.  distant supervision 
b.  latent variable models 
 

3. Scalable IE and reasoning with first-order logics. 

Course Outline 
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Basic Theories and 
Practices of NER 
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Named Entity Recognition 

Yesterday William Wang flew to Beijing. 

Person name:    William Wang  
Location name: Beijing 

Given a sentence: 

What is the easiest method? 

extract the following information:  

use a lexicon of person names and location names, scan  
the sentence and look for matches. 
  
Why this will not work?  The scalability issue. 
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Overview of NER Models 
Lexicons 

Alabama 
Alaska 
… 
Wisconsin 
Wyoming 

Abraham Lincoln was born in Kentucky. 

member? 

Classify Pre-segmented 
Candidates 

Abraham Lincoln was born in Kentucky. 

Classifier 

which class? 

Sliding Window 

Abraham Lincoln was born in Kentucky. 

Classifier 
which class? 

Try alternate 
window sizes: 

Boundary Models 

Abraham Lincoln was born in Kentucky. 

Classifier 

which class? 

BEGIN END BEGIN END 

BEGIN 

Token Tagging 

Abraham Lincoln was born in Kentucky. 

Most likely state sequence? 

This is often treated as 
a structured prediction 
problem…classifying 
tokens sequentially 

HMMs, CRFs, …. 
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Sliding Window 
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IE by Sliding Window 
    GRAND CHALLENGES FOR MACHINE LEARNING 
 
           Jaime Carbonell 
       School of Computer Science 
      Carnegie Mellon University 
 
               3:30 pm 
            7500 Wean Hall 
 
Machine learning has evolved from obscurity 
in the 1970s into a vibrant and popular 
discipline in artificial intelligence 
during the 1980s and 1990s.   As a result 
of its success and growth, machine learning 
is evolving into a collection of related 
disciplines: inductive concept acquisition, 
analytic learning in problem solving (e.g. 
analogy, explanation-based learning), 
learning theory (e.g. PAC learning), 
genetic algorithms, connectionist learning, 
hybrid systems, and so on. 

CMU UseNet Seminar Announcement 

E.g.
Looking for
seminar
location
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A Naïve Bayes Sliding Window Model 

00  :  pm  Place   :   Wean  Hall  Rm  5409  Speaker   :   Sebastian  Thrun 
w t-m w t-1 w t w t+n w t+n+1 w t+n+m 

prefix contents suffix 

If P(“Wean Hall Rm 5409” = LOCATION) is above some threshold, extract it.  

… … 

Estimate Pr(LOCATION|window) using Bayes rule 
 
Try all “reasonable” windows (vary length, position) 
 
Assume independence for length, prefix words, suffix words, content words 
 
Estimate from data quantities like: Pr(“Place” in prefix|LOCATION) 

[Freitag 1997] 
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A Naïve Bayes Sliding Window Model 

00  :  pm  Place   :   Wean  Hall  Rm  5409  Speaker   :   Sebastian  Thrun 
w t-m w t-1 w t w t+n w t+n+1 w t+n+m 

prefix contents suffix 

… … 

[Freitag 1997] 

1.  Create dataset of examples like these: 
+(prefix00,…,prefixColon, contentWean,contentHall,….,suffixSpeaker,…) 
- (prefixColon,…,prefixWean,contentHall,….,ContentSpeaker,suffixColon,….) 
… 

2.  Train a NaiveBayes classifier (or YFCL), treating the examples like 
BOWs for text classification 

3.  If Pr(class=+|prefix,contents,suffix) > threshold, predict the content 
window is a location. 

•  To think about: what if the extracted entities aren’t consistent, eg if the 
location overlaps with the speaker? 

 
 

31 



Sliding Window Performance 
[Freitag 1997] 

    GRAND CHALLENGES FOR MACHINE LEARNING 
 
           Jaime Carbonell 
       School of Computer Science 
      Carnegie Mellon University 
 
               3:30 pm 
            7500 Wean Hall 
 
Machine learning has evolved from obscurity 
in the 1970s into a vibrant and popular 
discipline in artificial intelligence during 
the 1980s and 1990s.   As a result of its 
success and growth, machine learning is 
evolving into a collection of related 
disciplines: inductive concept acquisition, 
analytic learning in problem solving (e.g. 
analogy, explanation-based learning), 
learning theory (e.g. PAC learning), genetic 
algorithms, connectionist learning, hybrid 
systems, and so on. 

Domain: CMU UseNet Seminar Announcements 

Field   F1  
Person Name:  30% 
Location:  61% 
Start Time:  98% 
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Token Tagging 
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NER by Token Tagging 

Yesterday William Wang flew to Beijing. 

Yesterday William Wang flew to Beijing 

Person name:    William Wang  
Location name: Beijing 

Given a sentence: 

2) Identify names based on the entity labels  

person name 
location name 
background 

1) Break the sentence into tokens, and 
classify each token with a label 
indicating what sort of entity it’s part 
of: 

3) To learn an NER 
system, use YFCL.  
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NER by Token Tagging 

Yesterday William Wang  flew   to   Beijing 

person name 
location name 
background 

Another common labeling scheme is BIO (begin, inside, outside; 
e.g. beginPerson, insidePerson, beginLocation, insideLocation, 
outside) 

 

BIO also leads to strong dependencies between nearby labels 
(eg inside follows begin) 

Similar labels tend to cluster together in text 
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Hidden Markov Models for NER 

Today William Wang is teaching at Peking University. 

Today William Wang is teaching at Peking University. 

Person name: William Wang  

Given a sequence of observations: 

and a trained HMM: 

Find the most likely state sequence:  (Viterbi) 

Any words said to be generated by the designated “person name” 
state extract as a person name: 

),(maxarg osPs
!!

!

person name 
location name 
background 
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Review of Hidden Markov Models 
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Hidden Markov Models for NER 

1.  The HMM consists of two probability tables 
•  Pr(currentState=s|previousState=t) for s=background, location, 

speaker,  
•  Pr(currentWord=w|currentState=s) for s=background, location, … 

2.  Estimate these tables with a (smoothed) CPT 
•  Prob(location|location) = #(loc->loc)/#(loc->*) transitions 

3.  Given a new sentence, find the most likely sequence of hidden 
states using Viterbi method: 

MaxProb(curr=s|position k)= 
Maxstate t MaxProb(curr=t|position=k-1) * Prob(word=wk-1|t)*Prob(curr=s|

prev=t) 
 
 

00  :  pm  Place   :   Wean  Hall  Rm  5409  Speaker   :   Sebastian  Thrun … … 
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Performance: Sliding Window vs HMMs 

    GRAND CHALLENGES FOR MACHINE LEARNING 
 
           Jaime Carbonell 
       School of Computer Science 
      Carnegie Mellon University 
 
               3:30 pm 
            7500 Wean Hall 
 
Machine learning has evolved from obscurity 
in the 1970s into a vibrant and popular 
discipline in artificial intelligence during 
the 1980s and 1990s.   As a result of its 
success and growth, machine learning is 
evolving into a collection of related 
disciplines: inductive concept acquisition, 
analytic learning in problem solving (e.g. 
analogy, explanation-based learning), 
learning theory (e.g. PAC learning), genetic 
algorithms, connectionist learning, hybrid 
systems, and so on. 

