Proceedings of the Twenty-Fourth International Florida Artificial Intelligence Research Society Conference

Improving Spoken Dialogue Understanding
Using Phonetic Mixture Models

William Yang Wang® and Ron Artstein and Anton Leuski and David Traum
Institute for Creative Technologies, University of Southern California
12015 Waterfront Drive, Playa Vista, CA 90094-2536, USA

Abstract

Augmenting word tokens with a phonetic representation,
derived from a dictionary, improves the performance of a
Natural Language Understanding component that interprets
speech recognizer output: we observed a 5% to 7% reduction
in errors across a wide range of response return rates. The
best performance comes from mixture models incorporating
both word and phone features. Since the phonetic representa-
tion is derived from a dictionary, the method can be applied
easily without the need for integration with a specific speech
recognizer. The method has similarities with autonomous
(or bottom-up) psychological models of lexical access, where
contextual information is not integrated at the stage of audi-
tory perception but rather later.

Introduction

A standard architecture for spoken dialogue systems em-
ploys two-tiered processing: An Automatic Speech Recog-
nizer (ASR) transforms the user’s speech into a string of
words, and then a Natural Language Understanding (NLU)
component extracts meanings from these words. This ar-
chitecture represents an efficient way to tackle the prob-
lem of understanding human speech by splitting it into two
manageable chunks. However it comes at a cost of an ex-
tremely narrow bandwidth for communication between the
components: often the only information that passes from the
speech recognizer to the NLU is a string of words, and typ-
ical NLU components use only word-level features (Litman
et al. 2009; Raymond and Riccardi 2007; Walker, Wright,
and Langkilde 2000). If the ASR output string is deficient
then the NLU will experience difficulties which may cause
it to ultimately misunderstand the input. The most straight-
forward way to address this issue is to improve ASR ac-
curacy, and in the long term, perfect or near-perfect ASR
may make the NLU problem for speech systems much more
straightforward than it currently is. In the meantime, how-
ever, we need to find ways that allow NLU better recovery
from speech recognition errors.

This paper addresses a particular kind of deficiency —
speech recognition errors in which the ASR output has a
different meaning than the actual speech input, but the two

*Now at Columbia University.
Copyright (© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

329

strings of words are phonetically similar. An example (taken
from the experimental data described in the next section) is
the question “Are you married?”, which in one instance was
recognized as “Are you Mary?”. The particular conversa-
tional character which received this question cannot under-
stand the word “Mary”, and if he could he would probably
give an inappropriate response. The character does know
that he is quite likely to be asked if he is married; but since
he is not aware that “Mary” and “married” sound similar,
he cannot make the logical leap and infer the intended ques-
tion. Such confusions in ASR output are very common, with
varying levels of phonetic similarity between the speech in-
put and ASR output. Some more subtle examples from the
data include “Are all soldiers deployed?”” misrecognized as
“Are also just avoid”, and “just tell us how you can talk”
misrecognized as “does tell aside can tell”.

Speech recognizers typically use language models to en-
code information about expected outputs, but these can-
not fully eliminate this kind of close phonetic deviation
without severely limiting the flexibility of expression that
users can employ. A typical response to the problem is
to integrate some knowledge available to NLU with the
speech recognition process itself. A radical approach es-
chews the word-level representation altogether and inter-
prets language directly from the phonetic representation;
this has been shown to be useful in call routing applica-
tions (Alshawi 2003; Huang and Cox 2006). Milder ap-
proaches include building phonetic and semantic represen-
tations together (Schuler, Wu, and Schwartz 2009) or allow-
ing NLU to select among competing ASR outputs (Choti-
mongkol and Rudnicky 2001; Gabsdil and Lemon 2004;
Skantze 2007). What is common to all of these approaches
is that they work with the speech signal directly, and thus in-
cur similar costs to modifying an ASR component, including
the need for a substantial amount of speech data for train-
ing, and the commitment to one particular speech recognizer
with which the rest of the system is integrated.

