
Partial Least Squares Regression for Graph Mining

Hiroto Saigo
Max Planck Institute for
Biological Cybernetics

Spemannstr. 38
Tübingen, Germany

hiroto.saigo@tuebingen.mpg.de

Nicole Krämer
TU Berlin

Franklinstr. 28/29, 10587
Berlin, Germany

nkraemer@cs.tu-
berlin.de

Koji Tsuda
Max Planck Institute for
Biological Cybernetics

Spemannstr. 38
Tübingen, Germany

koji.tsuda@tuebingen.mpg.de

ABSTRACT
Attributed graphs are increasingly more common in many appli-
cation domains such as chemistry, biology and text processing. A
central issue in graph mining is how to collect informative subgraph
patterns for a given learning task. We propose an iterative mining
method based on partial least squares regression (PLS). To apply
PLS to graph data, a sparse version of PLS is developed first and
then it is combined with a weighted pattern mining algorithm. The
mining algorithm is iteratively called with different weight vectors,
creating one latent component per one mining call. Our method,
graph PLS, is efficient and easy to implement, because the weight
vector is updated with elementary matrix calculations. In exper-
iments, our graph PLS algorithm showed competitive prediction
accuracies in many chemical datasets and its efficiency was signif-
icantly superior to graph boosting (gBoost) and the naive method
based on frequent graph mining.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design Methodology—Feature evalu-
ation and selection; H.2.8 [Database Management]: Database Ap-
plications—Data mining

General Terms
Algorithms, Experimentation, Performance

Keywords
Partial least squares regression, graph mining, graph boosting, chemoin-
formatics

1. INTRODUCTION
As data mining and machine learning techniques continue to

evolve and improve, the role of structure in the data becomes more
and more important. Much of the real world data is represented
not as vectors, but as graphs including sequences and trees, for ex-
ample, biological sequences, semi-structured texts such as HTML
and XML, chemical compounds, RNA secondary structures, and so

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’08 August 24–27, 2008, Las Vegas, Nevada, USA.
Copyright 2008 ACM 978-1-60558-193-4/08/08 ...$5.00.

(-1,...,-1,1,-1,...,-1,1,-1,...)
B

A

A

B
A

AA

B

A

APatterns

Figure 1: Feature space based on subgraph patterns. The feature
vector consists of binary pattern indicators.

forth. Like ordinary vectorial data, there are two kinds of learning
tasks; unsupervised [30, 31] and supervised [22]. Among super-
vised learning tasks, graph regression and classification would be
of wide interest. In graph regression, an attributed graph is given as
an input, and a real-valued output variable is predicted. In classifi-
cation, the output variable is binary.

In learning from graph data, one can rely on the similarity mea-
sures derived from graph alignment [28] or graph kernels [10, 23,
6, 16]. However, one drawback is that the features used in learn-
ing are implicitly defined, and derived clusters are hard to interpret.
Another approach is based on graph mining, where a set of small
graphs (i.e., patterns) is used to represent a graph. Specifically, each
graph is represented as a binary vector of pattern indicators (Fig-
ure 1). Graph mining is especially popular in chemoinformatics,
where the task is to classify chemical compounds [11, 7]. When
all possible subgraphs are used, the dimensionality of the feature
space is too large for usual statistical methods. Therefore, feature
collection is a central issue in graph mining algorithms [30, 1, 35].

To summarize the feature collection methods proposed so far,
let us classify them into two categories: mine-at-once and iterative
mining. In the first category, the whole feature space is built by
one mining run before the subsequent machine learning algorithm
is started. A naive approach is to use a frequent substructure mining
algorithm such as AGM [9], gSpan [36] or Gaston [20] to collect
frequently appearing patterns. This approach was employed by [7]
and [11], where a linear support vector machine is used for classifi-
cation. A more advanced approach is to mine informative patterns
with high correlation to the output variable [19, 1]. However, salient
patterns depend on the optimal parameters of the subsequent learn-
ing algorithm, and it is difficult to obtain a small number of features
informative for any learning algorithm [12].

Among iterative mining methods, substructure boosting meth-
ods [15, 22, 26] have been successfully applied to many different
domains such as images [22], videos [21], chemical compounds [26]
and biological mutation sets [27]. The boosting algorithm calls a
pattern mining algorithm repeatedly to incrementally form a feature
space. In the first iteration, the patterns with high correlation with

578

the target variable are collected. In subsequent iterations, the algo-
rithm updates the example weights such that more emphasis is put
on mispredicted examples. It is reported that it creates less useless
features compared to the mine-at-once methods [22]. In the very
first paper by Kudo et al. [15], AdaBoost was used for updating
the example weights. However, AdaBoost is not efficient in graph
mining, because it takes too many iterations to finish. Thus recent
papers use mathematical programming-based approaches such as
linear programming boosting (LPBoost) [3, 24] and quadratic pro-
gramming boosting (QPBoost) [26]. Furthermore, to reduce the
number of iterations, several patterns are collected at the same time
in one iteration by multiple pricing [22]. Nevertheless, substructure
boosting can still be improved in term of efficiency, because the com-
putation time for mathematical programming is substantially large.
In itemset boosting [27], it is reported that the computational time
for mathematical programming is much larger than that needed for
mining. In particular, when solving a regression problem, one has
to use a quadratic program that is computationally more demanding
than a linear program.