Domain: CMU UseNet Seminar Announcements 

Field   F1  
Speaker:  30% 
Location:  61% 
Start Time:  98% 

Field   F1  
Speaker:  77% 
Location:  79% 
Start Time:  98% 
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Improving the HMMs 

• we need richer representation for the observations 
  e.g., overlapping features. 
 
• we would like to consider modeling the discriminative/
conditional probability model of P(Z|X), rather than the 
joint/generative probability model of P(Z,X). 
 



Maximum Entropy 
Markov Model (MEMM) 
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Naïve Bayes vs HMM 

S t - 1 S t 

O t 

S t+1 

O t +1 O 
t - 1 

yesterday 

William 

Wang yesterday 

William 

Wang 

HMM = sequential Naïve Bayes 
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From HMM to MEMM 

S t - 1 S t 

O t 

S t+1 

O t +1 O 
t - 1 

yesterday 

William 

Wang 

Replace generative model in HMM with 
a MaxEnt/Logistic Regression model  

S t - 1 S t 

O t 

S t+1 

O t +1 O 
t - 1 

yesterday 

william 

Wang 
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Why MaxEnt Model? 
•  Performance: 
 
Good MaxEnt methods are competitive with 
linear SVMs and other state of are 
classifiers in accuracy. 
 
 
•  Embedding in a  
larger system: 
 
MaxEnt optimizes Pr(y|x),  
not error rate. 
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From Naïve Bayes to MaxEnt 
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MEMMs 
•  Basic difference from ME tagging: 
1.  ME tagging: previous state is feature of MaxEnt 

classifier 
2.  MEMM: build a separate MaxEnt classifier for 

each state. 
 Can build any HMM architecture you want; eg 

parallel nested HMM’s, etc. 
•  MEMM does allow possibility of “hidden” states 

and Baum-Welsh like training 
•  Viterbi is the most natural inference scheme 
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MEMM task: FAQ parsing 
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MEMM features 
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MEMM Performance 



Conditional Random Fields 
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Label Bias Problem of MEMM 
•  Consider a simple MEMM for person and 

location names 
 all names are two tokens states: 
  other 
  b-person and e-person for person names 
  b-locn and e-locn for location names 
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Label Bias Problem of MEMM 
 

corpus: 
Harvey Ford  
(person 9 times, location 1 time) 
Harvey Park  
(location 9 times, person 1 time) 
Myrtle Ford  
(person 9 times, location 1 time) 
Myrtle Park  
(location 9 times, person 1 time) 
 

 

other 

b-locn e-locn 

b-
person 

e-
person 

second token a good indicator of person vs. location 
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Label Bias Problem of MEMM 
 
 
Conditional probabilities: 
 
p(b-person | other, w = Harvey) = 0.5 
p(b-locn | other, w = Harvey) = 0.5 
p(b-person | other, w = Myrtle) = 0.5 
p(b-locn | other, w = Myrtle) = 0.5 
p(e-person | b-person, w = Ford) = 1 
p(e-person | b-person, w = Park) = 1 
p(e-locn | b-locn, w = Ford) = 1 
p(e-locn | b-locn, w = Park) = 1 
 

other 

b-locn e-locn 

b-
person 

e-
person 
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Label Bias Problem of MEMM 
 
 

Role of second token in 
distinguishing  
person vs. location 
completely lost 

other 

b-locn e-locn 

b-
person 

e-
person 
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Label Bias Problem of MEMM 
•  Problem: 
Probabilities of outgoing arcs normalized 
separately for each state. 
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Conditional Random Fields 

CRFs’ advantages 
•  over HMM: the independence assumption is relaxed, 

allowing overlapping features. 
•  over MEMM: undirected graphical model, a single 

exponential model for the joint probability of the entire 
label sequence. 
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Linear Chain CRFs 
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Sha & Pereira results 

CRF beats MEMM 
(McNemar’s test); MEMM 
probably beats voted 
perceptron 
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Sha & Pereira results 

in minutes, 375k examples 
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Sequential Models for IE: 
Practical Advice 
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Implementing an HMM 
• Follow Larry Rabiner’s classic HMM tutorial: 
 
 
 
 
 
•  Debugging an HMM:  
Training (forward-backward): check your transition 
probability matrix. 
Decoding (Viterbi): check the output state sequence. 
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Understanding CRFs 
• actually Lafferty’s paper is pretty hard to understand. 
Instead, try to read Hanna Wallach’s CRF introduction. 
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CRF Tools 
• CRF++：probably most widely used. Fast, multithreaded L-
BFGS training. Support CoNLL format only. 
 

• CRFsuite：flexible data input format. No parallelization. 
 

• Wapiti (recommended)：Support CoNLL and customized 
data format. Fast, multithreaded L-BFGS training. 
 

• Stochastic Gradient CRFs：using SGD training instead of L-
BFGS. 
 

• Mallet：CRFs in Java. 
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CRF Demo: Wapiti 
https://wapiti.limsi.fr 

Training sentence: 
Yesterday William Wang flew to Beijing. 
 
Testing sentence: 
Yesterday William Cohen flew to Buenos Aires. 

64 



Semi-supervised IE 
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Semi-supervised IE 

•  Basic idea:  
 Find where a known fact occurs in text, by matching/alignment/… 
 Use this as training data for a conventional IE learning system. 

•  Once you’ve learned an extractor from that data 
 Run the extractor on some (maybe additional) text 
 Take the (possibly noisy) new facts and start over 

 

•  This is called: “Self-training” or “bootstrapping” 
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Macro-reading c. 1992 
Idea: write some specific patterns that indicate 

A is a kind of B: 

1.  … such NP as NP (“at such schools as 
CMU, students rarely need extensions”) 

2.  NP, NP, or other NP (“William, Carlos or 
other machine learning professors”) 

3.  NP including NP (“struggling teams 
including the Pirates”) 

4.  NP, especially NP (prestigious conferences, 
especially NIPS) [Coling 1992] 

Results: 8.6M words of Grolier’s 
encyclopedia à 7067 pattern instances à 
152 relations 

Many were not in WordNet. 

Marti’s system was iterative 
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Another iterative, high-precision system 

Idea: exploit “pattern/relation duality”:  

1.  Start with some seed instances of 
(author,title) pairs (“Isaac Asimov”, “The 
Robots of Dawn”) 

2.  Look for occurrences of these pairs on the 
web. 

3.  Generate patterns that match the seeds. 

- URLprefix, prefix, middle, suffix 
4.  Extract new (author, title) pairs that match 

the patterns. 

