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ABSTRACT
Program specifications are important for many tasks during soft-
ware design, development, and maintenance. Among these, tem-
poral specifications are particularly useful. They express formal
correctness requirements of an application’s ordering of specific ac-
tions and events during execution, such as the strict alternation of
acquisition and release of locks. Despite their importance, tempo-
ral specifications are often missing, incomplete, or described only
informally. Many techniques have been proposed that mine such
specifications from execution traces or program source code. How-
ever, existing techniques mine only simple patterns, or they mine a
single complex pattern that is restricted to a particular set of manu-
ally selected events. There is no practical, automatic technique that
can mine general temporal properties from execution traces.

In this paper, we present Javert, the first general specification min-
ing framework that can learn, fully automatically, complex tem-
poral properties from execution traces. The key insight behind
Javert is that real, complex specifications can be formed by com-
posing instances of small generic patterns, such as the alternating
pattern ((ab)∗) and the resource usage pattern ((ab∗c)∗). In par-
ticular, Javert learns simple generic patterns and composes them
using sound rules to construct large, complex specifications. We
have implemented the algorithm in a practical tool and conducted
an extensive empirical evaluation on several open source software
projects. Our results are promising; they show that Javert is scal-
able, general, and precise. It discovered many interesting, non-
trivial specifications in real-world code that are beyond the reach
of existing automatic techniques.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement—Restructuring, reverse engineering, and reengin-
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eering; F.3.1 [Logics and Meaning of Programs]: Specifying and
Verifying and Reasoning about Programs

General Terms
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1. INTRODUCTION
Temporal specifications of software systems describe requirements
on the ordering of specific actions or events. These specifications
are often used to formally specify legal function call sequences over
module APIs. Temporal API specifications are useful for a number
of reasons: they can shorten development time by guiding the pro-
duction of correct code; they can be used as input to static analysis
tools [6, 10, 13, 31] to find bugs automatically; and they can facili-
tate software maintenance tasks by aiding program comprehension.

Despite these desirable characteristics, precise temporal specifi-
cations are often missing, incomplete, or only informally stated.
Recognizing this problem, researchers have developed techniques
that allow the automated reverse engineering—mining—of tempo-
ral specifications from programs. Recent work has recognized that
API usage patterns can be specified as regular languages [4]. This
allows the compact representation of specifications as regular ex-
pressions or finite state automata, and it allows the characterization
of the specification mining problem as a language learning prob-
lem.

Current approaches are fundamentally similar: each takes as input
a static program or a dynamic trace or profile and produces one or
more compact regular languages that specify temporal properties.
However, the individual solutions differ in key ways.

Some techniques learn a single specification over a specific alpha-
bet [4,27,30]. For example, one might be aware that some relation-
ship occurs between the elements of a programming language’s re-
lational database query API. The specification miner would take as
input a program and the elements of this API and return a minimal
finite automaton that represents the probable set of correct usages.
One particular advantage of these approaches is the ability to learn
arbitrarily complex patterns; the miner has no prior knowledge of
the structure of the specification.

Unfortunately, these techniques suffer from scaling and precision
problems. Finding a minimal finite automaton for a set of input
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Figure 1: Usage specification for Java’s MessageDigest class.

strings is NP-hard and cannot be approximated [23], and preci-
sion suffers from the inability to learn from negative examples: a
program is assumed to include entirely or mostly correct usages.
Learned specifications must strike a careful balance between levels
of generality. If a specification is too general, it can capture danger-
ous behavior. If it is too restrictive, it merely encodes a particular
usage instance, not a prescriptive specification. In addition, the re-
quirement of specifying the alphabet a priori is limiting: it prevents
the discovery of latent relationships between components that the
user does not anticipate.

Other algorithms learn multiple specifications over an arbitrary al-
phabet [11,14,29,32]. For example, many of these miners are capa-
ble of enumerating all pairs of events in a system that consistently
alternate, like the opening and closing of a file descriptor. These
techniques are scalable, and the user is not forced to select a small
subset of the program’s events to consider: all events in the system
are considered simultaneously.

However, the structure of the specifications must be defined in ad-
vance as templates, which makes learning an arbitrarily complex
specification impossible. The specifications must also be restricted
in both alphabet size and number of states to maintain scalability:
pattern matching of a specification is NP-hard in general [14]. Cur-
rent miners can locate instances of alternating patterns over event
pairs [11, 29, 32], resource usage patterns over event triples [14],
and precedence protocols [24, 25] and partial orders [1] over pairs
of function calls. These approaches suffer from precision issues as
well: although one can soundly enumerate instances of these small
template patterns, it is often difficult to distinguish between true
and coincidental relationships in the voluminous result sets.

In this paper, we present a new general approach to temporal spec-
ification mining that addresses several of the limitations of current
techniques. Our insight is twofold. First, we recognize that in-
stances of smaller specification template patterns can be composed
into larger specifications of arbitrary size. Second, we observe that
the composition of a specific set of pattern templates sufficiently
captures most temporal specifications published in the literature.

