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Abstract

Traditional studies of speaker state focus primarily upon one-stage classification techniques using standard acoustic features. In
this article, we investigate multiple novel features and approaches to two recent tasks in speaker state detection: level-of-interest
(LOI) detection and intoxication detection. In the task of LOI prediction, we propose a novel Discriminative TFIDF feature to
capture important lexical information and a novel Prosodic Event detection approach using AuToBI; we combine these with
acoustic features for this task using a new multilevel multistream prediction feedback and similarity-based hierarchical fusion
learning approach. Our experimental results outperform published results of all systems in the 2010 Interspeech Paralinguistic
Challenge – Affect Subchallenge. In the intoxication detection task, we evaluate the performance of Prosodic Event-based, phone
duration-based, phonotactic, and phonetic-spectral based approaches, finding that a combination of the phonotactic and phonetic-
spectral approaches achieve significant improvement over the 2011 Interspeech Speaker State Challenge – Intoxication Subchallenge
baseline. We discuss our results using these new features and approaches and their implications for future research.
© 2012 Elsevier Ltd. All rights reserved.
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1. Introduction

Although the automatic detection of speaker state has attracted considerable interest in recent years, most studies
have focused on the analysis of anger, frustration, and other classic emotions (Litman and Forbes-Riley, 2004; Liscombe
et al., 2005; Devillers and Vidrascu, 2006; Ai et al., 2006; Grimm et al., 2007; Gupta and Nitendra., 2007). This focus
is motivated primarily by Spoken Dialogue System (SDS) applications, such as call centers and tutoring systems,
for which it would be useful to recognize a speaker state such as anger or uncertainty in order to improve the user
experience as well as task performance by automatically adapting the system-controlled conversation in real time (Bhatt
et al., 2004; Gupta and Nitendra., 2007). The benefit of adapting SDS to the speaker’s state is shown by recent work

(Forbes-Riley and Litman, 2011) that demonstrates successful deployment of a speaker state classifier in a tutoring
system. However, emotional state is not the only important speaker state to recognize. More recently, there have been
studies of speaker states that do not map directly to the classic or even derived emotions: studies of charismatic speech
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Biadsy et al., 2008), of deceptive speech (Hirschberg et al., 2005), and of medical conditions such as depression or
utistic disfunction (Hirschberg et al., 2010) broaden the scope of paralinguistic analysis considerably.

In this paper, we present novel approaches to two of these speaker states: level-of-interest (LOI) and degree of speaker
ntoxication, both topics in the Interspeech Paralinguistic Challenges. In 2010, the Interspeech Paralinguistic Challenge
aunched a sub-challenge to detect speaker’s LOI (Schuller et al., 2010; Wang and Hirschberg, 2011). Detecting LOI
n a topic, product, or person is an important task in many domains. By automatically detecting users’ interest in a
roduct or service, for example, it should be easier for sales representatives to identify potential customers. In the
olitical domain, the automatic detection of interest could augment traditional polling activities. Also, understanding
he speaker’s interest in a conversation might have a significant influence on improving customer service behavior.
he 2011 Interspeech Speaker State Challenge launched another sub-challenge: intoxication detection (Schuller et al.,
011; Biadsy et al., 2011), a still more critical task from the point of view of public safety in countries like the United
tates, where hundreds of thousands of people are the victims of drunk driving every year. A system to detect a person’s

evel of intoxication via minimally invasive means would be able to significantly aid in the enforcement of drunk driving
aws, and ultimately to save lives.

We describe our analyses of both data sets from both these Paralinguistic Challenges and compare our features and
heir performance on each below. In Section 2, we review previous work. In Section 3, we describe our studies of LOI,
ncluding the corpus, features and methods we employ. In Section 4, we describe the corpus, features and methods
e use for the intoxicated speech studies. We then compare our results on both data sets to understand why different

eatures and methods are better used on different types of data.

. Related work

.1. Level-of-interest (LOI)

Schuller et al. (2006) were among the first to study automatic LOI detection from conversational speech. They
esigned their task as a multiclass classification task, extracting standard acoustic features, such as Mel-Frequency-
epstral-Coefficients (MFCC), and building a bag-of-words (BoW) vector space model for lexical modeling. When
oncatenating the bag-of-words feature vector with the acoustic feature vector into a single vector, they achieved
ood F-measures using a Support Vector Machine (SVM). However, a bag-of-words approach clearly fails to cap-
ure contextual information in utterances. For example, the BoW model might not be able to capture negation
e.g. “This product is not bad at all.”). In addition, since lexical and acoustic-spectral features are extracted from
ifferent domains, a single stage linear combination may not yield optimal results. The 2010 Interspeech Par-
linguistic Challenge (Schuller et al., 2010) included an LOI subchallenge, encouraging researchers from many
roups to propose new features and methodologies. Each team was given the same conversational speech corpus
ith annotated LOI, baseline acoustic features, and two baseline results, which were obtained using one a single

ayer classification. The evaluation metric used for the challenge was primarily the cross correlation (CC) measure
Grimm et al., 2008), with mean linear error (MLE) also taken into consideration. The baseline was built only from
coustic features with Random-Sub-Space meta-learning using unpruned REPTrees, and the CC and MLE for train-
ng vs. development sets were 0.604 and 0.118. For the test data, CC and MLE scores of 0.421 and 0.146 were
bserved.

Participants in this subchallenge included Gajšek et al. (2010), who based their system on the Gaussian Mixture
odels as Universal Background Model (GMM-UBM) approach, with relevance MAP (Maximum A-Posteriori)

stimation for the acoustic data motivated by the success of GMM-UBM modeling in speaker identification (Reynolds
t al., 2000). They achieved CC and MLE of 0.630 and 0.123 in the training vs. development condition, but CC and
LE of only 0.390 and 0.143 in test. This performance difference may have been due to the fact that different subsets

f the corpus include different speakers: acoustic features alone may not be robust enough to capture the speaker
ariation.

Jeon et al. (2010) won the 2010 Subchallenge by including lexical and subjectivity information in the form of term

requency and a subjectivity dictionary. In addition to a linear combination of all lexical and acoustic features, they
esigned a hierarchical regression framework with multiple levels of combinations. Its first two combiners combine
ypotheses from different acoustic classifiers and then use a final stage SVM classifier to combine the overall acoustic
osteriors with lexical posteriors to form the final output. They report a result of 0.622 for CC and 0.115 for MLE. On
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the test set, they report CC and MLE of 0.428 and 0.146, respectively. Jeon et al. (2010) have also hypothesized that the
drop in testing performance might be related to the robustness issue of traditional acoustic features (e.g. Mel-frequency
cepstral coefficients) when modeling different groups of speakers.

2.2. Intoxication detection

Pisoni and Martin (1989) conducted early experiments on human perception of intoxicated speech, testing naive
subjects and police judgments on the task of distinguishing intoxicated from sober speech. Their subjects could easily
distinguish between utterances produced under sober and intoxicated conditions. Results of their acoustical analyses
revealed consistent and well-defined changes in speech articulation between sober and intoxicated speech. A decade
later, Hollien et al. (2001) investigated the relationship between prosodic characteristics and level of intoxication. Sub-
jects were required to produce four types of utterances when sober and at four strictly controlled levels of intoxication:
three ascending and one descending. Prosodic cues examined included fundamental frequency, intensity, speaking
rate and disfluencies. These researchers found statistically significant changes for increasing intoxication, including
increases in F0, in task duration and in number of disfluencies. They concluded however, that although certain changes
in speech suprasegmentals, appear to occur in some speakers as a function of increasing intoxication, these patterns
could not be viewed as universal, since approximately 20% of their subjects exhibited no or little change. In the same
year, Levit et al. (2001) began to study machine perception and automatic detection of intoxication from speech. Their
goal was to detect extreme intoxication, with blood alcohol level greater than 0.8 per mille, and cast this as a binary
classification problem, using acoustic and prosodic features, including shimmer, jitter, duration of voiced and unvoiced
segments. They used an intoxication speech corpus collected from the Police Academy of Hessen, Germany, which
contains 120 readings (approx. 87 min) of the German version of the “The Sun and the Northern Wind” story, produced
by 33 male speakers at different intoxication levels, with alcohol blood level varying between 0 and 2.4 per mille. The
utterances were divided in intoxicated and sober speech with a boundary value of 0.8 per mille. They achieved almost
69% accuracy.

More recently, Schiel and Heinrich (2009) attempted to detect in-car intoxicated speech, collecting a corpus of
read and spontaneous speech from multiple domains. Their first analysis of F0 showed that most speakers raise F0
under intoxication, although this was not consistent across genders. They also found that rhythmic features showed
significant changes under alcohol.