5.  Go to 2. 

[some workshop, 1998] 

Unlike Hearst, Brin learned the patterns; and 
learned very high-precision, easy-to-match 
patterns using regular expressions. 
 
Result: 24M web pages + 5 books à 199 
occurrences à 3 patterns à 4047 occurrences 
+ 5M pages à 3947 occurrences à 105 patterns 
à … 15,257 books *with some manual tweaks 
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Key Ideas: So Far 
•  High-precision low-coverage extractors and 

large redundant corpora (macro-reading) 
•  Self-training/bootstrapping 
1)  Advantage: train on a small corpus, test on a larger one 

 You can use more-or-less off-the-shelf learning methods 
 You can work with very large corpora 

2)  But, data gets noisier and noisier as you iterate 
3)  Need either  

 really high-precision extractors, or  
 some way to cope with the noise 
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A variant of bootstrapping:  
co-training 

Redundantly Sufficient Features: 

•  features x can be separated into two types x1,x2  

•  either x1 or x2 is sufficient for classification – i.e. 

  there exists functions f1 and f2 such that 

 f(x) = f1(x1)=f2(x2) has low error 

 

 

spelling feature context feature 

person 

e.g. Capitalization=X+.X+ 
Prefix=Mr. 

e.g., based on words nearby 
in dependency parse 

70 



Another kind of self-training 

[COLT 98] 
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A co-training algorithm 
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Unsupervised Models for Named Entity Classification 
Michael Collins and Yoram Singer [EMNLP 99] 

Redundantly Sufficient Features: 

•  features x can be separated into two types x1,x2  

•  either x1 or x2 is sufficient for classification – i.e. 

  there exists functions f1 and f2 such that 

 f(x) = f1(x1)=f2(x2) has low error 

 

 

spelling feature context feature 

person 

e.g., Capitalization=X+.X+ 
Prefix=Mr. 

Based on dependency parse 

Candidate entities x 
segmented using a 
POS pattern  
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Evaluation for Collins and Singer 
88,962 examples (spelling,context) 

pairs 

7 seed rules are used 

1000 examples are chosen as test data 
(85 noise) 

We label the examples as (location, 
person, organization, noise) 
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Key Ideas: So Far 
•  High-precision low-coverage extractors and 

large redundant corpora (macro-reading) 
•  Self-training/bootstrapping 
•  Co-training 
•  Clustering phrases by context 
Don’t propagate labels; 
Instead do without them entirely 

Pres. 
CEO 

VP 

Mr. Cooper 

Bob 

job 
intern MSR 

IBM 
patent 
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[KDD 2002] 

Basic idea: parse a big corpus, then cluster NPs by their 
contexts 
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Key Ideas: So Far 
•  High-precision low-coverage extractors and 

large redundant corpora (macro-reading) 
•  Self-training/bootstrapping or co-training 
•  Other semi-supervised methods: 
1)  Expectation-maximization: like self-training but you 

“soft-label” the unlabeled examples with the expectation 
over the labels in each iteration. 

2)  Works for almost any generative model (e.g., HMMs) 
3)  Learns directly from all the data 

 Maybe better; Maybe slower 
 Extreme cases:  
 supervised learning …. clustering + cluster-labeling 
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Key Ideas: So Far 
•  High-precision low-coverage extractors and 

large redundant corpora (macro-reading) 
•  Self-training/bootstrapping or co-training 
•  Other semi-supervised methods: 

 Expectation-maximization 
 Transductive margin-based methods (e.g., 

transductive SVM) 
 Graph-based methods 
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History: Open-domain IE by pattern-matching 
(Hearst, 92) 

•  Start with seeds: “NIPS”, “ICML” 
•  Look thru a corpus for certain patterns: 

•  … “at NIPS, AISTATS, KDD and other learning 
conferences…” 

•  Expand from seeds to new instances 
 Repeat….until ___ 
“on PC of KDD, SIGIR, … and…” 
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Bootstrapping as graph proximity 

“…at NIPS, AISTATS, KDD and other 
learning conferences…” 

… “on PC of KDD, SIGIR, … and…” 

NIPS 

AISTATS 

KDD 

“For skiiers, NIPS, SNOWBIRD,… and…” 

SNOWBIRD 

SIGIR 

“… AISTATS,KDD,…” 

shorter paths ~ earlier iterations 
many paths ~ additional evidence 
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Similarity of Nodes in Graphs: 
Personal PageRank/RandomWalk 

with Restart 
•  Similarity defined by PageRank 
•  Similarity between nodes x and y: 
“Random surfer model”: from a node z, 

 with probability α, stop and “output” z 
 pick an edge label (rel) r using Pr(r | z) ... e.g. uniform 
 pick a y given x, r: e.g. uniform from { y’ : z à y with 

label r } 
 repeat from node y .... 
 Similarity x~y = Pr( “output” y | start at x) 

 

Bootstrapping: propagate from labeled data to “similar” unlabeled data. 
 

Intuitively, x~y is summation of weight of all paths from x to y, where 
weight of path decreases exponentially with length. 
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PPR/RWR on a Graph 

“William W. Cohen, CMU” 

“Dr. W. W. Cohen” 

cohen 
william w 

dr 
cmu 

“George W. Bush” 

“George H. W. 
Bush” 

“Christos 
Faloutsos, 
CMU” 
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A little math exercise… 
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Let x be less than 1 and larger than 0.  Then 

Example: x=0.1, and 1+0.1+0.01+0.001+…. = 1.11111 = 10/9. 
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Graph = Matrix 

A 
B 

C 

F 
D 

E 

G 
I 

H 
J 

A B C D E F G H I J 
A 1 1 1 1 
B 1 1 
C 1 
D 1 1 
E 1 
F 1 1 1 
G 1 
H 1 1 1 
I 1 1 1 1 
J 1 1 
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Graph = Matrix 
Transitively Closed Components = “Blocks” 

A 
B 

C 

F 
D 

E 

G 
I 

H 
J 

A B C D E F G H I J 
A _ 1 1 1 1 
B 1 _ 1 
C 1 1 _ 
D _ 1 1 
E 1 _ 1 
F 1 1 1 _ 
G _ 1 1 
H _ 1 1 
I 1 1 1 _ 1 
J 1 1 1 _ 

Of course we can’t see the “blocks” unless the nodes 
are sorted by cluster…  
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Graph = Matrix 
Vector = Node à Weight 

H 

A B C D E F G H I J 
A _ 1 1 1 1 
B 1 _ 1 
C 1 1 _ 
D _ 1 1 
E 1 _ 1 
F 1 1 1 _ 
G _ 1 1 
H _ 1 1 
I 1 1 1 _ 1 
J 1 1 1 _ 

A
B 

C 

F 
D

E 

G
I 

J 

A 
A 4 
B 2 
C 3 
D 
E 
F 
G 
H 
I 
J 

M 

M v 
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Graph = Matrix 
M*v1 = v2 “propagates weights from neighbors” 

H

A B C D E F G H I J 
A _ 1 1 1 
B 1 _ 1 
C 1 1 _ 
D _ 1 1 
E 1 _ 1 
F 1 1 _ 
G _ 1 1 
H _ 1 1 
I 1 1 _ 1 
J 1 1 1 _ 

A
B

C

F
D

E

G
I 

J 

A 4 
B 2 
C 3 
D 
E 
F 
G 
H 
I 
J 

M 

M v1 

A 2*1+3*1+0*1 
B 4*1+3*1 
C 4*1+2*1 
D 
E 
F 
G 
H 
I 
J 

v2 * = 
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A little math… 
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Let W[i,j] be Pr(walk to j from i)and let α be less than 1.  Then: 

The matrix (I- αW) is the Laplacian of αW.   
 
