
On the Visualization of Social and other Scale-Free Networks
Yuntao Jia, Jared Hoberock, Michael Garland, and John C. Hart, Member, IEEE-CS

Abstract—This paper proposes novel methods for visualizing specifically the large power-law graphs that arise in sociology and the
sciences. In such cases a large portion of edges can be shown to be less important and removed while preserving component con-
nectedness and other features (e.g. cliques) to more clearly reveal the network’s underlying connection pathways. This simplification
approach deterministically filters (instead of clustering) the graph to retain important node and edge semantics, and works both auto-
matically and interactively. The improved graph filtering and layout is combined with a novel computer graphics anisotropic shading
of the dense crisscrossing array of edges to yield a full social network and scale-free graph visualization system. Both quantitative
analysis and visual results demonstrate the effectiveness of this approach.

Index Terms—Scale-free network, edge filtering, betweenness centrality, anisotropic shading

1 INTRODUCTION

Social and other scale-free networks are graphs with few nodes of
higher degrees and many of lower degrees, such that the number of
nodes of degree k follows a power-law distribution [4]. This distri-
bution is ubiquitous, natural and commonly found in the relationships
studied in sociology, networking, biology and physics.

These graphs are rarely planar, and even the best layout methods
yield a space-filling jumble of edge crossings for even medium-scale
graphs. For example, Fig. 1(a) displays the scale-free network of 1,948
interactions between 1,458 yeast proteins.

Such large graphs can be more effectively visualized in a simplified
form so long as the simplification preserves the important structures
and features of the original. Sec. 2 reviews a variety of graph simplifi-
cation methods.

Node clustering simplifies graphs by merging neighboring nodes,
which when repeated organizes the graph into a hierarchy [9]. Cluster-
ing works well on planar graphs. When applied to non-planar graphs,
it can actually increase edge density which makes the layout less flex-
ible and the display more jumbled with more edge crossings. For ex-
ample, the geodesic clustering used for the visualization in Fig. 1(c)
increases the edge density from 1.34 to 1.46 edges/node and the effect
worsens with the increased clustering of larger graphs. Furthermore,
the merged nodes and edges created by node clustering lose their orig-
inal semantics.

Filtering methods retain edge and node semantics by ensuring the
simplified graph is a subgraph of the original. Stochastic filtering ap-
proaches statistically sample the graph, scaling well and preserving
the expectation of various graph characteristics. But for the visual-
ization of scale-free networks where most nodes are of least degree,
stochastic filtering can destroy connectivity and other features, as it
did in Fig. 1(b).

Deterministic filtering methods remove edges based on a metric de-
fined on graph elements. One commonly used metric is “betweenness
centrality,” [14] which indicates how often a node lies on the short-
est (and presumably most used) communication path(s) between other

• Yuntao Jia is a student at the University of Illinois, E-mail:
yjia3@uiuc.edu.

• Jared Hoberock is a student at the University of Illinois, E-mail:
hoberock@cs.uiuc.edu.

• Michael Garland is a research scientist at NVIDIA, Corp., E-mail:
mgarland@nvidia.com.

• John C. Hart is a professor at the University of Illinois, E-mail:
jch@cs.uiuc.edu.

Manuscript received 31 March 2008; accepted 1 August 2008; posted online
19 October 2008; mailed on 13 October 2008.
For information on obtaining reprints of this article, please send
e-mailto:tvcg@computer.org.

nodes

BC(v) = ∑
u 6=v6=w∈V

σu,w(v)/σu,w (1)

where σu,w counts the number of shortest paths between u and w, and
σu,w(v) counts only the ones containing v.

Girvan and Newman [18, 27] compute the betweeness centrality for
edges instead of nodes, and remove the highest BC edges from a graph
to isolate and cluster its subnetworks. But scale-free networks do not
cluster well because most of their nodes are minimally connected, so
for their visualization we instead remove the lowest BC edges from
a graph, leaving a skeletal substructure of communication pathways.
Our filtered simplification in Fig. 1(d) removes 50% of the edges while
retaining 80% of its total betweenness centrality, as a measure of its
preservation of communication pathways.