3. Automatic detection of level-of-interest from speech

In this section, we first briefly describe the corpus, and analyze the distributions of three datasets in the corpus. Then,
we list a comprehensive description of feature streams used in our investigation, and propose a two-tier hierarchical
fusion approach, which is based on a novel feedback technique: multistream prediction feedback. Finally, we perform
three major experiments, demonstrating the effectiveness of our approach to this task.

3.1. The LOI corpus

The corpus we use in our LOI experiments is the 2010 Paralinguistic Challenge Affect Subchallenge corpus Tech-
nische Universität München Audiovisual Interest Corpus (TUM AVIC), provided by Schuller et al. (2010). The corpus
includes 10 h of audio–visual recordings of interviews in which an interviewer provides commercial presentations of
various products to a subject. The subject and interviewer discuss the product, and the subject comments on his/her
interest in it. Subjects were instructed to relax and not to worry about politeness in the conversation. 21 subjects
participated (11 male, 10 female), including three Asians and the rest of European background. All interviews were
conducted in English; while none of the subjects were native speakers, all were said to be fluent. 11 subjects were
younger than 30 and 7 were between 30 and 40, and 3 were over 40. The subject portions of the recordings were
segmented into speaker turns (continuous speech by one speaker with backchannels by the interviewer ignored). These

were further segmented into sub-speaker turns at grammatical phrase boundaries such that each segment is shorter than
2 s. These smaller segments were annotated by four male undergraduate psychology students for subject LOI, using
a 5-point scale as follows: (−2) Disinterest (subject is totally tired of discussing this topic and totally passive); (−1)
Indifference (subject is passive and does not want to give feedback); (0) Neutrality (subject follows and participates
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n the dialog, but it is not recognized if she/he is interested in the topic); (1) Interest (subject wants to talk about the
opic, follows the interviewer and asks questions); (2) Curiosity (subject is strongly interest in the topic and wants to
earn more). A normalized mean LOI is then derived from mean LOI/2, to map the scores into [−1, + 1]. (Note that no
egative scores occur for this corpus.) In our experiments, we consider the normalized mean LOI score as the label for
ach sub-speaker turn segment; we refer to this as “mean LOI” below. The corpus was divided for the Subchallenge
nto training, development, and test corpora; we use these divisions in our experiments.

To verify our earlier hypothesis on the different distributions of provided acoustic features among train, development,
nd test datasets, we first calculate the means μi∈{tr,de,te} and variances σ2

i∈{tr,de,te} of the distributions of the 1582 acoustic

eatures (see Section 3.2 for details about the features). Then, we assume that the training distribution Φ(tr)(μ(tr), σ
2
(tr))

s the background distribution Φ(m) of the corpus and take the mean of the absolute differences beween development
et distribution Φde(μde, σ

2
de), test set distribution Φte(μte, σ

2
te), and the background Φ(m). Thus, the mean absolute

ifference in means δ(μ) can be calculated by using

δ(μ) =
∣∣∣∣∣
∑D

i=1((
∑N

j=1X
(t)
i,j/|N|) − (

∑M
k=1X

(m)
i,k /|M|))

|D|

∣∣∣∣∣

here |N| is the number of instances of the target distribution, |M| is the number of instances of the background
istribution, and |D| is the dimension of the feature space. Similarly, we can calculate the mean absolute difference in
ariances δ(σ2)

δ(σ2) =
∣∣∣∣∣
∑D

j=1var(X(t)
j ) − var(X(m)

j )

|D|

∣∣∣∣∣

here var(·) denotes the variance array for all components in vector X. By looking at the values of δ(μ) and δ(σ2) from
evelopment vs. training, and test vs. training, we can have a general idea about the differences in distributions.

We computed the δ(μ) between the development vs. the training sets to be only 1.798, but the δ(μ) between test
s. training sets is 248.401, which implies a large difference of the mean of the absolute differences in means. When
ooking at the δ(σ2) between development vs. training sets, the result is 2.66 × 105 whereas test vs. training sets has
δ(σ2) of 9.55 × 1010, which does not have the same magnitude as the former. Clearly, this again shows the different
istributions of features among train, development, and test sets. This also entails that training and development sets are
uch more similar than training vs. test sets, and explains why previous work had unexpected drops of performances

n the testing scenarios.

.2. Features

In the task of LOI detection, we design a comprehensive set of features, spanning lexical, prosodic, and acoustic
treams. In the lexical stream, our primary features are Discriminative TFIDF, Lexical Affect Scoring, and Language

odeling features. In the prosodic stream, we not only extract low level energy, duration, F0 and Voice Quality features,
ut we also include high level prosodic events. For the acoustic stream, we use a large set of traditional acoustic features
ncluding MFCC and other spectral cues, provided by the 2010 Interspeech Paralinguistic Challenge organizers. Table 1
rovides an overview of the feature sets in the LOI experiments.

.2.1. Discriminative TFIDF
As found in the official 2010 Interspeech Paralinguistic Challenge, the system (Gajšek et al., 2010) using acoustic

eatures alone might be insufficient to capture LOI from speech. A possible explanation for this is that acoustic features

sed in the study are not adapted to speaker variations, and the test set is drawn from a completely different set of
peakers, so acoustic cues alone might not be enough to capture LOI. In contrast, the winning system (Jeon et al.,
010) included some lexical features, and their results were more robust in the testing condition. As a result, in this
tudy, we investigated lexical cues extensively.
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Table 1
Feature sets.

Feature sets Features

Discriminative TFIDF Sum of word-level Discriminative TFIDF scores
Lexical Affect Scoring Sum of word-level lexical affect scores
Language Modeling Trigram language model

log-likelihood and perplexity
Acoustic features 1582 acoustic features

Detail see Schuller et al. (2010)
Prosodic and VQ # Pulses, # periods, mean periods, SDev period

Voicing fraction, # voice breaks, degree,
Voiced2total frames
Jitter local, local (absolute), RAP, PPQ5
Shimmer local, local (dB), APQ3, APQ5, APQ11
Harmonicity mean autocorrelation,
Harmonicity mean NHR, mean NHR (dB)
Duration seconds
F0 min, max, mean, median, SDev, MAS
Energy min, max, mean, SDev

Prosodic Events Pitch accents, intermediate phrase, and intonational boundaries
VQ: Voice Quality; SDev: standard deviation; RAP: relative average perturbation; PPQ5: five-point period perturbation quotient; APQn: n-point
amplitude perturbation quotient; NHR: noise-to-harmonics ratio; MAS: mean absolute slope.

In the standard vector space model, each term is associated with its Term Frequency (TF) in the utterance. The
Inverse Document Frequency (IDF) provides information on how rare the term is over all utterances. The standard
TFIDF vector of a term t in an utterance u is represented as V(t, u):

V(t, u) = TF ∗ IDF = C(t, u)

C(v, u)
∗ log

|U|∑n
t=1u(t)

TF is calculated by dividing the number of occurrences of term t in the utterance u by the total number of terms v in the
utterance u. IDF is the log of the total number of utterances |U| in the training set, divided by the number of utterances
n in the training set in which the term t appears. u(t) can be viewed as a simple function: if t appears in utterance u,
then it returns 1, otherwise 0. In Discriminative TFIDF, we add additional information to the TFIDF metrics. When
calculating IDF, we weight each term by the distribution of its labels in the training set. This helps us to weight terms
by the LOI of the utterances they are uttered in. An intuitive example is this: although the terms “chaos” and “Audi”
both appear once in the corpus, the occurrence of “Audi” is in an utterance with a Mean LOI score of 0.9, while “chaos”
appears in an utterance with a label of 0.1. A standard TFIDF approach will give these two terms the same score.

We define our Discriminative TFIDF (DTFIDF) measure as follows – particularly to distinguish between such cases:

V′(t, u) = C(t, u)

C(v, u)
∗ log

|U|∑n
t=1u(t) ∗ (1 − |MeanLOI(t, u)|)

Here, the Mean LOI score ranging from (0, 1) is the label of each utterance.1 Instead of summing the binary outputs of u(t)
directly, we now assign a weight to each utterance. The weight for term t in a particular utterance u is (1 − |MeanLOI(t,
u)|) in our task. The overall IDF score of terms important to identifying the LOI of an utterance will thus be boosted,
as the denominator of the IDF metric decreases compared to the standard TFIDF. The Discriminative TFIDF measure
is similar to the idea of Delta TFIDF (Martineau and Finin, 2009), but it is tailored for regression problems. Wang and
McKeown (2010) show that adding Part-of-Speech (POS) information to a text can be helpful in similar classification

tasks. So we have used the Stanford POS tagger (Toutanova et al., 2003) to tag these transcripts before calculating the
Discriminative TFIDF score.

