
Combinational Collaborative Filtering for Personalized
Community Recommendation

Wen-Yen Chen
Computer Science

University of California
Santa Barbara, CA 93106
wychen@cs.ucsb.edu

Dong Zhang
Google Research, Beijng

No. 1 Zhongguancun E. Road
Beijing 100084, China

dongzhang@google.com

Edward Y. Chang
Google Research

Mountain View, CA 94043
edchang@google.com

ABSTRACT
Rapid growth in the amount of data available on social net-
working sites has made information retrieval increasingly
challenging for users. In this paper, we propose a collabora-
tive filtering method, Combinational Collaborative F iltering
(CCF), to perform personalized community recommenda-
tions by considering multiple types of co-occurrences in so-
cial data at the same time. This filtering method fuses se-
mantic and user information, then applies a hybrid training
strategy that combines Gibbs sampling and Expectation-
Maximization algorithm. To handle the large-scale dataset,
parallel computing is used to speed up the model training.
Through an empirical study on the Orkut dataset, we show
CCF to be both effective and scalable.

Categories and Subject Descriptors
H.4.m [Information Systems Applications]: Miscella-
neous

General Terms
Algorithms, Experimentation

Keywords
Collaborative filtering, probabilistic models, personalized rec-
ommendation

1. INTRODUCTION
Social networking products are flourishing. Sites such as

MySpace, Facebook, and Orkut attract millions of visitors
a day, approaching the traffic of Web search sites [1]. These
social networking sites provide tools for individuals to es-
tablish communities, to upload and share user generated
content, and to interact with other users. In recent articles,
users complained that they would soon require a full-time
employee to manage their sizable social networks. Indeed,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’08, August 24–27, 2008, Las Vegas, Nevada, USA.
Copyright 2008 ACM 978-1-60558-193-4/08/08 ...$5.00.

take Orkut as an example. Orkut enjoys 100+ million com-
munities and users, with hundreds of communities created
each day. A user cannot possibly view all communities to
select relevant ones.

In this work, we tackle the problem of community rec-
ommendation for social networking sites. Such a problem
fits in the framework of collaborative filtering (CF), which
offers personal recommendations (of e.g., Web sites, books,
or music) based on a user’s profile and prior information-
access patterns. What differentiates our work from prior
work is that we propose a fusion method, which combines
information from multiple sources. We name our method
CCF for Combinational Collaborative Filtering. CCF views
a community from two simultaneous perspectives: a bag of
users and a bag of words. A community is viewed as a bag
of participating users; and at the same time, it is viewed as
a bag of words describing that community. Traditionally,
these two views are independently processed. Fusing these
two views provides two benefits. First, by combining bags
of users with bags of words, CCF can perform personalized
community recommendations, which the bags of words alone
model cannot. Second, augmenting bags of users with bags
of words, CCF achieves better personalized recommenda-
tions than the bags of users alone model, which may suffer
from information sparsity.

A practical recommendation system must be able to han-
dle large-scale datasets and hence demands scalability. We
devise two strategies to speed up training of CCF. First, we
employ a hybrid training strategy, which combines Gibbs
sampling with the Expectation-Maximization (EM) algo-
rithm. Our empirical study shows that Gibbs sampling pro-
vides better initialization for EM, and thus can help EM to
converge to a better solution at a faster pace. Our second
speedup strategy is to parallelize CCF to take advantage
of the distributed computing infrastructure of modern data
centers. Our scalability study on a real-world dataset of 312k
active users and 109k popular communities demonstrates
that our parallelization scheme on CCF is effective. CCF
can achieve near-linear speedup on up to 200 distributed ma-
chines, attaining 116 times speedup over the training time of
using one machine. CCF is attractive for supporting large-
scale personalized community recommendations, thanks to
its effectiveness and scalability.

1.1 Related Work
Several algorithms have been proposed to deal with either

bags of words or bags of users. Specifically, Probabilistic
Latent Semantic Analysis (PLSA) [7] and Latent Dirichlet

115

Allocation (LDA) [3] model document-word co-occurrence,
which is similar to the bags of words community view. Prob-
abilistic Hypertext Induced Topic Selection (PHITS) [4], a
variant of PLSA, models document-citation co-occurrence,
which is similar to the bags of users community view. How-
ever, a system that considers just bags of users cannot take
advantage of content similarity between communities. A sys-
tem that considers just bags of words cannot provide person-
alized recommendations: all users who joined the same com-
munity would receive the same set of recommendations. We
propose CCF to model multiple types of data co-occurrence
simultaneously. CCF’s main novelty is in fusing information
from multiple sources to alleviate the information sparsity
problem of a single source.

Several other algorithms have been proposed to model
publication and email data1. For instance, the author-topic
(AT) model [11] employs two factors in characterizing a doc-
ument: the document’s authors and topics. Modeling both
factors as variables within a Bayesian network allows the AT
model to group the words used in a document corpus into
semantic topics, and to determine an author’s topic associ-
ations. For emails, the author-recipient-topic (ART) model
[8] considers email recipient as an additional factor. This
model can discover relevant topics from the sender-recipient
structure in emails, and enjoys an improved ability to mea-
sure role-similarity between users. Although these models fit
publication and email data well, they cannot be used to for-
mulate personalized community recommendations, whereas
CCF can.