We propose a new iterative mining method based on partial least
squares regression (PLS) [33, 25, 34]. PLS is an iterative algo-
rithm that extracts latent features iteratively from a high dimen-
sional space. An attractive point of PLS is that it depends only on
elementary matrix calculations (i.e., addition and multiplications).
Therefore, it is more efficient than other methods depending on
mathematical programming or eigen-decomposition. In gBoost, the
transition from vectorial to graph data is achieved by replacing the
feature selection step by a pattern mining algorithm [22]. In PLS, it
is not so simple, because conventional algorithms for PLS such as
NIPALS [33] require the deflation of the whole feature matrix. The
feature matrix consists of the feature vectors of all training exam-
ples, and NIPALS substracts a dense matrix from the feature matrix
in each iteration. It is possible only if the whole feature matrix is
loaded to memory, which is not practical in graph mining.

In this paper, we develop a sparse version of non-deflation PLS
such that each latent component depends on a limited number of
subgraph patterns. Then, it is combined with a pattern mining algo-
rithm to deal with graph data. We call our algorithm graph PLS or
gPLS in short. gPLS collects informative patterns in a limited num-
ber of iterations, as it avoids the discovery of identical patterns by
means of orthogonality constraints. Like gspan and gBoost, gPLS
employs the DFS code tree [36] as the canonical search space of
graph patterns. The criterion for pattern search is quite simple and
it turns out that the pattern search algorithm in gBoost (i.e., weighted
substructure mining) can be reused in gPLS as well.

This paper is organized as follows. In Section 2, we introduce
the PLS regression and present its non-deflation version. Section 3
explains how PLS is applied to graph data. In Section 4, extensive
experiments for various chemical datasets are presented. Section
5 discusses other possibilities in developing graph regression algo-
rithms. Finally, we conclude the paper in Section 6.

2. PARTIAL LEAST SQUARES REGRESSION
This section reviews the partial least squares regression (PLS)

algorithm for vectorial data. We first explain the conventional NI-
PALS algorithm and introduce a new non-deflation algorithm. The
transition from vectorial to graph data will be discussed in the next
section.

Let us assume n training examples (x1, y1), . . . , (xn , yn) where
xi ∈ �d and yi ∈ �. The output yi is assumed to be centralized∑

i yi = 0. Denote by X the design matrix, where each row corre-
sponds to x�i . Also denote by y the vector of all training outputs.

The regression function of PLS is linear, but the following special
form,

f (x) =
m∑

i=1

αiw
�
i x, (1)

where wi are weight vectors that reduce the dimensionality of x ,
satisfying the following orthogonality condition:

w�i X�Xw j =
{

1 (i = j)
0 (i �= j)

(2)

We need to determine two kind of parameters wi and αi . Basically,
wi are learned first, and the coefficients αi are obtained by least
squares regression without any regularization,

α = argmin
α

n∑
k=1

(yk −
m∑

i=1

αiw
�
i xk)2. (3)

Due to the orthogonality conditions, this problem is easily solved
as

αi =
n∑

k=1

ykw
�
i xk . (4)

The weight vectors are determined by the following greedy algo-
rithm. The first vector is obtained by maximizing the covariance
between the mapped feature Xw1 and the output variable y,

w1 = argmax
w

(
∑n

k=1 ykw�xk)2

w�w
(5)

subject to w�X�Xw = 1. This problem is solved analytically as

w1 = 1

δ
X�y

where δ is the normalization factor

δ =
√

y�X X�X X�y.

For the i-th weight vector, the same optimization problem is solved
with additional constraints to keep orthogonality,

wi = argmax
w

(
∑n

k=1 ykw�xk)2

w�w
(6)

subject to

w�X�Xw = 1, w�X�Xw j = 0, j = 1, . . . , i − 1.

The optimal solution of this problem cannot be obtained analytically.
Since the regression of α is done without any regularization, it is
important to choose the number of weight vectors appropriately.
Typically, it is chosen to optimize the cross validation error, or other
model selection criteria such as AIC and BIC [25].

2.1 NIPALS
Let us define the i-th latent component as t i = Xwi . The NIPALS

algorithm [33] solves the optimization problem (6) in an indirect
way, namely the optimal latent components t i are obtained first and
the corresponding wi is obtained later. Let us define Ti−1 as the
matrix of latent components obtained so far,

Ti−1 = (t1, . . . , t i−1)

and define a projection matrix as

Pi−1 = Ti−1(T�i−1Ti−1)−1T�i−1 = Ti−1T�i−1. (7)

579

The second equality is due to the orthogonal conditions (2). Then,
a deflated design matrix X̃ is defined as

X̃i = X − Pi−1 X.