This development leads to a novel deterministic filtering approach
that improves the simplification, layout and visualization of scale-free
networks. This method filters a graph by removing edges in order of
increasing betweenness centrality. We constrain this filter to preserve
connectivity and other features (e.g. cliques) by marking feature edges
in a graph preprocessing pass, and keeping an edge if it is marked or if
its removal disconnects a connected component of the original graph.
The resulting simplified graph thus avoids the distraction of edges sel-
dom utilitized in the propagation of information across the network,
while retaining the connectivity and other pre-identified features of
the original. Furthermore, removing edges improves the flexibility,
convergence and quality of node layout algorithms. Fig. 2 illustrates
this approach as detailed in Sec. 3.

The betweenness centrality edge metric relies on an expensive all-
pairs shortest path computation. We discovered that on scale-free
networks, betweenness centrality can be accurately approximated by
computing shortest paths only from hubs, of which there are only
O(logn) according to the power-law distribution, as described in
Sec. 4, which also compares other approximations to establish the nov-
elty of our hub-subset BC. We believe this approach is novel, as a re-
cent survey of BC variations [8] includes choosing a random subset of
shortest path endpoints but not specifically targeting the hubs.

Because edge-filtered graphs can still be large and visually com-
plex, our visualization method also incorporates rendering techniques
suited to dense fibrous materials to aid in understanding. The
anisotropic shading of thin threadlike materials is a familiar cue of
fibrous directionality. Shading a scale-free network’s dense mass of
edges in this manner accentuates hubs which appear like the poles of
wound-thread holiday ornaments, as shown in Sec. 5.

The results in Sec. 6 demonstrate the effectiveness of this approach
at simplifying and displaying scale-free networks, followed by con-
clusions in Section 7.



Connectivity
test

Graph features 
detection(optional)

Edge
sampling/filtering

Post processing to
maintain connectivity

For each 
subgraph

User 
threshold

Compute edge 
metric

Simplified 
graph

Input 
graph

 

 

5

10

15

20

25

Recompute the 
layout

Fig. 2. Work flow of our edge simplification program.

Node/Edge No. 1458/1948

(a) Unsimplified
Node/Edge No. 1258/1458

(b) Stochastic edge sampling

Node/Edge No. 998/1458

(c) Geodesic clustering
Node/Edge No. 1458/1458

(d) Our method

Fig. 1. Visualization of the protein interaction graph “bo”, laid out with
GEM [15], after different simplification methods.

2 PREVIOUS WORK

Recent previous work relevant to the simplification and visualization
of power-law graphs is briefly summarized below.

2.1 Graph Layout

Force-directed approaches are easy to implement and work well for
most graphs [12, 13, 16, 22]. Recent, more powerful layout meth-
ods have been proposed, including GEM [15], GRIP [17], ACE [23],
FM3 [19] and Topolayout [1], but work better on near planar graphs.
None of these work well for large power-law graph visualization be-
cause of the dense edges crossings they produce, which prompted our
investigation into (edge) simplification. Our contribution makes these
algorithms practical for scale-free graphs by providing a simpler do-
main for layout. In implementation, our results are laid out using either
force-directed FR method [16] or GEM [15].

2.2 Node Clustering

Brandes et al. [9] survey a variety of clustering approaches. Wu et
al. [32] hierarchically clustered nodes by their shortest-path distance
from hub nodes (chosen by min BC or max degree) for data mining
and visualizing power-law graphs. Kumar and Garland [24] used clus-
tering to stratify a graph into different layers for independent, faster
layout and overlayed for interactive visualization.

2.3 Stochastic Filtering
Rafiei and Curial [29] used stochastic and focus-based filtering
schemes to simplify large graphs for visualization. Leskovec and
Faloutsos [26] analyzed these for a variety of graph properties using
random node/edge selection and random walks.

2.4 Deterministic Filtering
As mentioned in the introduction, Girvan and Newman [18, 27] re-
moved high-BC edges to isolate hubs to facilitate their clustering.
Auber et al. [2] filtered out weak edges in a weighted graph to display
a clustered hierarchy of strongly connected graph components. Both
Lee et al. [25] and Boutin et al. [6] filter graphs by growing a tree
of nodes and edges from a user selected root node, the latter yielding
a spanning tree whose degree-based construction retained the scale-
free statistics of the original graph, and adding back “short edges”
to preserve small clusters. Such tree-growing filters resemble graph
spanners [28] which yield a metric-approximate subgraph, whereas
our approach removes low-BC edges to yield a communications-
approximate subgraph.