1.2 Contribution Summary
In summary, this paper makes the following three contri-

butions:

1. We propose CCF to effectively fuse multiple informa-
tion sources. For community data, we illustrate that
by fusing bags of users with bags of words, CCF can
perform personalized community recommendations, which
the bags of words alone model cannot. By adding
bags of words to bags of users, CCF achieves better
personalized recommendations than the bags of user
alone model, which suffers from the information spar-
sity problem.

2. We devise a hybrid training method, which uses Gibbs
sampling to seed EM. Empirical study shows that this
hybrid training method can typically make EM con-
verge to a better solution at a faster pace.

3. We parallelize CCF to achieve near-linear speedup on
distributed machines. Empirical study shows that par-
allel CCF can deal with large-scale data. For instance,
a training task that requires one day to complete on
one machine takes only 14 minutes on 200 machines.

The remainder of the paper is organized as follows. In
Section 2, we present CCF, including its model structure
and semantics, hybrid training strategy, and parallelization
scheme. In Section 3, we present our experimental results on
both synthetic and Orkut datasets. We provide concluding
remarks and discuss future work in Section 4.

1We discuss only related model-based work since the model-
based approach has been proven to be superior to the
memory-based approach.

Figure 1: (a) Graphical representation of the
Community-User (C-U) model. (b) Graphical rep-
resentation of the Community-Description (C-D)
model. (c) Graphical representation of Combina-
tional Collaborative Filtering (CCF) that combines
both bag of users and bag of words information.

2. CCF: COMBINATIONAL COLLABORA-
TIVE FILTERING

We start by introducing the baseline models. We then
show how our CCF model combines baseline models. Sup-
pose we are given a collection of co-occurrence data con-
sisting of communities C = {c1, c2, ..., cN}, community de-
scriptions from vocabulary D = {d1, d2, ..., dV }, and users
U = {u1, u2, ..., uM}. If community c is joined by user
u, we set n(c, u) = 1; otherwise, n(c, u) = 0. Similarly,
we set n(c, d) = R if community c contains word d for R
times; otherwise, n(c, d) = 0. The following models are la-
tent aspect models, which associate a latent class variable
z ∈ Z = {z1, z2, ..., zK}.

Before modeling CCF, we first model community-user co-
occurrences (C-U), shown in Figure 1(a); and community-
description co-occurrences (C-D), shown in Figure 1(b). Our
CCF model, shown in Figure 1(c), builds on C-U and C-D
models. The shaded and unshaded variables in Figure 1 in-
dicate latent and observed variables, respectively. An arrow
indicates a conditional dependency between variables.

2.1 C-U and C-D Baseline Models
The C-U model is derived from PLSA and for community-

user co-occurrence analysis. The co-occurrence data consists
of a set of community-user pairs (c, u), which are assumed to
be generated independently. The key idea is to introduce a
latent class variable z to every community-user pair, so that
community c and user u are rendered conditionally indepen-
dent. The resulting model is a mixture model that can be
written as follows:

P (c, u) =
X

z

P (c, u, z) = P (c)
X

z

P (u|z)P (z|c), (1)

where z represents the topic for a community. For each
community, a set of users is observed. To generate each user,
a community is c chosen uniformly from the community set,
then a topic z is selected from a distribution P (z|c) that is
specific to the community, and finally a user u is generated
by sampling from a topic-specific distribution P (u|z).

The second model is for community-description co-occurrence
analysis. It has a similar structure to the C-U model with

116

the joint probability written as:

P (c, d) =
X

z

P (c, d, z) = P (c)
X

z

P (d|z)P (z|c), (2)

where z represents the topic for a community. Each com-
munity’s interests are modeled with a mixture of topics. To
generate each description word, a community c is chosen uni-
formly from the community set, then a topic z is selected
from a distribution P (z|c) that is specific to the commu-
nity, and finally a word d is generated by sampling from a
topic-specific distribution P (d|z).
Remark: One can model C-U and C-D using LDA. Since the
focus of this work is on model fusion, we defer the compari-
son of PLSA vs. LDA to future work.

2.2 CCF Model
In the C-U model, we consider only links, i.e., the observed

data can be thought of as a very sparse binary M×N matrix
W , where Wi,j = 1 indicates that user i joins (or linked to)
community j, and the entry is unknown elsewhere. Thus,
the C-U model captures the linkage information between
communities and users, but not the community content. The
C-D model learns the topic distribution for a given commu-
nity, as well as topic-specific word distributions. This model
can be used to estimate how similar two communities are in
terms of topic distributions. Next, we introduce our CCF
model, which combines both the C-U and C-D.