Now we solve the following problem based on the deflated matrix,

v i = argmax
v

(
∑n

k=1 ykv
� x̃ ik)2

v�v

where v�i X̃�i X̃iv i = 1. As in (5), the optimal solution has the form

v i = 1

η
X̃�i y. (8)

where η =
√

y� X̃i X̃�i X̃i X̃�i y. In literature, we could not find
appropriate terminology for v i , but here we call it the i-th pre-
weight vector, because it is used to create the “real” weight vector
wi . Based on v i , the optimal latent component is obtained as

t i = X̃iv i .

Finally, we have to recover the optimal weight vector wi based on
the following equation [8],

Xwi = t i = X̃iv i = Xv i − Pi−1 Xv i .

Assuming the linear independence of rows of X , the equation is
solved as

wi = v i −
i−1∑
j=1

(w�j X�Xv i)w j , (9)

which corresponds to the optimal solution of (6).
The NIPALS algorithm consists of only elementary matrix com-

putations and therefore is more efficient than solving (6) as an con-
strained quadratic program. The algorithm is summarized in Algo-
rithm 1. Due to the following relationship,

X̃i = X̃i−1 − t i−1t�i−1 X̃i−1,

the deflated matrix is updated rather than recomputed in each iter-
ation. However, for our purpose, the crucial drawback is that the
sparseness of X is lost by deflation.

Algorithm 1 The NIPALS algorithm.

1: Initial: X̃1 = X
2: for i = 1, . . . , m do
3: v i = X̃�i y/η. � Pre-weight vector

4: t i = X̃iv i � Latent components
5: X̃i+1 = X̃i − t i t

�
i X̃i � Deflation

6: end for
7: Conversion of v i to wi for all i as (9)

2.2 Non-deflation sparse PLS
We now present an alternative derivation of PLS that avoids the

deflation step and that is based on the connection of PLS the the
Lanczos method and that uses recursive fitting of residuals [5, 13].

Substituting the definition of the projection matrix to the pre-
weight vector (8), we obtain

v = 1

η
X�(I − Ti−1T�i−1)y. (10)

The NIPALS algorithm first computes the deflated matrix X�(I −
Ti−1T�i−1) and then multiplies it with y. However, an obvious

alternative way is to compute the residual vector

r i = (I − Ti−1T�i−1)y.

and then multiply it with X�. Following this idea, the NIPALS
algorithm can be modified to a non-deflation version (Algorithm 2).

In graph mining, it is useful to have sparse weight vectors wi such
that only a limited number of patterns are used for prediction. To
this aim, we modify the algorithm further by introducing sparseness
to the pre-weight vectors v i as follows:

vi j = 0, if |vi j | ≤ ε, j = 1, . . . , d.

Due to the linear relationship between v i and wi , it is understood
that wi becomes sparse as well. The sparse weight vectors satisfy
the orthogonality conditions (2). There are two alternative ways to
determine the threshold ε: 1) Sort |vi j | in the descending order, take
the top-k elements, and set all the other elements to zero. 2) Set ε to
a fixed threshold. In the latter case, the number of non-zero elements
in v i may vary. In the experiments presented in this paper, we took
the former top-k approach to avoid unbalanced weight vectors and
to make efficiency comparisons easier.

It is worthwhile to notice that the residual of regression up to the
i − 1-th features,

rik = yk −
i−1∑
j=1

α j w
�
j xk (11)

is equal to the k-th element of r i . It can be verified by substituting
the definition of α j (4) into (11). So in the non-deflation algorithm,
the pre-weight vector v is obtained as the direction that maximizes
the covariance with residues. This observation highlights the re-
semblance of PLS and boosting algorithms [3]. In boosting, ex-
ample weights are iteratively altered such that the examples with
high residues are weighted more. In this formulation of PLS, it is
clearer that the residue vector plays a role similar to that of boost-
ing’s example weights. The connection between PLS and boosting
is discussed in [17].

Algorithm 2 Non-deflation Sparse PLS algorithm.
1: for i = 1, . . . , m do
2: r i = (I − Ti−1T�i−1)y � Residue

3: v i = X�r i/η. � Pre-weight vector
4: vi j = 0, if |vi j | ≤ ε, j = 1, . . . , d � Sparsify

5: wi = v i −
∑i−1

j=1(w
�
j X�Xv i)w j �Weight vector

6: t i = Xwi � Latent components
7: end for

3. GRAPH PLS (GPLS)
In this section, we discuss how to apply the non-deflation PLS

algorithm to graph data. Here we deal with undirected, labeled and
connected graphs. To be more precise, we define the graph and its
subgraph as follows:

Definition 1 (Labeled connected graph). A labeled graph is rep-
resented in a 4-tuple G = (V, E,L, l), where V is a set of vertices,
E ⊆ V ×V is a set of edges, L is a set of labels, and l V ∪ E → L
is a mapping that assigns labels to the vertices and edges. A labeled
connected graph is a labeled graph such that there is a path between
any pair of vertices.