We then leverage this insight to create the first scalable temporal
specification mining algorithm that mines specifications of arbi-
trary size over arbitrary alphabets. Unlike all previous approaches,
our algorithm requires no input beyond the program representation:
neither a pattern nor an alphabet must be specified. In short, we use
our first insight to provide a general technique that increases the
scope and power of pattern-based specification mining. We then
create an instance of this general technique that leverages general
domain knowledge of software to mine general temporal proper-
ties. We have implemented our algorithm as a practical tool and
have demonstrated it to be general, scalable, and accurate.

Specifically, this paper makes the following contributions:

1. We introduce a new general technique for mining tempo-
ral specifications. Our technique combines the generality of
language learning-based approaches with the scalability of
pattern matching-based approaches by assembling instances
of smaller patterns into arbitrarily large specifications using
sound inference rules.

2. We provide an instance of this general technique, consisting
of specific sets of patterns and rules, and demonstrate that
its domain, a restricted class of regular languages, captures
most temporal specification instances in the literature. This
instance thus defines an algorithm for mining general tem-
poral properties that requires no input beyond the program
representation.

3. We implement this algorithm in a practical tool, Javert1 and
perform an empirical evaluation on several open source soft-
ware projects. Our evaluation demonstrates that our tech-
nique is scalable, general, and precise.

The following section (Section 2) illustrates our high-level tech-
nique through a motivating example. Section 3 formalizes our
general technique and describes our specific property mining al-
gorithm. It then argues that our algorithm is capable of finding a
large body of temporal properties. Section 4 provides details about
Javert’s implementation. It then describes our empirical evaluation
and results. Finally, Sections 5 and 6 survey and compare related
work and conclude.

2. MOTIVATING EXAMPLE
In this section, we provide a motivating example and use it to de-
scribe the intuition behind our technique. This example was dis-
covered by our practical tool, Javert, during our experiments.

Consider the specification automaton in Figure 1. It describes the
correct usage of Java’s MessageDigest API, which is used to gener-
ate digests (e.g.MD5) of binary data. Assume that we have one or
more full program method traces that contain several instances of
this pattern. As in a typical program trace, the individual method
calls that form this pattern may be interleaved with several unre-
lated calls, and we do not know a priori that a pattern necessarily
holds over these method calls.

This pattern would be difficult to learn using a general language
learning miner: as we do not know the alphabet of the specifica-
tion, we would have to consider many projections over different
subsets of interesting events of the trace or attempt to discover an

1Fr., Pronounced Jah·ver′, the relentless and obsessive inspector
from Victor Hugo’s Les Misérables.
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Figure 3: High-level architecture of Javert.
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Figure 2: Three micropatterns related to the MessageDigest API
and the larger pattern yielded by composition.

interesting projection by tracing the flow of data (e.g. “scenario ex-
traction” in [4]). The pattern is also difficult to learn using a pattern
matching approach: because this pattern has an alphabet of size six,
there are O(n6) potential specifications in a trace with n unique
events—a potentially intractable number to consider for even mod-
estly diverse traces.

Despite this inability to mine the pattern directly, we can still mine
the trace for instances of smaller patterns. Current pattern-based
miners [11, 29, 32] are capable of locating all instances of alternat-
ing events; that is, ones that fall into the regular pattern (ab)∗. Re-
cent advances [14] have leveraged the use of symbolic techniques
to allow the mining of larger patterns, including ones with loop-
ing transitions (e.g. (ab∗c)∗). Figure 2 contains a subset of these
smaller patterns, which we call micropatterns, that hold if this pat-
tern exists.

Notice that several patterns appear to have intuitive transitive re-
lationships. For example, we know that all calls to Message-
Digest.reset and DigestInputStream.<init> strictly
alternate, and we also know that there exists an alternating relation-
ship between MessageDigest.reset and DigestInput-
Stream.close. From this, we can deduce that the first three

micropatterns in Figure 2 imply the existence of the fourth. In the
following sections, we formalize this notion.

This composition of patterns is the essence of our approach. In
general, if we can infer enough information from a given set of mi-
cropatterns, we can use them as building blocks for larger temporal
properties. This allows us to leverage the advantages of pattern-
based approaches—namely the ability to scalably enumerate all
micropatterns for all possible combinations of trace events—while
still maintaining a form of generality. Figure 3 depicts our high
level approach. We use a pattern-based specification miner to mine
an interesting set of templates. We then take the discovered patterns
and compose them into larger specifications. Finally, we optionally
perform filtering or ranking on the composed specifications. Note
that the user provides no templates or alphabet sets: we consider
all possible combinations of trace events for micropattern mining,
and we compose arbitrarily large patterns without higher level tem-
plates.

3. TECHNICAL APPROACH
In this section, we discuss the realization of our technique. In Sec-
tion 3.1, we formalize the idea of pattern composition. In Sec-
tion 3.2, we present the specific patterns and composition rules used
in Javert. Section 3.3 argues that these rules and patterns are suf-
ficient to locate a large number of real specifications in software
systems.

3.1 General Framework
In Section 2, we introduced the intuitive idea of pattern composi-
tion. We now present formal definitions to more clearly illustrate
this idea.