1 In this dataset, there are no negative LOI scores among the annotations. However, in other data, if negative LOI instances are present, we could
apply a linear function y′ = (y + 1)/2 to project the original LOI score y to y′ that is within the range of (0, 1).
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.2.2. Lexical Affect Scoring
Whissell’s Dictionary of Affect in Language (DAL) (Whissell, 1989) attempts to quantify emotional language

y combining results of human raters judging 8742 words collected from various sources including college essays,
nterviews, and teenagers’ descriptions of their own emotional state. The DAL pleasantness (EE) score indicates the
egative or positive valence of a word, rated on a scale from 1 to 3. For example, “abandon” scores 1.0, implying a
airly low level of pleasantness.2 We note that the DAL is able to catch even some very slightly different semantics. For
xample, “successes” has a higher pleasantness score than “success” in the DAL. To calculate an utterance’s overall
leasantness score, we first remove stopwords and then sum up the EE score of each word in the utterance.

.2.3. Statistical Language Modeling
In order to capture contextual information, we also train a statistical language model3 to augment the Discriminative

FIDF and lexical affect scores. We train trigram language models on the training set using the SRI Language Modeling
ookit (Stolcke, 2002). We apply the Witten-Bell smoothing (Bell et al., 1990) technique to smooth the trigram
istribution. In the testing stage, the log likelihood and perplexity scores are used as Language Modeling features.

.2.4. Acoustic, prosodic and Voice Quality features
As noted above, the TUM AVIC corpus is distributed with acoustic features (Schuller et al., 2010) for all of the data

ets. These include 1582 acoustic features: PCM loudness, MFCC[0-14], log Mel Frequency Band[0-7], Line Spectral
airs Frequency [0-7], F0 by Sub-Harmonic Sum., F0 Envelope, Voicing probability, Jitter local, Jitter consecutive
rame pairs, and Shimmer local. In addition to these acoustic features, we have extracted 32 standard prosodic and
oice Quality features to augment these, including Glottal Pulses, Voicing, Jitter, Shimmer, Harmonicity, Duration,
undamental Frequency, and Energy (see Table 1).

.2.5. Prosodic Event features
To examine the relationship between Prosodic Events and LOI, we generate hypothesized ToBI (Tones and Break

ndices) (Silverman et al., 1992) annotations using the AuToBI Toolkit (Rosenberg, 2010). The ToBI standard for
he annotation of prosody describes linguistically significant prosodic variation in terms of phrasing and intonational
rominence. ToBI defines 5 levels of juncture in its break index tier; a tones tier in which pitch accents, phrase
ccents, and boundary tones are defined; an orthographic tier in which words are aligned with the waveform; and
miscellaneous tier in which other phenomena maybe be annotated. Intonationally prominent words in English and
erman are marked by a pitch accent. ToBI describes the types of pitch accents in both languages using High (H) and
ow (L) tones. In Standard American English (SAE), pitch accents may be simple (one tone) or complex (two tones).
he inventory of pitch accent types in SAE includes H*, L*, L+H*, L*+H, H+!H*. When High tones are produced in
compressed pitch range, a “downstepped” indicator (!) is added to the tone, leading to three additional pitch accent

ypes, !H*, L+!H*, and L*+!H. Prosodic phrasing in ToBI is hierarchical, such that each intermediate phrase contains
ne or more accented words plus a phrase accent, and each intonational phrase contains one or more intermediate
hrases plus a boundary tone. There are three types of phrase accent, H-, L-, and !H-. Phrase accents, which end
ntermediate phrases, describe the pitch between the last pitch accent and the end of the phrase. Boundary tones, which
nd intonational phrases, describing the pitch at the boundary itself. There are two types of boundary tones, H% and
%. G-ToBI(S) (Mayer, 1995) is a version of ToBI defined for German. G-ToBI contains a similar tone inventory to

he SAE version of ToBI. The pitch accents are H*L (fall), L*H (rise), HH*L (early-peak), L*HL (rise-fall), H*M
stylized contour), H* (high target), L* (low-target) and a down stepped fall (!H*L). The phrase accents and boundary
ones are identical in G-ToBI and SAE ToBI. Moreover, there may be substantial differences in the acoustic realizations

f these tones between the two languages. Moreover, the relative distributions of tone types are substantially different
cross the two languages. For example, in SAE ToBI, the most frequent pitch accent types are H* and !H*. In the
oston University Radio News Corpus (BURNC) (Ostendorf et al., 1995) of read English Broadcast News speech,

2 Agarwal et al. (2009) notes that one of the advantages of this dictionary is that it has different scores for various forms of a root word. For
xample, the words “affect” and “affection” have very different meanings; if they were given the same score, the lexical affect quantification might
ot be discriminative.
3 Due to the data sparsity issue, we did not train multiple language models with different mean LOI scores, though it might be possible to obtain
enefits using the delta perplexity scores from language models trained with different groups of mean LOI scores were it not for this issue.
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H* makes up 58% of all pitch accents with !H* making up an additional 25%. On the other hand in the MS corpus
(Schweitzer, 2011) of read speech in German, the most frequent pitch accent type is L*H – characterized by a rise,
rather than a high tone target – which makes up 51% of all pitch accents; the H* accent comprises only 12% of accents
(Schweitzer, 2011).

AuToBI (Rosenberg, 2010)4 is an open-source toolkit that automatically predicts ToBI annotations aligned to a
word-segmentation. AuToBI first detects pitch accents and phrase boundaries (intermediate and intonational), and then
classifies these based on the inventory described in the ToBI standard, as described above. It classes each type of
Prosodic Event in a speech file aligned with an orthographic transcript – pitch accents, intermediate and intonational
phrase boundaries – into categorical types based on the speech waveform aligned with each orthographic word. Since
manually aligned transcripts are unavailable for this corpus, we align each utterance to its transcription using the Penn
Phonetics Lab Forced Aligner (Yuan and Liberman, 2008). Hypothesized prosodic events are then generated using
AuToBI models trained on the spontaneous portion of the Boston Directions Corpus (BDC) (Hirschberg and Nakatani,
1996). For our experiments, we use frequency-based Prosodic Event features representing the rate of each Prosodic
Event type.

3.3. Fusion learning approaches

If one finds that feature streams are informative when tested separately, it is useful to combine information from
the streams from different domains to improve prediction. We have experimented with several approaches to feature
combination in this work, including bag-of-features, Sum Rule combination, Hierarchical Fusion, and a new approach
and present here results of each on our LOI prediction task. In the bag-of-features approach, a simple classification
method includes all features in a single classifier. However, a potential problem for this method is that, when one
combines 1582 acoustic features with 10 lexical features, some classifiers (e.g. naive Bayes, classification and regression
trees), especially unregularized classifiers, will treat them equally; thus, potentially useful lexical features will not be
evaluated properly. A second problem is that, when features are extracted from different streams using different methods,
the scaling (e.g. normalization and/or standardization) of feature vector components can be challenging.

Another approach we examined was the Sum Rule Combiner, which uses product or sum rules to combine pre-
dictions from first-tier classifiers. Kittler et al. (1998) show that this approach outperforms the product rule, max rule
and mean rule approaches when combining classifiers. Their sensitivity analysis shows that the Sum Rule Combiner is
more resilient to estimation errors. However, although Sum Rule Combination can be useful in combining posteriors,
it nonetheless assigns the same weight to each stream. In practice, this may not yield optimal results. A third feature
combination method is the Hierarchical Fusion approach in which multistream information is fused using multiple
classifiers and performing classification/regression in multiple stages. This approach can be implemented by first train-
ing first-tier classifiers for each single stream of features, collecting predictions, and training a second-tier supervector
classifier to weight the utility of predictions from the different streams and to make a final prediction. This approach
solves the scaling issue by letting the second-tier classifier weight the streams, as the predictions from the first-tier
classifiers will be in a unified/normalized form (e.g. 0–1 in this task).

Another issue in the generalization performance of spoken language processing classifiers comes from speaker
differences. Like many spoken language understanding tasks, in LOI detection, if we have a different set of speakers
with different genders, ages, and speaker styles, the overall feature distribution for lexical, prosodic, and acoustic cues
in the test set can be very different from the training set. Traditional speaker adaptation techniques typically focus only
on the acoustic stream and may be very expensive to perform. None of the above fusion methods address the issue
of speaker idiosyncrasies. We define a new method, improving over the Hierarchical Fusion approach, by extracting
more knowledge about the lexical, prosodic, and acoustic features’ distributions.