We present a different approach: we accept the output
of an off-the-shelf speech recognizer as-is (with trained
domain-specific language models), and use a dictionary to
endow the NLU component with a way to compute phonetic
similarity between strings of words. We do not attempt to
correct the ASR output through postprocessing as in Ring-
ger (2000), and we deliberately ignore detailed information

from the speech recognizer such as word and phone lattices;
our approach thus avoids the costs associated with training
on speech data, allows replacing one off-the-shelf speech
recognizer with another, and yields performance gains even
when there is little or no speech data available to train with.

We demonstrate our approach using NPCEditor (Leuski
and Traum 2010), a statistical NLU which for each input
utterance selects one output out of a fixed set, based on a
learned mapping between input and output language models.
Instead of creating input language models based on word to-
kens, we translate each input word string into a string of
phones using a dictionary; we then create language models
which include both word information and phonetic informa-
tion, which allows the NLU to select an output based on both
word and phone similarities to its training data. Our exper-
iments show that the best performance comes from mixture
models, which combine and weigh separate language mod-
els for words, phones, and their respective n-grams.

The primary motivation for this work is to improve the
performance of NLU in the face of a less than perfect in-
put word string. Our method does however touch on a par-
allel debate in the psycholinguistic literature: autonomous
models assert that word recognition happens in a bottom-
up fashion, with contextual information integrated at a later
stage (Marslen-Wilson 1987; Norris, McQueen, and Cut-
ler 2000), whereas in interactive models, context affects
the earliest stages of word recognition (Marslen-Wilson and
Welsh 1978; McClelland and Elman 1986). Our method can
be seen as an extreme implementation of an autonomous
model, where all the information about the speech signal
is discarded after a word is identified, and downstream in-
terpretation processes must resort to heuristics in order to
recover from errors.

The remainder of the paper describes in detail the experi-
ment setup and results, and concludes with broader implica-
tions and directions for further study.

Method
Data

We evaluate our method using two sets of data collected
from deployed virtual question-answering characters: SGT
Star (Artstein et al. 2009), and the twins Ada and Grace
(Swartout et al. 2010). SGT Star answers questions from
potential recruits about the U.S. Army, and is contained in
a mobile exhibit. Ada and Grace are part of a fixed exhibit
at the Museum of Science in Boston; they answer questions
from visitors about exhibits in the museum and about sci-
ence in general. Characters in both systems can also an-
swer questions about themselves, such as the example above
about whether SGT Star is married. Each system has a fixed
set of pre-recorded responses (283 responses for SGT Star,
148 for the Twins), and uses a statistical NLU trained on a
set of example user utterances with a many-to-many map-
ping to appropriate responses. The NLU is designed to se-
lect the most appropriate response to variable inputs which
are the result of speech recognition errors as well as varia-
tions in the phrasing of questions.

Visitor interaction with the characters is done primarily

330

Word Error Rate (%)
Data set N
Median Mean S.D.
SGT Star 3498 43 45 38
Twins 7690 20 29 36
Star Unseen 759 50 51 36

Table 1: ASR Quality for the different data sets

through trained handlers, who relay the visitors’ questions
and act as intermediaries between the visitors and the char-
acters. The handlers are familiar with the characters, and
many of their utterances are a precise word for word match
of utterances in the characters’ training data. It is these ut-
terances that form the basis for our experiment, because for
these utterances we know the set of correct responses; if
they were sent to the NLU as uttered, the response would
be perfect. But the utterances are processed by a speech
recognizer, which introduces errors that sometimes lead to
incorrect interpretation. The purpose of our experiments is
to identify techniques for interpreting this speech recognizer
output more accurately.

Our test data contain 3498 utterances from the SGT Star
domain and 7690 utterances from the Twins domain, all of
whose transcriptions are identical to one of the training ut-
terances in their respective domains (transcriptions were per-
formed manually). The data come from actual deployments
of the characters, and each utterance contains the original
speech recognizer output retrieved from the system logs.
Speech recognition was much better for the Twins domain,
with about half the word error rate (Table 1). In each do-
main, all of our experiments use the same training and test
data — the original utterance-response links for training, and
the speech recognizer output for testing; the differences are
only in how the NLU constructs language models from these
data. A response to a speech recognizer output is scored as
correct if it is linked in the training data to the corresponding
manual transcription; otherwise it is scored as incorrect.