Definition 3.1 (Projection) The projection π of a string s over an

alphabet Σ, πΣ(s), is defined as s with all letters not in Σ deleted.
The projection of a language L over Σ is defined as πΣ(L) =
{πΣ(s) | s ∈ L}.

Definition 3.2 (Specification Pattern) A specification pattern is

a finite state automaton A = (Q, Σ, δ, q0, F ), where Q is a finite

set of states, Σ is a set of input symbols, δ : Q × Σ 7→ Q is the

transition function, q0 is the single starting state, and F is a set

of final states. A pattern is satisfied over a trace T with alphabet

Σ′ ⊇ Σ if πΣ(T ) ∈ L(A).
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A pattern-based specification miner takes as input one or more
traces and one or more templates of specification patterns. The
alphabets of these templates contain abstract symbols in place of
concrete trace characters. The miner produces as output a set of
satisfied instances of the templates; that is, it produces a set of con-
crete specification patterns with alphabets over subsets of the trace
alphabet.

Suppose two pattern instances,A1 andA2, are satisfied over a trace
T . A1 and A2 may describe different elements of the system. For
example,A1 might describe an alternating property over tryLock
and lock methods, while A2 might describe the same alternating
property over lock and unlock. To compose these patterns into a
single pattern over the same alphabet, we must recognize that these
patterns hold over projections of T on to their respective alphabets,
and thus any interleaving of other trace letters may occur between
state transitions. To account for this, we define the expansion op-
erator, E, which widens a regular language with respect to a larger
alphabet.

Definition 3.3 (Expansion) [Gabel and Su, [14] § 2.6 ]

Assume a regular language defined by a finite state automatonA =
(Q, Σ, δ, q0, F ). The expansion of L(A) over an arbitrary alpha-
bet Σ′, written EΣ′(L(A)), is the maximal language over Σ ∪ Σ′

whose projection over Σ is L(A).

An automaton accepting EΣ′(L(A)) can be constructed by first
duplicating A and then adding a looping transition δ(q, a) = q to
each state q for each letter a ∈ Σ′ \ Σ. For the remainder of this
paper, we will overload E to denote this construction when applied
to an automaton rather than a language.

Expansion can be thought of as the maximal inverse of projection.
For example, an expression corresponding to E{a,b,c}((ab)∗) is
c∗(ac∗bc∗)∗. Note that projecting this new language over {a, b}
yields the original language, (ab)∗.

The composition of two patterns is defined as follows:

Definition 3.4 (Composition) The composition of two specifica-
tion patternsA1 andA2 is the intersection of the expansion of each

pattern over their combined alphabets, i.e.,

EΣ2
(A1)

\

EΣ1
(A2)

Intuitively, the composition of two patterns defines a language of
traces in which both patterns hold.

We could use this general definition to arbitrarily compose patterns
by using standard algorithms for finite state automaton manipula-
tion. However, in general, performing these pairwise compositions
directly is undesirable. Given a reasonably large set of patterns,
the finite state expansion, intersection, and minimization operations
become more expensive as the automata grow. More importantly,
we are interested in compact, concise specifications, and perform-
ing arbitrary language intersections is not likely to maintain a solu-
tion set with those characteristics.

To address this, we recognize special cases of composition in which
the result of the composition is compact and intuitive. We then
formulate these cases as inference rules, which leads to straight-

B

A

C

A

B

Figure 4: Micropatterns mined by Javert.

forward implementations in which composition is a constant time
operation.

3.2 Javert
This section describes the specific micropatterns mined by Javert
and the inference rules used to compose them.

Javert mines two micropatterns: basic alternation and resource
ownership. These patterns correspond to the regular expressions
(ab)∗ and (ab∗c)∗, respectively, and their representations as finite
automata appear in Figure 4.

Branching Rule: The first rule describes the composition of two
patterns with identical “endpoints,” i.e., the first and last letters of
a single iteration of the pattern.

(aL1
∗
b)∗ (aL2

∗
b)∗

(a (L1|L2)
∗
b)∗

[BRANCH]

The preceding rule holds ifL1 andL2 have disjoint alphabets. Note
that either L1 or L2 may represent the empty language.

Proposition 3.5 (Correctness of Branching) Defining

Σ′ as {a, b} ∪ ΣL1
∪ ΣL2

, the correctness of the Branching Rule
follows from the following fact:

EΣ′(aL1
∗
b)∗ ∩ EΣ′(aL2

∗
b)∗ = (a (L1|L2)

∗
b)∗

This rule performs the composition of two patterns that describe
legal operations at the same logical state. For example, from the
patterns:

[open read* close]*
[open seek* close]*

we can infer a third pattern:

[open (read|seek)* close]*

Sequencing Rule: The second rule describes the sequencing of
two patterns with compatible endpoints.

