
Information Dynamics in the Networked World

Bernardo A. Huberman and Lada A. Adamic

HP Labs, 1501 Page Mill Road, Palo Alto CA 94304, USA

Abstract. We review three studies of information flow in social networks that help
reveal their underlying social structure, how information spreads among them and why
small world experiments work.

1 Introduction

The problem of information flows in social organizations is relevant to issues
of productivity, innovation and the sorting out of useful ideas from the general
chatter of a community. How information spreads determines the speed by which
individuals can act and plan their future activities. Moreover, information flows
take place within social networks whose nature is sometimes difficult to establish.
This is because the network itself is sometimes different from what one would
infer from the formal structure of the group or organization.

The advent of email as the predominant means of communication in the
information society now offers a unique opportunity to observe the flow of in-
formation along both formal and informal channels. Not surprisingly, email has
been established as an indicator of collaboration and knowledge exchange [1–5].
Email is also a good medium for social network research because it provides
plentiful data on personal communication in an electronic form. This volume of
data enables the discovery of shared interests and relationships where none were
previously known [6].

In this chapter we will review three studies that utilized networks exposed by
email communication. In all three studies, the networks analyzed were derived
from email messages sent through the Hewlett Packard Labs email server over
the period of several months in 2002 and 2003. The first study, by Tyler et al.
[4], develops an automated method applying a betweenness centrality algorithm
to rapidly identify communities, both formal and informal, within the network.
This approach also enables the identification of leadership roles within the com-
munities. The automated analysis was complemented by a qualitative evaluation
of the results in the field.

The second study, by Wu et al. [7] analyzes email patterns to model infor-
mation flow in social groups, taking into account the observation that an item
relevant to one person is more likely to be of interest to individuals in the same
social circle than those outside of it. This is due to the fact that the similarity
of node attributes in social networks decreases as a function of the graph dis-
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tance. An epidemic model on a scale-free network with this property has a finite
threshold, implying that the spread of information is limited. These predictions
were tested by measuring the spread of messages in an organization and also by
numerical experiments that take into consideration the organizational distance
among individuals.

Since social structure affects the flow of information, knowledge of the com-
munities that exist within a network can also be used for navigating the networks
when searching for individuals or resources. The study by Adamic and Adar [8],
does just this, by simulating Milgram’s small world experiment on the HP Labs
email network. The small world experiment has been carried out a number of
times over the past several decades, each time demonstrating that individu-
als passing messages to their friends and acquaintances can form a short chain
between two people separated by geography, profession, and race. While the ex-
istence of these chains has been established, how people are able to navigate
without knowing the complete social networks has remained an open question.
Recently, models have been proposed to explain the phenomenon, and the work
of Adamic and Adar is a first study to test the validity of these models on a
social network.

2 Email as Spectroscopy

Communities of practice are the informal networks of collaboration that natu-
rally grow and coalesce within and outside organizations. Any institution that
provides opportunities for communication among its members is eventually
threaded by communities of people who have similar goals and a shared un-
derstanding of their activities [9]. These communities have been the subject of
much research as a way to uncover the reality of how people find information
and execute their tasks. (for example, see [10–12], or for a survey see [13]).

These informal networks coexist with the formal structure of the organization
and serve many purposes, such as resolving the conflicting goals of the institution
to which they belong, solving problems in more efficient ways [14], and furthering
the interests of their members. Despite their lack of official recognition, informal
networks can provide effective ways of learning, and with the proper incentives
actually enhance the productivity of the formal organization [15–17].

Recently, there has been an increased amount of work on identifying com-
munities from online interactions (a brief overview of this work can be found in
[1]). Some of this work finds that online relationships do indeed reflect actual so-
cial relationships, thus adding effectively to the “social capital” of a community.
Ducheneaut and Bellotti [18] conducted in-depth field studies of email behavior,
and found that membership in email communities is quite fluid and depends on
organizational context. Mailing lists and personal web pages also serve as prox-
ies for social relationships [19], and the communities identified from these online
proxies resemble the actual social communities of the represented individuals.
Because of the demonstrated value of communities of practice, a fast, accurate
method of identifying them is desirable.
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Classical practice is to gather data from interviews, surveys, or other field-
work and to construct links and communities by manual inspection (see [20,21]
or an Internet-centric approach in [22]). These methods are accurate but time-
consuming and labor-intensive, prohibitively so in the context of a very large
organization. Alani et al. [23] recently introduced a semi-automated utility that
uses a simple algorithm to identify nearest neighbors to one individual within a
university department.

The method of Tyler et al. [4] uses email data to construct a network of cor-
respondences, and then discovers the communities by partitioning this network.
It was applied to a set of over one million email messages collected over a period
of roughly two months at HP Labs in Palo Alto, an organization of approxi-
mately 400 people. The only pieces of information used from each email are the
names of the sender and receiver (i.e., the “to:” and “from:” fields), enabling the
processing of a large number of emails while minimizing privacy concerns.

The method was able to identify small communities within the organiza-
tion, and the leaders for those communities, in a matter of hours, running on
a standard Linux desktop PC. This experiment was followed by a qualitative
evaluation of the experimental results in the “field”, which consisted of sixteen
face-to-face interviews with individuals in HP Labs. The interviews validated the
results obtained by the automated process, and provided interesting perspectives
on the communities identified. We describe the results in more detail below.