Definition 2 (Subgraph). Let G′ = (V ′, E ′,L′, l ′) and G =
(V, E,L, l) be labeled connected graphs. G′ is a subgraph of G

580

A B

A B C D A B

Tree of Substructures

A

B C

Figure 2: Schematic figure of the tree-shaped search space of graph
patterns (i.e., the DFS code tree). To find the optimal pattern effi-
ciently, the tree is systematically expanded by rightmost extensions.

(G′ ⊆ G) if the following conditions are satisfied: (1) V ′ ⊆ V ,
(2) E ′ ⊆ E , (3) L′ ⊆ L, (4) ∀v ′ ⊆ V ′, l(v ′) = l ′(v ′) and (5)
∀e′ ⊆ E ′, l(e′) = l ′(e′). If G′ is a subgraph of G, then G is a
supergraph of G′.

Our training set is represented as (G1, y1), . . . , (Gn , yn) where
Gi is a graph and yi ∈ � is a target value. Let p be a subgraph
pattern in a graph, and P be the set of all patterns, i.e., the set of all
subgraphs included in at least one graph. Then, the whole feature
vector of each graph Gi is encoded as a |P |-dimensional vector xi ,

xip =
{

1 if p ⊆ Gi ,
−1 otherwise

This feature space has already been illustrated in Figure 1. Since
|P | is a huge number, we cannot keep the whole design matrix. So
we need to set X as the empty matrix first, and grow the matrix as the
iterations proceed. In each iteration, we obtain the set of patterns p
whose pre-weight |vip | is above the threshold, which can be written
as

Pi = {p |
∣∣∣∣∣∣

n∑
j=1

ri j x j p

∣∣∣∣∣∣ ≥ ε}. (12)

Then, the design matrix is expanded to include newly introduced
patterns. The pseudocode of gPLS is described in Algorithm 3.
Most numerical computations are carried over from Algorithm 2
except that the residue vector is updated.

The pattern search problem (12) is exactly the same as the one
solved in gBoost [22]. So we can reuse the same method to enu-
merate Pi . More specifically, it can be done by gspan function in
the gBoost MATLAB toolbox1. However, we explain the pattern
search algorithm briefly for the completeness of this paper.

Our search strategy is a branch-and-bound algorithm that requires
a canonical search space in which a whole set of patterns are enu-
merated without duplication. As the search space, we adopt the
DFS code tree [36]. The basic idea of the DFS code tree is to orga-
nize patterns as a tree, where a child node has a supergraph of the
pattern in its parent node. (Figure 2). A pattern is represented as
a text string called the DFS (depth first search) code. The patterns
are enumerated by generating the tree from the root to leaves using
a recursive algorithm. To avoid duplications, node generation is
systematically done by rightmost extensions. Algorithm 4 shows
the pseudo code for the recursive algorithm.

For efficient search, it is important to minimize the size of the
search space. To this aim, tree pruning is crucially important [18,
1http://www.kyb.mpg.de/bs/people/nowozin/gboost/

Algorithm 3 gPLS
1: r1 = y, X = ∅
2: for i = 1, . . . , m do

3: Pi = {p |
∣∣∣∑n

j=1 ri j x j p

∣∣∣ ≥ ε} � Pattern search

4: X Pi : design matrix restricted to Pi
5: X ← X ∪ X Pi

6: v i = X�r i/η � Pre-weight vector
7: wi = v i −

∑i−1
j=1(w

�
j X�Xv i)w j �Weight vector

8: t i = Xwi � Latent component
9: r i+1 = r i − (y�t i)t i � Update residues
10: end for

Algorithm 4 Pattern search algorithm
1: procedure Pattern Search
2: P ← ∅
3: for p ∈ DFS codes with single nodes do
4: project(p)
5: end for
6: return P
7: end procedure
8: function project(p)
9: if p is not a minimum DFS code then
10: return
11: end if
12: if pruning condition (13) holds then
13: return
14: end if
15: if p satisfies the condition (12) then
16: P ← P ∪ {p}
17: end if
18: for p′ ∈ rightmost extensions of p do
19: project(p′)
20: end for
21: end function

15]. Let us define the gain function as s(p) =
∣∣∣∑n

j=1 ri j x j p

∣∣∣.
Suppose the search tree is generated up to the pattern p. If it is
guaranteed that the gain of any supergraph p′ is not larger than ε,
we can avoid the generation of downstream nodes without losing
the optimal pattern. Our pruning condition is described as follows.

Theorem 1. Define ỹi = sgn(ri). For any pattern p′ such that
p ⊆ p′, s(p′) < ε, if

max{s+(p), s−(p)} < ε, (13)

where

s+(p) = 2
∑

{i|ỹi=+1,xi, j=1}
|ri | −

n∑
i=1

ri

s−(p) = 2
∑

{i|ỹi=−1,xi, j=1}
|ri | +

n∑
i=1

ri .

Other conditions such as the maximum size of pattern (maxpat) and
the minimum support (minsup) can be used in combination with the
pruning condition (13).

