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Abstract—Graphs have been widely used to model relationships among data. For large graphs, excessive edge crossings make the
display visually cluttered and thus difficult to explore. In this paper, we propose a novel geometry-based edge-clustering framework
that can group edges into bundles to reduce the overall edge crossings. Our method uses a control mesh to guide the edge-clustering
process; edge bundles can be formed by forcing all edges to pass through some control points on the mesh. The control mesh
can be generated at different levels of detail either manually or automatically based on underlying graph patterns. Users can further
interact with the edge-clustering results through several advanced visualization techniques such as color and opacity enhancement.
Compared with other edge-clustering methods, our approach is intuitive, flexible, and efficient. The experiments on some large graphs

demonstrate the effectiveness of our method.
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1 INTRODUCTION

Graphs have been widely used to model many problems sucheas cit different levels of details (i.e., country level, citwé, and county

tions in scientific papers, traffic between telecommunicaswitches,
and airline routes among cities. The scale of these probkemss in-
creasing and the associated graphs can easily containftérosieands
of nodes and edges. Visual clutter caused by excessive eosg@ngs
has made traditional layouts no longer effective to conmégrimation.
Thus, reducing visual clutter in graphs is a very importasearch
problem. An informative and clear graph layout is criticad €lutter
reduction.

level). Third, by studying the road map, some high-levetqrat can
be detected. For example, the major highways usually itglicaavy
traffic along the highway direction. Therefore, we belidvattturning
straight line graphs into road-map-style graphs may effelgtreduce
clutter and help detect the underlying patterns in the data.

Itis not easy to generate informative road-map-style gsdphgen-
eral straight line graphs. The major components of road rmagpsities
and roads. We can consider cities as control points and @mdsg-

Many methods have been proposed to improve graph layouseThenents connecting cities. Then all paths must pass throutgiceities

methods can be classified into two major categories: adpo po-
sitions and improve edge layout. Rearranging the nodes ecrease
edge crossings in graphs and thus reduce edge clutter. MMgdet|
methods, such as force-based model algorithm [17], canrgenei-
sually pleasing results for small or medium sized graphsralieg to
some aesthetic criteria. However, for dense graphs withbatan-
tial number of edges, rearranging the nodes usually caedoice the
edge crossings to a satisfactory level. In addition, nodesoime ap-
plications such as airline routes have semantic meaningstanay
not be appropriate to move their positions. Another pramgisip-
proach to reduce visual clutter is to bundle edges. For elgraglow
map layout [18] is proposed for single-source graphs whilgeEBun-
dles [12] are designed for visualizing datasets contaitioth hier-
archical structures and adjacency relations. Their resl@dtnonstrate
the high potential of using edge clustering to improve trepbriayout
and reduce visual clutter. However, these previous solgtize all de-
signed for special graphs such as source-sink style graghgraphs
with known hierarchical structures. An efficient edge-tduisig solu-
tion for general graphs is still missing.

In this paper, we follow the same line of research by bunddidges
to reduce visual clutter. Our goal is to design an edge-etirg frame-
work for general graphs. Our method is inspired by road mah&h
are visually pleasing and relatively uncluttered. Theesaame good
features of road maps. First, in road maps, the connectibmelea
two nodes is no longer a straight line; it is turned into segim¢hat
consist of cities and highways. Second, the road maps carebved

and roads. One major challenge is how to choose controlp(iet,
cities in road maps) for general graphs. We find that a gootraon
point should be close to the point with high line density, ethineans
heavy traffic, and the edge connecting control points shoelaligned
with the primary line direction, which means the major taffirec-
tion. In addition, the influence of the control points shopédocalized
(i.e., only edges within a certain distance can pass thraugbntrol
point). Based on these intuitive observations, we desigacangtry-
based edge-clustering framework for general graphs. Thie idea
is to select control points based on a control mesh that teftbe
underlying graph patterns. We first analyze the link distiitns and
detect a primary direction for each local area. Then, we gtea
control mesh with edges piercing through the cluster ofslin@he
control points will then be positioned on the mesh edges. @yg-f
ing all links to pass through these control points, edge lmscan be
naturally formed. To further improve the layout, we introdwa local-
smoothing scheme to smooth all the zigzag curves. We theridaro
some advanced visualization techniques to enhance thermatifter
edge clustering. Compared with previous methods, our rdetiao
work on general graphs, and it is geometry-based so expenpii-
mization is avoided. It is intuitive, allowing users to dasiontrol
the final layout by adjusting the control mesh and the coroihts.
The control meshes can be easily constructed in a hieralolay, so
users can examine the graphs at different levels of detail.
The major contributions of this paper are as follows:

e We propose a general edge-clustering framework based on con
trol meshes to reduce visual clutter and enhance patterns in
graphs. Our framework is intuitive, flexible, and efficient.
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e We present several schemes to generate control mesheshat ¢
capture the underlying edge distribution patterns and teaa-
formative graph layouts. A local-smoothing scheme is psepo
to further improve the layout quality.

e We introduce three advanced visualization and interadgoh-
niques (i.e., color and opacity enhancement, mesh adjastme
and animation) which can significantly increase the efiectess
of edge-clustered graphs.



2 RELATED WORK

Visual clutter in graphs has been extensively studied igthph draw-
ing and information visualization fields. In this sectiore anly re-
view the papers that are closely related to our work (i.eaplyriay-

out). Thus, we omit other effective clutter reduction tegaes such
as sampling, filtering, clustering, and animation becafisieedimited

space. An excellent survey on general clutter reductidmriigcies can
be found in [7].

Many efforts have been devoted to generate good graph |
outs [2, 15]. They can be divided into two major categoriesdeas
based techniques and edge-based techniques. Node-belseidues
focus on adjusting node positions to improve the overalplyriay-
outs while edge-based techniques try to reduce visuakclbt either
dispersing or clustering edges.

Node layout Rearranging the nodes can decrease the number
edge crossings and thus reduce visual clutter. Force-bastubds
are widely used in node layout algorithms. In force-basem@grhes,
graphs are considered as physical systems, in which nodenaua-
eled as rigid bodies, and edges are modeled as elastic sprig
cording to different aesthetic criteria or specific requiemts, appro-
priate energy models [4, 8, 20, 17] can be formulated. In ge#ne
force-directed algorithms can successfully produce geasailts for
relatively small graphs, but they do not scale well with sitearge
graphs often make the energy function difficult to be optediz To
improve the time performance, fast multilevel algorithrhggnd sim-
plified energy functions [16] are proposed. Recently, Fniah and
Tal [9] introduced a GPU-accelerated force-based modektnapro-
vide a promising speedup to generate high-quality layootdarge
graphs. To visualize large graphs at different level of itketa topo-
logical fisheye view technique [10] has been proposed tovalisers
to interactively examine local areas of a graph in detail stiltipre-
serve the display of the graph’s global structure. Compavi¢td the
above node layout methods, our approach does not changeoside
tions or merge nodes. For some applications such as comatiomc
and transportation networks, node layout methods are rpicaple
because the semantic meanings of the node positions prepatial
adjustment of nodes.

Edge dispersing For dense graphs with a large number of edge
a good node layout cannot reduce the edge clutter to a satisfa
level. Thus, various methods are proposed to further adjdges.
One significant approach is to disperse edges away from hdoea
so the underlying patterns can be revealed. Wong et al. [#ig-i
duced Edgelens for interactively managing edge congeistigraphs.
Without changing node positions, they displaced edgesdca brea
with a high degree of edge overlap to reveal hidden inforomaith that
area and thus clarified graph structures. Wong and Carpeifi22]
further proposed another interactive technique, Edgekitigcwhich
temporarily pulls edges apart to clarify underlying nodigierelation-
ships. These interactive graph exploration tools are veeful to re-
veal the local structures in a region of interest, while oethod aims
at revealing the global structures and large-scale pattefrthe graph.
Actually, our method can complement the strengths of edgjgedsing
techniques and can be used together with them.