For the CCF model (Figure 1(c)), the joint probability
distribution over community, user, and description can be
written as:

P (c, u, d) =
X

z

P (c, u, d, z)

= P (c)
X

z

P (u|z)P (d|z)P (z|c), (3)

The CCF model represents a series of probabilistic genera-
tive processes. Each community has a multinomial distribu-
tion over topics, and each topic has a multinomial distribu-
tion over users and descriptions, respectively.

2.2.1 Gibbs & EM Hybrid Training
Given the model structure, the next step is to learn model

parameters. There are some standard learning algorithms,
such as Gibbs sampling [6], Expectation-Maximization (EM)
[5], and Gradient descent. For CCF, we propose a hybrid
training strategy: We first run Gibbs sampling for a few it-
erations, then switch to EM. The model trained by Gibbs
sampling provides the initialization values for EM. This hy-
brid strategy serves two purposes. First, EM suffers from
a drawback in that it is very sensitive to initialization. A
better initialization tends to allow EM to find a “better” op-
timum. Second, Gibbs sampling is too slow to be effective
for large-scale datasets in high-dimensional problems [2]. A
hybrid method can enjoy the advantages of Gibbs and EM.

Gibbs sampling
Gibbs sampling is a simple and widely applicable Markov
chain Monte Carlo algorithm, which provides a simple method
for obtaining parameter estimates and allows for combina-
tion of estimates from several local maxima of the posterior
distribution. Instead of estimating the model parameters di-
rectly, we evaluate the posterior distribution on z and then
use the results to infer P (u|z), P (d|z) and P (z|c).

For each user-word pair, the topic assignment is sampled
from:

P (zi,j = k|ui = m, dj = n, z−i,−j , U−i, D−j) ∝

CUZ
mk + 1P

m′ CUZ
m′k + M

CDZ
nk + 1P

n′ CDZ
n′k + V

CCZ
ck + 1P

k′ CCZ
ck′ + K

, (4)

where zi,j = k represents the assignment of the ith user and
jth description word in a community to topic k. ui = m rep-
resents the observation that the ith user is the mth user in
the user corpus, and dj = n represents the observation that
the jth word is the nth word in the word corpus. z−i,−j rep-
resents all topic assignments not including the ith user and
the jth word. Furthermore, CUZ

mk is the number of times user
m is assigned to topic k, not including the current instance;
CDZ

nk is the number of times word n is assigned to topic k,
not including the current instance; CCZ

ck is the number of
times topic k has occurred in community c, not including
the current instance.

We analyze the computational complexity of Gibbs sam-
pling in CCF. In Gibbs sampling, one needs to compute the
posterior probability

P (zi,j = k|ui = m, dj = n, z−i,−j , U−i, D−j)

for user-word pairs (M × L) within N communities, where
L is the number of words in community description (Note
L ≥ V). Each P (zi,j = k|ui = m, dj = n, z−i,−j , U−i, D−j)
consists of K topics, and requires a constant number of arith-
metic operations, resulting in O(K · N ·M · L) for a single
Gibbs sampling. During parameter estimation, the algo-
rithm needs to keep track of a topic-user (K×M) count ma-
trix, a topic-word (K ×V) count matrix, and a community-
topic (N ×K) count matrix. From these count matrices, we
can estimate the topic-user distributions P (um|zk), topic-
word distributions P (dn|zk) and community-topic P (zk|cc)
by:

P (um|zk) =
CUZ

mk + 1P
m′ CUZ

m′k + M
,

P (dn|zk) =
CDZ

nk + 1P
n′ CDZ

n′k + V
,

P (zk|cc) =
CCZ

ck + 1P
k′ CCZ

ck′ + K
, (5)

where P (um|zk) is the probability of containing user m in
topic k, P (dn|zk) is the probability of using word n in topic
k, and P (zk|cc) is the probability of topic k in community
c. The estimation of parameters by Gibbs sampling replaces
the random seeding in EM’s initialization step.

Expectation-Maxmization algorithm
The CCF model is parameterized by P (z|c), P (u|z), and
P (d|z), which are estimated using the EM algorithm to fit
the training corpus with community, user, and description
by maximizing the log-likelihood function:

L =
X
c,u,d

n(c, u, d) log P (c, u, d), (6)

n(c, u, d) = n(c, u)n(c, d) =

8<: R if community c has user u

and contains word d for R times;

0 otherwise.

(7)

117

Starting with the initial parameter values from Gibbs sam-
pling, the EM procedure iterates between Expectation (E)
step and Maximization (M) step:

• E-step: where the probability that a community c has
user u and contains word d explained by the latent
variable z is estimated as:

P (z|c, u, d) =
P (u|z)P (d|z)P (z|c)P

z′ P (u|z′)P (d|z′)P (z′|c)
, (8)

• M-step: where the parameters P (u|z), P (d|z), and
P (z|c) are re-estimated to maximize L in Equation (6):

P (u|z) =

P
c,d n(c, u, d)P (z|c, u, d)P

c,u′,d n(c, u′, d)P (z|c, u′, d)
, (9)

P (d|z) =

P
c,u n(c, u, d)P (z|c, u, d)P

c,u,d′ n(c, u, d′)P (z|c, u, d′)
, (10)