3 EDGE FILTERING

Given a graph G = {V,E}, we find a simplified subgraph G′= {V,E ′⊆
E} such that nodes connected by a pathway in G remain connected
by some pathway in G′. We also identify and mark feature edges,
(specifically those that form cliques) in G so they can be preserved
in G′. We compute and assign an edge metric bc(e) (approximating
betweenness centrality). We remove only unmarked edges in order of
non-decreasing bc(e), and only those edges whose removal does not
increase the number of connected components.

Fig. 2 illustrates the implementation of this process. The initial con-
nectivity test determines the number of connected components in the
initial graph. An input graph with multiple components is handled by
processing each of its connected component individually. For the sake
of discussion, we assume G contains a single connected component.

We then compute and assign the edge metric. We use a faster ap-
proximation of betweenness centrality described in Sec. 4. We also
optionally detect graph features and mark relevant edges to prevent
them from being filtered. Feature detection can happen concurrently
with edge metric assignment unless the feature is based on the metric.
In Sec. 3.1 we describe a simple clique detection.

For edge filtering, we store all unmarked edges in a priority queue
sorted by non-decreasing metric. With each node, we also store its
degree. Before we remove an edge, we check the degree of its two
nodes. Only if both degrees exceed two do we remove the edge and
decrement them. This degree test helps but does not guarantee that the
graph remain connected. To preserve graph connectivity we perform a
post-processing pass described in Sec. 3.2.

We continue to remove edges in priority queue order until we reach
a user-specified number of edges or a desired edge-metric threshold.
The result is a simplified subgraph. We run a layout algorithm on the
simplified graph G′, which generally produces better results than it
would on the original G.

3.1 Feature Detection
The edge filtering system supports feature preservation by marking
edges and preventing their removal. Such features can be local or



Node/Edge No. 1458/1948

1450 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950
0

1

2

3

4

5

6

7
x 10

7

Remaining Edges

E
rr

or

SSE of Distance Matrix

 

 

Random edge sampling
Geodesic clustering
Edge filtering with betweenness centrality (BC)
Edge filtering with approximated BC

1450 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Remaining Edges

E
rr

or

RMSE of Betweenness Centrality

 

 

Random edge sampling
Edge filtering with betweenness centrality (BC)
Edge filtering with approximated BC

Fig. 3. (Left) Plot of the relative error of our BC approximation on the graph “bo.” Errors tend to occur closer to cluster centers, and fall within a
factor of two of actual BC in almost all edges. (Center) Summed squared error between the geodesic distance matrix of the original graph and
that of the graph simplified by random sampling, geodesic clustering and our method, for the graph “bo.” (Right) Root-mean-square error of node
betweenness centrality when comparing that of the original graph to that of graphs simplified by random sampling and our method, for the graph
“bo.”

global graph features or user-defined external features. We demon-
strate this ability by detecting and preserving cliques, which are max-
imally connected subgraphs that often represent nodes equally and
closely related. For example, stocks that form a clique in a correlation
financial network indicate different companies in the same financial
sector [5].

Detecting maximum cliques in graphs is an NP-Complete problem.
We implemented a fast heuristic, described elsewhere [11], to find
highly-connected components in graphs. It was originally used to find
clusters in software systems [11] and applied to visualize small world
networks [2], but only recently shown to detect graph cliques [1] in
time O(mdeg(G)) where deg(G) is the maximum node degree of the
graph G. Since G is connected, its degree is at least two, and at most
n− 1. Given their degree distribution, clique detection in scale-free
networks is thus likely O(mn).

Clique detection and preservation is demonstrated by the five highly
connected subgraphs of the financial graph visualized in Fig. 7(right).