erence relations among the elements of a file directory. ihghkwo
leaf nodes in the tree, each edge is curved according toekeptith
that connects the two leaf nodes. If two edges share someesegin
their tree paths, they will be bundled at those common setgn&his
method demonstrates the effectiveness of using curvedticeesisual
clutter, but the technique is designed for graphs with knbienarchi-
cal structures. Gansner and Koren [11] improved circulpoués by
grouping edges to maximize area utilization and readgbilom-

%@red with the previous work on edge clustering, our methotksv
v

general graphs. Qu et al. [19] proposed a novel edgeering
framework for general node-link diagrams. By grouping $irdased
on their intersections with the edges in the Delaunay tr&at@gn of
the nodes, this method reduces edge clutter and gives aalloaby
straction of graphs. However, for large graphs, their methenerates
many zigzag edges, making it difficult for users to disceendhrve di-
rection and end points. Our method introduces a local-shimgtech-
nique to address the zigzag problems. In addition, we detradgaghat
using Delaunay triangulation does not work for many graphere-
fore, we design another mesh generation method that caer loeip-
ture the underlying graph patterns for edge clustering.theéamore,
three novel visualization and interaction techniques atm@duced to
make our method more effective.

3 GEOMETRY-BASED EDGE CLUSTERING OVERVIEW

In this section, we give a brief overview of our edge-clusigframe-
work. We assume that the positions of the nodes in the inytigare
already available. For some applications, node positionede ge-
ographic information and any dramatic adjustment of nodgtioms
may cause confusion for users. For other applications,akiipns of
nodes can be computed by methods such as force-based mbdels [
and thus a relatively good initial layout can be obtaineder€fore,
we do not further change node positions and the original tengtsut
is preserved. Our goal is to convert general straight lirmplgs into
road-map-style graphs, and the basic idea of our methoddkister
the edges based on a control mesh that reflects the undedyémpin
structures.

s, Fig. Lillustrates the framework of our approach. It corssidtthree
major steps: 1) control mesh generation, 2) edge clusteand 3)
visualization. Control mesh generation has two componegitaph
analyzer and mesh generator. The node and edge informdtitie o
original graph is first sent to the analyzer to detect undeglyedge
distribution patterns. After that, some representativnary edge di-
rections are output to the mesh generator, which then gesesame
mesh edges perpendicular to each selected primary dineclibese
mesh edges serve as basic control-mesh edges. By furthiegandre
mesh nodes and triangulating the nodes and basic edgese siegen-
erator completes the control mesh and sends it to the buigiieed on
the intersections between the original graph and the clomiesh, the
edge bundler sets some control points on the control-megbseahd
curves the original graph edges to pass through these tquiras
to form edge clusters. In the edge smoother, some curved edte
too many zigzags are further fine-tuned to become visua#igghg.

Edge clustering Another kind of edge-based techniques focuses drinally, in the visualizer, an intuitive exploration intace is provided

merging edges to reduce visual clutter. Confluent drawidjex-
ploit curves to visualize non-planar node-link diagramsaiplanar

for users to interact with the edge-clustering results.

way. However, not all the graphs can be drawn confluently. dn 84 CONTROL MESH GENERATION

dition, the complexity of deciding whether a graph is confituar not
remains open [13]. By curving and merging edges, Phan ei8]. [
presented flow map layouts to draw single-source graphsenémiges
share a common end point as a “free-style” binary tree. Cenisig
the common end point as the tree root, the algorithm autcadbti
generates a hierarchical structure based on the leaf@usitBy mak-
ing the line widths proportional to the edge weights, a flonproan
provide a clear flow distribution and reduce visual clutt€heir re-
sults are very encouraging; however, it is not clear how terex their
method to general graphs.

Edge Bundles [12] are designed for visualizing datasetsagon
ing both hierarchical structures and adjacency relatisnsh as ref-

We use a triangle mesh, called control mesh, to guide the eldge
tering process. The control mesh plays a very important irokbe

edge-clustering process and is critical for the final grapfolit. A

good control mesh will lead to an informative layout, whiegmeeduce
the number of edge crossings, bundle edges with similactitres

and lengths, and minimize the distances between origiregst-line

edges and resulting polyline edges. In other words, a gogolita
should faithfully reveal and enhance the underlying gragthepns and
effectively reduce visual clutter. In this section, we fidiscuss the
overall strategy for control mesh generation and then dhice three
mesh generation methods.
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Fig. 1. Framework of our graph visualization system.