P (z|c) =

P
u,d n(c, u, d)P (z|c, u, d)P

u,d,z′ n(c, u, d)P (z′|c, u, d)
. (11)

We analyze the computational complexity of the E-step
and the M-step. In the E-step, one needs to compute the
posterior probability P (z|c, u, d) for M users, N communi-
ties, and V words. Each P (z|c, u, d) consists of K values,
and requires a constant number of arithmetic operations to
be computed, resulting in O(K ·N ·M · V) operations for a
single E-step. In the M-step, the posterior probabilities are
accumulated to form the new estimates for P (u|z), P (d|z)
and P (z|c). Thus, the M-step also requires O(K ·N ·M ·V)
operations. Typical values of K in our experiments range
from 28 to 256. The community-user (c, u) and community-
description (c, d) co-occurrences are highly sparse, where
n(c, u, d) = n(c, u) × n(c, d) = 0 for a large percentage of
the triples (c, u, d). Because the P (z|c, u, d) term is never
separated from the n(c, u, d) term in the M-step, we do not
need to compute P (z|c, u, d) for n(c, u, d) = 0 in the E-step.
We compute only P (z|c, u, d) for n(c, u, d) 6= 0. This greatly
reduces computational complexity.

2.2.2 Parallelization
The parameter estimation using Gibbs sampling and the

EM algorithm described in the previous sections can be di-
vided into parallel subtasks [9].

Parallel Gibbs sampling
We distribute the computation among machines based on
community IDs. Thus, each machine i only deals with a
specified subset of communities ci, and aware of all users
u and descriptions d. We then perform Gibbs sampling si-
multaneously on each machine independently. For each ma-
chine, given the current state of all but one variable zi,j ,
the posterior probability is sampled using Equation (4). We
then calculate a number of local count variables, including
CUZ

mik, and CDZ
nik . After a single pass through the data on

each machine, we perform a global update to merge back to
a single set of count variables: CUZ

mk and CDZ
nk . We summa-

rize the process in Algorithm 1.

Parallel EM algorithm
The parallel EM algorithm can be applied in a similar fash-
ion. We describe the procedure below and provide the pseudo-
code in Algorithm 2.

Algorithm 1: Parallel Gibbs Sampling of CCF

Input: N ×M community-user matrix
N × V community-description matrix;
I: number of iterations
P : number of machines
Output: P (u|z), P (d|z), P (z|c)
Variables:
xic: the ith row of comm-user matrix with comm id c
yic: the ith row of comm-word matrix with comm id c

for i = 0 to N − 1 do
Load xic into machine c%P
Load yic into machine c%P

end
Gibbs sampling initialization
for iter = 0 to I − 1 do

foreach <user, word> pair do
Each machine i executes Gibbs sampling as in
Equation (4)
Each machine i calculates individual counts
CUZ

mik, CDZ
nik and CCZ

cik

end
Master machine computes the followings and
broadcasts to each machine:

CUZ
mk = CUZ

mk +
P

i(C
UZ
mik − CUZ

mk)

CDZ
nk = CDZ

nk +
P

i(C
DZ
nik − CDZ

nk)

end

• E-step: Each machine i computes the P (z|ci, u, d) val-
ues, the posterior probability of the latent variables z
given communities ci, users u and descriptions d, using
the current values of the parameters P (z|ci), P (u|z)
and P (d|z). As this posterior computation can be per-
formed locally, we avoid the need for communications
between machines in the E-step.

• M-step: Each machine i recomputes the parameters
P (z|ci), P (u|z) and P (d|z) using the previously cal-
culated values P (z|ci, u, d). This requires communi-
cation between machines, as P (u|z) and P (d|z) must
be broadcasted and distributed among the machines.
Since some intermediate parameters are pre-computed
locally, and are subsequently used to compute the final
values, the communication overhead can be dramati-
cally reduced.

We analyze the computational and communication com-
plexities for both algorithms using distributed machines. As-
suming that there are P machines, the computational com-
plexity of each training algorithm reduces to O((K ·N ·M ·
L)/P) (for Gibbs) and O((K ·N ·M ·V)/P) (for EM) since P
machines share the computations simultaneously. For com-
munication complexity, two variables need to be distributed
among P machines for computations in next iteration: CUZ

mk ,
CDZ

nk in Gibbs sampling, and P (u|z), P (d|z) in EM. Thus
broadcasting will take up to O(P ·K · (M + V)).