3.2 Connectivity Post Processing
An inefficient method to preserve graph connectivity during edge fil-
tering would be to check whether an edge removal separated the graph
into two components, but this approach would take O(n(m−m′)) time,
where m−m′ represents the number of edges removed during edge fil-
tering.

Instead, we use a post processing procedure to recover graph con-
nectivity after edge filtering is finished. We maintain an ordered list
recording all of the edge removals. (The list order should coincide
with its edge’s metric order). If G′ contains more than one compo-
nent, then we label each node in G′ according to its connected com-
ponent. We then iterate through the removed edges in reverse order of
removal. If an edge links a pair of nodes belonging to different com-
ponents of G′, then we restore that edge to G′ and relabel the nodes in
the two newly joined components to indicate it is now a single com-
ponent. The iteration continues until G′ contains a single component,
and takes O(n+m−m′) time.

The preservation of connectivity, when combined with the between-
ness centrality metric, tends to retain shortest paths which depict likely
communication pathways for visualization and also aid shortest dis-
tance queries for data mining applications.

4 BETWEENNESS CENTRALITY APPROXIMATION

Though many edge metrics currently exist, we focus specifically on
metrics based on shortest paths to accentuate the communication path-
ways in a scale-free network. The shortest path, a.k.a. geodesic
path, is a conventional choice for measuring the relative importance
of edges [31, 32]. Our edge metric is a fast approximation of between-
ness centrality which counts the number of shortest paths through an

edge.
Computing the shortest paths from all nodes to measure edge BC

can be very expensive for large graphs. The all pairs shortest path
(APSP) can be computed in time O(nm+n2) by computing BFS from
every node [20]. One can also compute APSP in O(n3) time via
the Floyd-Warshall algorithm. Brandes’s algorithm [7] for comput-
ing node BC runs similarly in O(nm) time for unweighted graphs and
O(nm+n2 logn) time for weighted graphs.

Betweenness centrality can be estimated more efficiently. By
looking at a subset of vertices proportional to logn/ε2, BC can be
estimated to at worst εn(n − 1) with probability 1/n in O((m +
n)(logn)/ε2) on an unweighted graph or O((m + n logn)(logn)/ε2)
on a weighted graph[20]. Lloyd’s algorithm can also be used to dis-
tribute random “pivots” from which to compute BC [10].

Adaptive sampling improves the estimate, where the number of
samples needed is affected by the results of the samples. The be-
tweenness centrality of a vertex can be estimated as n2/t for some
t ≥ 1, within a factor of 1/ε, for ε < 1/2, by running single source
shortest path (SSSP) from only ε× t nodes [3].

For scale-free networks, we find that the betweenness centrality of
an edge can be approximated sufficiently well by counting the number
of shortest paths between only the highest degree hub nodes. Restrict-
ing the shortest-path end nodes reduces the absolute BC but since we
use it as a metric for edge filtering, it only needs to construct a relative
edge ordering.

Since the node degree distribution is logarithmic, we select only
c log(n) of the highest degree hub nodes, where c = 10 in our imple-
mentation. This BC approximation thus runs in time O((m+n) logn)
for unweighted graphs, and O((m+n) log2 n) for weighted graphs. An
example of the fidelity of this approximation is shown in Fig. 3 (left).
For small graphs, we will select at least 50 hub nodes.

5 RENDERING

The conventional depiction of a graph via constant color line rasteriza-
tion does not work well for large graphs, as shown in Figure 4, as the
number of edges can overwhelm display resolution, visual acuity and
perceptual processing. We have thus adapted several approaches from
photorealistic computer graphics to help with the visual depiction of
large power-law graphs.

We use alpha blending to rasterize very thin lines. For conventional
two-dimensional layouts, we display edges in order of increasing edge
metric, such that more important edges occlude less important ones.

We use color to highlight the degree distribution of power-law
graphs, as shown in Fig. 4, to accentuate hubs among a mass of criss-
crossing edges. We use a cold-to-warm color map indexed by node
degree, which perceptually brings warm-colored high-degree hubs to



Edge No. 820981

Fig. 4. Graph “flickr” edge filtered with edges colored by degree, laid out
with FR [16].

the foreground and allows the remaining cool-colored low-degree el-
ements to be slightly less distracting in the background. Since we
display edges instead of nodes, we interpolate node colors along each
edge.