Generally the Laplacian is (D - A) where D[i,i] is the degree of i in 
the adjacency matrix A. 

)|Pr(1],[ ij
Z

ji =Y

88 



A little math… 

)|Pr(][  so  
)1(

0,....,0,1,0,....,0,0,0

0
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Let W[i,j] be Pr(walk to j from i)and let α be less than 1.  Then: 

The matrix (I- αW) is the Laplacian of αW.   
 
Generally the Laplacian is (D- A) where D[i,i] is the degree of i in the adjacency matrix 
A. 

component i 
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Bootstrapping via PPR/RWR on 
graph of patterns and nodes 

“…at NIPS, AISTATS, KDD and other 
learning conferences…” 

… “on PC of KDD, SIGIR, … and…” 

NIPS 

AISTATS 

KDD 

“For skiiers, NIPS, SNOWBIRD,… and…” 

SNOWBIRD 

SIGIR 

“… AISTATS,KDD,…” 

Examples: Cohen & Minkov EMNLP 2008; Komachi et al EMLNLP 2008; Talukdar et al, EMNLP 2008, 
ACL 2010 
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Key Ideas: So Far 
•  High-precision low-coverage extractors and 

large redundant corpora (macro-reading) 
•  Self-training/bootstrapping or co-training 
•  Other semi-supervised methods: 

 Expectation-maximization 
 Transductive margin-based methods (e.g., 

transductive SVM) 
 Graph-based methods 
 Label propogation via random walk with reset 
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Bootstrapping 

BlumMitchell ’98 

Brin’98 

Hearst ‘92 

Scalability, surface patterns, use of web crawlers… 

Learning, semi-supervised learning, dual feature spaces… 

Deeper linguistic features, free text… 

Lin & Pantel ‘02 
Clustering by distributional similarity…  
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Bootstrapping 

BM’98 

Brin’98 

Hearst ‘92 

Collins & Singer ‘99 

Scalability, surface patterns, use of web crawlers… 

Learning, semi-supervised learning, dual feature spaces… 

Deeper linguistic features, free text… 

Boosting-based co-train method using content & context features; 
context based on Collins’ parser; learn to classify three types of 
NE 

Lin & Pantel ‘02 
Clustering by distributional similarity…  
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Bootstrapping 

BM’98 

Brin’98 

Hearst ‘92 

Scalability, surface patterns, use of web crawlers… 

Learning, semi-supervised learning, dual feature spaces… 

Deeper linguistic features, free text… 

Collins & Singer ‘99 

Riloff & Jones ‘99 Hearst-like patterns, Brin-like bootstrapping (+ 
“meta-level” bootstrapping) on MUC data 

Lin & Pantel ‘02 
Clustering by distributional similarity…  
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Bootstrapping 

BM’98 

Brin’98 

Hearst ‘92 

Scalability, surface patterns, use of web crawlers… 

Learning, semi-supervised learning, dual feature spaces… 

Deeper linguistic features, free text… 

Collins & Singer ‘99 

Riloff & Jones ‘99 

Cucerzan & Yarowsky ‘99 

EM like co-train method with context & 
content both defined by character-level 
tries 

Lin & Pantel ‘02 
Clustering by distributional similarity…  
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Bootstrapping 

BM’98 

Brin’98 

Hearst ‘92 

Scalability, surface patterns, use of web crawlers… 

Learning, semi-supervised learning, dual feature spaces… 

Deeper linguistic features, free text… 

Collins & Singer ‘99 

Riloff & Jones ‘99 

Cucerzan & Yarowsky ’99 (morphology) 

Etzioni et al 
2005 

… 

… 

Lin & Pantel ‘02 
Clustering by distributional similarity…  
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Bootstrapping 

BM’98 

Brin’98 

Hearst ‘92 

Scalability, surface patterns, use of web crawlers… 

Learning, semi-supervised learning, dual feature spaces… 

Deeper linguistic features, free text… 

Collins & Singer ‘99 

Riloff & Jones ‘99 

Cucerzan & Yarowsky ‘99 

Etzioni et al 
2005 

… 

… TextRunner 

Lin & Pantel ‘02 
Clustering by distributional similarity…  
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Bootstrapping 

BM’98 

Brin’98 

Hearst ‘92 

Scalability, surface patterns, use of web crawlers… 

Learning, semi-supervised learning, dual feature spaces… 

Deeper linguistic features, free text… 

Collins & Singer ‘99 

Riloff & Jones ‘99 

Cucerzan & Yarowsky ‘99 

Etzioni et al 
2005 

… 

… TextRunner 

NELL 

Lin & Pantel ‘02 
Clustering by distributional similarity…  

98 



OpenIE Demo 
 

http://knowitall.github.io/openie/ 
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Never Ending Language Learning 
PI: Tom M. Mitchell 

Machine Learning Department 
Carnegie Mellon University 
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NELL Theses 

1.  we’ll never understand learning until we build  
never-ending machine learners 

 

2.  background knowledge is key to deep semantic 
analysis 

 NELL KB, plus 
 large scale corpus statistics 
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NELL today 
Running 24x7, since January, 12, 2010 
 
Today: 
•  knowledge base with ~100 million confidence-weighted  
   beliefs 
•  learning to read  
•  gradually improving reading accuracy 
•  learning to reason 

 gradually improving KB size, 
> 100,000 learned rules, scalable probabilistic inference 
•  extending ontology 
new relations:  clustering typed pairs 
new categories: (developing) clustering + reading subsets 

•  beginning to include image analysis (via NEIL)  
 102 



NELL Web Interface 
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NELL Is Improving Over Time (Jan 2010 to Nov 2014) 

number of NELL beliefs vs. time 

all beliefs high conf. beliefs 

10
’s

 o
f m

ill
io

ns
 

m
ill

io
ns

 

reading accuracy vs. time 
(average over 31 predicates)  

precision@10 
mean avg. precision 

top 1000 

human feedback vs. time 
(average 2.4 feedbacks per predicate per month) 

[Mitchell et al., 2015] 
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Portuguese NELL  [Estevam Hruschka] 
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If:  x1 competes 
with 

(x1,x2) 
x2 economic 

sector 
(x2, x3) 

x3 

Then:  economic sector (x1, x3) 

Infer New Beliefs [Lao, Mitchell, Cohen, EMNLP 2011] 
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If:  x1 competes 

with 
(x1,x2) 

x2 economic 
sector 
(x2, x3) 

x3 

Then:  economic sector (x1, x3) 

Inference by Random Walks PRA:  [Lao, Mitchell, Cohen, EMNLP 2011] 

PRA: [Ni Lao] 
 
1. restrict precondition to a  chain. 
 