2.1 Identifying Communities

It is straightforward to construct a graph based on email data, in which vertices
represent people and edges are added between people who exchanged at least a
threshold number of email messages. Next, one can identify communities: subsets
of related vertices, with many edges connecting vertices of the same subset, but
few edges lying between subsets [24].

The method of Wilkinson and Huberman [25], related to the algorithm of
Girvan and Newman [24], partitions a graph into discrete communities of nodes
and is based on the idea of betweenness centrality, or betweenness, first proposed
by Freeman [26]. The betweenness of an edge is defined as the number of all-
pair shortest paths that traverse it. This property distinguishes inter-community
edges, which link many vertices in different communities and have high between-
ness, from intra-community edges, whose betweenness is low.

To illustrate the community discovery process, consider the small graph
shown in Fig. 1. This graph consists of two well-defined communities: the four
vertices denoted by squares, including vertex A, and the nine denoted by circles,
including vertex B. Edge AB has the highest betweenness, because all paths
between any circle and square must pass through it. If one were to remove it,
the squares and circles would be split into two separate communities. The al-
gorithm of Wilkinson et al. repeatedly identifies inter-community edges of large
betweenness such as AB and removes them, until the graph is resolved into many
separate communities.
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Fig. 1. An example graph with edge AB having high betweenness.

 

Fig. 2. The smallest possible graph of two viable communities.

Because the removal of an edge strongly affects the betweenness of many oth-
ers, the values were repeatedly updated with the fast algorithm of Brandes [27,
28,24]. The procedure stops removing edges when it cannot further meaningfully
subdivide communities. Figure 2 shows the smallest possible component that can
be subdivided into two viable subcommunities. It has 6 nodes, consisting of two
triangles linked by one edge. A component with fewer than 6 nodes cannot be
subdivided further.

Components of size ≥ 6, for example the group of size nine in Fig. 1, can
also constitute single cohesive communities. Figure 3 shows how the algorithm
determines when to stop subdividing a community. The edge XY has the highest
betweenness, but removing it would separate a single node, which does not con-
stitute a viable community. In general, the single edge connecting a leaf vertex
(such as X in Fig. 3) to the rest of a graph of N vertices has a betweenness of
N − 1 , because it contains the shortest path from X to all N − 1 other vertices.
The stopping criterion for components of size ≥ 6 is therefore that the highest
betweenness of any edge in the component be equal to or less than N − 1.

 

X 

Y

Fig. 3. An example graph of one community that does not contain distinct sub-
communities.
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2.2 Multiple Community Structures

As mentioned above, the removal of any one edge affects the betweenness of all
the other edges, particularly in large, real-world graphs such as the email graph.
Early in the process, there are many inter-community edges which have high
betweenness and the choice of which to remove, while arbitrary, dictates which
edges will be removed later. For example, a node belonging to two communities
can be placed in one or the other by the algorithm, depending on the order in
which edges are removed. One can take advantage of this arbitrariness to repeat-
edly partition the graph into many different “structures” or sets of communities.
These sets are then compared and aggregated into a final list of communities.

Wilkinson and Huberman [25] introduced randomness into the algorithm
by calculating the shortest paths from a random subset as opposed to all the
nodes. The algorithm cycles randomly through at least m centers (where m is
some cutoff) until the betweenness of at least one edge exceeds the threshold
betweenness of a “leaf” vertex. The edge whose betweenness is highest at that
point is removed, and the procedure is repeated until the graph has been sep-
arated into communities. The modified algorithm may occasionally remove an
intra-community edge, but such errors are unimportant when a large number of
structures is aggregated.

Applying this modified process n times yields n community structures im-
posed on the graph. One can then compare the different structures and identify
communities. For example, after imposing 50 structures on a graph, one might
find: a community of people A, B, C, and D in 25 of the 50 structures; a com-
munity of people A, B, C, D, and E in another 20; and one of people A, B, C,
D, E and F in the remaining 5. This result is reported in the following way:
A(50) B(50) C(50) D(50) E(25) F(5) which signifies that A, B, C, and D form
a well-defined community, E is related to this community, but also to some
other(s), and F is only slightly, possibly erroneously, related to it. For details of
the aggregation procedure, please see [25].

The entire process of determining community structure within the graph is
displayed below.

– For i iterations, repeat {
1. Identify disjoint components of the graph.
2. For each component, check to see if component is a community.

– If so, remove it from the graph and output it.
– If not, remove edges of highest betweenness, using the modified Bran-

des algorithm for large components, and the normal algorithm for
small ones. Continue removing edges until the community splits in
two.

3. Repeat step 2 until all vertices have been removed from the graph in
communities. }

– Aggregate the i structures into a final list of communities.
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2.3 Results

The algorithm was applied to email data from the HP Labs mail server from
the period November 25, 2002 to February 18, 2003, with 185,773 emails ex-
changed between the 485 HP Labs employees. For simplicity, emails that had
an external origin or destination were omitted. Messages sent to a list of more
than 10 recipients were likewise removed, as these emails were often lab-wide
announcements (rather than personal communication), which were not useful in
identifying communities of practice.

A graph was constructed from this data by placing edges between any two
individuals that had exchanged at least 30 emails in total, and at least 5 in both
directions. The threshold eliminated infrequent or one-way communication, and
eliminated some individuals from the graph who either sent very few emails or
used other email systems. The resulting graph consisted of 367 nodes, connected
by 1110 edges.