In addition to the above data, we investigated 759 utter-
ances from the SGT Star domain whose transcriptions were
not found in the training data. This was done in order to
verify that our results are also valid when the NLU has to
overcome variability in phrasing on top of speech recogni-
tion errors. For these utterances there is no automatic way
to determine whether responses are correct, so all responses
produced by the various test conditions were rated manually
as correct or incorrect.

Natural Language Understanding

In our experiments we used NPCEditor (Leuski and Traum
2010) — a text classification system which is available for
download as part of the ICT Virtual Human Toolkit.! We
summarize this work briefly here in order to describe how
we modified it to accommodate phonetic information.
NPCEditor employs a statistical language modeling ap-
proach called relevance models (Lavrenko, Choquette, and

Thttp://vhtoolkit.ict.usc.edu

Croft 2002). At the center of the system is the computation
of a language model for Ay — the ideal answer to the user’s
question Q. This language model is the probability P(w|Ap)
that a token sampled at random from the answer will be the
token w, and is computed from training data in the form of
question-response pairs. The language model of A is com-
pared to the language models of all available character re-
sponses R — the probability P(w|R) that a token sampled at
random from the response will be the token w — and NPCEd-
itor selects the response with the closest language model to
that of the ideal answer Ag.

The language model of each available response R is com-
puted using Maximum Likelihood Estimation (MLE) with
Jelinek-Mercer smoothing (Bahl, Jelinek, and Mercer 1990):

Balw)) Eaten)
R AT

where #g(w) is the number of times token w appears in se-
quence R, |R| is the length of sequence R, and A is a pa-
rameter that can be determined from the training data. The
language model of the idealized answer A is estimated us-
ing a cross-lingual relevance model estimation

P(w|R) = 7ig(w) = Az

P(%, g1 4
R)
~ _ L ”Rj(W) [T, ﬂQj(qi)
= go(w) = ¥ T 70, (0]

where the sum is over all linked question-response pairs
{Qj,R;} in the character database.

To compare the answer to the user’s question with a char-
acter response, NPCEditor compares the corresponding dis-
tributions ¢p(w) and 7mg(w) by applying Kullback-Leibler
(KL) divergence:

Po(w)

7'CR(W)

Y. 9o(w)log

weVg

D(Ag||R) =

where the sum is over all tokens observed in character re-
sponses. The KL-divergence is a dissimilarity measure, so
NPCEditor uses —D(Ag||R) as the confidence score.

So far this discussion assumed that we are working with a
single token type (e.g. words). These tokens can be different
for questions and responses, but for a single utterance type
we assumed that the tokens have the same statistical prop-
erties. NPCEditor supports mixture models where the same
text string can be represented as, for example, a sequence
of words and a sequence of word pairs (bigrams). Leuski
and Traum (2010) call these individual sequences “fields.”
NPCEditor implements a mixture language modeling ap-
proach that calculates probability distributions for each indi-
vidual field and then combines them using a weighted mix-
ture:

0o
D(Agl|R))log

“Lo) ¢

WGVR(1)

Here the outer summation goes over every field / of interest
in responses, while the inner summation iterates over vocab-
ulary for that field. R(I) denotes the /th field in a response

331

Simple Bag Mixture

word wl2 wli2pl wli2 wli2pl
phone wl2p2 wlip2 wl2p2
biphone wi2pl2 wipl2 wl2pl2
triphone wi2pl123 wlpl23 wl12pl23

Table 2: Tokenizers used in the experiments

sequence. The distribution ¢ ;) (w) is similarly defined as a
mixture of probability distributions for the question fields:

X 7R,y W) T (T2 7o, 1) (qki))P
L, T (T 7o, (k) (qr.i)) P

where Q;(k) is the kth field in the question from the jth
question-response pair in the character database and g ; is
the ith word or token in the kth field of the input question.
Parameters oy and f; allow us to vary the importance of
different fields in the mixture and are determined from the
training data.