2.2.3 Inference
Once we have learned the model parameters, we can in-

fer three relationships using Bayesian rules, namely user-
community relationship, community similarity, and user sim-
ilarity. We derive these three relationships as follows:

• User-community relationship: Communities can

118

Algorithm 2: Parallel EM algorithm of CCF

Input: N ×M community-user matrix; N × V
community-description matrix; K: number of
topics; I: number of iterations; P : number of
machines; P (u|z), P (d|z), P (z|c) of Gibbs
sampling

Output: P (u|z), P (d|z), P (z|c)
Variables:
xic: the ith row of comm-user matrix with comm id c
yic: the ith row of comm-word matrix with comm id c

Load P (u|z), P (d|z), P (z|c) of Gibbs sampling
for i = 0 to N − 1 do

Load xic into machine c%P
Load yic into machine c%P

end
for iter = 0 to I − 1 do

for k = 0 to K − 1 do
E-step:

Each machine i computes P (zk|u, ci, d)
M-step:

Each machine i computes P (zk|ci), P (ui|zk),
P (di|zk)
Master machine computes the followings and
broadcasts to each machine:

P (u|zk) =
P

i P (ui|zk),
P (d|zk) =

P
i P (di|zk)

end

end

be ranked for a given user according to P (cj |ui), i.e.
which communities should be recommended for a given
user? Communities with top ranks and communities
that the user has not yet joined are good candidates
for recommendations. P (cj |ui) can be calculated using
Equation (12):

P (cj |ui) =

P
z P (cj , ui, z)

P (ui)

=
P (cj)

P
z P (ui|z)P (z|cj)

P (ui)

∝
X

z

P (ui|z)P (z|cj), (12)

where we assume that P (cj) is a uniform prior for sim-
plicity.

• Community similarity: Communities can also be
ranked for a given community according to P (cj |ci),
i.e. which communities should be recommended for a
given community? We calculate P (cj |ci) using Equa-
tion (13):

P (cj |ci) =

P
z P (cj , ci, z)

P (ci)

=

P
z P (cj |z)P (ci|z)P (z)

P (ci)

= P (cj)
X

z

P (z|cj)P (z|ci)

P (z)

∝
X

z

P (z|cj)P (z|ci)

P (z)
, (13)

where we assume that P (cj) is a uniform prior for sim-
plicity.

• User similarity: Users can be ranked for a given
user according to P (uj |ui), i.e. which users should
be recommended for a given user? Similarly, we can
calculate P (uj |ui) using Equation (14):

P (uj |ui) =

P
z P (uj , ui, z)

P (ui)

=

P
z P (uj |z)P (ui|z)P (z)

P (ui)

= P (uj)
X

z

P (z|uj)P (z|ui)

P (z)

∝
X

z

P (z|uj)P (z|ui)

P (z)
, (14)

where we assume that P (uj) is a uniform prior for
simplicity.

3. EXPERIMENTAL RESULTS
We divided our experiments into two parts. The first part

was conducted on a relatively small synthetic dataset with
ground truth to evaluate the Gibbs & EM hybrid training
strategy. The second part was conducted on a large, real-
world dataset to test out CCF’s performance and scalabil-
ity. Our experiments were run on up to 200 machines at our
distributed data centers. While not all machines are iden-
tically configured, each machine is configured with a CPU
faster than 2GHz and memory larger than 4GBytes.

3.1 Gibbs + EM vs. EM
To precisely account for the benefit of Gibbs & EM over

the EM-only training strategy, we used a synthetic dataset
where we know the ground truth. The synthetic dataset con-
sists of 5, 000 documents with 10 topics, a vocabulary size
10, 000, and a total of 50, 000, 000 word tokens. The true
topic distribution over each document was pre-defined man-
ually as the ground truth. We conducted the comparisons
using the following two training strategies: (1) EM-only
training (without Gibbs sampling as initialization) where
the number of EM iterations is 10 through 70 respectively,
(2) Gibbs+EM training where the number of Gibbs sam-
pling iterations is 5, 10, 15 and 20, and the number of EM
iterations is 10 through 70, respectively. We used Kullback-
Leibler divergence (K-L divergence) to evaluate model per-
formance since the K-L divergence is a good measure for the
difference between the true topic distribution (P) and the
estimated topic distribution (Q) defined as follows:

DKL(P ||Q) =
X

i

P (i) log
P (i)

Q(i)
. (15)

The smaller the K-L divergence is, the better the estimated
topic distribution approximates the true topic distribution.

Figure 2 compares the average K-L divergences over 10
runs. It shows that more rounds of Gibbs sampling can help
EM reach a solution that enjoys a smaller K-L divergence.
Since each iteration of Gibbs sampling takes longer than
EM, we must also consider time. Figure 3 shows the values
of K-L divergence as a function of the training time. We can
make two observations. First, given a large amount of time,

119

10 20 30 40 50 60 70
0

500

1000

1500

2000

2500

3000

Number of EM iterations

Ku
llb

ac
k−

Le
ib

le
r d

iv
er

ge
nc

e

EM−only
5Gibbs+EM
10Gibbs+EM
15Gibbs+EM
20Gibbs+EM

Figure 2: The Kullback-Leibler divergence as a func-
tion of the number of iterations.

both EM and the hybrid scheme can reach very low K-L di-
vergence. On this dataset, when the training time exceeded
350 seconds, the value of K-L divergence approached zero
for all strategies. Nevertheless, on a large dataset, we can-
not afford a long training time, and the Gibbs & EM hybrid
strategy provides a earlier point to stop training, and hence
reduces the overall training time.