3.3.1. The multistream prediction feedback approach

Our Multistream Prediction Feedback and Mean Cosine Similarity based Hierarchical Fusion approach combines a

hierarchical fusion approach with a multistream feedback approach. Fig. 1 shows the architecture of this system. Our
proposed approach is influenced by the idea of Pseudo Relevance Feedback (PRF) (Yu et al., 2003) in Information

4 http://eniac.cs.qc.cuny.edu/andrew/autobi/.
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Fig. 1. Overview of multistream prediction feedback and mean cosine similarity based hierarchical fusion approach.

etrieval (IR), where the PRF approach has the following two-staged strategies: (1) it performs an initial search of a
iven query, and assumes the top-k research snippets are (pseudo) relevant results; (2) it uses the results from step one
o retrain or adapt the IR model and performs a final search of the same query using the updated model.

In Spoken Language Processing, there has been some recent work using PRF for meeting summarization (Chen
t al., 2011), spoken term detection (Chen et al., 2011) and spoken document retrieval (Tu et al., 2011). These authors
eported that using PRF could significantly improve the performances in all of the above spoken language processing
asks. However, PRF does not take cues from multiple feature streams into account and does not evaluate the similarities
nd relations among positive instances in the training stage, pseudo relevance instances (prominent samples), and new
amples from the testing stage.

Our own fusion approach is based on the intuition that, if we can identify the Prominent Samples (e.g. the samples
hat all first-tier classifiers assign high average prediction scores),5 then we can calculate the average distance between
ny new sample and these prominent samples in the Euclidean Space. We can also use this average distance as a new
eature to improve the second-tier classifier’s final prediction. By using the average distance, the gain here is that when
unning the trained model in the testing scenario, even the feature space might be shifted due to speaker differences,
e explicitly incorporate a new similarity feature that captures these differences.
To implement this method, we first train five first-tier Additive Logistic Regression (Friedman et al., 2000) classifiers

nd a Random Subspace meta-learning (Ho, 1998) first-tier classifier (for the acoustic stream), resulting in six different
eature streams in our training procedure. In testing, we use a random subset of the test set as seed samples. We classify
hese seed samples using each of our first-tier classifiers to obtain prediction scores ranging from 0 to 1 and calculate
he mean predicted score for each sample. We then select the top n samples from the seed samples S to serve as our
rominent Samples by simply taking the top-n samples from the ranked list of the mean predicted LOI scores Mean(S):
Prominent(S, n) = Maxn(Mean(S))

5 In this work, we calculate Prominent Samples based on the predicted LOI scores from first-tier classifiers, but it is also possible to substitute the
osteriors (confidence) scores from each first-tier classifier for these predicted scores.
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Recall that the cosine similarity (Salton, 1989) of two utterances Ui, Uj in the vector-space model can be represented
as:

cos(Ui, Uj) = Ui · Uj

||Ui||2 ∗ ||Uj||2
where “·” indicates ‘dot product’. Now, given our hypothesized Prominent Samples, we can estimate the distance from
each new sample as follows: for each prominent sample and each new sample, we choose the original Discriminative
TFIDF, Lexical Affect Scoring, Language Modeling, Prosodic and Voice Quality, and Prosodic Event features as a
k-dimensional vector to represent the samples in Euclidean Space. When calculating the cosine similarity between
positive examples in the training set and prominent samples in the test stage, we drop the 1582 acoustic features from
the vector space model here because of the efficiency issue and the robustness issue of MFCC-style features, and
substitute our 32 standard normalized prosodic features instead.

Now we use the mean cosine similarity score to represent how far a new sample Un is from the Prominent Samples
US in the space:

Sim(Un, US) = 1

|S|
|S|∑
s=1

⎛
⎝

∑k
i=1V(n,i) ∗ V(s,i)√∑k

i=1V(n,i)
2 ∗

√∑k
i=1V(s,i)

2

⎞
⎠

In the above equation, k is the total number of feature components in each feature vector V.
We first sum up the cosine similarities of all possible combinations between the new sample and prominent samples,

then normalize by the size of prominent samples |S| to derive the mean cosine similarity between this new sample Un

and our prominent samples US. In the next step, we provide this mean cosine similarity measure as a new feature to
the second-tier classifier, to use in reclassification. Like domain adaptation techniques, our approach also estimates the
distribution of our features in the test set,6 but it is inexpensive and does not require extra unlabeled data.

3.4. Evaluation

We conduct our experiments in three parts. First, we examine how well the Discriminative TFIDF feature performs,
compared with the standard TFIDF feature. Secondly, we look at how our different feature streams affect the results.
For these first two sets of experiments, we evaluate our features using the Subchallenge training vs. development sets
only. Finally, in our third set of experiments, we compare our Multistream Prediction Feedback and Mean Cosine
Similarity based Hierarchical Fusion approach to other feature-combining approaches. In these experiments, we first
compare training vs. development performance, and then compare combined training and development sets vs. the test
set. WEKA (Witten and Frank, 2005) and LIBSVM (Chang and Lin, 2001) are used for regression.

3.4.1. TFIDF vs. Discriminative TFIDF
Note that, when working with the training and development sets, we can access the label and transcriptions of each

set to calculate the Discriminative TFIDF scores. For the testing scenario discussed in Section 3.1, we do not have
these annotations. So, we redefine the task as a keyword spotting task, where we can use the keywords identified
in the training and development sets as features in testing. We also sum up the word-level TFIDF scores and use
the sentence-level TFIDF as a feature in the classification experiment. The regression algorithm we use is Additive
Logistic Regression with 50 iterations. In this experiment, we directly evaluate the performances of TFIDF features in
a one-stage classification setting. Table 2 shows how different approaches perform in the experiment.
We first show the experimental results from two simple baselines. For the Baseline1 in Table 2, we calculate the
mean μ and the standard deviation σ from training set, and randomly generate a Gaussian distribution to predict all
testing instances in the development set. The CC and MLE from Baseline1 are only −0.0067 and 0.222, respectively,
suggesting a very pool predictive power. In Baseline2, when we simply assign the mean LOI score from the training set

6 In real applications, instead of using a randomly chosen subset in the test set, we could incrementally select incoming prominent test samples,
and iteratively calculate the cosine similarity features between prominent samples and the training data.
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Table 2
Single TFIDF feature stream single regression results (Training vs. Develop, Additive Logistic Regression).

Method CC MLE

Baseline1 (Gaussian w. learned mean μ and std σ*) −0.067 0.222
Baseline2 (mean LOI score**) – 0.152
TFIDF 0.296 0.142
D-TFIDF 0.368 0.140
S-D-TFIDF 0.381 0.136

*Baseline1: using randomly generated Gaussian distribution with mean μ and standard deviation σ calculated from training set to predict all testing
instances. **Baseline2: using the average score of all mean LOI scores in the training set to predict all testing instances. D-TFIDF: Discriminative
TFIDF; S-D-TFIDF: the POS tagged version of D-TFIDF; CC: cross correlation; MLE: mean linear error.

Table 3
Comparing contributions of different feature streams in the second-tier classifier (Training vs. Development, Random Subspace for the First-tier
Classifier of Acoustic Stream, and Additive Logistic Regression for other first-tier classifiers. Radial Basis Function (RBF) Kernel SVM as second-tier
classifier).

Feature stream CC MLE

S-D-TFIDF 0.394 0.132
Language Modeling 0.404 0.141
Prosodic Events 0.458 0.133
Lexical Affect Scoring 0.459 0.132
Standard prosody + VQ* 0.591 0.122
Acoustic** 0.607 0.118

Multistream feedback (n = 3) 0.234 0.150
Multistream feedback (n = 10) 0.262 0.149
Multistream feedback (n = 20) 0.290 0.146
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-D-TFIDF: the POS tagged version of D-TFIDF; VQ: Voice Quality; n: top-n feedback; CC: cross correlation; MLE: mean linear error. * refers to
he 32 prosodic and Voice Quality features we described in Section 3.2.4. ** refers to the 1582 acoustic features we described in Section 3.2.4.

o the development set, we obtain a baseline MLE of 0.152,7 which is much better than the randomly generated Gaussian
aseline. We see that the Syntactic Discriminative TFIDF approach is much more informative than the standard TFIDF
pproach. Note that, after calculating the global IDF score, the standard TFIDF approach selects 732 terms as top-1
evel keywords.8 In contrast, our Discriminative TFIDF has stronger discriminative power and picks a total number of
9 truly rare terms as top-1 level keywords.