doy(w) =

Tokenization

NPCEditor comes with default tokenizers for words and
word bigrams, which constitute separate fields as described
in the previous section. We extended NPCEditor by creat-
ing custom tokenizer plugins that parse the utterance text
and produce additional fields that represent phonetic infor-
mation. Each string of words was transformed into phones
using the CMU dictionary,” as in the following example.

the
dh ah

does
dahz

word:
phone:

army pay well
aarmiy pey wehl

We then created tokens from single words, word bigrams,
single phones, phone bigrams, and phone trigrams.

bigram: does_the the_army army_pay pay_well

biphone: d_ah ah_z z_dh dh_ah ah_aa aa_r r-m m.y iy_p
p-ey ey-w w_eh eh_l

triphone: d_ah_z ah_z_dh z_dh_ah dh_ah_aa ah_aa_r aa_r-m
r-m_iy m_iy_p iy_p-ey p-ey-w ey_w_eh w_eh_|

The phone n-grams deliberately ignore word boundaries, in
order to allow recovery from errors in boundary placement
by the speech recognizer (as in the example from the in-
troduction, where “all soldiers” was misrecognized as “also
just”).

Our tokenizers fall into three groups: simple tokenizers
use just one kind of token, “bag” tokenizers lump two or
more kinds into a single field, and mixture models combine
two or more token types as distinct fields in a mixture model.
We use mnemonics of the form w[12]p[123] to designate
the bag and mixture model tokenizers — for example, w12p2
combines word unigrams, word bigrams and phone bigrams.
Altogether we used 17 tokenizers, shown in Table 2.

Zhttp://www.speech.cs.cmu.edu/cgi-bin/cmudict

Results
Accuracy/return tradeoff

The Natural Language Understanding component, NPCEd-
itor, is more than a classifier: it also employs dialogue
management logic designed to avoid the worst responses.
NPCEditor calculates the classifier’s confidence in the ap-
propriateness of the selected response, and if it falls below a
certain threshold, the selected response is replaced with an
“off-topic” utterance that asks the user to repeat the ques-
tion or takes initiative and changes the topic (Leuski et al.
2006); such failure to return a response (also called non-
understanding) is usually preferred over returning an inap-
propriate one (misunderstanding). The capability to not re-
turn a response is crucial in keeping conversational charac-
ters coherent, but it is not captured by standard classifier
evaluation methods such as accuracy, recall (proportion of
correct responses that were retrieved), or precision (propor-
tion of retrieved responses that are correct). We therefore
evaluate the different tokenizers in a way that takes into ac-
count the ability to avoid responses for certain questions.

A response from the system falls into one of three cat-
egories — correct, incorrect, or off-topic, which happens
when the best response is not good enough. NPCEditor
calculates a response threshold that finds an optimal bal-
ance between false positives (inappropriate responses above
threshold) and false negatives (appropriate responses below
threshold) on the training data; however, it turns out that the
various tokenizers yield very different return rates, making
it impossible to compare them directly. Instead, we compare
the tokenizers across all possible return rates. A better tok-
enizer will give fewer errors at all return levels, or at least at
all the relevant ones (typically, it is acceptable to not return
10%-30% of the responses).

We compared the various tokenizers by looking at the
trade-off between returns and error levels. For each test ut-
terance we logged the top-ranked response together with its
confidence score, and then we plotted the rate of off-topics
against errors at each possible threshold; this was done sep-
arately for each tokenizer (since confidence scores are based
on parameters learned during training, they are not compara-
ble across tokenizers). Figure 1 shows the curves for 5 repre-
sentative tokenizers: non-returns are plotted on the horizon-
tal axis and corresponding error rates on the vertical axis;
at the extreme right, where no responses are returned, error
rates are necessarily zero for all tokenizers. Lower curves
indicate better performance.