2. inference by random walks 
 
3. combine multiple rule matches with log-
linear model 
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1. Basic theories and practices on named entity 
recognition. 

 
2. Recent advances in relation extraction: 

a.  distant supervision 
b.  latent variable models 
 

3. Scalable IE and reasoning with first-order logics. 

Course Outline 
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Recent Advances in IE: 

Distant Supervision 
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Relation Extraction 
Predict relations between entities based on 
mentions (Cullota and Sorenson, 2004) 
 
Example: learn the mascot(object, org) 
relation. 
 
Training data: 
 
“A Scottish Terrier has clearly  
won the hearts of the campus  
community and will become  
Carnegie Mellon's new official mascot” 
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Challenge 

 
It is very expensive to obtain labeled training data. 
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Distant Supervision 

 
Idea: if we know the relation between 
two entities, then any sentence that 
includes these two entities is likely to 
express the same relation. 
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Distant Supervision 

Mintz, Bills, Snow, Jurafsky. 2009. Distant 
supervision for relation extraction without labeled 
data. ACL-2009. 
 
Use a knowledge base of  
known relations to collect  
a lot of noisy training data.  
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Distant Supervision 

Example:    mascot(Stanford_tree,Stanford_Band). 
 
High quality examples: 
“The Stanford Tree is the Stanford Band's mascot.” 
 

“Called — appropriately — the Stanford Tree, it is the 
official mascot of the band.” 
 
Noisy examples: 
“The Stanford band invites  
you to be Tree for a day.” 
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Distant Supervision: Pros 

•  Has the advantages of supervised learning 
o  leverage rich, reliable hand-created knowledge   
o  can use rich features (e.g. syntactic features) 

•  Has the advantages of unsupervised learning 
o  leverage unlimited amounts of text data 
o  allows for very large number of weak features 
o  not sensitive to training corpus: genre independent 
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Mintz et al., (2009) ACL 
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Frequent Freebase Relations 
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Collecting Training Data 
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Collecting Training Data 
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Collecting Training Data 
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Processing Testing Data 
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The Experiment 
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Lexical and Dependency 
Path Features 
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Experimental Settings 
•  1.8 million relation instances used for training  

•  800,000 Wikipedia articles used for training, 
400,000 different articles used for testing  

•  Only extract relation instances not already in 
Freebase 
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Learned Relational Facts 
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Human Evaluation 
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1 2 

1 2 

1 2 

Mintz et al. : Aggregate Extraction 
1 2 

2 

1 

2 1 

2 

1 

2 1 

Steve	
  Jobs	
  presents	
  Apple’s	
  HQ.	
  
Apple	
  CEO	
  Steve	
  Jobs	
  …	
  
Steve	
  Jobs	
  holds	
  Apple	
  stock.	
  
Steve	
  Jobs,	
  CEO	
  of	
  Apple,	
  …	
  
Google’s	
  takeover	
  of	
  Youtube	
  …	
  
Youtube,	
  now	
  part	
  of	
  Google,	
  …	
  
Apple	
  and	
  IBM	
  are	
  public.	
  
…	
  MicrosoG’s	
  purchase	
  of	
  Skype.	
  

 
CEO-of(1,2) 
 
N/A(1,2) 
 
Acquired(1,2) 
?(1,2) 
Acquired(1,2) 

CEO-of(Rob Iger, Disney) 
CEO-of(Steve Jobs, Apple) 
Acquired(Google, Youtube) 
Acquired(Msft, Skype) 
Acquired(Citigroup, EMI) 

E 

E 

E 

E 

E 
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Mintz et al. (2009) 
Issues? 

• No multi-instance learning 

• No multi-relation learning 
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1 2 

1 2 

1 2 

Multi-Instance Learning 
1 2 

2 

1 

2 1 

2 

1 

2 1 

Steve	
  Jobs	
  presents	
  Apple’s	
  HQ.	
  
Apple	
  CEO	
  Steve	
  Jobs	
  …	
  
Steve	
  Jobs	
  holds	
  Apple	
  stock.	
  
Steve	
  Jobs,	
  CEO	
  of	
  Apple,	
  …	
  
Google’s	
  takeover	
  of	
  Youtube	
  …	
  
Youtube,	
  now	
  part	
  of	
  Google,	
  …	
  
Apple	
  and	
  IBM	
  are	
  public.	
  
…	
  MicrosoG’s	
  purchase	
  of	
  Skype.	
  

E 

E 

E 

E 

E 

E 

E 

E 

?(1,2) 
?(1,2) 
?(1,2) 
?(1,2) 
?(1,2) 
?(1,2) 
?(1,2) 
?(1,2) 

CEO-of(Rob Iger, Disney) 
CEO-of(Steve Jobs, Apple) 
Acquired(Google, Youtube) 
Acquired(Msft, Skype) 
Acquired(Citigroup, EMI) 

=N/A(1,2) 
=CEO-of(1,2) 
=N/A(1,2) 

∨

Cf. [Bunescu, Mooney 07],  
[Riedel, Yao, McCallum 10]) 129 



1 2 

1 2 

1 2 

Overlapping Relations 
1 2 

2 

1 

2 1 

2 

1 

2 1 

Steve	
  Jobs	
  presents	
  Apple’s	
  HQ.	
  
Apple	
  CEO	
  Steve	
  Jobs	
  …	
  
Steve	
  Jobs	
  holds	
  Apple	
  stock.	
  
Steve	
  Jobs,	
  CEO	
  of	
  Apple,	
  …	
  
Google’s	
  takeover	
  of	
  Youtube	
  …	
  
Youtube,	
  now	
  part	
  of	
  Google,	
  …	
  
Apple	
  and	
  IBM	
  are	
  public.	
  
…	
  MicrosoG’s	
  purchase	
  of	
  Skype.	
  

E 

E 

E 

E 

E 

E 

E 

E 

?(1,2) 
?(1,2) 
?(1,2) 
?(1,2) 
?(1,2) 
?(1,2) 
?(1,2) 
?(1,2) SH-­‐of(Steve	
  Jobs,	
  Apple)	
  

CEO-­‐of(Rob	
  Iger,	
  Disney)	
  
CEO-­‐of(Steve	
  Jobs,	
  Apple)	
  
Acquired(Google,	
  Youtube)	
  
Acquired(MsG,	
  Skype)	
  
Acquired(CiOgroup,	
  EMI)	
  

=N/A(1,2) 
=CEO-of(1,2) 
=SH-of(1,2) 

∨
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Hoffman et al. (2011)  
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1 2 

1 2 

1 2 

Sentence-Level Learning 
1 2 

2 

1 

2 1 

2 

1 

2 1 

Steve	
  Jobs	
  presents	
  Apple’s	
  HQ.	
  