4.1 Control Mesh Generation Strategy

The control mesh should be generated based on the undegrapt
structures. One simple strategy is to generate control @esdsésed on
the node distributions. For example, we can triangulatentitkes into
a control mesh using Delaunay triangulation [19]. Howewes,find
that this kind of control mesh does not work for many graphsabse
the underlying edge distribution is not taken into accouhtg. 2a

shows such an example. If we use the Delaunay mesh in Fig. 2b as

the control mesh, the edge cluster linking the east nodeshendest
nodes cannot be bundled together. Therefore, a good canesh
should not be computed solely based on the nodes of the graphs

$ t =t
(b) (c) (d)

Fig. 2. Control meshes: (a) a graph; (b) a control mesh generated by the
Delaunay triangulation of nodes. With this mesh, no edges in graph (a)
will be clustered. (c) a control mesh generated according to the edge
distribution pattern; (d) the layout after clustering the edges along the
control point A.

One of the most interesting patterns in a graph is the edgtecku
consisting of edges with similar directions and lengthshéise edges
are bundled together, the visual clutter can be reducedFigee2d).
Therefore, the control mesh should facilitate groupingiapg close
edges with similar directions. In order to do so, some comoints
(e.g., control point A in Fig. 2d) must be located in the m&ldf the
edge cluster. After these edges are forced to pass throegtotitrol
points, edge bundles can be generated accordingly. Becaus®n-

Fig. 3. Manual mesh generation: (a) a graph; (b) users click a set of
vertices and edges; (c) a mesh is generated by Constrained Delaunay
triangulation of the vertices and edges.

4.3 Automatic Mesh Generation

A better solution is to automatically generate a control lmeg ana-
lyzing the underlying edge patterns. Fig. 4 illustratestthsic idea of
our automatic mesh generation method. We first compute thedso
ing box for the input graph. Then we divide the bounding bdw in
cells using a regular grid (see Fig. 4b). The resolution ef ghid
can be configured by users. For each grid cell, we computettime n
ber of nodes falling into this region and the number of linksging
through it. A feature vector can be constructed to recorditrextion
of each passing link. Then we use Kernel Density Estimatptd6
detect whether there is a strong clustering of those featrtors. If
so, this clustered direction will be selected as a primargation of
this cell (see red arrow in Fig. 4b). Otherwise, this celld ignored
in the following steps. Next, we merge smaller regions withilsr
primary directions into some larger regions (see thick r@ggons in
Fig. 4b) until the maximum angular difference of primaryeditions

trol points are set on the mesh edges, we need to make some niBshe region is beyond a threshold (e.g.?)1§pecified by users. Then
edges (e.g., the vertical green edge in Fig. 2c) crossingdpe clus- the weighted average of the primary directions in the smadigions
ter. Therefore, our control mesh generation strategy isrso dietect Will become the primary direction of the resulting largegion. For
edge clusters manually or automatically and then generasmdges each region, we want to cluster the links along the primargation

to pierce through these edge clusters.

4.2 Manual Mesh Generation

One straightforward solution is to allow users to manuaéiperate a
control mesh according to the data. Our system can proviae so-

sual cues such as edge densities and direction variatiarsets. The
basic guideline is that some edges in the control mesh stuwokb
edge clusters. Based on this guideline, users can eitheuatharset

vertices around the edge clusters or directly draw meshsatigssing
through the clusters. Users can draw the whole mesh by thesssa

let our system automatically connect these chosen verticédges
to form a triangle mesh. Fig. 3 illustrates such an examplg. Fa

shows the original graph. We can clearly see that there ane stus-
ters of almost parallel lines. Users can then directly otinkhe graph
display to generate a set of vertices (see Fig. 3b) and edtpésh can