We note a number of observations from these charts. First
of all, the scales are different: when no off-topics are re-
turned we get around 30% errors in the SGT Star domain,
10% errors in the twins domain, and 45% errors for the
SGT Star unseen utterances. Nevertheless, the relations
between the curves are rather consistent between the three
plots, which suggests that the results may generalize to other
domains. As a baseline we take the simple word tokenizer.
Other simple tokenizers, represented here by biphones, are
usually worse than word tokens, though there is some vari-
ability — for example, we see that the biphone tokenizer on
the SGT Star data is better than words at low non-return rates

332

SGT Star
8
o
— WOrd
— wi2p2
w0 — biphone
29 ———— wipi23
w12p2-bag
o
&
o
9
©
o4
s
o -
5 ©
o
)
wn
S
o
Q
S
=}
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Non-return Rate
Twins
e
e — WOrd
—_— wi2p2
e biphone
s | — wipi23
=] w12p2-bag
©
2 S
T o
i
8
i
3
o
o
g |
o
=Y
3
o
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Non-return Rate
SGT Star Unseen
e— WOrd
= — wi2p2
Sl e— biphone
- wipi23
w12p2-bag
2}
o 4
2
C
o
g N
[T

0.1

0.0

0.0 0.2 04 0.6 0.8 1.0

Non-return Rate

Figure 1: Trade-off between errors and non-returns

but worse at higher non-return rates. A peculiar case is the
simple phone tokenizer (not shown), which is substantially
worse than words across the entire range on the SGT Star
data, but better than words on the twins data; we do not have
an explanation for this behavior. Bag-of-features tokenizers,
represented here by w12p2-bag, are also usually worse than
word tokens, especially at higher non-return rates (above
20% non-return for SGT Star and above 10% for twins).

Where we do get substantial performance improvements
is the mixture models. The best performing tokenizer, for
all 3 datasets and across the entire range of return rates, is
w12p2. For the SGT Star domain it beats the word tokenizer
by 5%-7% until the latter’s error level drops to 10%, and
continues to provide more modest gains at higher non-return
rates. The other mixture models which include the same
features, w12pl12 and w12p123 (not shown), come fairly
close. Other mixture models do not show a consistent im-
provement over word tokens. For example, wlp123 is bet-
ter than words on the SGT Star domain, but much worse
than words on the twins domain; similar mixture models,
containing word unigrams and a variety of phonetic features
but not word bigrams, display similar behavior. The mix-
ture model w12 (not shown), containing words and bigrams
without any phonetic features, is very similar to word tokens
on all 3 domains.

It turns out, then, that the necessary features for high per-
formance are words, word bigrams, and phone bigrams. At
this point we can only conjecture about the reason for this.
The phonetic features allow the NLU to recover from certain
speech recognition errors; phone unigrams probably do not
carry sufficient information, which is why bigrams are re-
quired. However, phonetic features alone might cause too
much confusion, which is why word information is also
needed. Apparently, both word unigrams and bigrams are
required to offset the phonetic confusion, though it is not ex-
actly clear why, especially given that without phonetic fea-
tures, words and bigrams are practically equivalent to words
alone. At any rate, the experiments demonstrate that when
used appropriately, phonetic features derived from a dictio-
nary can improve the performance of NLU in the face of
speech recognition errors.

Full ranking of responses

The preceding discussion assumed that NPCEditor always
chooses the top-ranked option as the character response. For
some applications, however, it may be desirable to return all
of the appropriate responses rather than only the best one,
for instance if the Natural Language Understanding com-
ponent passes its result to a dialogue manager downstream.
NPCEditor evaluates and ranks all of the responses, and cer-
tain utterances may have more than one correct response.
If multiple responses are returned, one wants to maximize
the discrimination between correct and incorrect responses,
so that a maximal number of correct responses are returned
with a minimal number of incorrect ones. Discrimination
between correct and incorrect responses can be viewed with
a Detection Error Tradeoff (DET) curve (Martin et al. 1997).