(aL1b)
∗ (bL2c)

∗ (ac)∗

(aL1bL2c)
∗ [SEQUENCE]

As with the previous rule, L1 and L2 must have disjoint alphabets,
which must in turn be disjoint from {a, b, c}.
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Proposition 3.6 (Correctness of Sequencing) Redefining Σ′

as {a, b, c} ∪ ΣL1
∪ ΣL2

, the correctness of the Sequencing Rule
follows from the following fact:

EΣ′(aL1b)
∗ ∩ EΣ′(bL2c)

∗ ∩ EΣ′(ac)∗ = (aL1bL2c)
∗

Continuing the earlier example, from the patterns:

[open (read|seek)* close]*
[connect open]*
[connect close]*

we can infer a fourth pattern:

[connect open (read|seek)* close]*

Both of these rules are general; they apply to both micropatterns or
any intermediate assembly thereof. Using these rules, Javert calcu-
lates the pattern closure for a given set of micropatterns; it repeat-
edly applies the above rules until they are no longer applicable.

3.3 Generality of Javert’s Patterns and Rules
In this section, we argue that the two patterns and two inference
rules presented in the previous section can sufficiently capture a
large class of temporal API relationships. In Section 4, we present
several examples of true, complex specifications that Javert finds in
real software systems.

Our general temporal properties have similar structural characteris-
tics: each consists of a linear sequence of state changing operations.
In each state, there are a number (possibly zero) of legal operations
that do not change the state. We believe that this generally mod-
els the phasic behavior of most module interfaces. For example,
resource APIs, usually related to input and output, go through an
initialization phase. At this point, a number of operations become
legal—usually operations with environmental side effects. Finally,
the interface moves through one or more state changing sequences;
these often consist of finalization, deallocation, or other forms of
cleanup.

We believe that most well-defined software interfaces follow sim-
ilarly structured temporal patterns. Note, though, that the addition
of other constraints, such as values on variables (e.g. no reading
from an empty stack) or context free behavior (e.g. three calls to
push can be followed by at most three calls to pop) are not cap-
tured by our technique. However, these specifications lie outside
the scope of general temporal properties; they are in fact not mod-
eled by any regular language.

We now demonstrate the expressiveness of our characterization by
showing that it sufficiently captures many complex examples of
temporal properties in the recent literature. We naturally omitted
small patterns that are sufficiently captured by the micropatterns
themselves. The following examples, presented in chronological
order, are from systems that are capable of learning arbitrarily com-
plex temporal properties.

3.3.1 A Socket API, Ammons et al.
Strauss, a tool developed by Ammons et al. [4], mines arbitrarily
complex specifications from dynamic traces. Consider the socket

API in Figure 5. This figure has been reproduced from the original
paper [4] and translated to Java. Our approach is capable of fully
composing this specification from micropatterns.

The subpattern:

[ ServerSocket.accept()

( Socket.getInputStream() |

Socket.getOutputStream() )*
Socket.close() ]*

is formed by an application of our first (branching) rule.

The sequencing of all related events is handled by repeated appli-
cations of the sequencing rule that make use of the pairwise alter-
nating patterns that exist between all non-repeating method calls.

Finally, the branching that occurs at the accept call is constructed
through an additional application of the branching rule, making use
of the empty language.

3.3.2 Ganymed APIs, Shoham et al.
More recently, Shoham et al. have developed a static specification
miner that uses abstract interpretation and regular language learn-
ing. The two examples (Connection and Session) in Fig-
ure 6 are reproduced from their paper [27] and their online sup-
plement [26], respectively.

The first API, Session, is nearly completely composable: Javert
is capable of capturing all but the final repetition of close. Our
inference rules operate on patterns with distinct, closed bounds;
neither of our micropatterns captures open-ended repetition. It it
likely, however, that our version of the specification (with a single
call to close) is only slightly more restrictive and not violated in
the common case.

The second API, Connection, is clearly composable by our tech-
nique: it involves a linear sequence of events. Javert would com-
pute the pattern closure over the pairwise alternating relationships
and yield the larger, sequenced API.

4. IMPLEMENTATION AND RESULTS
In this section, we describe Javert’s implementation and empirical
evaluation.

4.1 Implementation
Pattern Mining We implemented Javert in the Java program-
ming language. The first phase of Javert’s execution, which con-
sists of mining the micropatterns, is performed by an existing sym-
bolic specification mining algorithm [14]. This algorithm leverages
Binary Decision Diagrams [7] to maintain a compact state through-
out its execution, despite simultaneously tracking up to billions of
potential micropatterns. This algorithm is currently the most scal-
able pattern-based approach, and it is the only algorithm capable of
scalably mining micropatterns with alphabets of size three. This is
critical for our current approach: without this ability, we would be
unable to mine our looping micropattern and introduce loops into
our composed specifications.

Pattern Composition Javert’s second phase is implemented in
standard imperative Java. The rules are applied in a simple itera-
tive approach until no longer applicable. After composition, Javert
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ServerSocket.<init>() ServerSocket.accept() Socket.close() ServerSocket.close()

Socket.getInputStream()
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ServerSocket.close()

Figure 5: Socket API, Ammons et al. [4]

setProxyData connect authenticateWithPassword openSession

closeconnect

execCommand getStdout getExitStatus close

Figure 6: Ganymed APIs, Shoham et al. [26, 27]

emits a dominating set of the composed specifications; that is, it re-
fines the solution set so that no returned specification is contained
within another. We also include the ability to filter the mined spec-
ifications by either alphabet size (e.g., emit only specifications with
at least four participants) or structural characteristics (e.g., emit
only those specifications with at least one loop). Note that while
Javert is a Java application, it takes as input any finite sequence of
symbols. There are no requirements on the form of the input traces;
they need not be sequences of Java method calls.