Since node degree is distributed according to a power-law, mapping
colors linearly to degree does not adequately differentiate node degree.
We instead borrow a tone-mapping technique, originally developed for
converting physical power to perceptual brightness [30], to get the map

t(v) = deg(v)
1+deg(v)d/deg(G′)2

d +deg(v)
(2)

where t(v) is the logarithmic color index used to color node v, deg(G′)
is the maximum degree in the (simplified) displayed graph G′, and d
is a user parameter indicating the degree that should map to t = 1/2
with the assumption deg(G′)� d.

For dense graphs such as scale-free networks, anisotropic shading
conveys directionality and allows the user to distinguish individual
edges. We have applied a technique originally developed for shad-
ing fibrous materials such as fur to the similarly dense lines present
in power law graph visualizations [21]. Fig. 5 demonstrates how
anisotropic shading conveys form and directionality by highlighting
edges based on their orientation.

6 RESULTS

In this section, we verify our method with error analyses and visual
results. These results are based on 2-D layouts computed by either the
GEM layout method or 100 iterations of the FR force-directed layout
method.

6.1 Error Analysis
To verify our sampling method quantitatively, we measured the er-
rors of various graph metrics introduced by various simplification ap-
proaches, namely random edge sampling [29, 26] and geodesic cluster-
ing [32]. We averaged the errors generated by random edge sampling
over three separate executions. We also compared our edge filtering
performance using the exact edge BC computed on the original graph
and our approximation of edge BC computed using shortest paths only
between the highest-degree hubs.

Fig. 3 (center) indicates how simplification distorts the shortest
paths of a graph. For each graph including the original, we compute an

Edge No. 820981

Fig. 5. Graph “flickr” edge filtered with anisotropic shading, laid out with
FR [16].

n2 distance matrix containing the length of the shortest path between
the row’s node and the column’s node. This distance matrix is used
for graph mining [32], and is sensitive to changes in the graph. We
then measure the sum of the squared differences of these distance ma-
trix elements from those of the original’s, for graphs whose edges are
filtered from the original m edges to the minimum n−1 spanning-tree
edges needed to maintain a connected subgraph.

Fig. 3 (right) indicates how removing edges in order of the original
graph’s edge betweenness centrality affects the betweenness centrality
of the nodes in the simplified graph. Node BC is less sensitive than the
distance matrix to changes in the graph. Note that our filtering order
relies on the edge BC of the original graph and the filtering method
does not recompute the BC ordering when each edge is removed. In
this RMS error graph, we compare the recomputed node BC against
the original node BC to determine the node BC error introduced by
simplification. Because BC is not defined for cluster hierarchies, we
did not compare geodesic clustering.

Both comparisons show our method generates fewer errors than
previous methods for a reasonable number of edges in the simplified
graph, which is at least 1500 for graph “bo”. Moreover, the approx-
imate BC metric filtering performs about as well as exact BC metric
filtering, which further justifies the approximation.

As the number of remaining edges approaches the number of nodes,
the error of our approach increases dramatically, likely because low
BC edges are preserved to maintain connectivity, causing even higher
BC edges to be removed instead.

Fewer edges means easier visualization, so we provide a slider that
allows the user to interactively specify the portion of edges to retain
to best compromise visual clarity with graph accuracy. We found em-
pirically that this compromise worked best when retaining 3% more
edges than nodes (plus any feature preserved edges).

6.2 Visual results
We have applied our method to simplify and visualize several graphs
from different areas whose nodes and edges range from hundreds to
millions.

6.2.1 Comparing with clustering methods
Fig. 6 compares our method to geodesic clustering [32] on the graph
“bo.” In both cases, nodes “224” and “1183” are important. Both re-
sults find similar neighboring nodes for “224.” The main differences



Geodesic Clustering (spring layout)

224

1183

Edge No. 1458

224

60
1230 849

1108
548

1577

297

1487

700

1317

1591
1526

4611314268
1210

1229
153

1295

907

1513

204

1329 1422 1414
178

54

1663

806

744
440

14551151
437

772

654
435

786

698

1077

365

1446

9821686
1438

1475

63

439
789

BC filtering (GEM layout)

Fig. 6. Simplification of graph “bo” compared using geodesic clustering and our method.