The second observation is on the number of Gibbs iter-
ations. As shown in both figures, running more iterations
of Gibbs before handing over to EM takes longer to yield a
better initial point for EM. In other words, spending more
time in the Gibbs stage can save time in the EM stage. Fig-
ure 3 shows that the best performance was produced by 10
iterations of Gibbs sampling before switching to EM. Find-
ing the “optimal” switching point is virtually impossible in
theory. However, the figure shows that different Gibbs it-
erations can all outperform the EM-only strategy to obtain
a better solution early, and a reasonable number of Gibbs
iterations can be obtained through an empirical process like
our experiment. Moreover, the figure shows that a range
of number of iterations can achieve similar K-L divergence
(e.g., at time 250). This indicates that though an empirical
process may not be able to pin down the “optimal” number
of iterations (because of e.g., new training data arrival), the
hybrid scheme can work well on a range of Gibbs-sampling
iterations.

3.2 The Orkut Dataset
Orkut is an extremely active community site with more

than two billion page views a day world-wide. The dataset
we used was collected on July 26, 2007, which contains two
types of data for each community: community membership
information and community description information. We re-
strict our analysis to English communities only. We collected
312, 385 users and 109, 987 communities2. The number of
entries in the community-user matrix, effectively, the num-
ber of community-user pairs, is 35, 932, 001. As the density
is around 0.001045, this matrix is extremely sparse. Figure
4(a) shows a distribution of the number of users per com-
munity. About 52% of all communities have less than 100

2All user data were anonymized, and user privacy is safe-
guarded, as performed in [10].

50 100 150 200 250 300 350 400 450
0

100

200

300

400

500

600

700

800

900

1000

Time (sec)

Ku
llb

ac
k−

Le
ib

le
r d

iv
er

ge
nc

e

EM−only
5Gibbs+EM
10Gibbs+EM
15Gibbs+EM
20Gibbs+EM

Figure 3: The Kullback-Leibler divergence as a func-
tion of the training time.

Figure 4: (a) Distribution of the number of users
per community, and (b) distribution of the number
of description words per community.

users, whereas 42% of all communities have more than 100
but less than 1, 000 users.

For the community description data, after applying down-
casing, stopword filtering, and word stemming, we obtained
a vocabulary of 191, 034 unique English words. The distri-
bution of the number of description words per community is
displayed in Figure 4(b). On average, there are 27.64 words
in each community description after processing. In order to
establish statistical significance of the findings, we repeated
all experiments 10 times with different random seeds and
parameters, such as the number of latent aspects (ranging
from 28 to 256), the number of Gibbs sampling iterations
(ranging from 10 to 30) and the number of EM iterations
(ranging from 100 to 500). The reported results are the
average performance over all runs.

Results
Community Recommendation: P (cj |ui)

We use two standard measures from information retrieval
to measure the recommendation effectiveness: precision and
recall, defined as follows:

Precision =
|{recommendation list}

T
{joined list}|

|{recommendation list}| ,

Recall =
|{recommendation list}

T
{joined list}|

|{joined list}| . (16)

120

0 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Length of the recommendation list

Pe
rc

en
ta

ge

CCF precision
C−U precision
CCF recall
C−U recall

Figure 5: The precision and recall as functions of
the length (up to 200) of the recommendation list.

Figure 6: The precision and recall as functions of
the length (up to 20) of the recommendation list.

Precision takes all recommended communities into account.
It can also be evaluated at a given cut-off rank, considering
only the topmost results recommended by the system. As it
is possible to achieve higher recall by recommending more
communities (note that a recall of 100% is trivially achieved
by recommending all communities, albeit at the expense of
having low precision), we limit the size of our community
recommendation list to at most 200.

To evaluate the results, we randomly deleted one joined
community for each user in the community-user matrix from
the training data. We evaluated whether the deleted com-
munity could be recommended. This evaluation is similar
to leave-one-out. Figure 5 shows the precision and recall as
functions of the length (up to 200) of the recommendation
list for both C-U and CCF. We can see that CCF always
outperforms C-U for all lengths. Figure 6 presents preci-
sion and recall for the top 20 recommended communities.
As both precision and recall of CCF are nearly twice higher
than those of C-U, we can conclude that CCF enjoys bet-
ter prediction accuracy than C-U. This is because C-U only
considers community-user co-occurrence, whereas CCF con-

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Pr
ec

is
io

n

Number of communities a user has joined

CCF
C−U

Figure 7: The precision as a function of the number
of communities a user has joined. Here, the length
of the recommendation list is fixed at 20.

Table 1: The comparison results of the three models
using Normalized Mutual Information (NMI).

Model C-U C-D CCF

NMI 0.4508 0.3127 0.4526

siders users, communities, and descriptions. By taking into
other views into consideration, the information is denser for
CCF to achieve higher prediction accuracy.