There was one giant connected component of 343 nodes and six smaller com-
ponents ranging in size from 2 to 8. The modified Brandes algorithm detected 60
additional distinct communities within the giant component. The largest com-
munity consisted of 57 individuals. The mean community size was 8.4, with
standard deviation 5.3. A comparison of these communities with information
from the HP corporate directory revealed that 49 of the 66 communities con-
sisted of individuals entirely within one lab or organizational unit. The remaining
17 contained individuals from two or more organizations within the company.

2.4 Identifying Leadership Roles

In addition to identifying formal and informal work communities, it is also pos-
sible to draw inferences about the leadership of an organization from its commu-
nication data. One method is to visualize the above graph of the HP Labs email
network with a standard force-directed spring algorithm [29], shown in Fig. 4.
This spring layout of the email network does not use any information about the
actual organization structure, and yet high level managers (the reddest nodes
are at the top of the hierarchy) are placed close to the center of the graph. The
trend is quantified in Table 1, which lists the average hierarchy depth (levels
from the lab director) as a function of the position in the layout from the center.

Note that there is a group of 6 nodes in the upper right portion of the graph
that are quite removed from the center, but are relatively high in the organiza-
tional hierarchy. This is the university relations group that reports directly to
the head of HP Labs, but has no other groups reporting to it. Hence the layout
algorithm correctly places them on the periphery of the graph, since their func-
tion, that of managing HP’s relationship with universities, while important, is
not at the core of day-to-day activities of the labs.

Evaluating communication networks with this technique could provide infor-
mation about leadership in communities about which little is known. Sparrow
proposed this approach for analyzing criminal networks [30], noting that “Eu-
clidean centrality is probably the closest to the reality” of the current criminal
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Fig. 4. The giant connected component of the HP Labs email network. The redness
and size of a vertex indicates an individual’s closeness to the top of the lab hierarchy
(red-close to top, blue-far from top, black-no data available).

Table 1. Average hierarchy depth by distance from center in layout

distance from center number of vertices average depth in hierarchy
< 0.1 14 2.6

0.1 to 0.2 32 3.0
0.2 to 0.3 56 3.2
0.3 to 0.4 66 4.0
0.4 to 0.5 56 4.0
0.5 to 0.6 45 4.2
0.6 to 0.7 42 4.0
0.7 to 0.8 12 3.9
0.8 to 0.9 13 3.8

network analysis techniques. More recently, Krebs applied centrality measures
and graphing techniques [31] to the terrorist networks uncovered in the 9/11
aftermath. He found that the average shortest path was unusually long for such
a small network, and concluded that the operation had traded efficiency for se-
crecy - individuals in one part of the network did not know those in other parts
of the network. If one cell had been compromised, the rest of the network would
remain relatively unaffected. Several social network centrality measures pointed
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to Mohamed Atta’s leadership role in the attacks of Sept. 11. The role was also
confirmed by Osama bin Laden in a video tape following the attacks.

2.5 Field Evaluation

The HP Labs social network, being much less covert, could readily be compared
to the structure of the formal organization. Nevertheless, the informal commu-
nities identified by the algorithm could not be verified in this way. Tyler et al.
decided to validate the results of their algorithm by conducting a brief, infor-
mal field study. Sixteen individuals chosen from seven of the sixty communities
identified were interviewed informally. The communities chosen represented var-
ious community sizes and levels of departmental homogeneity. They ranged in
size from four to twelve people, and three out of the seven were heterogeneous
(included members of at least two different departmental units within the com-
pany).

All sixteen subjects gave positive affirmation that the community reflected
reality. More specifically, eleven described the group as reflecting their depart-
ment, four described it as a specific project group, and one said it was a dis-
cussion group on a particular topic. Nine of the sixteen (56.25%) said nobody
was missing from the group, six people (37.5%) said one person was missing,
and one person (6.25%) said two people were missing. Conversely, ten of the
sixteen (62.5%) said that everybody in the group deserved to be there, whereas
the remaining six (37.5%) said that one person in the group was misclassified.

The interviews confirmed that most of the communities identified were based
on organization structure. However, the communities also tended to include peo-
ple who were de facto department members, but who did not technically appear
in the department’s organization chart, such as interns or people whose directory
information had changed during the two months of the study. Finally, the algo-
rithm seemed to succeed in dividing departmental groups whose work is distinct,
but lumped together groups whose projects overlap.

Heterogeneous, cross-department communities are of particular interest be-
cause they cannot be deduced from the formal organization. The interviews
revealed that most of them represented groups formed around specific projects,
and in one case, a discussion forum. For example, one community contained
three people from different labs coordinating on one project: a technology trans-
fer project manager, a researcher who was the original designer of a piece of PC
hardware, and an engineer redesigning the hardware for a specific printer.

2.6 Discussion

The power of this method for identifying communities and leadership is in its
automation. It does an effective job of uncovering communities of practice with
nothing more than email log (“to:” and “from:”) data. The betweenness cen-
trality measures can be further augmented to incorporate weights on the edges,
representing, for example, the frequency of communication along a link [32].
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Because the method of Wilkinson et al. [25] needs to re-run the Brandes al-
gorithm every time an edge is removed, the algorithm has a running time of
O(n3). Even faster algorithms, that can identify communities in O(n2) [33] and
O(n) [34] time have since been developed. The simplicity and speed of these
new algorithms means that they can be applied to organizations of thousands
to hundreds of thousands and produce results efficiently.