Trace Collection To collect dynamic traces, we implemented a
new method trace collection tool for Java programs. This tool uses
the ASM2 bytecode engineering framework along with Java’s built
in instrumentation capability to dynamically add tracing code to
classes as they are loaded. This tool can easily instrument any Java
program; its invocation is performed via an option to the parent vir-
tual machine rather than the hosted application, obviating any need
to change application configurations. Our trace collection frame-
work has two significant advantages.

First, we log all method invocations before object-oriented dis-
patch is performed; that is, we log the compile-time targets of
method calls, not the run-time method body that is eventually ex-
ecuted. We expect specifications to be most useful when they de-
scribe sequences of calls made by the programmer, not the imple-
menter of an abstract interface. For example, a specification over
Java’s Socket type is likely to be more general than one over
SocketImpl.

Second, we log the static context (the calling function) of each
method invocation. This allows us to project our traces over in-
teresting source and destination sets. For example, assume we have
a client application that uses several libraries in addition to the Java
standard library. With contextual information, we can project the
trace to include only outbound calls, i.e., calls that originate in
client classes and call into any non-client class. Projected traces
of this form exhibit useful properties: the client can only escape its
own classes through public interfaces—the targets of specification
miners. Using this simple approach, we are able to log all public

2http://asm.objectweb.org

API calls without necessarily knowing what they are. The traces
are also free of excessively “noisy” methods, like private methods
within either the client or one of the libraries.

In its current form, our trace collection framework does not log
object identities or values of primitive values. This adds a level of
imperfection to the trace: nothing explicitly states that two calls
to the same type were necessarily made using related data values.
There are a number of justifications for this design decision.

First and foremost, we sought to avoid false negatives. Consider
a hypothetical extension to our trace collector in which we log the
receiver object of each non-static method call. We could then use
this information to project our traces over all operations performed
on a specific object, or equivalently, treat (call, instance) pairs as
our trace alphabet. This extension would render Javert highly pre-
cise, but it would limit the discovered patterns to a single type. This
would be severely limiting: note that every example specification
in this paper describes temporal relationships between two or more
types. Attempting to address this by considering more dataflow is
non-trivial (see Scenario Extraction in [4]), as the bounds of a par-
ticular computation are unclear. If we greedily expanded our pro-
jected traces based on dataflow between objects, we could easily
converge on the entire trace.

Second, we wished to design a technique that was not intrinsi-
cally dependent on information outside of the ordering of the trace
events. This increases Javert’s generality: it can learn patterns over
unwieldy legacy traces, and it is more adaptable to environments
where the trace collection mechanism is fixed or otherwise lim-
ited, possibly by architectural or performance constraints. Previ-
ous work on pattern-based specification mining has recognized this
problem; we rely on those techniques to generate a coherent set of
statistically significant micropatterns from imperfect traces.

Note, though, that although Javert can handle buggy or imprecise
traces, it would certainly thrive with more accurate input. Tech-
niques like SMArTIC [19] perform preprocessing and clustering on
traces to isolate and remove false behavior, reducing the incidence
of false positives. Dynamic slicing [2] over traces could also serve
to this end by removing unrelated flows of data. Any technique for
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Figure 9: Specification of the use of Lucene’s indexer.

improving the accuracy of Javert’s input is compatible and likely to
improve results, but we sought to design for the common case.

Availability Javert is available as an open source release from
http://wwwcsif.cs.ucdavis.edu/~gabel/research/javert. In ad-
dition to the symbolic specification miner and Javert’s pattern com-
poser, the release also contains our trace collection framework.

4.2 Empirical Evaluation
To evaluate Javert, we collected traces from seven client applica-
tions and executed our analysis on each. For examples with more
than one trace, we scanned the traces sequentially and kept the
running union of the mined micropatterns from each. Javert then
composed this larger set of micropatterns. We performed our ex-
periments on a 2.66 GHz Core 2 Duo workstation equipped with
Fedora Linux and the official Sun 1.6.0_04 64-bit server JVM.

Figure 7 lists our seven target projects, quantitative data about their
respective representative traces, and Javert’s execution time. Each
trace consists of all outbound calls made by the client; these include
calls to the Java standard library and other third party libraries. For
Ant and Hibernate, we were afforded the luxury of complete test
suites that automatically exercised many parts of the client applica-
tions. This allowed us to generate close to 200 traces for each. In
each case, Javert was able to complete both phases of the analysis
in a reasonable amount of time; the overall execution time is usu-
ally dominated by the first phase and is roughly linear in the size of
the traces. The largest example completed in less than an hour.

Our quantitative results are displayed in Figure 8. For each project,
we display the total number of composed specifications, the num-
ber of “real” specifications, and the number of false positives. This
information is presented for three minimum size thresholds, |Σ| ≥
4, 7, and 10.