Apple	
  CEO	
  Steve	
  Jobs	
  …	
  
Steve	
  Jobs	
  holds	
  Apple	
  stock.	
  
Steve	
  Jobs,	
  CEO	
  of	
  Apple,	
  …	
  
Google’s	
  takeover	
  of	
  Youtube	
  …	
  
Youtube,	
  now	
  part	
  of	
  Google,	
  …	
  
Apple	
  and	
  IBM	
  are	
  public.	
  
…	
  MicrosoG’s	
  purchase	
  of	
  Skype.	
  

E 

E 

E 

E 

E 

E 

E 

E 

?(1,2) 
?(1,2) 
?(1,2) 
?(1,2) 
?(1,2) 
?(1,2) 
?(1,2) 
?(1,2) 

∨

CEO-­‐of(Rob	
  Iger,	
  Disney)	
  
CEO-­‐of(Steve	
  Jobs,	
  Apple)	
  
Acquired(Google,	
  Youtube)	
  
Acquired(MsG,	
  Skype)	
  
Acquired(CiOgroup,	
  EMI)	
  

Train so that 
extracted facts 
match facts in 

DB 
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  Model 

founder founder CEO-of 

0 1 0 0 ... 

... 

Steve Jobs was founder  
of Apple. 

Steve Jobs, Steve Wozniak and 
Ronald Wayne founded Apple. 

Steve Jobs is CEO of  
Apple. 

... 

{bornIn,…} {bornIn,…} {bornIn,…} 

{0, 1} {0, 1} {0, 1} {0, 1} 

Z1 Z2 Z3 

All features 
at sentence-

level 
 

(join factors are 
deterministic ORs) 

founder founder CEO-of 

0 1 0 0 

Y bornIn Y founder Y locatedIn Y capitalOf 

Steve Jobs, Apple: 
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Inference 
Computing                                  : 

Steve Jobs was founder  
of Apple. 

Steve Jobs, Steve Wozniak and 
Ronald Wayne founded Apple. 

Steve Jobs is CEO of  
Apple. 

... 

? ? ? 

0 1 0 1 ... 

... 

{0, 1} {0, 1} {0, 1} {0, 1} 

.5 
16 
9 

founder 
bornIn 

capitalOf 

8 
11 
7 

founder 
bornIn 

capitalOf 

7 
8 
8 

founder 
bornIn 

capitalOf 

Z1 Z2 Z3 

Y bornIn Y founder Y locatedIn Y capitalOf 
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Inference 
Variant of the weighted, edge-cover problem:  

Steve Jobs was founder  
of Apple. 

Steve Jobs, Steve Wozniak and 
Ronald Wayne founded Apple. 

Steve Jobs is CEO of  
Apple. 

... 

.5 
16 
9 

founder 
bornIn 

capitalOf 

8 
11 
7 

founder 
bornIn 

capitalOf 

7 
8 
8 

founder 
bornIn 

capitalOf 

0 0 ... 

... 

16 

9 

11 

7 8 

8 

Z1 Z2 Z3 

Y bornIn Y founder Y locatedIn Y capitalOf 
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Learning 
Training set                                  , where 
   corresponds to a particular entity pair 
     contains all sentences with mentions of pair 
     bit vector of facts about pair from database  

 Maximize Likelihood 
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Sentential vs. Aggregate Extraction 

Sentential 
 
 
 
Aggregate 

1 

2 
Steve	
  Jobs	
  is	
  	
  
	
  	
  	
  	
  CEO	
  of	
  Apple,	
  …	
  

E CEO-of(1,2) 

CEO-of(1,2) 

Input: one sentence 

<Steve Jobs,  
    Apple> 

Input: one entity pair 
Steve Jobs was founder  
of Apple. 

Steve Jobs, Steve Wozniak and 
Ronald Wayne founded Apple. 

Steve Jobs is CEO of  
Apple. 

... 

E 
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Distant Supervision: Related Work 

•  Mintz, Bills, Snow, Jurafsky 09: 
 Extraction at aggregate level 
 Features: conjunctions of lexical, syntactic, and 
 entity type info along dependency path 

•  Riedel, Yao, McCallum 10: 
 Extraction at aggregate level 
 Latent variable on sentence  

•  Bunescu, Mooney 07: 
 Multi-instance learning for relation extraction 
 Kernel-based approach  
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Experimental Setup 
•  Data as in Riedel et al. 10: 
LDC NYT corpus, 2005-06 (training), 2007 (testing) 
Data first tagged with Stanford NER system 
Entities matched to Freebase, ~ top 50 relations 
Mention-level features as in Mintz et al. 09 

•  Systems: 
MultiR: proposed approach 
SoloR: re-implementation of Riedel et al. 2010 
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Sentential Extraction 









      















Figure 5: Sentential extraction precision / recall curves
for MULTIR and SOLOR.

fidence extractions produced by MULTIR that were
marked wrong. We found that all ten were true facts
that were simply missing from Freebase. A manual
evaluation, as we perform next for sentential extrac-
tion, would remove this dip.

7.2 Sentential Extraction
Although their model includes variables to model
sentential extraction, Riedel et al. (2010) did not re-
port sentence level performance. To generate the
precision / recall curve we used the joint model as-
signment score for each of the sentences that con-
tributed to the aggregate extraction decision.

Figure 4 shows approximate precision / recall
curves for MULTIR and SOLOR computed against
manually generated sentence labels, as defined in
Section 6.3. MULTIR achieves significantly higher
recall with a consistently high level of precision. At
the highest recall point, MULTIR reaches 72.4% pre-
cision and 51.9% recall, for an F1 score of 60.5%.

7.3 Relation-Specific Performance
Since the data contains an unbalanced number of in-
stances of each relation, we also report precision and
recall for each of the ten most frequent relations. Let
SM
r be the sentences where MULTIR extracted an

instance of relation r � R, and let SF
r be the sen-

tences that match the arguments of a fact about re-
lation r in �. For each r, we sample 100 sentences
from both SM

r and SF
r and manually check accu-

racy. To estimate precision P̃r we compute the ratio
of true relation mentions in SM

r , and to estimate re-
call R̃r we take the ratio of true relation mentions in

SF
r which are returned by our system.
Table 1 presents this approximate precision and

recall for MULTIR on each of the relations, along
with statistics we computed to measure the qual-
ity of the weak supervision. Precision is high for
the majority of relations but recall is consistently
lower. We also see that the Freebase matches are
highly skewed in quantity and can be low quality for
some relations, with very few of them actually cor-
responding to true extractions. The approach gener-
ally performs best on the relations with a sufficiently
large number of true matches, in many cases even
achieving precision that outperforms the accuracy of
the heuristic matches, at reasonable recall levels.