.4.2. Regression with different feature streams
In this experiment, we evaluate the contributions of different feature streams by utilizing the predicted LOI score

f each feature stream from the output of its corresponding first-tier classifier as a single feature, and incorporating it
nto the second-tier classifier. Table 3 compares the performance of different feature streams. The second half of the
able shows the contributions of multistream prediction feedback approach, when only using cosine similarity scores
s the feature in the second-tier classifier. We see that the acoustic and prosodic features dominate in this task. The
rosodic Events feature stream emerges as an informative high-level prosodic feature. When testing the multistream
eedback information as a single feature stream, we see in the bottom half of Table 3 that CC and MLE are improved
hen we increase the number of prominent samples. In the experiments of Section 3.4.3, the actual seed samples we

ake into account is 200, and the chosen feedback parameter is 30. Discriminative TFIDF and Language Modeling

re also important, as seen from these results, but the Lexical Affect Scoring feature performs best among the lexical
eatures in this task. We suspect that the reason may be a data sparsity issue, as we do not have a large amount of data

7 Note that it is impossible to calculate the Pearson CC for this baseline method, due to the uniform distribution of the predicted LOI scores.
8 Top-1 level keywords represent a set of words that have the same highest IDF scores in the corpus. We use the top-1 level keyword here to
emonstrate the discriminative power of S-D-TFIDF, but in our experiments we utilize all levels of keywords in our training vocabulary.
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Table 4
Comparing different systems.

Method CC MLE

Schuller et al. (2010) 0.604 0.118
Jeon et al. (2010) 0.622 0.115
Gajšek et al. (2010) 0.630 0.123
Bag-of-features fusion 0.602 0.118
Sum rule combination 0.617 0.117
SVM hierarchical fusion 0.628 0.115
Feedback + hierarchical fusion 0.640 0.113

Gajšek et al. (2010) 0.390 0.143
Schuller et al. (2010) 0.421 0.146
Jeon et al. (2010) 0.428 0.146
Bag-of-features fusion 0.420 0.145
Sum rule combination 0.422 0.138
SVM hierarchical fusion 0.450 0.131
Feedback + hierarchical fusion 0.480 0.131
Above: Training vs. Development; bottom: Combined Training +Development vs. Test; CC: cross correlation; MLE: mean linear error.

for training robust global Discriminative IDF scores, language models, and the feedback stream. In contrast, the DAL
is trained on much larger amounts of data.

3.4.3. Comparing our multistream feedback based hierarchical fusion learning approach with state-of-the-art
learning systems

Table 4 compares our Multistream Feedback based Hierarchical Fusion Learning approach to alternative learning
approaches. The first half of this table reports results on training vs. development sets, and the second half compares
combined training and development vs. test set results. Note that, in order to transcribe the test data, we have trained a 20-
Gaussian-per-state 39-MFCC Hidden Markov Model speech recognizer with HTK, using the training and development
sets together with TIMIT (Fisher et al., 1986), the Boston Directions Corpus (BDC) (Hirschberg and Nakatani, 1996),
and the Columbia Games Corpus (Hirschberg et al., 2005). The word error rate (WER) is 29% on the development set.

We note that a bag-of-features model using Random Subspace with REP Trees gives worse results than the official
baseline, which uses only the acoustic stream. When we use Sum Rule combination with Bagging to combine different
feature streams, we obtain a CC score of 0.422. Although this improvement may seem small, it is quite significant
(2-tailed paired t-test, p < 0.0001), comparing to the bag-of-features model. When using the SVM as the second-tier
supervector classifier to weight different prediction streams, we achieve 0.628 CC and 0.115 MLE in training vs.
development data, and 0.450 CC and 0.131 MLE on the test set; this result is significantly different from the bag-
of-features baseline (paired t-test, p < 0.0001), but it is not significantly different from the Sum Rule Combination
approach. Finally, augmenting the SVM hierarchical fusion learning approach with multistream feedback in our
hierarchical approach, we obtain a final CC of 0.480 and MLE of 0.131 in the test mode, which is significantly
different from the bag-of-features approach (paired t-test, p < 0.0001), but does not differ significantly from the SVM
hierarchical fusion approach.

Thus, we can see that our Multistream Prediction Feedback approach does appear to represent a significant improve-
ment over other methods of classifier combination, at least when using data sets in which there is considerable variation
between the training and test sets in terms of the distribution of feature values.

4. Automatic detection of intoxicated speech

In this section, we explore approaches designed to detect a type of speaker state rather different from LOI –

intoxication detection. Due to the nature of the phenomenon and the available data, we explore a somewhat distinct
feature set and different methods for this task. The task is different from the LOI task because the corpus contains
a fair amount of read speech across the training and testing splits, meaning that any training on lexical features will



W.Y. Wang et al. / Computer Speech and Language 27 (2013) 168–189 179

Table 5
Number of speakers and utterances in our balanced set.

Class # Training Spk. # Training Utt. # Test Spk. # Test Utt.

Intoxicated 74 2220 20 600
Sober 83 2573 21 651
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ias the results. As a result, the fusion of acoustic and lexical streams might not be the primary concentration of
his task. In contrast, our approaches in this intoxication detection task concentrates on the acoustical and prosodic
nalysis that are motivated from the tasks of speaker and dialect identification. We believe that the direct representation
f utterance-level lexical and acoustic features cannot capture the subtle durational, phonetic, and prosodic pattern
hanges between intoxicated and sober speech.

Our approach to investigating intoxicated speech is based upon intuitions about the features that should change
ignificantly between speech of individuals when they are intoxicated, compared with the speech of the same individuals
hen they are sober. We hypothesize three possible qualities that may be impacted by intoxication. Our first hypothesis

s that intoxicated speakers use prosody in different, but predictable ways when they are intoxicated compared to when
hey are sober, and that these differences may be realized through changes in phrasing and accenting behavior. Our
econd hypothesis is that a speaker’s phone durations and phonotactic behavior differ under intoxicated and sober
onditions. That is, articulator timing and speech rhythm may be modified in intoxicated speech, and this modification
ay be observable through the relative duration of phone units and the sequencing of such units. Our third hypothesis is

hat the quality of a speaker’s phones – the acoustic characteristics of phones – may vary between intoxicated and sober
tates. To test this, we investigate the use of phone-sensitive acoustic modeling to detect intoxication, using a system
hich has been successfully applied to the identification of spoken dialects and accents. Under this third hypothesis, we
iew intoxicated speech in a given language (e.g. German) as simply a different accent of this language. We investigate
hese three hypotheses on the 2011 Interspeech Speaker State Challenge Intoxication Detection sub-challenge using
he features and approaches described below.

.1. The intoxication corpus

The Interspeech 2011 Speaker State Challenge German Alcohol Language Corpus (ALC) (Schuller et al., 2011)
onsists of 162 speakers (84 male, 78 female) within the age range of 21–75 (mean age 31.0 years and standard
eviation 9.5 years) from 5 different locations in Germany. To acquire a gender balanced set, 77 male and 77 female
peakers were selected randomly from the ALC corpus for the Challenge. All conversations are in German. The
ollection was divided into two parts. In the first, each subject was asked to choose the Blood Alcohol Concentration
BAC) level he/she wanted to reach, and was given the required amount of alcohol to do so, evaluated by standard
edical formulas. After alcohol consumption, each speaker waited for 20 min to test his/her BAC level. The recorded

ange was from 0.28 to 1.75 per mille. Immediately after the BAC measurement, subject speech was recorded in three
onditions: read, spontaneous and command-and-control; these recordings lasted less than 15 min, to prevent a drop
n BAC level. Two weeks after the first experiment, the same subjects were asked to record 30 min of sober speech, in
he same environment and supervised by the same staff. The official training set includes 3750 sober utterances and
650 intoxicated utterances, such that a majority class accuracy for this data set is 69.4%. The official development
et contains 2790 sober utterances and 1170 intoxicated utterances, for a majority class of 70.5%. The official baseline
ystem on the development set achieves 65.3% accuracy(Schuller et al., 2011). For the purposes of our experiences,
e also decided to create an approximately balanced data set for training and testing, in which we attempted to balance
oth number of speakers and number of utterances simultaneously, by first combining the training and development
ets and then randomly selecting 20% of the speakers (from the grouped data) from each class as the new development
et and 80% for training. We then attempted to equalize the number of utterances in both classes in training and testing
y downsampling. The results of this selection are presented in Table 5. Below we term this the balanced set for the

ntoxication detection task. For this new division, the majority class of the development set is 52% and the majority
lass of the training set is 53.7%.
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4.2. Prosodic Event modeling

Our investigation of the importance of prosodic changes between sober and intoxicated speech arises from scientific
evidence of the effect of alcohol on the human body. Alcohol intoxication can resemble a stimulant or a depressant with
respect to the mood and energy of a speaker. On the one hand, energetic intoxicated speakers may use more emphasis
than sober speakers, leading to a higher rate of accenting, and use of accents associated with greater emphasis (L+H*,
or L*+H). On the other hand, depressed intoxicated speakers may use less emphasis, realized as fewer accented words,
or a greater rate of L* accents. Sentence planning has also been hypothesized as a major factor in prosodic phrasing
(Krivokapic, 2010; Breen, 2011). Due to an impairment of an intoxicated speaker’s ability to plan future lexical content,
intoxicated speech may also include a greater rate of disfluencies and or of intonational phrase boundaries.