Figure 7 depicts the relationship between the precision
of the recommendation for a user and the number of com-
munities that the user has joined. The more communities
a user has joined, the better both C-U and CCF can pre-
dict the user’s preferences. For users who joined around 100
communities, the precision is about 15% for C-U and 27%
for CCF. However, for users who joined just 20 communi-
ties, the precision is about 7% for C-U, and 10% for CCF.
This is not surprising since it is very difficult for latent-class
statistical models to generalize from sparse data. For large-
scale recommendation systems, we are unlikely to ever have
enough direct data with sufficient coverage to avoid sparsity.
However, at the very least, we can try to incorporate indi-
rect data to boost our performance, just as CCF does by
using bags of words information to augment bags of users
information. Remark: Because of the nature of leave-one-
out, our experimental result can only show whether a joined
community could be recovered. The low precision/recall re-
flects this necessary, restrictive experimental setting. (This
setting is necessary for objectivity purpose as we cannot
obtain ground-truth of all users’ future preferences.) The
key observation from this study is not the absolute preci-
sion/recall values, but is the relative performance between
CCF and C-U.

Community Similarity: P (cj |ci)

We next report the results of community similarities calcu-
lated by the three models. We used community category
(available at Orkut websites) as the ground-truth for clus-
tering communities. We also assigned each community an
estimated label for the latent aspect with the highest prob-
ability value. We treated communities with the same es-

121

Table 2: The top recommended users using the C-U and CCF models for the query user “79”. The number
of communities that “79” joined is 339. Note that the “Communities” field contains three numbers: the first
number n is the total number of communities a user joined; the second number k is the number of overlapping
communities between the recommended user and the query user, and the last number is percentage of k

n
.

Rank 1st Rank 2nd Rank 3rd

Model User ID Communities User ID Communities User ID Communities
C-U 2390 551 (102, 18.5%) 8207 456 (100, 21.9%) 6734 494 (95, 19.2%)
CCF 7931 518 (106, 20.5%) 10968 680 (102, 15.0%) 6776 680 (91, 13.4%)

timated label as members of the same community cluster.
We then compared the difference between community clus-
ters and categories using the Normalized Mutual Informa-
tion (NMI).

NMI between two random variables CAT (category label)
and CLS (cluster label) is defined as NMI(CAT ; CLS) =

I(CAT ;CLS)√
H(CAT)H(CLS)

, where I(CAT ; CLS) is the mutual infor-

mation between CAT and CLS. The entropies H(CAT)
and H(CLS) are used for normalizing the mutual informa-
tion to be in the range [0, 1]. In practice, we made use of the
following formulation to estimate the NMI score [12, 13]:

NMI =

PK
s=1

PK
t=1 ns,t log

“
n·ns,t

ns·nt

”
q`P

s ns log ns
n

´ `P
t nt log nt

n

´ , (17)

where n is the number of communities, ns and nt denote
the numbers of community in category s and cluster t, ns,t

denotes the number of community in category s as well as
in cluster t. The NMI score is 1 if the clustering results
perfectly match the category labels and 0 for a random par-
tition. Thus, the larger this score, the better the clustering
results.

Table 1 shows that CCF slightly outperforms both C-U
and C-D models, which indicates the benefit of incorporating
two types of information.

User Similarity: P (uj |ui)

An interesting application is friend suggestion: finding users
similar to a given user. Using Equation (14), we can com-
pute user similarity for all pairs of users. From these values,
we derive a ranking of the most similar users for a given
query user. Due to privacy concerns, we were not able to
obtain the friend graph of each user to evaluate accuracy.
Table 2 shows an example of this ranking for a given user.

“Similar” users typically share a significant percentage of
commonly-joined communities. For instance, the query user
also joined 18.5% of the communities joined by the top user
ranked by C-U, compared to 20.5% for CCF. It is encour-
aging to see that CCF’s top ranked user has more over-
lap with the query user than C-U’s top ranked user does.
We believe that, again, incorporating the additional word
co-occurrences has improved information density and hence
yields higher prediction accuracy.

3.3 Runtime Speedup
In analyzing runtime speedup for parallel training, we

trained CCF with 20 latent aspects, 10 Gibbs sampling, and
20 EM iterations. As the size of a dataset is large, a single
machine cannot store all the data—(P (u|z), P (d|z), P (z|c),
and P (z|c, u, d)—in its local memory, we cannot obtain the

Table 3: Runtime comparisons for different number
of machines.

Machines Time (sec.) Speedup

10 9, 233 10
20 4, 326 21.3
50 2, 280 40.5
100 1, 014 91.1
200 796 116

0 50 100 150 200
0

20

40

60

80

100

120

140

160

180

200

Number of machines

Sp
ee

du
p

Linear
Max
Average
Min

Figure 8: Speedup analysis for different number of
machines.

0 50 100 150 200
0

20

40

60

80

100

120

140

160

180

200

Number of machines

Sp
ee

du
p

Linear
Comp
Comp+Comm

Figure 9: Speedup and overhead analysis.