Communities identified in this automated way lack the richness in contex-
tual description provided by ethnographic approaches. They do not reveal the
nature or character of the identified communities, the relative importance of one
community to another, or the subtle inter-personal dynamics within the com-
munities. These kinds of details can only be uncovered with much more data-
or labor-intensive techniques. However, in cases where an organization is very
large, widely dispersed, or incompletely defined (informal), this method provides
an suitable alternative or compliment to the more traditional, labor-intensive ap-
proaches.

3 Information Flow in Social Groups

In the previous section we saw that individuals tend to organize both formally
and informally into groups based on their common activities and interests. In
this section we examine how this structure in the interaction network affects the
way information spreads. This is not unlike the transmission of an infectious
agent among individuals, where the pattern of contacts determines how far a
disease spreads. Thus one would expect that epidemic models on graphs are
relevant to the study of information flow in organizations.

As we will show shortly (see, for example Fig. 8), e-mail networks can form
scale free graphs. This is of particular interest, since recent work on epidemic
propagation on scale free networks found that the threshold for an epidemic
is zero, implying that a finite fraction of the graph becomes infected for arbi-
trarily low transmission probabilities [35–37]. The presence of additional network
structure was found to further influence the spread of disease on scale-free graphs
[38–40].

There are, however, differences between information flows and the spread
of viruses. While viruses tend to be indiscriminate, infecting any susceptible
individual, information is selective and passed by its host only to individuals
the host thinks would be interested in it. The information any individual is
interested in depends strongly on their characteristics. Furthermore, individuals
with similar characteristics tend to associate with one another, a phenomenon
known as homophily [41–43]. Conversely, individuals many steps removed in a
social network on average tend not to have as much in common, as shown in a
study [19] of a network of Stanford student homepages and illustrated in Fig. 5.

Wu et al. [7] introduced an epidemic model with decay in the transmission
probability of a particular piece of information as a function of the distance
between the originating source and the current potential target. This epidemic
model on a scale-free network has a finite threshold, implying that the spread
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Fig. 5. Average similarity of Stanford student homepages as a function of the number
of hyperlinks separating them.

of information is limited. The predictions were further tested by observing the
prevalence of messages in an organization and also by numerical experiments
that take into consideration the organizational distance among individuals.

Consider the problem of information transmission in a power-law network of
interacting individuals, where the degree distribution is given by

pk = Ck−αe−k/κ, (1)

where α > 1, there is an exponential cutoff at κ and C is determined by the
normalization condition. A real world graph will at the very least have a cutoff
at the maximum degree k = N , where N is the number of nodes, and many
networks show a cutoff at values much smaller than N . For their analysis, Wu
et al. [7] made use of generating functions, whose application to graphs with
arbitrary degree distributions is discussed in [44]. The generating function of the
distribution is

G0(x) =
∞∑

k=1

pkx
k =

Liα(xe−k/κ)
Liα(e−1/κ)

. (2)

where Lin(x) is the nth polylogarithm of x.
Following the analysis in [45] for the SIR (susceptible, infected, removed)

model, one can estimate the probability p(1)l that the first person in the com-
munity who has received a piece of information will transmit it to l of their
neighbors. Using the binomial distribution, we find

p
(1)
l =

∞∑

k=l

pk

(
k

l

)
T l(1− T )k−l, (3)

where the superscript “(1)” refers to first neighbors, those who received the
information directly from the initial source. The transmissiblity T is the average
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total probability that the information will be transmitted across an edge in the
network from a infective individual to a susceptible neighbor. T is derived in
[45] as a function of rij , the rate of contacts between the two nodes, and τi, the
time a node remains infective. If we assume to a first approximation that rij and
τi are iid randomly distributed according to the distributions P (r) and P (τ),
then the item will propagate as if all transmission probabilities are equal to a
constant T .

T = 〈Tij〉 = 1−
∫ ∞

0
drdτP (r)P (τ)e−rτ (4)

The generating function for p(1)m is given by

G(1)(x) =
∞∑

l=0

∞∑

k=l

pk

(
k

l

)
T l(1− T )k−lxl (5)

= G0(1 + (x− 1)T ) = G0(x;T ). (6)

Suppose the transmissibility decays as a power of the distance from the initial
source. We choose this weakest form of decay as the results that are obtained
from it will also be valid for stronger functional forms. Then the probability that
an mth neighbor will transmit the information to a person with whom he has
contact is given by

T (m) = (m+ 1)−βT, (7)

where β > 0 is the decay constant. T (m) = T at the originating node (m = 0)
and decays to zero as m→∞.