Interactive Graph Stratification (top level)

JNS

PRU
GE

GS

MER

PFG

Edge No. 703

BC filtering (GEM layout)

Fig. 7. Graph “sp500-38” simplified by interactive graph stratification and our method.



Edge No. 773

(a)
Edge No. 392

(b)

Markus Gross

John Barnwell

Daniel Cohen-Or

Wojciech Matusik

Szymon Rusinkiewicz

Maneesh Agrawala
Fredo Durand

Edge No. 441

(c)

Markus Gross

John Barnwell

Daniel Cohen-Or

Wojciech Matusik

Szymon Rusinkiewicz

Maneesh Agrawala

Fredo Durand

Edge No. 129

(d)

Fig. 8. Visualization of SIGGRAPH 2007 paper author collaboration: (a) original dataset, (b) filtered, (c) largest connected component from original,
and (d) filtered. Each of them has a GEM layout.

Edge No. 8131 Edge No. 2381

Fig. 9. Graph “cg-web” visualized directly (top) and with our edge simplification method (bottom). Each of them has a GEM layout.

between the methods are that our method retains all of the original
nodes and its simplified edges also appear in the original, such that
the elements of the simplification retain the original’s semantics. The
edge between nodes “108” and “224” in the geodesic clustering im-
plies these two proteins interact, but they do not in the original dataset.
However, they do not in the original data. Second, our method pro-
vides a clear overview of all nodes in the graph while their method
only shows a subset.

Fig. 7 compares our method to graph stratification [24] on the graph
“sp500-38,” which represents 3,206 cross correlations of price fluctua-
tion of 365 stocks from the S&P 500. Both extract similar information
from the original graph. Our result detects and preserves five cliques,
and retains the difference between “GS” and “MER” which share few
connections yet get clustered in the graph stratification visualization.

Figure 8 visualizes the 773 co-authorship relations among the SIG-
GRAPH 2007 papers’ 328 authors. This graph is small and contains
a pair of main components, one of which is examined in more detail.
Even for a graph of this smaller size, the edge overlaps produced by the
graph’s non-planarity make it difficult to visualize, whereas out edge
filtering makes the graph planar, allows its layout to be more evenly
distributed, but retains a clear depiction of the original’s hubs.

Fig. 9 visualizes the graph “cg-web,” representing 8,131 links be-
tween 2,269 computational geometry websites. This very dense col-
lection becomes slightly easier to visualize when our edge filtering

reduces it to 2,381 edges, better revealing its hubs and yielding a more
even radial structure.

Fig. 10 visualizes the graph “hep-th,” representing 27,400 citations
among 352,021 high-energy theoretical physics preprints on arXiv.
The mass of nodes and edges makes visualization impractical, but edge
filtering organizes this detail into a connected constellation of clumps
to more clearly identify the seminal publications and areas of research
within this field.

Fig. 11 shows the results on the directed graph data “as-
rel.20071008”, which is obtained from the CAIDA’s ranking of Au-
tonomous Systems. Each of the 26,242 nodes represents the collection
of IP networks and routers under the control of a single entity, and
each of the 53,174 directed edges represents a service. Our filtering
and display ignores edge direction, but edge filtering better organizes
the global and local hubs from their default clump into a more spatious
configuration.

Figures 4 and 5 show the results on the graph data “flickr”, which
represents 6,625,280 friendships of 820,878 users on the photo sharing
website flickr.com. For such massive graphs containing more edges
than pixels, the anisotropic shading techniques better indicate the hubs
in the edge filtered version, and also variation among the otherwise
unform edge directions emanating from the center. The grey square in
right upper corner of the middle image is an interactive widget con-
trolling the lighting direction.



Edge No. 352021 Edge No. 27464

Fig. 10. Graph “hep-th” visualized directly (top) and with our edge simplification method (bottom), both laid out using FR. The blowup illustrates
how the filtered version aids in the presentation of fine graph structure.