581

1 2 3 4 5 6 7 8 9 10
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

maxpat

Q
2

EDKB

gPLS
gBoost

1 2 3 4 5 6 7 8 9 10
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

maxpat

tim
e

(s
ec

)

EDKB

gPLS NT
gPLS MT
gBoost NT
gBoost MT

Figure 3: Regression accuracy (left) and computational time (right)
against maximum pattern size (maxpat) in the EDKB dataset.

1 2 3 4 5 6 7 8 9 10
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

maxpat

A
U

C

CPDB

gPLS
gBoost

1 2 3 4 5 6 7 8 9 10
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

maxpat

tim
e

(s
ec

)

CPDB

gPLS NT
gPLS MT
gBoost NT
gBoost MT

Figure 4: Classification accuracy (left) and computational time
(right) against maximum pattern size (maxpat) in the CPDB dataset.

4. EXPERIMENTS
In this section, we evaluate our method using four publicly avail-

able chemical datasets: EDKB2, CPDB3, CAS4 and AIDS5. Links
to these datasets can be found in ChemDB [2]. Table 1 shows the
summary of the datasets. Among them, the AIDS dataset [14, 4]
is by far the largest both in the number of examples and the graph
size. EDKB is a regression dataset, but the others are classification
datasets. In gPLS, we solved classification problems by regress-
ing the target values +1,−1. In gBoost, we employed the gBoost
MATLAB toolbox for classification datasets so that the experimen-
tal results are easily reproducible. Since the toolbox does not offer
regression solvers, we implemented a graph boosting regression al-
gorithm based on quadratic programming. See Appendix for details.

We set minimum support parameter (minsup) to 2 for relatively
small datasets (EDKB, CPDB and AIDS1), and to 10% of the
number of positives for large datasets (CAS, AIDS2 and AIDS3).
Throughout the experiments maximum pattern size (maxpat) is set
to 10. We used AMD Opteron 2.2GHz system with at most 8GB
memory for all experiments.

4.1 gPLS vs gBoost
GPLS is compared with gBoost in five fold cross validation exper-

iments. In gPLS, there are two parameters to tune, namely the num-
ber of iterations m and the number of obtained patterns per search
k. For each dataset, we exhaustively tried all combinations from
m = {5, 10, 15, 20, 25, 30, 35} and k = {5, 10, 15, 20, 25, 30, 35}.
In the following, we always report the best test accuracy among all
settings. Notice that, for AIDS datasets, the parameter values are

2http://edkb.fda.gof/databasedoor.html
3http://potency.berkeley.edu/cpdb.html
4http://www.chemoinformatics.org/datasets/bursi/
5http://dtp.nci.nih.gov/index.html

changed as m = {10, 20, 30, 40, 50}, k = {10, 20, 30, 40, 50} to
cope with large-scale data. In gBoost, the regularization param-
eter was varied as ν = {0.1, 0.2, . . . , 0.9} for classification, and
C = {10, 50, 100, 150, 200, 1000} for regression. The number of
patterns to add per iteration is set to 50 for CAS and AIDS, and 10
for the other datasets. The accuracy is measured by Q2 for regres-
sion and by the area under the ROC curve (AUC) for classification.
The Q2 score is defined as

Q2 = 1−
∑n

i=1 (yi − f (xi))
2

∑n
i=1

(
yi − 1

n
∑n

i=1 yi

)2

which is close to 1 when the regression function fits good, and is
close to 0 when it does not. The interpretation is similar to that for
the Pearson correlation coefficient.

The results of gPLS and gBoost are compared in Table 2. For
EDKB and CPDB datasets, we performed more detailed experi-
ments with different settings of maximum pattern size (Figure 3
and 4). In terms of accuracy, it is difficult to decide which method
is better. GPLS was better in EDKB, CPDB and AIDS1 but gBoost
was better in CAS. However, in terms of computational time, gPLS
is clearly superior. In the table, we distinguish the computational
time for pattern search (mining time, MT) and the numerical com-
putations (numerical time, NT). The numerical time of gBoost was
significantly larger than that of gPLS in all datasets, showing that
gPLS’s computational simplicity contributes to reduce the actual
computational load. For large datasets (AIDS2 and AIDS3), gBoost
did not finish in a reasonable amount of time.

Figure 5 shows the patterns selected by gPLS from the EDKB
dataset. It is often observed that similar patterns are extracted to-
gether in the same component. This property makes PLS stable,
because the regression function is less affected by small changes in
graph data.

4.2 Efficiency gain by iterative mining
The main idea of iterative mining is to gain efficiency by means

of adaptive example weights. We evaluated how large the efficiency
gain is by comparing gPLS and a naive method that enumerates all
patterns first and apply PLS afterwards. Table 3 summarizes the
results for different maximum pattern sizes (maxpat). In the naive
method, the number of patterns grow exponentially, hence the com-
putational time for PLS grows rapidly as well. GPLS successfully
keeps computational time small in all occasions.

5. DISCUSSION
So far, we have mainly focused on gPLS and gBoost. They are

similar in that graph patterns are iteratively collected based on the
weighted mining criterion. Obviously, they are not the only ones
belonging to this family of algorithms. Other boosting methods
and PLS-like methods could be applied to graph data in the same
fashion.