The generating function for the transmission probability to 2nd neighbors
can be written as

G(2)(x) =
∑

k

p
(1)
k [G(1)

1 (x)]k = G(1)(G(1)
1 (x)), (8)

where

G
(1)
1 (x) = G1(x; 2−βT ) = G1(1 + (x− 1)2−βT ) (9)

and

G1(x) =
∑
k kpkx

k

x
∑
k kpk

=
G′

0(x)
G′

0(1)
(10)

is the generating function of the degree distribution of a vertex reached by fol-
lowing a randomly chosen edge, not counting the edge itself [44]. Similarly, if we
define G(m)(x) to be the generating function for the number of mth neighbors
affected, then we have

G(m+1)(x) = G(m)(G(m)
1 (x)) for m ≥ 1, (11)
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where

G
(m)
1 (x) = G1(x; (m+ 1)−βT ) = G1(1 + (x− 1)(m+ 1)−βT ). (12)

Or, more explicitly,

G(m+1)(x) = G(1)(G(1)
1 (G(2)

1 (· · ·G(m)
1 (x)))). (13)

The average number zm+1 of (m+ 1)th neighbors is

zm+1 = G(m+1)′
(1) = G

(m)
1

′
(1)G(m)′

(1) = G
(m)
1

′
(1)zm. (14)

So the condition that the size of the outbreak (the number of affected individuals)
remains finite is given by

zm+1

zm
= G

(m)
1

′
(1) < 1, (15)

or

(m+ 1)−βTG′
1(1) < 1. (16)

Note that G′
1(1) does not diverge when α < 3 due to the presence of a cutoff

at κ. For any given T , the left hand side of the inequality above goes to zero
when m→∞, so the condition is eventually satisfied for large m. Therefore the
average total size

〈s〉 =
∞∑

m=1

zm (17)

is always finite if the transmissibility decays with distance.
To compare this result with previous results on disease spread on scale-free

networks, we take as an example a network made up of 106 vertices. We can
define an epidemic to be an outbreak affecting more than 1% or 104 vertices.
Thus for fixed α, κ and β, we can define Tc as the transmissibility above which
〈s〉 would be made to exceed 104.

Figure 6 shows the numerical results of the variation of Tc as a function of
α. When β = 0 (there is no decay in transmission probability), κ = ∞, and
α < 3, Tc is zero and epidemics encompassing more than 104 vertices occur
for arbitrarily small T , as was found in [36]. Keeping β at zero and adding a
cutoff at κ = 100 produces a non-zero critical transmissibility Tc, as was found
in [45]. For α = 2, a typical value for real-world networks, Tc is still very near
zero, meaning that for most values of T , epidemics do occur. However, when we
impose a decay in transmissibility by setting β to 1, Tc rises substantially. For
example, Tc jumps to 0.54 at α = 2 and rises rapidly to 1 as α increases further,
implying that the information may not spread over the network.

In order to validate empirically that the spread of information within a net-
work of people is limited, and hence distinct from the spread of a virus, a sample
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Fig. 6. Tc as a function of α. The three different curves, from bottom to top are: 1)
no decay in transmission probability, no exponential cutoff in the degree distribution
(κ = ∞, β = 0). 2) κ = 100, β = 0, 3) κ = 100, β = 1.

from the mail clients of 40 individuals (30 within HP Labs, and 10 from other
areas of HP, other research labs, and universities) was gathered. Each volunteer
executed a program that identified URLs and attachments in the messages in
their mailboxes, as well as the time the messages were received. This data was
cryptographically hashed to protect the privacy of the users. By analyzing the
message content and headers, the data was restricted to include only messages
which had been forwarded at least one time, thereby eliminating most postings
to mailing lists and more closely approximating true inter-personal information
spreading behavior. The median number of messages in a mailbox in the sample
was 2200, indicating that many users keep a substantial portion of their email
correspondence. Although some messages may have been lost when users deleted
them, it was assumed that a majority of messages containing useful information
had been retained.

Figure 7 shows a histogram of how many users had received each of the 3401
attachments and 6370 URLs. The distribution shows that only a small fraction
(5% of attachments and 10% of URLs) reached more than 1 recipient. Very few
(41 URLs and 6 attachments) reached more than 5 individuals, a number which,
in a sample of 40, starts to resemble an outbreak. In follow-up discussions with
the study subjects, the content and significance of most of these messages was
identified. 14 of the URLs were advertisements attached to the bottom of an
email by free email services such as Yahoo and MSN. These are in a sense viral,
because the sender is sending them involuntarily. It is this viral strategy that was
responsible for the rapid buildup of the Hotmail free email service user base. 10
URLs pointed to internal HP project or personal pages, 3 URLs were for external
commercial or personal sites, and the remaining 14 could not be identified.
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Fig. 7. Number of people receiving URLs and attachments

The next portion of the analysis analyzed the effect of decay in the trans-
mission probability on the email graph at HP Labs. The graph was constructed
from recorded logs of all incoming and outgoing messages over a period of 3
months. The graph has a nearly power-law out degree distribution, shown in
Fig. 8, including both internal and external nodes. Because all of the outgoing
and incoming contacts were recorded for internal nodes, their in and out degrees
were higher than for the external nodes for which we could only record the email
they sent to and received from HP Labs. A graph with the internal and external
nodes mixed (as in [46]) was used to specifically demonstrate the effect of a decay
on the spread of email in a power-law graph.

The spread of a piece of information was simulated by selecting a random
initial sender to infect and following the email log containing 120,000 entries
involving over 7,000 recipients in the course of a week. Every time an infec-
tive individual (one willing to transmit a particular piece of information) was
recorded as sending an email to someone else, they had a constant probability p
of infecting the recipient. Hence individuals who email more often have a higher
probability of infecting. It is also assumed that an individual remains infective
for a period of 24 hours.