4.2.1. Features
As in Section 3.2.5, we use the AuToBI toolkit (Rosenberg, 2010) to identify Prosodic Events in the ToBI framework.

When hypothesizing Prosodic Events on the IS11 Speaker State Challenge (IS11-SSC) material, we use the AuToBI
models trained on all of the SAE speech from the Boston Directions Corpus material (Nakatani et al., 1995), both
spontaneous and read material. While AuToBI uses word boundaries as the regions of analysis on which hypotheses
are aligned, it does not use any other lexical information in its classification process. Therefore the lexical differences
between the SAE training data and German evaluation data will only impact the hypothesis process due to durational
differences between SAE and German words. Other influences are due to prosodic differences between the two
languages. While SAE and German have significant similarities regarding their intonation, the G-ToBI(S) description
of german intonation and the ToBI description of English point to some significant differences in the distribution of
types of accenting and phrasing behavior. Moreover, the acoustic realizations of these similar tone descriptions of
Prosodic Events may demonstrate significant differences across languages.

AuToBI is likely to generate errorful hypotheses on the IS11-SSC material. However, despite this noise, the
hypothesized tones may still capture discriminative information concerning intoxicated vs. sober speech.

4.2.2. Approach
For the modeling of Prosodic Events for the detection of intoxicated speech, we use a representation of n-gram

frequencies of prosodic events without constructing a Markov chain model. This feature representation decision allows
us to discriminatively train a model that captures the same information as a traditional generative language model,
while taking class information into consideration. For each value of n, we calculate the rate of occurrence of each
n-gram in the observation sequence. To incorporate the backoff function of a standard language model, we include
n-gram features for n = {1, 2, 3}. We construct these features in three ways: (1) using the full inventory of ToBI tones,
(2) collapsing high tones (H) with downstepped high tones (!H) in pitch accents and phrase accents and (3) including
a Deaccented tone to represent words that have no pitch accent. We also include distributional features such as the
relative frequency of pitch accent, phrase accent, and boundary tone types, the overall accenting and phrasing rates,
and the number of tones in the sequence.

4.2.3. Experiments
With this feature vector, we train a logistic regression classifier with L1-regularization. Using 10-fold cross validation

on the IS11-SSC training material, we observe 69.8% accuracy. Performing cross-validation on the training data makes
use of speech material from the same speaker in training and testing folds. These cross-validation folds were generated
by random fold assignment, and were not included as part of the distribution of the original corpus data. On the
official development set, the prosodic modeling fails to significantly outperform the majority class baseline, with
69.6% accuracy and an F-measure of 0.032. It seems clear that the unbalanced distribution toward sober speakers has
a major impact on this classification performance.

To maintain speaker independence while using a less skewed distribution of evaluation points, we evaluate this
approach using class-balanced training and development sets. These data sets are proper subsets of the official training

and development sets, constructed to have approximately equal amounts of intoxicated and sober material. Evaluating
the Prosodic Event models trained on this balanced training set on the balanced development data, the accuracy
remains at baseline, 53.3%, while the F-measure rises to 0.457 (p = 0.53, r = 0.40). This indicates that there is some
discriminative information in the prosodic signal, despite the low performance on the official development data.
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There are at least two explanations for the poor performance of this model on this material. First of all, there are
ifferences between English and German intonation. The AuToBI hypotheses are generated for German speech using
odels trained on English material.
It is worthwhile to recall, that the G-ToBI description of German intonation contains a similar but distinct inventory

f tones to describe Prosodic Events as the American English ToBI standard. However, the distribution of these tones
iffer radically in the two languages.

While we anticipated some additional noise due to the differences in the acoustic correlates to the ToBI-described
rosodic Event types across the two languages, this noise may be too great to yield a meaningful representation of
rosody. At the time of writing, there are no AuToBI models trained on German speech. This explanation could be
ested if such models were available.

The prosodic qualities that indicate that a speaker is intoxicated or sober may be dependent on the “way” in which
e or she reacts to alcohol. As indicated above, sometimes intoxicated speakers are energetic, and other times they
re sullen. This difference may impact the consistency of prosodic variation in the intoxicated condition, making
lassification difficult. Moreover, two speakers may have prosodic changes to their speech when intoxicated that vary
ildly. The changes may not be consistent enough to be detected using this approach. Finally, prosodic analysis tends

o be more effective when analyzing longer utterances. Much of the IS11-SSC material is quite short, sometimes only
few words. This too may limit the efficacy of this approach.

.3. Phone duration and phonotactic modeling

Our second hypothesis is that intoxication may lead to changes in a speaker’s phone durations and in their phonotactic
atterns. Phone durations may be affected by the slurred speech characteristic of some intoxicated speakers. Phonotactic
odeling has been quite successful for language and dialect identification (Zissman, 1996). Here, we hypothesize that

ntoxication may cause speakers to pronounce words differently, choosing some pronunciation variants more frequently
han others, and even choosing certain words more frequently; each type of behavior would affect the phonotactic
atterns in intoxicated speech.

.3.1. Features
To investigate this hypothesis, we make use of the phones and temporal alignment provided for the training and

evelopment data in the sub-challenge to extract phone duration statistics for each phone type in each utterance. For
ach utterance, and each phone type, we extract the following features: minimum, maximum, mean and standard
eviation of durations of all phone instances of this phone in the utterance. We also include global phone duration
tatistics at the utterance level. Specifically, we extract four additional duration features: minimum, maximum, mean
nd standard deviation of the durations of all phone instances from all types. For our phonotactic experiments we
imply use the phonetic transcriptions provided in the corpus.

.3.2. Approaches and experiments
To examine whether there are reliable phone duration differences between intoxicated and sober speech, we use the

eatures described above in a logistic regression classifier. We obtain an accuracy on the official training set of 69.6%,
sing 10-fold cross validation. Testing on the official development set, our accuracy is 70.5%. It is interesting that, with
uch relatively simple features, we obtain an accuracy higher than the 65.3% obtained by the baseline system. Although
ur accuracy is not higher than the majority class, we see that our classifier does not always choose the majority class.
raining and testing this classifier on our balanced sets, we obtain an accuracy of 62.5%, which is significantly better

han the majority class baseline (52%). From these results it appears that phone duration statistics to be valuable in
istinguishing intoxicated vs. sober speakers.

We then explore a vector-space based phonotactic modeling approach. We first collect the set of all triphones in the

raining data.9 We then construct a feature vector for each utterance, where each element in this vector corresponds to
single triphone in our set. The value of this element is the frequency of this triphone in this utterance. To compensate

or utterance duration differences, we normalize this vector by its Euclidian norm. We use these feature vectors to

9 We add “start” and “end” symbols to the borders of each utterance.
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Fig. 2. DET curve for the official ALC development set (training on the official training set).

train an SVM classifier with linear kernel. The 10-fold cross-validation on the official training data is 70.1%. Training
and testing on the official training and development data, respectively, we obtain an accuracy of 71.1%, which is
significantly higher than the official baseline system (65.3%). Also, this accuracy is higher than the majority class
baseline (70.5%), although the difference is not significant. If we train an SVM classifier using this approach on our
balanced training data and test it on the balanced test set, we obtain an accuracy of 71.1%, which is significantly higher
than the majority class baseline (52%). These results suggest that the phonotactic distributions across the two classes
are significantly different.

We next examine the Detection Error Tradeoff (DET) curve, which plots false alarm vs. miss probabilities (of
missing intoxicated speakers), as is standard in speaker verification (Martin et al., 1997). The DET curve allows us to
determine the detection threshold of interest, and has also an advantage over accuracy for this data due to the skewness
of the official development set.10 As shown in Fig. 2,11 the Equal Error Rate (EER) of the phonotactic approach on the
official development set is 33.5%, significantly better than chance.12 We obtain a slightly better EER when employing
our balanced set, of 30.8%, also significantly better than chance (see Fig. 3).