then be connected to form a triangle mesh (see Fig. 3c) byttzamesd

Delaunay triangulation [3]. For simple graphs with someiobs edge
cluster patterns, users can manually set the mesh and thais tte

final edge-clustering results. For some dense graphs, dnheg dif-

ficult and time-consuming for users to visually find the eduyesters
and set the entire mesh manually; therefore, we introducentare

sophisticated mesh generation schemes in the next twoctidree

and minimize the average distance between the clustereditid the
original straight lines. To achieve this goal, we found thetbetter to
make mesh edges pierce through the clusters and becomegietpe
lar to the clusters’ primary direction. Under this guideljiour system
can automatically generate a set of mesh edges (see grees iedg
Fig. 4c). After processing all grids, we get a set of vertiaed edges.
We first merge some vertices which are too close to one anather
then we use Poisson sampling to generate more verticesdéde€i-
nally, a triangle mesh as shown in Fig. 4d can be generated @in-
strained Delaunay triangulation [3]. This automatic appiois used
as the default mesh generation method for the remainingpsact

4.4 Hierarchical Mesh Generation

The level-of-detail graph visualization can be achievedugh a set
of hierarchical control meshes. The hierarchical meshaseagen-
erated in two ways: discrete level-of-details and contirsutevel-of-
details. The concept of continuous level-of-details isrtaed from
the computer graphics field. It indicates a smooth transifiom a
high-resolution mesh to a low-resolution mesh by edge ps#ialn the
automatic mesh generation process, we allow the merginghafier
regions with similar primary directions into a larger regioased on
a user-specified angular difference threshold. The disdestel-of-
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Fig. 4. Automatic mesh generation: (a) a graph; (2) grid the graph,
calculate a primary direction for each grid and merge them based on
their primary directions; (3) set some mesh edges perpendicular to the
blocks’ primary directions; (4) link the edges together to generate a
mesh.
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Fig. 5. The hierarchical meshes generated using three angular differ-
ence thresholds, i.e., 5°, 12°, and 4(°, respectively.

details can be achieved by specifying a series of discreéslttiolds

(©

Fig. 6. Edge clustering by control points: (a) a graph with a control
mesh; (b) the intersections and the control points; (c) the merged graph.

5.1 Edge Clustering by Control Points

Fig. 6a shows a graph and the corresponding control mesthe\lh-

tersection points between the links and control-mesh edgeshown
as red dots in Fig. 6b. Intuitively, the control point(s) ceck edge
should be in the center of these intersection points. THéar,ariginal

links are forced to pass through the control point(s) irst#ahe inter-

section points, the overall distortion can be minimizederEfore, we
apply the K-means clustering method to compute one or Sevena

trol points for each edge. After forcing the links to pas®tiyh these
control points, we can get an edge-clustered graph (se®&€jgThe

method is intuitive to use, and different graph layouts cagénerated
by using different control meshes and control points. Initaaid the

merged curves can be drawn using different curve styles.

5.2 Local Smoothing

The edge-clustered result generated by the previous metiagdnot
be visually pleasing because some edges may have too maaggig
Fig. 7 illustrates this problem. Fig. 7a shows one origitaight-line
edge (dotted red line) and the resulting polyline edge ds@d line),
which has severe zigzag. The zigzag edge is not pleasingaangven
indicate wrong direction of the original link and thus caussleading
comprehension of the graph.
To alleviate the problem and make the edges as smooth ableossi

(e.g., ®, 1, 15°) and then generate the control meshes accordinghye introduce a local-smoothing algorithm. Because eaetigtr line

The continuous level-of-details can be constructed by imgrgells
one by one based on the difference of the primary directidhe.two
neighboring cells with the smallest difference of primaiyedtions
will get merged first. After each merge, we can generate a oawa

becomes a polyline in the final layout, we first develop a dyatietric
to measure how well the polylines represent the originaigitt lines.
The quality metric should consider the polyline’s curvatuhe num-
ber of turning points, and the maximum distance betweenahgipe

mesh that has fewer triangles than the previous one. We keiag d and the original straight line. After experiments with var$ metrics,
the merging and then a sequence of control meshes with conisn our path quality for a polyline edgeis quantitatively modeled as fol-