Next a decay was introduced in the one-time transmission probability pij
as p d−1.75

ij , where dij is the distance in the organizational hierarchy between
individuals i and j. The exponent roughly corresponds to the decay in similarity
between homepages shown in Fig. 5. Here rij = pij fij , where fij is the frequency
of communication between the two individuals, obtained from the email logs. The
decay represents the fact that individuals closer together in the organizational
hierarchy share more common interests. Individuals have a distance of one to
their immediate superiors and subordinates and to those they share a superior
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with. The distance between someone within HP labs and someone outside of HP
labs was set to the maximum hierarchical distance of 8.

Figure 9 shows the variation in the average outbreak size, and the average
epidemic size (chosen to be any outbreak affecting more than 30 individuals).
Without decay, the epidemic threshold falls below p = 0.01. With decay, the
threshold is set back to p = 0.20 and the outbreak epidemic size is limited to
about 50 individuals, even for p = 1.
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As these results show, the decay of similarity among members of a social
group has strong implications for the propagation of information among them.
In particular, the number of individuals that a given email message reaches
is very small, in contrast to what one would expect on the basis of a virus
epidemic model on a scale free graph. The implication of this finding is that
merely discovering hubs in a community network is not enough to ensure that
information originating at a particular node will reach a large fraction of the
community.

4 Small World Search

In the preceding section we discussed how the tendency of like individuals to
associate with one another can affect the flow of information within an organi-
zation. In this section we will show how one can take advantage of the very same
network structure to navigate social ties and locate individuals.

The observation that any two people in the world are most likely linked by a
short chain of acquaintances, known as the “small world” phenomenon has been
the focus of much research over the last forty years [47–50]. In the 1960’s and 70’s,
participants in small world experiments successfully found paths from Nebraska
to Boston and from Los Angeles to New York. In an experiment in 2001 and
2002, 60,000 individuals were able to repeat the experiment using email to form
chains with just four links on average across different contents [51]. The small
world phenomenon is currently exploited by commercial networking services such
as LinkedIn, Friendster, and Spoke1 to help people network, for both business
and social purposes.

The existence of short paths is not particularly surprising in and of itself.
Although many social ties are “local” meaning that they are formed through
one’s work or place of residence, Watts and Strogatz [52] showed that it takes
only a few “random” links between people of different professions or location to
create short paths in a social network and make the world “small”. In addition,
Pool and Kochen [53] have estimated that an average person has between 500 and
1,500 acquaintances. Ignoring for the moment overlap in one’s circle of friends,
one would have 1, 0002 or 1, 000, 000 friends of friends, and 1, 0003 or one billion
friends-of-friends-of-friends. This means that it would take only 2 intermediaries
to reach a number of people on the order of the population of the entire United
States.

Although the existence of short paths is not surprising, it is another question
altogether how people are able to select among hundreds of acquaintances the
correct person to form the next link in the chain. Killworth and Barnard [50]
performed the “reverse” experiment to measure how many acquaintances a typ-
ical person would use as a first step in a small world experiment. Presented with
1 http://www.linkedin.com/,
http://www.friendster.com/,
http://www.spokesoftware.com/
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1,267 random targets, the subjects chose about 210 different acquaintances on
average, based overwhelmingly on geographic proximity and similarity of pro-
fession to the targets.

Recently, mathematical models have been proposed to explain why people
are able to find short paths. The model of Watts, Dodds, and Newman [54]
assumes that individuals belong to groups that are embedded hierarchically into
larger groups. For example an individual might belong to a research lab, that
is part of an academic department at a university, that is in a school consisting
of several departments, that is part of a university, that is one of the academic
institutions in the same country, etc. The probability that two individuals have
a social tie to one another is proportional to exp−αh, where h is the height of
their lowest common branching point in the hierarchy.

The decay in linking probability means that two people in the same research
laboratory are more likely to know one another than two people who are in
different departments at a university. The model assumes a number of separate
hierarchies corresponding to characteristics such as geographic location or pro-
fession. In reality, the hierarchies may be intertwined, for example professors
at a university living within a short distance of the university campus, but for
simplicity, the model treats them separately.

In numerical experiments, artificial social networks were constructed and a
simple greedy algorithm was performed where the next step in the chain was
selected to be the neighbor of the current node with the smallest distance along
any dimension. At each step in the chain there is a fixed probability, called the
attrition rate, that the node will not pass the message further. The numerical
results showed that for a range of the parameter α and number of attribute
dimensions, the networks are “searchable”, meaning that a minimum fraction of
search paths find their target.

Kleinberg [55,56] posed a related question: in the absence of attrition, when
does the length of the chains scale in the same way as the average shortest path.
Unlike the study of Watts. et al., there is no attrition - all chains run until com-
pletion, but need to scale as the actual shortest path in the network does. In the
case of a small world network, the average shortest path scales as ln(N), where
N is the number of nodes. Kleinberg proved that a simple greedy strategy based
on geography could achieve chain lengths bounded by (lnN)2 under the follow-
ing conditions: nodes are situated on an m-dimensional lattice with connections
to their 2m closest neighbors and additional connections are placed between any
two nodes with probability p ∼ r−m, where r is the distance between them.
Since in the real world our locations are specified primarily by two dimensions,
longitude and latitude, the probability is inversely proportional to the square
of the distance. A person should be four times as likely to know someone liv-
ing a block away, than someone two city blocks away. However, Kleinberg also
proved that if the probabilities of acquaintance do not follow this relationship,
nodes would not be able to use a simple greedy strategy to find the target in
polylogarithmic time.
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The models of both Watts et al. and Kleinberg show that the probability
of acquaintance needs to be related to the proximity between individuals’ at-
tributes in order for simple search strategies using only local information to be
effective. Below we describe experiments empirically testing the assumptions and
predictions of the proposed two models.