4.4. Spectral-phonetic modeling

In this section, we test the hypothesis that intoxicated speakers realize certain phones differently than sober speakers.
To model phonetic structural differences across these classes (sober and intoxicated), we adopt our recent and successful
approach to dialect and accent recognition (Biadsy et al., 2011), treating intoxicated speech as a different accent of the
speaker’s native language.
4.4.1. Features
Again, we make use of the phones and alignments provided for this task, although it would also be possible to use a

high-quality phone recognizer to obtain such information. The first step in creating our features is to build an acoustic

10 Now chance is the line that goes through (50, 50) with a slope of −1.
11 Note that we are unable to plot the DET curve for the challenge baseline, because the posteriors from the baseline using WEKA SMO classifier

are always zeros and ones.
12 We use the NIST scoring software developed for LRE07: www.itl.nist.gov/iad/mig/tests/lre/2007.

http://www.itl.nist.gov/iad/mig/tests/lre/2007
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Fig. 3. DET curve for our balanced set (training on our balanced training set).

odel for each phone type. We first extract acoustic features temporarily aligned to each phone instance in the training
ata from both classes, intoxicated and sober. We extract 13 RASTA-PLP features (including energy) plus delta and
elta-delta, resulting in a 39D feature vector from each frame. Using the frames aligned to the same phone type (in all
raining utterances), we next train a Gaussian Mixture Model (GMM), with 60 Gaussian components with diagonal
ovariance matrices, for this phone type, employing the EM algorithm. Since some phone types occur infrequently in
he training data, we build only a single GMM for each of the most frequent 45 phone types. Each phone GMM can
e viewed as a GMM-Universal Background Model (GMM-UBM) for that phone type, since it models the general
ealization of that phone in both classes (Reynolds et al., 2000). We term these GMMs phone GMM-UBMs.

.4.2. Approach
For our approach, we need a representation that captures the acoustic-phonetic features for each phone type in a

iven utterance (U). We adopt the GMM representation of (Campbell et al., 2006), but at the level of phone types,
ather than the entire utterance. Specifically, we first obtain the acoustic frames aligned to every phone instance of the
ame phone type in U. We then use these frames to MAP adapt the corresponding phone GMM-UBM. We adapt only
he means of the Gaussians using a relevance factor of r = 0.1. The resulting GMM of phone type φ we denote as the
dapted phone-GMM (fφ). The intuition here is that fφ ‘summarize’ the variable number of acoustic frames of all the
hone instances of a phone-type φ in a new distribution specific to φ in U.

We represent each utterance U as a set SU of adapted phone-GMMs, each of which corresponding to a single phone
ype. Therefore, the size of SU is, at most, the size of the phone inventory (|Φ|). Let SUa = {fφ}φ∈Φ and SUb

= {gφ}φ∈Φ

e the adapted phone-GMM sets of utterances Ua and Ub, respectively. Next we design a kernel function to compute
he ‘similarity’ between pairs of utterances, given their adapted phone-GMM sets. We compare the Kullback–Leibler
KL) divergence between the two adapted phone-GMMs, following Moreno et al. (2004) and Campbell et al. (2006).13
he KL-divergence is not symmetric and does not satisfy the Mercer condition; thus it does not meet the requirements
or use as the kernel function for an SVM. However, Campbell et al. (2006) proposed a kernel function between GMMs,
ased on an upper bound for their KL-divergence proposed by Do (2003). This function assumes that only the means

13 Note that in these previous works, the entire utterance is represented by a single adapted GMM, independent of the linguistic labels and their
egmentation.
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of the GMMs are adapted, which is true in our case. Using this KL-divergence-based kernel between two adapted
phone-GMMs modeling phone φ, we obtain the kernel function:

Kφ(fφ, gφ) =
∑

i

(√
ωφ,iΣ

−1/2
φ,i μ

f
i

)T (√
ωφ,iΣ

−1/2
φ,i μ

g
i

)
(1)

where ωφ,i and Σφ,i, respectively are the weight and diagonal covariance matrix of Gaussian i of the phone GMM-UBM

of phone-type φ; μ
f
i and μ

g
i are the mean vectors of Gaussian i of the adapted phone-GMMs fφ and gφ, respectively.

We define our kernel function between a pair of utterances:

K(SUa, SUb
) =

∑
φ∈Φ

Kφ(f ′
φ, g′

φ) (2)

where f ′
φ is the same as fφ except that we subtract from its Gaussian mean vectors the corresponding Gaussian mean

vectors of the phone GMM-UBM (of phone type φ). g′
φ is obtained similarly from gφ. The subtraction allows zero

contributions from Gaussians that are not affected by the MAP adaptation; this subtraction slightly improves accuracy
in our dialect recognition work (Biadsy et al., 2011). For (2), when Kφ is a linear kernel, such as the one in (1), we
can represent each utterance SUx as a single vector. This vector, say Wx, is formed by stacking the mean vectors of

the adapted phone-GMM (after scaling by
√

ωφΣ
−1/2
φ and subtracting the corresponding �μφ) in some (arbitrary) fixed

order, and zero mean vectors for phone types not in Ux. This representation allows the kernel in (2) to be written as
in (3). This vector representation forms a kind of ‘phonetic finger print’ of the utterance’s speaker. We noted that, in
this vector, the phones constrain which Gaussians can be affected by the MAP adaptation (allowing comparison under
linguistic constraints), whereas in the GMM-supervector approach (Campbell et al., 2006), in theory, any Gaussian
can be affected by any frame of any phone.

K(SUa, SUb
) = WT

a Wb (3)

Since we found in Section 4.3 that phone durations are important features, we also include duration statistics for each
phone type from Ux in this vector (Wx), including the mean and standard deviation of the log durations of the phone
instances of the same type in the utterance. As a result, we include 90 (45 × 2) new duration features. Now we test
whether our method can capture phonetic differences between sober and intoxicated speakers. For our first experiment
we use the official training data from both classes to train our phone GMM-UBMs. We construct a vector Wx for each
utterance in the training data, as described above. Afterwards, employing our kernel function (3), we compute a kernel
matrix for both classes using these vectors. We then train a standard binary SVM classifier using this kernel matrix.
Our accuracy on 10-fold cross validation, using all the official training data, is 75.8%. This is significantly better than
the majority class which is 69.4% and all of our approaches above. Testing our approach on the development set, we
obtain a significant improvement in accuracy (72.8%) over both the majority class accuracy (70.5%) and the baseline
system’s accuracy (65.9%) and, again, better than our other approaches described above. As shown in Fig. 2, the
EER of our system using this approach on the official development set is 30.9%, slightly better than the phonotactic
system.

To test our system on our balanced data, we train our phone GMM-UBMs, on our balanced set of training data.
We then train an SVM classifier as described above. Evaluating this classifier on our balanced development set, we
obtain an accuracy of 71.2%, which is significantly better than majority class (52%). We report the DET curve on our
balanced development set in Fig. 3; the EER is 28.2%.

In Table 6, we summarize the performances of our different approaches in this intoxication detection task.
We are also interested in testing whether phonotactics and phonetic systems can contribute to the classification task
when combined. To plot the combination DET curves, we simply sum the posteriors from the two classifiers. As shown
in Figs. 2 and 3, we observe that, in fact, the combination of these two approaches improve the EER over using any
approach alone for both sets (the official and balanced). We obtain an EER of 29.4% using the official sets, and 26.3%
on the balanced sets.
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Table 6
Comparing different approaches on 10-fold cross-validation of training set, Official Training vs. Develop, and Balanced Training vs. Develop Set
in the Intoxication Detection Task.

Approaches 10-fold X-Valid Official Dev. Balanced Dev.

Majority baseline 69.4% 70.5% 52%
Schuller et al. (2011) – 65.3% –
Prosodic Events 69.8% 69.6% 53.3%
Phone duration 69.6% 70.5% 62.5%
Phonotactic 70.1% 71.1% 71.1%
P

5

s
2

t
t
t
a
a
a
n

t
t
h
2
i
I

5

5

i
s
a
i
s
d

5

o
r
T
t
l

honetic-spectral 75.8% 72.8% 71.2%

. Conclusion and further discussion

In this paper, we present a number of novel approaches and analyses to speaker state prediction, testing on two
peaker-state detection tasks from the 2010 and 2011 Interspeech Challenges: the 2010 Affect Subchallenge and the
011 Intoxication Subchallenge.

In the first, we measure Level of Interest (LOI) making use of novel lexical and acoustic/prosodic features, including
he Discriminative TFIDF measure and lexical affect scoring using Whissell’s Dictionary of Affect (DAL). In addition
o direct modeling of acoustic features, we explore the use of hypothesized categorical Prosodic Events, extracted using
he AuToBI Toolkit for Standard American English. For this task we also propose a new method for feature combination
nd feedback, the Multistream Prediction Feedback and Mean Cosine Similarity based Hierarchical Fusion approach,
n ensemble of primary classifiers whose decision is combined using a second tier classifier. Results in Sections 3.4.2
nd 3.4.3 have been presented in previous our conference paper (Wang and Hirschberg, 2011), and we have updated
ew results to Section 3.4.1.