6.3 Performance

Graph Nodes Edges Timing
siggraph07 328 773 0.02s
bo 1458 1948 0.44s
sp500-038 365 3206 0.20s
cg-web 2269 8131 1.50s
as-rel.071008 26242 53174 43.66s
hep-th 27400 352021 120.72s
flickr 820878 6625280 12442.70s

Table 1. Edge metric computation performance.

Our experiments validate the complexity analysis of Section 4, with
edge metric evaluation performance proportional to O(log(n)∗m) on
undirected graphs. We found that edge simplification can also im-
prove the performance of the layout algorithm, by 18% on average.
Because our simplification does not affect node count, the all pairs re-
pulsive force computation dominates layout time. Experiments were
performed on a modern workstation. Table 1 summarizes our results.

7 CONCLUSION

We have discovered, through the course of filtering edges to remove
distracting edge crossings in large non-planar graphs, that reducing
edge count while maintaining node count facilitates faster and better
appearing layouts. We have also discovered that limiting the compu-
tation of betweenness centrality to using shortest paths between high-
degree hubs of power-law graphs reduces the time complexity class of
its computation with little cost in visual fidelity. Finally, we have im-
plemented these tools in an interactive graph visualization system that
supports additional high-quality graphics rendering modes that accen-
tuate the hubs in overview visualizations of large scale-free networks.
These discoveries povoke one to consider further the application of
these methods to time varying graphs and their integration into a focus-
based graph exploration system [29].

ACKNOWLEDGEMENTS

This project was supported in part by the NSF under grant IIS-
0534485. We thank David Gleich from Stanford for sharing the
“flickr” dataset.

REFERENCES

[1] D. Archambault, T. Munzner, and D. Auber. Topolayout: Multilevel
graph layout by topological features. IEEE Transactions on Visualiza-
tion and Computer Graphics, 13(2):305–317, 2007.

[2] D. Auber, Y. Chiricota, F. Jourdan, and G. Melancon. Multiscale visu-
alization of small world networks. In IEEE Symposition on Information
Visualisation, pages 75–81, 2003.

[3] D. A. Bader, S. Kintali, K. Madduri, and M. Mihail. Approximating Be-
tweenness Centrality, pages 124–137. Springer, 2007.

[4] A.-L. Barabasi and R. Albert. Emergence of scaling in random networks.
Science, 286:509, 1999.

[5] V. Boginski, S. Butenko, and P. M. Pardalos. Statistical analysis of finan-
cial networks. Computational Statistics & Data Analysis, 48:431–443,
2005.

[6] F. Boutin, J. Thièvre, and M. Hascoët. Focus-based filtering + clustering
technique for power-law networks with small world phenomenon. vol-
ume 6060, page 60600Q. SPIE, 2006.

[7] U. Brandes. A faster algorithm for betweenness centrality. J. Math. Soc.,
25(2):163–177, 2001.

[8] U. Brandes. On variants of shortest-path betweenness centrality and their
generic computation. In review: Social Networks, 2007.

[9] U. Brandes, M. Gaertler, and D. Wagner. Experiments on Graph Cluster-
ing Algorithms. Springer Berlin / Heidelberg, 2003.

[10] U. Brandes and C. Pich. Centrality estimation in large networks. Intl. J.
Bifurcation & Chaos, 17(7):2303–2318, 2007.

[11] Y. Chiricota, F. Jourdan, and G. Melancon. Software components capture
using graph clustering. In Program Comprehension, 2003. 11th IEEE
International Workshop on, pages 217–226, 2003.

[12] R. Davidson and D. Harel. Drawing graphs nicely using simulated an-
nealing. ACM Transactions on Graphics, 15(4):301–331, 1996.

[13] P. A. Eades. A heuristic for graph drawing. In Congressus Numerantium,
volume 42, pages 149–160, 1984.

[14] L. C. Freeman. A set of measures of centrality based upon betweenness.
Sociometry, 40(1):35–41, 1977.

[15] A. Frick, A. Ludwig, and H. Mehldau. A fast adaptive layout algorithm
for undirected graphs. In GD ’94: Proceedings of the DIMACS Interna-
tional Workshop on Graph Drawing, number 894, pages 388–403, 1994.