4.1 Method

In order to test the above hypothesis, Adamic and Adar [8] applied search al-
gorithms to email networks derived from the email logs at HP Labs already
described in Sect. 2. A social contact was defined to be someone with whom an
individual had exchanged at least 6 emails each way over the period of approx-
imately 3 months. The bidirectionality of the email correspondence guaranteed
that a conversation had gone on between the two individuals and hence that
they are familiar with one another.

Imposing this constraint yielded a network of 436 individuals with a median
number of 10 acquaintances and a mean of 13. The degree distribution, shown in
Fig. 10, is highly skewed with an exponential tail. This is in contrast to the raw
power-law email degree distribution, used in Sect. 3 and shown in Fig. 8, per-
taining to both internal and external nodes and possessing no threshold in email
volume. A scale free distribution in the raw network arises because there are
many external nodes emailing just one individual inside the organization, and
there are also some individuals inside the organization sending out announce-
ments to many people and hence having a very high degree. However, once we
impose a higher cost for maintaining a social contact (that is, emailing that con-
tact at least six times and receiving at least as many replies), then there are few
individuals with many contacts.

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

number of email correspondents, k

p(
k)

0 20 40 60 80
10

−4

10
−3

10
−2

10
−1

10
0

k

p(
k)

Fig. 10. Degree distribution in the HP Labs email network. Two individuals are linked
if they exchanged at least 6 emails in either direction. The inset shows the same dis-
tribution, but on a semilog scale, to illustrate the exponential tail of the distribution
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4.2 Simulating Milgram’s Experiment on an Email Network

The resulting network, consisting of regular email patterns between HP Labs em-
ployees, had 3.1 edges separating any two individuals on average, and a median
of 3. Simulations were performed on the network to determine whether members
of the network would be able to use a simple greedy algorithm to locate a target.
In this simple algorithm, each individual can use knowledge only of their own
email contacts, but not their contacts’ contacts, to forward the message.

Three different strategies were tested, at each step passing the message to
the contact who is either

– best connected
– closest to the target in the organizational hierarchy
– sitting in closest physical proximity to the target

The first strategy selects the individual who is more likely to know the target
by virtue of the fact that he/she knows so many people. It has been shown [57],
that this is an effective strategy in power-law networks with exponents close to 2
(the case of the unfiltered HP Labs email network), but that it performs poorly
in graphs with a Poisson degree distribution that has an exponential tail. Since
the distribution of contacts in the filtered HP network was not power-law, the
high degree strategy was not expected to perform well, and this was verified
through simulation. The median number of steps required to find a randomly
chosen target from a random starting point was 17, compared to the three steps
in the average shortest path. Even worse, the average number of steps is 40. This
discrepancy between the mean and the median is a reflection of the skewness of
the distribution: a few well connected individuals and their contacts are easy to
find, but some individuals who do not have many links and are not connected
to highly connected individuals are difficult to locate using this strategy.

The second strategy consisted of passing the message to the contact closest to
the target in the organizational hierarchy. The strategy relies on the observation,
illustrated in Figs. 11 and 13 that individuals closer together in the organiza-
tional hierarchy are more likely to email with one another. Figure 12 illustrates
such a search, labelling nodes by their hierarchical distance (h-distance) from
the target. The h-distance is computed as follows: a node has distance one to
their manager and to everyone they share a manager with. Distances are then
recursively assigned, so that each node has h-distance 2 to their first neighbor’s
neighbors, and h-distance 3 to their second neighbor’s neighbors, etc. A simple
greedy strategy using information about the organizational hierarchy worked
extremely well. The median number of steps was only 4, close to the median
shortest path of 3. With the exception of one individual, whose manager was
not located on site, and who was consequently difficult to locate, the mean num-
ber of steps was 4.7, meaning that not only are people typically easy to find, but
nearly everybody can be found in a reasonable number of steps.

In the original experiment by Milgram the completed chains were divided
between those that reached the target through his professional contacts and
those that reached him through his hometown. On average those that relied on
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Pajek

Fig. 11. Email communications within HP Labs (gray lines) mapped onto the orga-
nizational hierarchy (black lines). Note that email communication tends to “cling” to
the formal organizational chart.
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Fig. 12. Example illustrating a search path using information about the target’s po-
sition in the organizational hierarchy to direct a message. Numbers in the square give
the h-distance from the target.
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hierarchy. The exponential parameter α = 0.92, in the searchable range according to
the model of Watts et al.[54]

geography took 1.5 steps longer to reach the target, a difference found to be
statistically significant. In the words of Travers and Milgram [48], the following
seemed to occur: “Chains which converge on the target principally by using
geographic information reach his hometown or the surrounding areas readily,
but once there often circulate before entering the target’s circle of acquaintances.
There is no available information to narrow the field of potential contacts which
an individual might have within the town.”