level-of-details can be generated.
Another possible way to generate hierarchical meshes isdnge
the grid resolution. For example, the graph region can ba&eliv

into 64x 64, 128x 128, and 256« 256 grids, which lead to three dis-

crete levels of hierarchical meshes. For continuous lefreletails, we
can start from a high-resolution control mesh and then sfynplus-

ing some well-established computer graphics techniquels asi ver-
tex merging or quadratic error metrics. Because mesh dicgilon
is thoroughly studied, we can leverage those advanced itpamto
achieve sophisticated graph visualization results. Thédlkelevel-of-
detail control is a major advantage of our geometry-basmudivork.
Fig. 5 shows the control meshes at three discrete leveétafid.

Our automatic mesh generation methods can guarantee ¢hairth
trol meshes are generated solely based on information frendata
and most likely reflect the underlying edge patterns. Eveh thiese
automatic methods, manual mesh generation may be stililuaefit
enables users to create control meshes in some local aress thie
automatic methods fail to generate adequate mesh edges.

5 EDGE CLUSTERING

After we have the control mesh, the next step is to computeahe
trol points and conduct edge clustering based on the camiesh and
control points. In this section, we first introduce a stréigtward
edge-clustering scheme. Then we present a local-smoothé&ibod
to address some unwanted features in the clustered graph.

lows:

Q(e) = aQangle(€) + BQuistancd €)

whereQangie(€) andQqistancd€) are the two terms computing the
angle and distance variatiom and are the corresponding weights
for each term. The first ter@angie(€) is defined as follows:

Qangle(€) = — Za VA

We assume thatconsists ofi segments anth — 1) control points.
A records the angular difference betweenithesegment and thg —
1)th one. Boolean variablg indicates whether there is a zigzag or
direction change for control point The formulations of\; andy; are
listed below:

A —Ai_1 if —m<|A-A_1|l<m
Ai=q [A-A_qf-2m if [A-A_q|>T
2+ A —A| IF A=A <-TT

whereA is the radian angle formed bith segment and the original
straight line€'.
0
V= { 1

if sign(4;) = sign(Ai—1)
if sign(Ai) # sign(Ai-1)



different colors and opacities to edge segments based taircei-
tributes.

After edge clustering, we can compute various attributesttie
polyline segments of the graph. For example, each polykggnent
in the edge-clustered graph may represent a certain nurhbagmal
edges; the distance of each polyline segment to the originaight
lines may be different; and these original straight liney mave dif-
Fig. 7. Local smoothing: (a) a zigzag path (solid red line) with-  ferent directions. Therefore, we can compute the line dgribie av-
out smoothing; (b) the search region (solid green region) to find the  erage distance of these edges to their original links, aediittection
smoothest path; (c) the smoothest path (solid red line) found in this re-  variation for each polyline segment. We can then design rsstea
gion. The dotted red line is the original straight line. function that maps these attributes to color and opacityesato en-
hance different patterns in the graph. For example, for gipel seg-

mente, we can compute its weighted density attribute as follows:
The second terMqistance Which is to record the distance variation

between the curved edgeand the straight lin€/, is approximated by n
the following equation: De = ziqli
n-1 =
Quistance= _Izl Dy wheren is the number ofe’s sub-segmentsg; is the number of

original straight-line edges that are bundled or mergealtimtith sub-
whereD, is the Euclidian distance from theh control point to segment, and is the length of théth segment serving as the weight.
the straight-line edge’. If users want the curved lines to have fewer \ye design an interface similar to the transfer function sipation
zigzags, they can choose a largevalue. If the curved lines should i yolume rendering and parallel coordinates [14] to asgfigncolor
not be far away from their original positions, a lafgealue should be and opacity values based on different attributes. Usersheaminter-
used. actively manipulate the transfer function and thus seleltienhance

_Based on this quality measure, we can identify a set of pugli gifferent edge bundles. Fig. 8 shows an example of using oid
with poor quality and then do local smoothing for them. Theiba gpacity enhancement.