However, it is important to recognize that there are two distinct
classes in boosting algorithms, sequential update and totally correc-
tive update. Both classes are based on linear classification function,

f (x) =
∑
i=1

wi xi .

In sequential update algorithms including AdaBoost and its vari-
ants (GradientBoost, MadaBoost etc.), a new feature xi+1 is added
in one iteration and the corresponding weight wi+1 is determined.
However, previously fixed weights are never updated again. In these
methods, numerical computation per iteration is very simple, but it

582

Figure 5: Patterns obtained by gPLS from the EDKB datasets. Each column corresponds to the patterns of a PLS component.

583

Table 1: Summary of datasets.
label type # data # positives # negatives avg. atoms avg. bonds

EDKB real 59 - - 18.5 20.1
CPDB binary 684 342 343 14.1 14.6
CAS binary 4337 2401 1936 29.9 30.9

AIDS1 (CA vs CM) binary 1324 350 974 48.8 51.0
AIDS2 (CA CM vs CI) binary 40939 1324 39615 42.7 44.6

AIDS3 (CA vs CI) binary 39965 350 39615 42.7 44.5

Table 2: Results of gPLS and gBoost in various datasets. Values in the parentheses are optimal parameters achieving the best test accuracy.
P: the average number of obtained patterns, MT: mining time, NT: numerical time, ITR: the number of iterations required until convergence.

gPLS gBoost
(m, r)* P MT NT AUC/Q2† (ν/C†)* P MT NT AUC/Q2† ITR

EDKB (10, 30) 296 16.0 0.0025 0.647† ± 0.129 (100†) 216 15.6 83.3 0.639† ± 0.164 9.2
CPDB (20, 15) 258 26.8 0.474 0.862 ± 0.0214 (0.4) 260 22.8 344 0.862 ± 0.0316 18.6
CAS (30, 10) 294 3570 14.1 0.870 ± 0.0098 (0.4) 503 8630 391 0.867 ± 0.000251 13.4

AIDS1 (10, 10) 99 290 0.0652 0.773 ± 0.0538 (0.4) 186 783 299 0.752 ± 0.138 19.6
AIDS2 (40, 10) 396 50300 167 0.747 ± 0.0266 over 24h
AIDS3 (50, 20) 946 57100 509 0.883 ± 0.0541 over 24h

takes many iterations to converge. In graph mining, each iteration
involves pattern search, so sequential update algorithms are not ef-
ficient after all. On the other hand, totally corrective methods, such
as gPLS, gBoost and TotalBoost [32], update all weights whenever
new features are introduced. It requires more complicated numeri-
cal computation but the number of iterations can be by far smaller.
Also it is possible to collect several patterns in each iteration, which
substantially helps to reduce the number of iterations further. Graph
LARS [29] could be considered as a totally corrective method as it
updates all weights. However, since it is based on regularization
path tracking, it is not clear how to collect more than one pattern by
a mining call.

6. CONCLUSION
We presented a novel graph regression method based on partial

least squares regression. Experiments showed that gPLS has better
efficiency than gBoost. However, gPLS cannot completely replace
gBoost, because gBoost has an advantage in its flexibility. With a lit-
tle modification in mathematical programming formulation, gBoost
can solve various machine learning problems, such as one-class
SVM, ranking and the positive/negative unbalanced classification
problem. In this paper, we used graph data only, but gPLS can be
applied to subclasses of graphs such as trees, sequences and item-
sets, simply by replacing graph mining with an appropriate mining
algorithm.

Acknowledgements
The authors would like to thank Pierre Mahé for data preparation,
Ichigaku Takigawa for figure preparation, and Sebastian Nowozin
for preparation of MATLAB toolbox and proof reading.

7. REFERENCES
[1] B. Bringmann, A. Zimmermann, L. D. Raedt, and S. Nijssen.

Don’t be afraid of simpler patterns. In 10th European
Conference on Principles and Practice of Knowledge
Discovery in Databases (PKDD), pages 55–66. Sprinter,
2006.

[2] J. Chen, S. J. Swamidass, Y. Dou, J. Bruand, and P. Baldi.
Chemdb: A public database of small molecules and related
chemoinformatics resources. Bioinformatics,
21(22):4133–4139, 2005.

[3] A. Demiriz, K. Bennet, and J. Shawe-Taylor. Linear
programming boosting via column generation. Machine
Learning, 46(1-3):225–254, 2002.

[4] M. Deshpande, M. Kuramochi, N. Wale, and G. Karypis.
Frequent sub-structure-based approaches for classifying
chemical compounds. IEEE Trans. Knowl. Data Eng.,
17(8):1036–1050, 2005.

[5] L. Eldén. Partial least squares vs. lanczos bidiagonalization i:
Analysis of a projection method for multiple regression.
Computational Statistics and Data Analysis, 46(1):11–31,
2004.

[6] H. Fröhrich, J. Wegner, F. Sieker, and Z. Zell. Kernel
functions for attributed molecular graphs - a new similarity
based approach to ADME prediction in classification and
regression. QSAR & Combinatorial Science, 25(4):317–326,
2006.