[16] T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-
directed placement. Software - Practice and Experience, 21(11):1129–
1164, 1991.

[17] P. Gajer and S. G. Kobourov. GRIP: Graph dRawing with intelligent
placement. In GD ’00: Proceedings of the 8th International Symposium
on Graph Drawing, pages 222–228, 2000.

[18] M. Girvan and M. E. J. Newman. Community structure in social and
biological networks. Proceedings of the National Academy of Sciences,



AT&T WorldNet Services
Sprint

UUNET Technologies, Inc.Level 3 Communications, Inc.
Cogent Communications

Edge No. 53174

AT&T WorldNet Services

Sprint

UUNET Technologies, Inc.

Level 3 Communications, Inc.

Cogent Communications

Edge No. 26575

Global Crossing

Teleglobe Inc
Swisscom Enterprise Solutions Ltd

Tiscali Intl Network

European Backbone of LambdaNet

KPN Internet Backbone AS

Interoute Communications Ltd

COLT Telecommunications

TeliaNet Global Network

Abovenet Communications, Inc

MCI EMEA

Interoute Communications Ltd

Teleglobe Inc

GT Group Telecom Services Corp.

TeliaNet Global Network

European Backbone of LambdaNet

COLT Telecommunications

Swisscom Enterprise Solutions Ltd

NTT America, Inc.

Tiscali Intl Network

Global Crossing

Savvis

SBC Internet Services

Fig. 11. Graph “as-rel.20071008” visualized directly (left column) and with our edge simplification method (right column). Labels are drawn for
important nodes in the dataset. Each of them has an FR layout. More details about this dataset can be found at http://as-rank.caida.org/ and its
ranking on Oct. 8 2007.

99(12):7821–7826, 2002.
[19] S. Hachul and M. Jünger. Drawing large graphs with a potential-field-

based multilevel algorithm. In Graph Drawing, pages 285–295, 2004.
[20] R. Jacob, D. Koschutzki, K. A. Lehmann, L. Peeters, and D. Tenfelse-

Podehl. Algorithms for Centrality Indices, pages 62–82. Springer, 2005.
[21] J. T. Kajiya and T. L. Kay. Rendering fur with three dimensional textures.

SIGGRAPH Comput. Graph., 23(3):271–280, 1989.
[22] T. Kamada and S. Kawai. An algorithm for drawing general undirected

graphs. Inf. Process. Lett., 31(1):7–15, 1989.
[23] Y. Koren, L. Carmel, and D. Harel. Drawing huge graphs by algebraic

multigrid optimization. Multiscale Modeling & Simulation, 1(4):645–
673, 2003.

[24] G. Kumar and M. Garland. Visual exploration of complex time-varying
graphs. IEEE Transactions on Visualization and Computer Graphics,
12(5):805–812, 2006.

[25] B. Lee, C. S. Parr, C. Plaisant, B. B. Bederson, V. D. Veksler, W. D.
Gray, and C. Kotfila. Treeplus: Interactive exploration of networks with
enhanced tree layouts. IEEE Transactions on Visualization and Computer
Graphics, 12(6):1414–1426, 2006.

[26] J. Leskovec and C. Faloutsos. Sampling from large graphs. In KDD
’06: Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 631–636, 2006.

[27] M. E. J. Newman. Detecting community structure in networks. European
Physical Journal, B 38:321–330, 2004.

[28] D. Peleg and A. A. Schaffer. Graph spanners. J. Graph Theory, 13(1):99–
116, 1989.

[29] D. Rafiei and S. Curial. Effectively visualizing large networks through
sampling. In IEEE Visualization, page 48, 2005.

[30] E. Reinhard. Parameter estimation for photographic tone reproduction. J.
Graph. Tools, 7(1):45–52, 2002.

[31] S. White and P. Smyth. Algorithms for estimating relative importance
in networks. In KDD ’03: Proceedings of the ninth ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining, pages
266–275, 2003.

[32] A. Y. Wu, M. Garland, and J. Han. Mining scale-free networks using
geodesic clustering. In KDD ’04: Proceedings of the tenth ACM SIGKDD
international conference on Knowledge discovery and data mining, pages
719–724, 2004.