idea is to find another path or a set of control points in a laceh
for the corresponding original edge of each poor polylindwe Tirst
step of our local-smoothing algorithm is to compute a locebafor
this edge to narrow the search space for the new path. Altigregies
in the control mesh that the edge passes through and somgpoeig
ing triangles whose vertices are within a certain distahceshold to
the edge will form the search region. The distance thresbaidbe
configured by users. A larger threshold will result in a largearch
region and a better chance that a smooth path can be found tet a
cost of longer computation time. After that, we just seaittha pos-
sible paths in the search region for the original link andoseothe one
that has the highest quality according to our quality meif¥e exploit
dynamic programming and thus the local-smoothing algoritian be
run atO(nz) time complexity, whera is the total number of triangles
in the search region. Compared with the global optimizatised in
energy-based methods, our local smoothing can be perfornueth
faster as it is a one pass process with narrowed search dpacé.c
shows the computed smooth path. 6.2 Mesh Adjustment

(b)

Fig. 9. Mesh adjustment: (a) one control mesh; (b) the result with control
mesh a; (c) after moving mesh node A, edge bundle B and C in (b) are
merged into one bundle.

To further explore the data, users can interactively adhsstcontrol
mesh so that different layouts may be generated. In this difigrent
clusters may be revealed. Some typical mesh adjustmenatopes
include: adjusting vertex positions; merging two vertjcgsditting an
edge; subdividing a triangle into four sub-triangles. Byuating the
meshes, some otherwise separated clusters may get merged® F
demonstrates that different meshes can lead to differaphgayouts.

()

6.3 Animation

Fig. 8. Color and opacity enhancement: (a) an edge-clustered graph;  Different animation schemes can be used together with oge-ed
(b) the graph after color and opacity enhancement. The color encodes  clustering method. For example, we can change the levelisfarling
the orientations of original links and the opacity indicates the line density g allow the edges to be grouped instead of being merged $iath t
of overlapped segments. each individual edge is still discernible. We can also gateean an-
imation to show the whole process of edge clustering, i@y, édges
are changed from straight lines to polylines and then giadoeerged
6 VISUALIZATION TECHNIQUES together. In our system, we provide two animation techrsqui-
The layout generated by our edge-clustering method can iileefu mated transitions from the original straight line graphhe tesulting
explored with some advanced visualization techniques asatolor edge-clustered graph, and animated sequences to displéythut at

and opacity enhancement, mesh adjustment, and animation. different levels of detail. By viewing the animations, useill have
. a better idea about the data and may detect some patternsalyat
6.1 Color and Opacity Enhancement otherwise disappear in the final static layouts. Fig. 10 sheame

For dense graphs, the patterns may still be obscured afger @ds- frames during an animation sequence, which shows the ti@m&iom
tering because of occlusion. To reveal these patterns, wessign a straight line graph to an edge-clustered graph.



(d)

except one root node “A’ in the rectangular area that is geldrin
Fig. 12b. Another root node “B” is clearly shown in Fig. 12bhile

However, after applying our edge-clustering method, botit nodes
! S are highlighted by dark red edges linking to them (see Fig),12e-
s S e I g b S cause our method can successfully detect and enhance teéedg

(a dles with high density and then encode them with high opaeityes.
The third dataset is about the major airline routes of Noetstwhir-
Fig. 11. Edge clustering on a synthesized dataset. lines in the United States. Fig. 13a shows the original gr&8gtause

of severe clutter, not much information is revealed. Afggplging our
method, some high-level patterns are revealed (see Fig. E&im the
result, we can clearly see that there are some major clusteidine
routes going from the west coast to the east coast, whileitaetibns
of the airline route clusters are more diversified in the meast region.
After zooming into the northeast region, more details aspldiyed
with our hierarchical control meshes (see Fig. 13d and 1f. 13e
and 13g show the results after applying different transfiecfions.
One disadvantage of our approach is that the individualdingction
and length information is lost after edge-clustering oreetigndling.
However, we can compensate for this by color encoding. Famex
ple, in Fig. 13e where edges are bundled instead of mergechmvese
color to encode the original edge directions. Red indicates-west
direction while blue means north-south direction. In Figelwe can
see that edge bundle “A” mainly consists of red colors; tfeees most
of its edges connect the east region and the west region. [Tleetge

its edges are linking the northeast region and the soutmeggin. In
Fig. 13g, color is used to encode the edge length informaBdure in-
dicates short edges while red means long. We can easily fedye
bundle “C” consists of some long edges (red) and also soratvally
short edges (blue). Therefore, our color and opacity erdrarat tool
can further help users explore the clustered graph by prayichore
information about the original edge attributes.