Figure 2 shows DET curves for the same 5 tokenizers of
Figure 1. Each curve, corresponding to a single tokenizer,

333

DET Curves: SGT Star All Responses

word
wi2p2
biphone
wip123
w12p2-bag

B0 [

Miss probability (in %)

1 2 5 10 20 40 60
False Alarm probability (in %)

Figure 2: SGT Star discrimination among all responses

shows the false alarm rate (errors above threshold as a per-
centage of all errors) plotted against the miss rate (correct
responses below threshold as a percentage of all correct re-
sponses), based on the scores of all responses to all test ut-
terances. Lower curves indicate better discrimination. The
best discrimination at very low (under 2%) and very high
(over 40%) false alarm rates is achieved by the word tok-
enizer, while in the middle range, better discrimination is
achieved by wlp123. Tokenizer w12p2, the consistent top
performer on the task of picking the best single response, is
among the worst in discriminating among the full set of re-
sponses. Explaining this observation would require a more
detailed investigation.

Discussion

Our experiments show that adding phonetic features, de-
rived from a dictionary, can substantially improve the per-
formance of a Natural Language Understanding component.
This is because the phonetic features allow the NLU to re-
cover from certain kinds of speech recognition errors, where
the actual words uttered by the speaker are misrecognized as
distinct but phonetically similar words.

The phonetic dictionary used in tokenizing the ASR out-
put gives the NLU access to information that would oth-
erwise not be available, allowing it to reason about pho-
netic similarity between strings. However, the transforma-
tion from words to phones also loses information, most im-
portantly about word boundaries. This highlights the impor-
tance of the word level, and explains why the best perform-
ers are mixture models, which make use of both word and
phone-level information.

The contrast in relative performance of w12p2 in Fig-
ures 1 and 2 points out that it is important to evaluate the
NLU in the manner that it will be actually used — one might
pick a different tokenizer depending on whether one wants
to maximize accuracy of n-best or 1-best, or whether one
cares more about false positives or false negatives.

Our method is extremely practical: it is easy to imple-
ment, does not require any communication overhead, is not
tied to a specific speech recognizer, and can be applied to the
output of an off-the-shelf speech recognizer without access
to its code: all of the experiments presented in this paper
were performed on the text output of a speech recognizer,
without ever accessing the original audio. It is possible,
however, that the actual phonetic content of the utterance, as
determined by the speech recognizer, would be even more
useful. This is worthy of further investigation.

We chose to experiment with an NLU component to
which adding phonetic information is fairly straightforward,
because it treats its input as tokens without additional struc-
ture. Our method would probably transfer to other applica-
tions that use language modeling of spoken utterances, such
as Machine Translation. However, NLU architectures such
as parsing assign more meaning and structure to the word
tokens, so our method would not transfer easily. Never-
theless we believe that any components that process spoken
language (or, more specifically, ASR output) would benefit
from an ability to reason about phonetic similarities between
words or strings. Our method may also be useful for systems
that process text interaction, to the extent that users make
phonetically based errors (e.g. homophone substitutions).

We end with an observation about the application of this
research beyond Natural Language Processing. As we men-
tioned in the introduction, our method is intended to improve
machine performance and not as a model of human cogni-
tion. Nevertheless, humans do possess the ability to rea-
son about phonetic relatedness of text strings. Passonneau
et al. (2010) show that human wizards are good at recover-
ing from ASR output errors, and in a pilot study we found
that a human annotator presented with ASR output and sim-
ply guessing the wording of the original utterances was able
to reduce word error rate from 59% to 42%, on a sample
of Twins data specifically biased towards higher word error
rates. We as humans are familiar with the feeling of failing
to understand the words of an utterance, only to make sense
of it a few seconds later. So the ability to perform phonetic
reasoning and post-processing of an utterance should form
some part of a model of human language comprehension.

Acknowledgments

The project or effort described here has been sponsored
by the U.S. Army Research, Development, and Engineer-
ing Command (RDECOM). Statements and opinions ex-
pressed do not necessarily reflect the position or the policy
of the United States Government, and no official endorse-
ment should be inferred.

References

Alshawi, H. 2003. Effective utterance classification with unsuper-
vised phonotactic models. In HLT-NAACL 2003, 1-7.