[7] C. Helma, T. Cramer, S. Kramer, and L. Raedt. Data mining
and machine learning techniques for the identification of
mutagenicity inducing substructures and structure activity
relationships of noncongeneric compounds. J. Chem. Inf.
Comput. Sci., 44:1402–1411, 2004.

[8] A. Höskuldsson. PLS Regression Methods. Journal of
Chemometrics, 2:211–228, 1988.

[9] A. Inokuchi. Mining generalized substructures from a set of
labeled graphs. In Proceedings of the 4th IEEE Internatinal
Conference on Data Mining, pages 415–418. IEEE
Computer Society, 2005.

[10] H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized
kernels between labeled graphs. In Proceedings of the 21st
International Conference on Machine Learning, pages
321–328. AAAI Press, 2003.

584

Table 3: Frequent mining + PLS vs gPLS in the CPDB dataset
frequent mining + PLS gPLS

maxpat # patterns mining time numerical time AUC # patterns mining time numerical time AUC
1 17 0.0927 0.038 0.696 15.2 0.308 0.038 0.700
2 61 0.148 0.0164 0.770 45.8 1.20 0.1169 0.782
3 182 0.212 0.0335 0.812 73.8 1.09 0.0573 0.833
4 515 0.282 0.0923 0.842 82.6 2.06 0.0488 0.857
5 1387 0.602 0.221 0.846 93.4 1.97 0.0296 0.844
6 3500 2.55 0.525 0.852 85.6 2.67 0.0222 0.833
7 8215 4.38 1.60 0.848 65.4 3.19 0.0146 0.837
8 18107 7.6 5.32 0.840 172 13.1 0.247 0.857
9 37719 17.9 7.42 0.840 209 12.7 0.282 0.859

10 74857 40.3 51.2 0.842 244 26.8 0.474 0.862
11 143006 70.3 92.8 0.835 244 35.4 0.375 0.862
12 out of memory 244 46.3 0.367 0.862
13 out of memory 244 52.4 0.549 0.861
∞ out of memory 244 66.3 0.586 0.861

[11] J. Kazius, S. Nijssen, J. Kok, and T. B. A. Ijzerman.
Substructure mining using elaborate chemical representation.
J. Chem. Inf. Model., 46:597–605, 2006.

[12] R. Kohavi and G. H. John. Wrappers for feature subset
selection. Artificial Intelligence, 1-2:273–324, 1997.

[13] N. Krämer and M. Braun. Kernelizing partial least squares,
degrees of freedom, and efficient model selection. In
Proceedings of the 24th International Conference on
Machine Learning, pages 441 – 448. AAAI Press, 2007.

[14] S. Kramer, L. Raedt, and C. Helma. Molecular feature
mining in HIV data. In Proceedings of the 7th ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining. ACM Press, 2001.

[15] T. Kudo, E. Maeda, and Y. Matsumoto. An application of
boosting to graph classification. In Advances in Neural
Information Processing Systems 17, pages 729–736. MIT
Press, 2005.

[16] P. Mahé, L. Ralaivola, V. Stoven, and J.-P. Vert. The
pharmacophore kernel for virtual screening with support
vector machines. J. Chem. Inf. Model., 46(5):2003–2014,
2006.

[17] M. Momma and K. Bennett. Constructing orthogonal latent
features for arbitrary loss. Feature Extraction, Foundations
and Applications. Springer, 2006.

[18] S. Morishita. Computing optimal hypotheses efficiently for
boosting. In Discovery Science, pages 471–481. Springer,
2001.

[19] S. Morishita and J. Sese. Traversing itemset lattices with
statistical metric learning. In Proceedings of ACM
SIGACT-SIGMOD-SIGART Symposium on Database
Systems (PODS), pages 226–236. ACM Press, 2000.

[20] S. Nijssen and J. Kok. A quickstart in frequent structure
mining can make a difference. In Proceedings of the 10th
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 647–652. ACM Press,
2004.

[21] S. Nowozin, G. Bakir, and K. Tsuda. Discriminative
subsequence mining for action classification. In Proceedings
of the 11th IEEE International Conference on Computer
Vision (ICCV 2007), pages 1919–1923. IEEE Computer
Society, 2007.

[22] S. Nowozin, K. Tsuda, T. Uno, T. Kudo, and G. Bakir.
Weighted substructure mining for image analysis. In IEEE
Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR), IEEE Computer Society, 2007.

[23] L. Ralaivola, S. Swamidass, H. Saigo, and P. Baldi. Graph
kernels for chemical informatics. Neural Netw.,
18(8):1093–1110, 2005.

[24] G. Rätsch, A. Demiriz, and K. Bennett. Sparse regression
ensembles in infinite and finite hypothesis spaces. Machine
Learning, 48(1-3):189–218, 2002.

[25] R. Rosipal and N. Krämer. Overview and recent advances in
partial least squares. In Subspace, Latent Structure and
Feature Selection Techniques, pages 34–51. Springer, 2006.