122

Figure 10: Runtime (Computation and Communi-
cation) composition analysis.

running time of CCF on one machine. Therefore, we use the
runtime of 10 machines as the baseline and assume that 10
machines can achieve 10 times speedup. This assumption
is reasonable as we will see shortly that our parallelization
scheme can achieve linear speedup on up to 100 machines.
Table 3 and Figure 8 report the runtime speedup of CCF us-
ing up to 200 machines. The Orkut dataset enjoys a linear
speedup when the number of machines is up to 100. After
that, adding more machines receives diminishing returns.
This result led to our examination of overheads for CCF,
presented next.

No parallel algorithm can infinitely achieve linear speedup
because of the Amdahl’s law. When the number of machines
continues to increase, the communication cost starts to dom-
inate the total running time. The running time consists
of two main parts: computation time (Comp) and commu-
nication time (Comm). Figure 9 shows how Comm over-
head influences the speedup curves. We draw on the top
the computation only line (Comp), which approaches the
linear speedup line. The speedup deteriorates when com-
munication time is accounted for (Comp + Comm). Fig-
ure 10 shows the percentage of Comp and Comm in the
total running time. As the number of machines increases,
the communication cost also increases. When the number
of machines exceeds 200, the communication time becomes
even larger than the computation time.

Though the Amdahl’s law eventually kicks in to forbid a
parallel algorithm to achieve infinite speedup, our empirical
study draws two positive observations.

1. When the dataset size increases, the“saturation”point
of the Amdahl’s law is deferred, and hence we can add
more machines to deal with larger sets of data.

2. The speedup that can be achieved by parallel CCF
is very significant to enable near-real-time recommen-
dations. As shown in the table, the parallel scheme
reduces the training time from one day to less than 14
minutes. The parallel CCF can be run every 14 min-
utes to produce a new model to adapt to new access
patterns and new users.

4. CONCLUDING REMARKS
We have introduced a generative graphical model, Com-

binational Collaborative Filtering (CCF), for collaborative
filtering based on both bags of words and bags of users infor-
mation. CCF uses a hybrid training strategy that combines

Gibbs sampling with the EM algorithm. The model trained
by Gibbs sampling provides better initialization values for
EM than random seeding. We also presented the paral-
lel computing required to handle large-scale data sets. Ex-
periments on a large Orkut data set demonstrate that our
approaches successfully produce better quality recommen-
dations, and accurately cluster relevant communities/users
with similar semantics.

There are a couple of directions for future research. First,
we would consider expanding CCF to incorporate more types
of co-occurrence data. More types of co-occurrence data
would help to overcome sparsity problem and make better
recommendation. Second, in our analysis, the community-
user pair value equals one, i.e. n(ui, cj) = 1 (if user ui joins
community cj). An interesting extension would be to give
this count a different value, i.e. n(ui, cj) = f , where f is
the frequency of the user ui visiting the community cj . We
are currently parallelizing LDA and will compare LDA and
PLSA as the choice of our baseline algorithm in the future.

5. ACKNOWLEDGEMENT
The authors would like to thank Ellen Spertus for prepar-

ing the Orkut dataset and Jon Chu for helpful discussions.
The first author is supported by NSF under grant II-0535085.

6. REFERENCES
[1] Alexa internet. http://www.alexa.com/.
[2] D. M. Blei and M. I. Jordan. Variational methods for the

Dirichlet process. In Proc. of the 21st ICML Conference,
pages 373–380, 2004.

[3] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet
allocation. Journal of Machine Learning Research,
3:993–1022, 2003.

[4] D. Cohn and H. Chang. Learning to probabilistically
identify authoritative documents. In Proc. of the 17th
ICML Conference, pages 167–174, 2000.

[5] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum
likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society. Series B
(Methodological), 39(1):1–38, 1977.

[6] S. Geman and D. Geman. Stochastic relaxation, gibbs
distributions, and the bayesian restoration of images. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 6:721–741, 1984.

[7] T. Hofmann. Probabilistic latent semantic analysis. In
Proc. of the 15th UAI Conference, pages 289–296, 1999.

[8] A. McCallum, A. Corrada-Emmanuel, and X. Wang. The
author-recipient-topic model for topic and role discovery in
social networks: Experiments with enron and academic
email. Technical report, Computer Science, University of
Massachusetts Amherst, 2004.

[9] D. Newman, A. Asuncion, P. Smyth, and M. Welling.
Distributed inference for latent Dirichlet allocation. In
NIPS, 2007.

[10] E. Spertus, M. Sahami, and O. Buyukkokten. Evaluating
similarity measures: a large-scale study in the orkut social
network. In Proc. of the 11th ACM SIGKDD Conference,
pages 678–684, 2005.

[11] M. Steyvers, P. Smyth, M. Rosen-Zvi, and T. Griffiths.
Probabilistic author-topic models for information discovery.
In Proc. of the 10th ACM SIGKDD Conference, pages
306–315, 2004.

[12] A. Strehl and J. Ghosh. Cluster ensembles – a knowledge
reuse framework for combining multiple partitions. Journal
on Machine Learning Research, 3:583–617, 2002.

[13] S. Zhong and J. Ghosh. Generative model-based clustering
of documents: a comparative study. Knowledge and
Information Systems, 8:374–384, 2005.

123