In the intoxication detection task, we explore three approaches to the speaker-state classification task. We investigate
he use of a state-of-the-art dialect identification technique treating intoxicated speech as a different “accent” of
he language in a sober state. We also evaluate the use of phone duration and phonotactic information, as well as
ypothesized Prosodic Events in this task. As of the time of writing, the LOI results outperform all systems from
010 Interspeech Paralinguistic Challenge – Affect Subchallenge. The intoxication detection results, which have been
ncluded in our previous conference paper (Biadsy et al., 2011), significantly surpass the baseline result of 2011
nterspeech Speaker State Challenge – Intoxication Subchallenge.

.1. Novel contributions for the LOI prediction task

.1.1. The mean absolute difference of means and variances in two distributions
When surveying the previous work of 2010 Interspeech Paralinguistic Challenge, we realize both participating teams

n the LOI prediction task suffer from significant downgraded performances between the results on development test
et and official test set. We hypothesize that the acoustic features might not be robust enough to model different speaker,
nd we have proposed the measures of mean absolute difference in means and variances to calculate the difference
n distributions of feature space in pair-wise datasets. Our analysis shows that the development set and the training
et are much more similar than the test set and the training set (both contains distinct speakers), in terms of feature
istributions. This analysis also explains why the previous work show have worse results on the test set.

.1.2. The Discriminative TFIDF approach
In particular, we found that using Discriminative TFIDF measures improved over simple TFIDF metrics, confirming

ur hypothesis that using regression labels in the training set can help us better discriminate subtle differences between
are keywords and identify real task-specific keywords that a standard TFIDF approach fails to capture. Discriminative

FIDF also significantly outperforms the baseline where we simply assigning the mean LOI scores from training set

o all test utterances, which can be seen as a generative multinomial autoregressive model that predicts the general
ikelihoods of having LOI in the conversations within a population. Discriminative TFIDF features may also prove
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useful in other speech and language tasks. We also discovered that Whissell’s Dictionary of Affect in Language proved
useful in LOI detection.

5.1.3. The Prosodic Event analysis
Another novel finding in this study is that automatically extracted Prosodic Events can be useful when compared

to direct modeling of prosodic information. Results on this task suggest that the use of hypothesized Prosodic Events
can prove an effective alternative to the direct modeling of low level acoustic and prosodic features, serving as a kind
of intermediate representation. Since Prosodic Event hypotheses are generated using features similar to those used in
direct modeling, this symbolic feature representation can be viewed as a linguistically salient dimensionality reduction.
Automatically extracted Prosodic Events can serve to distill the information contained in the raw acoustic features into
a form that retains discriminative information for classification, while dramatically reducing the domain and number
of variables required. This has a particular advantage over empirically defined dimensionality reduction techniques in
that there are clear linguistic implications of Prosodic Events.

5.1.4. The multistream feedback and hierarchical fusion approach
In examining the differences between the features that proved most helpful in classifying our corpus, we find some

distinctions between features that represent what is said vs. how a speaker realizes lexical content. Knowing that
traditional acoustic features (e.g. MFCC) might not be robust across different datasets, we hypothesized that lexical
information should be informative when for investigating speaker states like LOI, where speaker attitude toward
particular commercial products has been shown to be identifiable in sentiment analysis studies through lexical cues.
Our findings bear out this intuition. However, combining the lexical and the acoustic streams is always a challenging
issue. Motivated by Pseudo Relevance Feedback technique in IR, we propose a Multistream Feedback and Hierarchical
Fusion Approach, which considers the average similarity between prominent samples in test set, and samples in our
training set. Through these experiments, we have validated our hypothesis that a hierarchical combination of features
can improve system performance significantly in the LOI prediction task.

5.2. Novel contributions for the intoxication detection task

5.2.1. The phonotactic approach
In the second task, we use an alternative method to capture segmental information: a phonotactic approach. This

is based on the assumption that intoxicated speakers pronounce words differently than sober speakers. Since the
intoxication corpus includes read as well as spontaneous speech – and these conditions are not marked in the test
set – using word-level lexical features cannot be relied upon to discriminate the two classes. However, pronunciation
variation may occur even in read speech. Our experiment results clearly show that the phonotatic approach is informative
in the intoxication detection task.

5.2.2. The phone durational approach
We found that the phone durational features much more useful than we expected. We discovered that a simple phone

duration-based model could significantly improve over the official challenge baseline, which was built on thousands
of low-level acoustic features. Our phone duration-based vector space model is motivate by the assumption that the
length of individual phonemes will vary between a given speaker’s intoxicated and sober states. Speakers may increase
or decrease their speaking rate, depending upon their type of intoxication, so that phones may be lengthened or shorted
as a consequence.

5.2.3. The phonetic-spectral approach
In the intoxication task, we build our phonetic-spectral model using acoustic frames for phone-level representation,

which allows us to capture subtle phonetic differences between intoxicated and sober speech. This is based on the

assumption that intoxicated speakers might realize phones differently than sober speakers. We then compute KL-
based kernel of SVM supervectors for those phone-type based GMMs over the entire utterance. While the official
challenge baseline represents utterance-level acoustic features directly, its performance is much worse than our phone-
based acoustic feature representation. Our result is also in line with state-of-the-art results in dialect and language
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dentification tasks: the results from the phonetic-spectral approach were better than the phonotactic approach and the
hone durational approach in our intoxication detection task.

.3. Similarities and differences of the two tasks

In terms of the similarities between the two tasks, we notice that both tasks are less-researched non-traditional
peaker state prediction tasks that have practical applications and potential social impacts. This requires us to think
arefully before we start about which existing spoken language processing techniques might be useful for this task,
r what useful adaptations might be made to make existing techniques more applicable. The corpora of both tasks
lso contain a significant portion of spontaneous speech, which always causes robustness issues in automatic speech
ecognition, as well as other speech application.

One of the obvious differences between the two tasks is the material, which represent distinct languages: English and
erman. This might require multilingual resources for training to achieve optimal results in testing. Another difference

s that the corpus of the second task contains read speech across different partitions of the datasets, which might make
he integration of lexical features and acoustic features less interesting.

We have examined approaches on modeling “what was said” in the two tasks. In the LOI task, we perform a com-
rehensive lexical modeling approach, which includes Discriminative TFIDF, and have obtained a powerful alternative
eature stream to augment acoustic features. However, we were not able to examine the utility of lexical features in the
ntoxication task, since the intoxication corpus includes read speech (from the same material) as well as spontaneous.
his is also one of the reasons why we were not able to examine our proposed multistream prediction feedback and

usion approach for the intoxication task.
While the use of prosodic analysis in the analysis of speaker state and paralinguistic qualities would appear to be a

atural fit for both our corpora, and we have performed the Prosodic Event analyses for both tasks, in fact we found that
rosodic Event detection is not useful for the intoxication task. There are several possible explanations for our poor
esults using Prosodic Events in the intoxication task: (1) the input language is German, while the prosodic analysis
odels are trained on English; (2) intoxication may lead to disparate changes to a speaker’s prosody that are more

ifficult to classify; and (3) the automatic prosodic event hypotheses may be too noisy to capture relevant prosodic
ariance for this classification task.

We have seen that acoustic features play a major role in speaker state detection in both corpora. In the LOI task,
he acoustic stream dominates all other feature streams. In the intoxication task, we also find that our phonetic-spectral
pproach outperforms our other sources of information. However, there is a major difference between these two
pproaches. In the approach for LOI prediction, acoustic features are represented for each utterance directly, while in
he intoxication task, we implement a much more complicated model based on a large margin method on the adapted
hone-GMM-UBM based supervectors.

Fusing different feature streams is one of our focused approach of the first task, and we have observed clearly
he contributions from our multistream prediction feedback approach. In our second task, even though we have only
ttempted to combine the two best approaches using simple posteriror combination approach, we wish to perform our
ultistream prediction feedback approach once we are able to obtain more reliable and predictive feature streams in

his task.

.4. Future work

In the future, we plan to explore more distributional similarity measures (Lee, 1999), such as Euclidean distance,
1 norm, and Jaccard’s coefficient for the LOI task. It will also be interesting to investigate iterative methods for incre-
entally discovering prominent seed data points, sparse features and seed sample sizes that best generate prominent

ata points in the test set. After publication of our initial LOI paper (Wang and Hirschberg, 2011), Woellmer et al.
2011) proposed a model that utilizes context information from neighboring utterances, and obtained promising results.

herefore, investigating a joint model that reasons in the intersentential space is also important. Regarding the intoxica-

ion detection task, we would like to directly incorporate prosodic features in the kernel of our phonetic-spectral based
pproach. It would also be interesting to investigate our multi-stream prediction feedback approach for combining the
honotactic, phonetic, and prosodic views of the data.
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