[26] H. Saigo, T. Kadowaki, and K. Tsuda. A linear programming
approach for molecular QSAR analysis. In International
Workshop on Mining and Learning with Graphs (MLG),
pages 85–96, 2006.

[27] H. Saigo, T. Uno, and K. Tsuda. Mining complex genotypic
features for predicting HIV-1 drug resistance.
Bioinformatics, 23(18):2455–2462, 2007.

[28] A. Sanfeliu and K. Fu. A distance measure between
attributed relational graphs for pattern recognition. IEEE
Trans. Syst. Man Cybern., 13:353–362, 1983.

[29] K. Tsuda. Entire regularization paths for graph data. In
Proceedings of the 24th International Conference on
Machine Learning, pages 919–926, 2007.

[30] K. Tsuda and T. Kudo. Clustering graphs by weighted
substructure mining. In Proceedings of the 23rd International
Conference on Machine Learning, pages 953–960. ACM
Press, 2006.

[31] K. Tsuda and K. Kurihara. Graph mining with variational
dirichlet process mixture models. In SIAM Conference on
Data Mining (SDM), 2008.

[32] M. Warmuth, J. Liao, and G. Rätsch. Totally corrective
boosting algorithms that maximize the margin. In
Proceedings of the 23rd International Conference on
Machine Learning, pages 1001–1008, 2006.

[33] H. Wold. Path models with latent variables: The NIPALS
approach. In Quantitative Sociology: International
Perspectives on Mathematical and Statistical Model
Building, pages 307–357. Academic Press, 1975.

585

[34] S. Wold, M. Sjöstöm, and L. Erikkson. PLS-regression: a
basic tool of chemometrics. Chemometrics and intelligent
laboratory systems, 58:109–130, 2001.

[35] X. Yan, H. Cheng, J. Han, and P. S. Yu. Mining significant
graph patterns by leap search. In Proceedings of the ACM
SIGMOD International Conference on Management of Data,
pages 433–444, 2008.

[36] X. Yan and J. Han. gSpan: graph-based substructure pattern
mining. In Proceedings of the 2002 IEEE International
Conference on Data Mining, pages 721–724. IEEE
Computer Society, 2002.

APPENDIX
Here we briefly describe the gBoost regression algorithm. Boost-
ing methods construct a linear combination of weak hypotheses to
come up with a better prediction. In our case, a weak hypothesis
corresponding to each subgraph pattern p is described as

xip =
{

1 if p ⊆ Gi ,
−1 otherwise.

The regression function is formulated as

f (x) =
n∑

i=1

αpxip + b,

where α, b are weight parameters to be learned. The learning prob-
lem is written as

argmin
α,b

∑
p∈P
|αp | + C

2

n∑
i=1

(∑
p∈P

αpxip + b − yi
)2

,

where C is the regularization parameter to be adjusted. Using the
L1-norm regularizer (the first term), sparsity is enforced to the pa-
rameters.

The problem is rewritten as the following quadratic program.

min
α,ξ,b

∑
p∈P

(α+p + α−p)+ C

2

n∑
i=1

ξ2
i (14)

s.t .
∑
p∈P

αpxip + b − yi ≤ ξi , i = 1, . . . , n (15)

yi −
∑
p∈P

αpxip − b ≤ ξi , i = 1, . . . , n (16)

α+, α− ≥ 0, ξ ≥ 0, (17)

where ξi is a slack variable, αp = α+p − α−p . The above quadratic
program has |P | variables and 2n constraints. Directly solving this
primal problem is hard due to the large number of variables in α.
Thus, we consider the dual problem:

min
λ

1

2C

n∑
i=1

(λ+i + λ−i)2 −
n∑

i=1

yi (λ
+
i − λ−i) (18)

s.t . −1 ≤
n∑

i=1

(λ+i − λ−i)xip ≤ 1, ∀p ∈ P (19)

n∑
i=1

λ+i − λ−i = 0, λ+, λ− ≥ 0, (20)

where λ+i and λ−i are Lagrange multipliers for the constraints (15)
and (16), respectively. Once the dual problem is solved, the primal
solution α and b are recovered from the Lagrange multipliers of the
dual problem. Though the dual problem has too many constraints, it
can be efficiently solved by an iterative procedure called the column
generation algorithm [3]. First of all, an initial solution of λ is ob-
tained from the problem with no constraints (19). In each iteration,
one finds the most violated constraint based on the current value of
λ, and add the found constraint to the quadratic program. In our
case, a constraint corresponds to a subgraph pattern, so we need to
solve the following search problem,

argmax
p∈P

∣∣∣∣∣∣
n∑

i=1

λi xip

∣∣∣∣∣∣ ,

where λ = λ+ − λ−. This search problem coincides with that of
gPLS (12), and can be solved using the same algorithm (Algorithm
4). In each iteration of the algorithm, a dual quadratic program with
a limited number of constraints is solved and the obtained solution
will be used in the next search. The iteration will be continued until
the dual parameter λ converges.

586

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