Performing the small world experiment on the HP email network using ge-
ography produced a similar result, in that geography could be used to find
most individuals, but was slower, taking a median number of 7 steps, and a
mean of 12. Figure 14 shows the email correspondence mapped onto the phys-
ical layout of the buildings. Individuals’ locations are given by their building,
the floor of the building, and the nearest building post (for example “H15”)
to their cubicle. The distance between two cubicles was approximated by the
“street” distance between their posts (for example “A3” and “C10” would be
(C − A) × 25′ + (10 − 3) × 25′ = 2 × 25′ + 7 × 25′ = 225 feet apart). Adding
the x and y directions separately reflects the interior topology of the buildings
where one navigates perpendicular hallways and cannot traverse diagonally. If
individuals are located on different floors or in different buildings, the distance
between buildings and the length of the stairway are factored in.

The general tendency of individuals in close physical proximity to correspond
holds: over 87% percent of the 4000 email links are between individuals on the
same floor, and overall individuals closer together are more likely to correspond.
Still, individuals maintain disproportionately many far-flung contacts while not
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Fig. 14. Email communications within HP Labs mapped onto approximate physical
location based on the nearest post number and building given for each employee. Each
box represents a different floor in a building. The lines are color coded based on the
physical distance between the correspondents: red for nearby individuals, blue for far
away contacts.

getting to know some of their close-by neighbors. The relationship between prob-
ability of acquaintance and cubicle distance r between two individuals, shown
in Fig. 15, is well-fitted by a 1/r curve. However, Kleinberg has shown that the
optimum relationship in two dimensional space is 1/r2 - a stronger decay in
probability of acquaintance than the 1/r observed.

In the case of HP Labs, the geometry may not be quite two dimensional,
because it is complicated by the particular layout of the buildings. Hence the
optimum relationship may lie between 1/r and 1/r2. In any case, the observed
1/r probability of linking shows a tendency consistent with Milgram’s observa-
tions about the original small world experiment. At HP Labs, because of space
constraints, re-organizations, and personal preferences, employees’ cubicles may
be removed from some of the co-workers they interact with. This hinders a search
strategy relying solely on geography, because one might get physically quite close
to the target, but still need a number of steps to find an individual who interacts
with them.

Figure 16 shows a histogram of chain lengths resulting from searches using
each of the three strategies. It shows the clear advantage of using the target’s
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0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

number of steps

fr
ac

tio
n 

of
 p

ai
rs

search w/ degree
search w/ hierarchy
search w/ cubicle distance

Fig. 16. Results of search experiments utilizing either knowledge of the target’s posi-
tion in the organizational hierarchy or the physical location of their cubicle.

position in organizational hierarchy as opposed to his/her cubicle location to
pass a message through one’s email contact. It also shows that both searches
using information about the target outperform a search relying solely on the
connectivity of one’s contacts.
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4.3 Discussion

The above simulated experiments verify the models proposed in [54] and [55]
to explain why individuals are able to successfully complete chains in the small
world experiments using only local information. When individuals belong to
groups based on a hierarchy and are more likely to interact with individuals
within the same small group, then one can safely adopt a greedy strategy - pass
the message onto the individual most like the target, and they will be more likely
to know the target or someone closer to them.

At the same time it is important to note that the optimum relationship
between the probability of acquaintance and distance in physical or hierarchi-
cal space between two individuals, as outlined in [55,56], are not exactly satis-
fied. We just saw that the relationship between the physical distance and the
probability of corresponding by email follows an inverse rather than an inverse
square relationship. There are too many distant contacts and too few nearby
ones compared to the optimum. A similar, albeit weaker trend holds for organi-
zational distance. In Section 2 email spectroscopy revealed that while collabora-
tions mostly occurred within the same organizational unit, they also frequently
bridged different parts of the organization or broke up a single organizational
unit into noninteracting subgroups. The optimum relationship derived in [56]
for the probability of linking would be inversely proportional to the size of the
smallest organizational group that both individuals belong to. However, the ob-
served relationship, shown in Fig. 17 is slightly off, with p ∼ g−3/4, g being the
group size.
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Fig. 17. Probability of two individuals corresponding by email as a function of the
size of the smallest organizational unit they both belong to. The optimum relationship
derived in [56] is p ∼ g−1, g being the group size. The observed relationship is p ∼ g−3/4.
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Overall, the results of the email study are consistent with the model of Watts
et al. [54]. This model does not require the search to find near optimum paths,
but simply determines when a network is “searchable”, meaning that fraction
of messages reach the target given a rate of attrition. The relationship found
between separation in the hierarchy and probability of correspondence, shown
in Fig. 13, is well within the searchable regime identified in the model.

The study of Adamic and Adar is a first step, validating these models on a
small scale. The email study gives a concrete way of observing how the small
world chains can be constructed. Using a very simple greedy strategy, individuals
across an organization could reach each other through a short chain of coworkers.
It is quite likely that similar relationships between acquaintance and proximity
(geographical or professional) hold true in general, and therefore that small world
experiments succeed on a grander scale for the very same reasons.

5 Conclusion

In this chapter we reviewed three studies of information flow in social networks.
The first developed a method of analyzing email communication automatically
to expose communities of practice and their leaders. The second showed that
the tendency of individuals to associate according to common interests influ-
ences the way that information spreads throughout a social group. It spreads
quickly among individuals to whom it is relevant, but unlike a virus, is unable
to infect a population indiscriminately. The third study showed why small world
experiments work - how individuals are able to take advantage of the structure
of social networks to find short chains of acquaintances. All three studies relied
on email communication to expose the underlying social structure, which pre-
viously may have been difficult and labor-intensive to obtain. We expect that
these findings are also valid with other means of social communication, such as
verbal exchanges, telephony and instant messenger systems.
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