Categorizing the results is a complex task: the definition of a real
specification can be a subject of opinion. Temporal specifications,
when expressed as regular languages, are by nature an overap-
proximation of the correct behavior of the system. In addition,
the very motivation for our work—the lack of well documented
specifications—makes validating our findings difficult and subjec-
tive.

If we assume a high level of precision of Javert’s first phase, pat-
tern mining, the soundness of our composition rules implies that
we infer no “false” properties; every pattern we discover does in
fact describe a frequently occurring sequence of events in the input
trace. Our quantitative evaluation thus seeks to differentiate be-
tween artifacts of control flow—correlated method calls that form
an incidental temporal property—and true temporal properties with
a dataflow relationship. To this end, we settled on the following
mechanical definition of a “real” temporal property.

Definition 4.1 (Real Temporal Property) A temporal property is

real if it can be traced back to a sequence of calls in the source

code that are chained by a dataflow relationship.

In this definition, we traced the flow of data through parameters,
return values, fields, and static variables. This definition, in effect,
evaluates the idea of frequent pattern composition as a solution to
the specification mining problem.

We performed our first experiment on a trace fromApache’s Lucene
indexer, a component of the Lucene document search engine. We
collected all calls made by the demo application into any non-demo
class, i.e., calls into the Lucene indexing library. From this, we dis-
covered the specification in Figure 9. This represents the structure
that must be followed in order to add a document to the search
index: the Document object must first be created, and several in-
stances of metadata fields can be added. Next, the body of the
document is filled in by instantiating a particular Field instance
with a Reader parameter. Finally, this Document object is used
as the parameter of the addDocument method of indexer.

The next three examples, JGnash, JEdit, and Columba, are user
applications with graphical interfaces. With these applications, we
experienced a significant number of false positives. In all three
cases, the majority of false positives consisted of large aggregations
of code that performed the initialization of user interface elements.
With Java’s Swing GUI interface, one creates a large object model
that conceptually mirrors the display. The creation of this model
involves a large amount of boilerplate code3 with a consistent (but
not necessarily required) structure.

It is interesting to note, however, that Javert discovered large, dis-
tinct “clumps” of this code, which both simplified their identifica-
tion as false positives and possibly reduced the overall number of
false patterns. Figure 10 presents one particularly interesting spec-
ification from Javert’s JGnash solution set. JGnash is a personal
finance package; when saving bank account data on a local hard
drive, the application uses a symmetric cipher. Java’s cryptogra-
phy API is quite complex: each of several required objects must be
accessed through separate factory interfaces. The specification dis-
covered by Javert correctly describes a general approach to using a
symmetric cipher to encrypt a stream of character data.

Executing the Apache Ant and Hibernate test suites yielded a wealth
of trace data. The Ant build system can interact with many exter-
nal libraries as part of a project’s build process, and Hibernate fre-
quently uses structured APIs, including Java’s SQL API for inter-
acting with relational databases and various bytecode engineering
frameworks for generating dynamic proxy classes. On these exam-
ples, Javert discovered a number of interesting specifications with

3In fact, this code is often automatically generated using third party
tools.
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Execution Time

Project Description Num. of Traces Total Trace Events Pattern Mining Composition

Lucene Indexer Document Search Engine 1 63,755 3.6s 0.03s
JGnash Personal Finance Application 1 70,572 21.4s 25.7s
JEdit Source Code Editor 1 973,230 103.4s 0.6s
Columba Email Client 3 8,673,448 717.0s 87.4s
Findbugs Static Analysis 1 14,072,862 1151.1s 51.3s
Ant Build System 198 15,582,468 1295.9s 349.6s

Hibernate Object Persistence API 184 26,588,144 2151.0s 1.5s

Figure 7: Trace data and analysis times.

|Σ| ≥ 4 |Σ| ≥ 7 |Σ| ≥ 10
Project Total Real False Total Real False Total Real False

Lucene Indexer 4 2 2 0 0 0 0 0 0
JGnash 35 5 30 28 5 23 22 5 17
JEdit 13 4 9 4 3 1 2 2 0
Columba 12 2 10 7 2 5 4 0 4
Findbugs 29 10 19 23 10 13 13 9 4
Ant 46 34 12 27 16 11 4 3 1

Hibernate 18 13 5 10 8 2 5 4 1

Figure 8: Quantitative results.
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Socket.close()ServerSocket.close()

Socket.getInputStream()

Socket.getOutputStream()

Figure 11: Two properties extracted from executions of Apache
Ant.

few false positives. Figure 11 displays two compact properties dis-
covered from Ant, including the server-side TCP socket API. Fig-
ures 12 and 13 display three properties mined from the Hibernate
traces.