7.4 Overlapping Relations
Table 1 also highlights some of the effects of learn-
ing with overlapping relations. For example, in the
data, almost all of the matches for the administra-
tive divisions relation overlap with the contains re-
lation, because they both model relationships for a
pair of locations. Since, in general, sentences are
much more likely to describe a contains relation, this
overlap leads to a situation were almost none of the
administrate division matches are true ones, and we
cannot accurately learn an extractor. However, we
can still learn to accurately extract the contains rela-
tion, despite the distracting matches. Similarly, the
place of birth and place of death relations tend to
overlap, since it is often the case that people are born
and die in the same city. In both cases, the precision
outperforms the labeling accuracy and the recall is
relatively high.

To measure the impact of modeling overlapping
relations, we also evaluated a simple, restricted
baseline. Instead of labeling each entity pair with
the set of all true Freebase facts, we created a dataset
where each true relation was used to create a dif-
ferent training example. Training MULTIR on this
data simulates effects of conflicting supervision that
can come from not modeling overlaps. On average
across relations, precision increases 12 points but re-
call drops 26 points, for an overall reduction in F1
score from 60.5% to 40.3%.

7.5 Running Time
One final advantage of our model is the mod-
est running time. Our implementation of the
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Distant Supervision: 
Conclusion 

•  Widely used in the IE community nowadays. 
•  A much cheaper way of obtaining training 

data 
•  Still, there‘s room for improvement:  
•  what about entities that are not in Freebase?  
•  what if entities are in Freebase, but no relation is 

recorded?   
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Recent Advances in IE: 
Latent Variable Modeling 
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Universal Schema 
•  Riedel et al., NAACL 2013. Relation Extraction with Matrix 

Factorization and Universal Schemas. 

•  Motivation: use matrix representation for relation 
extraction. 

•  Idea: put all training and testing data into a matrix, and fill 
in the missing values. 

•  Jointly learn latent factor representation for surface 
patterns and multiple relations. 

143 



Universal Schema 

•  Rows: pair of entities. 
e.g., (William, CMU) 
 

•  Columns: surface  
patterns and relations. 
e.g.,  
X-is_a_professor_at-Y  
teaches (X, Y) 
  

144 



Matrix Factorization 

•  Approach: Bayesian Personalized Ranking  
  (Rendle et al., 2009) 

 
•  Requires: negative training data. 

•  How to collect negative data: both entities of the entity 
pair occur in Freebase, however, Freebase does not say 
there is a relation between them. 
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Performance 
•  Dataset: Freebase + NewYorkTimes. 
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Universal Schema 

•  Pros: 
1)  language, schema independent 
2)  joint learning of surface patterns and relations 
3)  scalability 
 
•  Cons: 
1)  explainability 
2)  requires negative examples  
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1. Basic theories and practices on named entity 
recognition: supervised and semi-supervised. 

 
2. Recent advances in relation extraction: 

a.  distant supervision 
b.  latent variable models 
 

3. Scalable IE and reasoning with first-order logics. 

Course Outline 
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Joint IE and Reasoning 
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An elementary school student was sent to 
detention by his Math teacher after school. When 
he got home, his father said: “Ma Yun, what 
happen to you at school today?” Ma: “Sorry dad, I 
was playing with a magnet, but it attracted Mrs. 
Smith’s golden ring. Then, Mrs. Smith went out to 
cry, and slapped the P.E. teacher in the face.” 
 
Query:  
Who is most likely the husband of Mrs. Smith?  

This example was adapted from Weibo. 

A Motivating Example… 
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An elementary school student was sent to detention by his 
Math teacher after school. When he got home, his father 
said: “Ma Yun, what happen to you at school today?” : “Sorry 
dad, I was playing with a magnet, but it attracted Mrs. Smith’s 
golden ring. Then, Mrs. Smith went out to cry, and slapped 
the P.E. teacher in the face.” 
 

This example was adapted from Weibo. 

Reasoning 

attract (magnet, golden_ring) 

attract (magnet, iron) conflict (iron, golden_ring) 

slap (Mrs. Smith, P.E. Teacher) 
husband (Mrs. Smith, P.E. Teacher) 
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Issues with Modern IE Systems 
•  No relational KB inference is performed at 

extraction time (or no inference at all). 
 
•  Classification is not the panacea. 
 
•  Big pipeline: error cascades. 
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Motivations 
•  To deal with complexity, we need first-order 

logics to perform reasoning. 
 
•  To deal with uncertainty, we need statistical/

probabilistic approaches, at the same time. 
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Knowledge Base Inference 
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Issues with KB Reasoning Systems 

•  Often done using relational triples (e.g., 
wife(barack,michelle)) after IE, and key 
contextual information is lost. 

E.g., Path-Ranking Algorithm (Ni et al., 2010) 
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Our Approach 
•  presents a joint IE and reasoning model in a 

statistical relational learning setting; 
•  incorporates latent contexts into probabilistic 

first-order logics. 
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Agenda 
•  Motivation 
•  Background: ProPPR 
•  Datasets 
•  Joint IE and Structure Learning 
•  Experiments 
•  Conclusion 
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Wait, Why Not Markov Logic Network? 

network size is O(na), where a = #arity.    
    e.g., holdStock(person,company) 
 
 
 
 
 
 
Inference time often depends on graph size. 
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Programming with Personalized 
PageRank (ProPPR) 

•  CIKM 2013 best paper honorable mention 
•  is a probabilistic first-order logic 
•  can be used in:  
•  entity resolution, classification (Wang et al., 2013) 
•  dependency parsing (Wang et al., 2014 EMNLP) 
•  large-scale KB inference (Wang et al., 2015 MLJ) 
•  logic programming (Wang et al., 2015 IJCAI) 
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Inference Time Comparison 

 
 
 
 
 
 
 

      
ProPPR’s inference time is independent of the size 

of the graph (Wang et al., 2013). 
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Accuracy: Citation Matching 

AUC scores: 0.0=low, 1.0=hi 
w=1 is before learning 

(i.e., heuristic matching rules,  
weighted with PPR)  

UW	
  rules	
  

Our	
  rules	
  

161 



ProPPR Example 
Input: 
 
 
 
 
Query: about(a,?) 
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An Example ProPPR Program 

Feature Vector 
Feature Template 
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Program (label propagation) LHS è features 

DB Query: about (a,Z) 

Program + DB + Query define a 
proof graph, where nodes are 
conjunctions of goals and edges 
are labeled with sets of features. 
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Transition probabilities,  Pr(child|parent), 
plus Personalized PageRank (aka 
Random-Walk-With-Reset) define a 
distribution over nodes.  
 