Artstein, R.; Gandhe, S.; Gerten, J.; Leuski, A.; and Traum, D.
2009. Semi-formal evaluation of conversational characters. In
Grumberg, O.; Kaminski, M.; Katz, S.; and Wintner, S., eds.,
Languages: From Formal to Natural. Essays Dedicated to Nissim
Francez on the Occasion of His 65th Birthday, volume 5533 of
LNCS. Springer. 22-35.

334

Bahl, L. R.; Jelinek, F.; and Mercer, R. L. 1990. A maximum like-
lihood approach to continuous speech recognition. In Waibel, A.,
and Lee, K.-F,, eds., Readings in Speech Recognition. San Fran-
cisco: Morgan Kaufmann. 308-319.

Chotimongkol, A., and Rudnicky, A. I. 2001. N-best speech hy-
potheses reordering using linear regression. In EuroSpeech 2001.

Gabsdil, M., and Lemon, O. 2004. Combining acoustic and prag-
matic features to predict recognition performance in spoken dia-
logue systems. In ACL 2004, Main Volume, 343-350.

Huang, Q., and Cox, S. 2006. Task-independent call-routing.
Speech Communication 48(3-4):374-389.

Lavrenko, V.; Choquette, M.; and Croft, W. B. 2002. Cross-lingual
relevance models. In 25th ACM SIGIR, 175-182.

Leuski, A., and Traum, D. 2010. Practical language processing for
virtual humans. In JAAI 2010, 1740-1747.

Leuski, A.; Patel, R.; Traum, D.; and Kennedy, B. 2006. Building
effective question answering characters. In 7th SIGdial Workshop
on Discourse and Dialogue.

Litman, D.; Moore, J.; Dzikovska, M. O.; and Farrow, E. 2009.
Using natural language processing to analyze tutorial dialogue cor-
pora across domains and modalities. In Artificial Intelligence in
Education, 149-156. Amsterdam: 10S Press.

Marslen-Wilson, W. D., and Welsh, A. 1978. Processing inter-
actions and lexical access during word recognition in continuous
speech. Cognitive Psychology 10(1):29—-63.

Marslen-Wilson, W. D. 1987. Functional parallelism in spoken
word-recognition. Cognition 25(1-2):71-102.

Martin, A.; Doddington, G.; Kamm, T.; Ordowski, M.; and Przy-
bocki, M. 1997. The DET curve in assessment of detection task
performance. In Eurospeech 1997, 1895-1898.

McClelland, J. L., and Elman, J. L. 1986. The TRACE model of
speech perception. Cognitive Psychology 18(1):1-86.
Norris, D.; McQueen, J. M.; and Cutler, A. 2000. Merging infor-

mation in speech recognition: Feedback is never necessary. Behav-
ioral and Brain Sciences 23(3):299-370.

Passonneau, R.; Epstein, S. L.; Ligorio, T.; Gordon, J. B.; and
Bhutada, P. 2010. Learning about voice search for spoken dialogue
systems. In HLT-NAACL 2010, 840-848.

Raymond, C., and Riccardi, G. 2007. Generative and discrimi-
native algorithms for spoken language understanding. In INTER-
SPEECH 2007.

Ringger, E. K. 2000. Correcting Speech Recognition Errors. Ph.D.
Dissertation, University of Rochester, Rochester, NY.

Schuler, W.; Wu, S.; and Schwartz, L. 2009. A framework for fast
incremental interpretation during speech decoding. Computational
Linguistics 35(3):313-343.

Skantze, G. 2007. Error Handling in Spoken Dialogue Systems:
Managing Uncertainty, Grounding and Miscommunication. Ph.D.
Dissertation, KTH, Stockholm, Sweden.

Swartout, W.; Traum, D.; Artstein, R.; Noren, D.; et al. 2010.
Ada and Grace: Toward realistic and engaging virtual museum
guides. In Intelligent Virtual Agents, volume 6356 of LNAI, 286—
300. Springer.

Walker, M.; Wright, J.; and Langkilde, I. 2000. Using natural lan-
guage processing and discourse features to identify understanding
errors in a spoken dialogue system. In /7th ICML, 1111-1118.