Note the size of the first: it describes the use of the javaassist
library to perform an entire transformation of a Java class. This
involves reading it in as a byte stream, building the object model,
transforming the various objects, and rewriting it as a byte stream.
Note, though, that it is somewhat wide (not as restrictive as it could
be) during the point at which the code of a method is traversed:
although our micropatterns capture the temporal relationships be-
tween hasNext and next, our rules were unable to compose this
embedded subpattern. As future work, we are investigating other
forms of inference rules to account for this.

bytecode.ClassFile.
<init>(DataInputStream)

bytecode.ClassFile.
getConstPool()

bytecode.FieldInfo.
<init>(ConstPool,String,String)

bytecode.FieldInfo.
setAccessFlags(int)

bytecode.ClassFile.
addField(FieldInfo)

bytecode.ClassFile.
write(DataOutputStream)

bytecode.ClassFile.
getMethods()

bytecode.ClassFile.
getFields()

bytecode.ClassFile.
setInterfaces(String[])

bytecode.ConstPool.
       addFieldrefInfo(int,String,String)
bytecode.ConstPool.
       getThisClassInfo()
bytecode.Bytecode.
       addIndex(int)

bytecode.CodeAttribute.iterator()
bytecode.CodeIterator.hasNext()
bytecode.CodeIterator.next()
bytecode.CodeIterator.byteAt(int)
bytecode.MethodInfo.getCodeAttribute()
bytecode.MethodInfo.getName()

Figure 12: A larger temporal property of the JavaAssist bytecode
framework, extracted from its use by Hibernate.

Overall, the results of our analysis were precise, usable, and inter-
esting. Although we experienced a number of false positives on
each example, the ratio of false positives to real specifications re-
mains reasonable, often below one. This is in sharp contrast to ear-
lier work that uses pattern matching in isolation: the ratio of false
positives to significant specifications is often orders of magnitude
greater than Javert’s. For example, large portions of papers [29,32]
have been dedicated to filtering interesting sets of the large number
of simple alternating patterns in programs.

We believe that Javert’s precision is partly due to the way we com-
pose patterns through inference rules. Intuitively, a micropattern in
isolation has a low probability of representing a significant tempo-
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Figure 10: A specification for the use of a symmetric cipher, extracted from JGnash.
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executeQuery()

Figure 13: Two specifications extracted from Hibernate.

ral property. However, if several related micropatterns exist that
can be composed or chained, the probability of significance in-
creases. Evidence of this hypothesis exists in Figure 8: note the
decrease in the ratio of false positives to true specifications as we
raise the minimum size threshold. Our composition process is, in
spirit, a form of natural selection: unless a pattern can connect with
one or more others, it does not survive the selection process.

Absent from this evaluation is a direct comparison with other spec-
ification miners. The primary reason for this is that no other tool
solves exactly the same problem: some tools enumerate many small
micropatterns, while others learn a single language. To our knowl-
edge, Javert is the only tool that can mine several complex, signif-
icant specifications from a trace in a single pass—with no required
input outside of the trace. Thus, the methodology for comparing
Javert with a regular language learner is not clear: for a trace with n

unique events, we would have to run 2n projected traces (over each
subset of the trace alphabet) through the regular language learner
to allow it to consider all possibilities.

Javert is a dynamic analysis, and it carries with it most typical ad-
vantages and disadvantages of all dynamic analyses. Javert’s pre-
cision is limited by the precision of the input traces, and its recall
is limited by the variety of data available in the input traces. How-
ever, Nimmer and Ernst’s findings [22] suggest that this may not
be a major problem: they found that a surprisingly small number
of test runs are sufficient to capture most of a program’s static be-
havior. It is not likely, however, that Javert misses an important
specification that does appear in an input trace. Javert’s pattern

mining front end considers all possible instances of micropatterns,
and its composition engine computes the full pattern closure: every
legal composition is considered.

5. RELATEDWORK
In this discussion, we present related work in the software specifi-
cation mining and dynamic analysis areas.

5.1 Temporal Specification Mining
Ammons et al. [4] first characterized the inference of temporal spec-
ifications as a language learning problem. In this work, the au-
thors used a probabilistic finite automaton learner to extract likely
specifications. A key challenge with their approach was simplify-
ing specifications to an acceptable level of precision. The authors
addressed this challenge in a later paper [5] by applying concept
analysis to debug the learned specifications. Shoham et al. recently
presented a static analysis with the same general goal [27]. Both of
these techniques are limited in that they require the alphabet of the
mined specification to be known. Javert is capable of finding spec-
ifications of similar complexity in a much more scalable manner.

Various static analyses [3,16,30] take as input a type and produce as
output an automaton that encodes legal call sequences of operations
on that type. Call sequences are considered legal if they do not lead
to an assertion failure or another exceptional control path. These
techniques are limited in that they find a specification over a single
type, and they may be too permissive: if the implementation of
the type is not programmed defensively, it may have illegal call
sequences that lead to an inconsistent state but do not throw an
exception or violate an assertion. In contrast, Javert operates on the
assumption that common usage likely reflects the true specification.

Engler et al. first introduced the idea of matching an alternating
pattern over a program to produce possible specification candi-
dates [11]. This approach suffered from imprecision, so the authors
used statistical methods to rank the possible properties. Weimer
and Necula [29] built on this idea by restricting their search to alter-
nating patterns that traverse exceptional control flow paths. While
this improved the precision of the approach, the patterns were still
fundamentally limited to simple two-letter alternating sequences.
We later introduced a highly scalable symbolic technique that ex-
tends this approach to patterns of size three [14] and greater.