Very fast approximate methods for PPR 

 
High probability 

 
 
Low probability 

Short, direct paths 
from root Longer, indirect 

paths from root 

Transition probabilities,  Pr(child|
parent), are defined by weighted 
sum of edge features, followed 
by normalization.   

Every node has an  
implicit reset link 

Learning via pSGD 
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“Grounding”	
  (proof	
  tree)	
  size	
  is	
  O(1/αε)	
  
…	
  ie	
  independent	
  of	
  DB	
  size	
  è	
  fast	
  
approx	
  incremental	
  inference	
  
(Reid,Lang,Chung,	
  08)	
  
-­‐-­‐-­‐	
  
α	
  is	
  reset	
  probability	
  

Basic idea: incrementally expand 
the tree from the query node until 
all nodes v accessed have weight 
below ε/degree(v) 

*as in Stochastic Logic Programs 
[Cussens, 2001] 

•  Score	
  for	
  a	
  query	
  soln	
  (e.g.,	
  “Z=sport”	
  for	
  “about(a,Z)”)	
  
depends	
  on	
  probability	
  of	
  reaching	
  a	
  ☐	
  node*	
  

Approximate Inference in ProPPR 

166 



Parameter Learning in ProPPR 
PPR probabilities are a stationary distribution of a Markov chain 

reset 

Transition probabilities uàv are derived by linearly combining features of an edge,   
applying a squashing function f, and normalizing 

f is exp, truncated tanh, ReLU…  
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Parameter Learning in ProPPR 
PPR probabilities are a stationary distribution of a Markov chain 

Learning uses gradient descent: derivative dt  of pt is : 

Overall algorithm not unlike backprop…we use parallel SGD 
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Where Does the Program Come From? 

•  Traditionally by hand. 
•  We use structure learning to automatically 

learn first-order logic clauses from data. 
•  Idea (CIKM 2014):  

 build a second-order abductive logic 
 whose parameters correspond to 1st-order theory 
 reduce the structure learning to parameter learning.  
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Logic program is an interpreter for a program containing 
all possible rules from a sublanguage 

Interpreter for all clauses of the form P(X,Y) :- Q(X,Y): 
 
interp(P,X,Y) :- rel(P,X,Y). 
interp(P,X,Y) :- interp(Q,X,Y), assumeRule(P,Q). 
assumeRule(P,Q) :- true   # f(P,Q).   // P(X,Y):-Q(X,Y) 

DB0: sister(malia,sasha), mother(malia,michelle), … 

DB: rel(sister,malia,sasha), rel(mother,malia,michelle), … 

Query0: sibling(malia,Z) 

Query: interp(sibling,malia,Z) 

Features 
correspond to 
specific rules 

interp(sibling,malia,Z) 

rel(Q,malia,Z), 
assumeRule(sibling,Q),… 

assumeRule(sibling,mother),… assumeRule(sibling,sister),… 

Z=sasha Z=michelle 

f(sibling,sister) f(sibling,mother) 
… … 
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Logic program is an interpreter for a program containing 
all possible rules from a sublanguage 

Interpreter for all clauses of the form P(X,Y) :- Q(X,Y): 
 
interp(P,X,Y) :- rel(P,X,Y). 
interp(P,X,Y) :- interp(Q,X,Y), assumeRule(P,Q). 
assumeRule(P,Q) :- true   # f(P,Q).   // P(X,Y):-Q(X,Y) 

DB: rel(sister,malia,sasha), rel(mother,malia,michelle), … 

Query: interp(sibling,malia,Z) 

interp(sibling,malia,Z) 

rel(Q,malia,Z), 
assumeRule(sibling,Q),… 

assumeRule(sibling,mother),… assumeRule(sibling,sister),… 

Z=sasha Z=michelle 

f(sibling,sister) f(sibling,mother) 
… … 

Features ~ rules.  For example: 
 f(sibling,sister)  ~  sibling(X,Y):-
sister(X,Y). Gradient of parameters (feature weights) 

informs you about what rules could be 
added to the theory… 

Added rule: 
Interp(sibling,X,Y) :- interp(sister,X,Y). 
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Joint IE and  
Structure learning 
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Data Collection 
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Joint IE+SL Theory 
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Experiments 
•  Task: KB Completion. 
•  Three Wikipedia Datasets: 

 royal, geo, american. 
 67K, 12K, and 43K links respectively. 

 
10% deleted 50% deleted 

ProPPR/SL 79.5 61.9 

ProPPR/IE 81.1 70.6 

Results on Royal, similar results on two other InfoBox 
datasets. 
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Joint Relation Learning IE in ProPPR 
•  Experiment	
  

	
  Combine	
  IE	
  and	
  SL	
  rules	
  
	
  
	
  

10% deleted 50% deleted 

ProPPR/SL 79.5 61.9 

ProPPR/IE 81.1 70.6 

ProPPR/Joint IE,SL 82.8 78.6 

Similar results on two other InfoBox datasets 
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Joint IE and Relation Learning 
•  Baselines:	
  MLNs	
  (Richardson	
  and	
  Domingos,	
  2006),	
  	
  Universal	
  Schema	
  

(Riedel	
  et	
  al.,	
  2013),	
  IE-­‐	
  and	
  structure-­‐learning-­‐only	
  models.	
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Latent Context Invention 

Making the classifier more powerful: introduce latent classes 
(analogous to invented predicates) which can be combined with 

the context words in the features used by the classifier. 
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Joint IE and Relation Learning 
•  Task:	
  Knowledge	
  Base	
  CompleOon.	
  
•  Baselines:	
  MLNs	
  (Richardson	
  and	
  Domingos,	
  2006),	
  	
  Universal	
  Schema	
  

(Riedel	
  et	
  al.,	
  2013),	
  IE-­‐	
  and	
  structure-­‐learning-­‐only	
  models.	
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Explaining the Parameters 
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Discussions 
•  Comparing to latent variable models, our 

method is explainable. 
•  This is multi-instance multi-relation distant 

supervision with logic. 
•  This framework allows us to recursively learn 

relations, and jointly reason with IE clauses. 
•  Our structure learning method is efficient: 

according to Kok & Domingos‘s (2010, ICML), 
LSM sometimes takes 28 days to learn on a 
moderate-small dataset, where as our method 
needs a few minutes on a similar-sized dataset. 
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Conclusion 
•  We introduce a probabilistic logic 

programming method for joint IE and 
reasoning. 

•  We briefly show how to incorporate latent 
classes in first-order logic. 

•  Our system outperforms state-of-the-art IE 
systems. 
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ProPPR Demo 
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1. Basic theories and practices on named entity 
recognition: supervised, semi-supervised, and 
unsupervsed. 

 
2. Recent advances in relation extraction: 

a.  distant supervision 
b.  latent variable models 
 

3. Scalable IE and reasoning with first-order logics. 

Course Conclusion 
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Ask Me Anything! 
 

yww@cs.cmu.edu 
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