among the states in the United States. The same dataseshdseeah
() © used in [18]. The straight line graph layout (see Fig. 143)mamer-
ous line crossings that obscure any patterns and is therafipossible
to interpret. After applying our method, some patterns bezwisible
as shown in Fig. 14b, but some parts are still very fuzzy (seedct-
angle region of Fig. 14b). We then applied a transfer fumcbased
on the number of gross migration (i.e., the sum of inmigratind out-
7 EXPERIMENTAL RESULTS migration). We used red to encode the highest gross migratitie

In this section, we apply our geometry-based edge-clugtariethod and blue to encode the lowest value. The patterns are bhaljuti-
to several graphs and demonstrate the effectiveness oppuach. ~ vealed. For example, the state of California has thick regtedinking

First we tested our method with a synthesized graph with lsimpf0 it. This state is also the most active state with highessgmigra-
patterns. Fig. 11a shows a layout which is also used in [1ig]. b tion numbers. Fig. 14d shows the result after applying tineeskind
is the control mesh automatically generated based on therhyiy of transfer.functlon without edge clustering. Not much eattis re-
edge patterns. Then an edge-clustered graph layout thailarsto ~ vealed. This example clearly demonstrates that our methodeyveal
the result using Edge Bundles [12] can be easily generaied osr the patterns in a very large graph and the color and opachprere
method (see Fig. 11c). This example demonstrates that otioshe Scheme will be especially effective after edge clusterifidg. 14e
works well for graphs with simple patterns. shows a flow map result [18] that only reveals the |mm|grafrmn

Next we tested our algorithm on a benchmark dataset usedin fhWest coast city. Our graph can reveal much more informatian
Graph Drawing 96 contest Fig. 12a shows the result of this graph? Single flow map because the overall context is also displayth
using a force-based method [23]. As pointed out in [23], tred- the flow map. In a sense, our method can be thought of as enmigeddi

based approach can reveal most of the major features inataset, Multiple flow maps into one graph display. _
We implemented our algorithm on a Macbook Pro with Intel Core

Fig. 12. Experiments on the GD’96 contest data.

root node “A’ is embedded in a massive nhumber of nodes andsedge

bundle “B” has some orange edges in it, which means that sdme o

The last example is a dense graph, representing the migratio

http://www.research.att.com/conf/gd96/contest.html Duo 2.2GHz CPUs and 2GB Memory. The computation times of our



edge clustering for datasets used in Fig. 13 and Fig. 14 aseahd
12.9s respectively. There are some configurable paramietersr
system but our default setting works well for many graphsr &6
ample, all the experiments in this paper were generated ggid size
=30x 30, angular threshold = 20a = 0.7, andf3 = 0.3. These pa-
rameters are intuitive to use so users can easily changettheveal
different patterns. For example, a large grid size and alargyular
difference threshold will result in a layout revealing lagatterns, and
vice versa.

color and opacity enhancement scheme is still primitiveréd/gophis-
ticated transfer function design schemes taking both noditipn and
edge directions into consideration will be explored.
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Fig. 13. Airline routes with 235 nodes and 2101 edges: (a) original layout; (b) our layout; (c) the original layout after zooming into the northeast
region; (d)(f) our layout with two different control meshes; (e)(g) our result after color and opacity enhancement.

© (d) (e)

Fig. 14. U.S. immigration graph with 1790 nodes and 9798 edges: (a) original layout; (b) the edge-clustered result; (c) the result after applying
edge clustering and transfer function; (d) the result after applying only transfer function; (e) a flow map layout highlighted in orange color.