Yang et al. [32] adopted a similar approach for locating alternat-
ing events, Perracotta, that introduced novel methods for handling
imperfect traces. Sources of imperfection include interleaved con-
current executions, omitted information (like memory addresses),
or bugs. In this work, the authors briefly describe a heuristic for
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combining simple alternating patterns, but the approach is limited
to finding simple sequencing patterns. Our work provides a more
general mechanism for inferring a class of general temporal prop-
erties.

ADABU [9], developed by Dallmeier et al., is similar to Javert in
that it dynamically learns temporal specifications from Java pro-
grams. The temporal specifications have a similar structure: tran-
sitions are labeled by method calls. However, the authors take a
different approach to the problem: the tool directly observes state
changes by calling inspector methods, like isEmpty() on a col-
lection type, rather than inferring them from ordering information.
In addition, like many other miners, the tool is limited to finding
specifications over a single type with a known alphabet.

Ramanathan et al. have developed a static analysis [24] for detect-
ing “function precedence protocols.” These specifications are of the
form “function x is called on all paths leading to an invocation of
function y.” The authors later generalized this technique to include
other predicates like constraints on variables [25]. These specifica-
tions are of limited expressiveness; they correspond to the simple
pattern (b+a). Our analysis is capable of finding more complex
specifications of arbitrary size.

Acharya et al. recently introduced a static analysis that mines par-
tial orderings on function invocation sequences [1]. The authors
use a data mining technique, frequent closed partial order mining,
to enumerate possible specifications. These specifications are of
limited form—simple chains—and are not as strict; the partial or-
derings represent a “may” requirement, not a “must” requirement
like a strict temporal specification.

A similar technique, developed by Wasylkowkski et al. [28], uses
a static analysis to extract simple partial orders on function call
sequences. The tool uses frequent itemset mining to both recog-
nize frequently occurring patterns and detect violations. When
compared with Javert, the mined patterns are more limited in com-
plexity. However, a similar extension—combining verification with
mining—would be a valuable addition to Javert’s functionality.

5.2 Other Specification Miners
Li and Zhou constructed an analysis, PR-Miner, that makes use of
frequent itemset mining to find highly correlated function calls [18].
They then used these correlated sets as specifications; they ana-
lyzed the source code for instances of sets of function invocations
that omit a commonly correlated call. Lu et al. later extended this
technique to find highly correlated variable accesses, which they
use to locate concurrency bugs [21]. These techniques are orthog-
onal to our own: the correlated sets returned by these analyses do
not contain any temporal relationships.

Kremenek et al. have developed a general approach to specifica-
tion mining that uses probabilistic models called annotation factor
graphs [17]. This analysis probabilistically assigns annotations that
denote a role to functions with a program. These flexible models
allow the user to add additional domain-specific information to the
analysis. Unlike our analysis, this technique locates instances of a
very restricted type of property.

5.3 Dynamic Analysis
The Daikon project [8,12] is a dynamic technique that is similar in
spirit to our own analysis. Daikon locates invariants on the values
of variables, while we locate invariants on the sequencing of func-

tion invocations. DIDUCE is a similar technique that also locates
potential violations of invariants [15].

Combining the ideas of invariant detection and temporal property
mining, Lorenzoli et al. have developed a dynamic analysis algo-
rithm for extracting software behavioral models [20]. The algo-
rithm, GK-tail, builds an Extended Finite State Machine from a set
of dynamic traces. The transitions in these extended models in-
clude both a called function or method and a set of constraints on
the parameters or environment. For future work, we are interested
in investigating the compatibility of these extended models and our
general approach.

6. CONCLUSIONS
In this paper, we have presented a general specification mining
framework, Javert, that can fully automatically mine complex, real-
world temporal specifications. It is based on the observation that
software often operates in phases and that complex temporal spec-
ifications can be constructed from smaller generic patterns. The
framework is general; it is independent of the method used to mine
these smaller patterns, and any set of inference rules can be used
to compose them. We have introduced two intuitive, sound rules
that are general enough to learn most of the temporal specifications
in the literature. We have implemented our framework as a practi-
cal tool, and our empirical evaluation of it on several open source
projects demonstrates that Javert is scalable, general, and precise.

There are a few interesting directions for future work. First, we
have considered two specific rules for pattern composition in this
paper. It would be interesting to investigate whether there are other
suitable choices of composition rules for specification mining. Sec-
ond, we plan to investigate the effectiveness of incorporating addi-
tional dataflow information, such as the information provided by
program slicing, into our analysis. Third, we would like to investi-
gate how to adapt our technique and develop a static specification
mining algorithm that operates directly on source code. Pattern
composition may help reduce the number of false positives by com-
posing many small patterns (as we have observed in this work). Fi-
nally, we have focused on temporal specifications, and it would be
interesting to consider more expressive properties and investigate
whether there are useful instantiations of our framework in these
more general settings.
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