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ABSTRACT
In many online social systems, social ties between users play
an important role in dictating their behavior. One of the
ways this can happen is through social influence, the phe-
nomenon that the actions of a user can induce his/her friends
to behave in a similar way. In systems where social influence
exists, ideas, modes of behavior, or new technologies can dif-
fuse through the network like an epidemic. Therefore, iden-
tifying and understanding social influence is of tremendous
interest from both analysis and design points of view.

This is a difficult task in general, since there are fac-
tors such as homophily or unobserved confounding variables
that can induce statistical correlation between the actions
of friends in a social network. Distinguishing influence from
these is essentially the problem of distinguishing correlation
from causality, a notoriously hard statistical problem.

In this paper we study this problem systematically. We
define fairly general models that replicate the aforemen-
tioned sources of social correlation. We then propose two
simple tests that can identify influence as a source of social
correlation when the time series of user actions is available.

We give a theoretical justification of one of the tests by
proving that with high probability it succeeds in ruling out
influence in a rather general model of social correlation. We
also simulate our tests on a number of examples designed
by randomly generating actions of nodes on a real social
network (from Flickr) according to one of several models.
Simulation results confirm that our test performs well on
these data. Finally, we apply them to real tagging data on
Flickr, exhibiting that while there is significant social cor-
relation in tagging behavior on this system, this correlation
cannot be attributed to social influence.

Categories and Subject Descriptors: J.4 [Computer
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General Terms: Economics, Human Factors
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1. INTRODUCTION
Online social networks are playing an ever-important role

in shaping the behavior of users on the web. Popular social
sites such as Facebook, MySpace, Flickr, and del.icio.us, are
enjoying increasing traffic and are turning into community
spaces, where users interact with their friends and acquain-
tances. The availability of such rich data at never-before–
seen scales makes it possible to analyze user actions at an in-
dividual level in order to understand user behavior at large.
In particular, questions interpreting a user’s action in the
context of his/her online friends and correlating the actions
of socially connected users, become highly interesting.

There has been some theoretical and empirical work on
how a user’s actions can be correlated to his/her social af-
filiations. Backstrom et al. [1] examined the membership
problem in an online community. They observed correlation
between the action of a user joining an online community
and the number of friends who are already members of that
community. Marlow et al. [5] considered the tag usage prob-
lem in Flickr and studied the set of tags placed by a user
and those placed by the friends of the user. They exhibited a
correlation between social connectivity and tag vocabulary.

While these studies have established the existence of cor-
relation between user actions and social affiliations, they do
not address the source of the correlation. Causes of cor-
relation in social networks can be categorized into roughly
three types. The first is influence (also known as induction),
where the action of a user is triggered by one of his/her
friend’s recent actions. An example of this scenario is when
a user buys a product because one of his/her friends has re-
cently bought the same product. The second is homophily,
which means that individuals often befriend others who are
similar to them, and hence perform similar actions. For ex-
ample, two individuals who own Xboxes are more likely to
become friends due to the common interest. The third is
environment (also known as confounding factors or external
influence), where external factors are correlated both with
the event that two individuals become friends and also with
their actions. For example, two friends are likely to live in
the same city, and therefore to post pictures of the same
landmarks in an online photo sharing system.

From a practical point of view, identifying situations where
social influence is the source of correlation is important. In
the presence of social influence, an idea, norm of behav-
ior, or a product diffuses through the social network like an
epidemic. A marketing firm, for example, can use this in-
formation to design viral marketing campaigns or give out
coupons to influential nodes in the network, or a system
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designer can take advantage of this information in order to
induce the users to follow a desired mode of behavior. There
has already been significant research on methods for design-
ing strategies to leverage social influence in such systems [3]
and on the effect of influence on the growth pattern of new
products [8]. The main idea in all viral marketing strategies
is essentially that in cases that influence between users is
prevalent, careful targeting can have a cascading effect on
the adoption of a product/technology. Therefore, being able
to identify in which cases influence prevails is an important
step to strategy design.

Our contributions. Given the significance of social influ-
ence, it is important to be able to test if a given social system
exhibits signs of social influence. This is a particularly dif-
ficult problem in online settings where individuals are often
anonymous and therefore it is impossible to control for all
potential confounding factors. We overcome this problem by
taking advantage of the availability of data about the timing
of actions in online settings. We propose a statistical test
(called the shuffle test) based on the intuition that if influ-
ence is not a likely source of correlation in a system, timing
of actions should not matter, and therefore reshuffling the
time stamps of the actions should not significantly change
the amount of correlation. We prove that in a rather general
model of homophily and confounding, this test succeeds in
ruling out influence as the source of social correlation.

We also show the effectiveness of our test using simula-
tions. Our test cases are based on a large social network
from Flickr. We generate the action data randomly from a
model with or without social influence, and run our test on
this data set to decide whether the correlation is caused by
influence. Our results show that in nearly all cases our algo-
rithm succeeds in identifying the source of correlation. We
also present results for another test (called the edge-reversal
test) inspired by a recent study on the spread of obesity in
real-world social networks [2].

Finally, we apply our algorithms on real tagging data in
Flickr. Our results show that even though tagging behav-
ior in this system exhibits a considerable degree of social
correlation, this cannot be attributed to social influence.

Organization. In Section 2 we detail the different forms of
social correlation. In Section 3 we describe our methodology,
and present a theoretical analysis in a model of homophily
and confounding. We describe our data generation mod-
els and present the results of simulations in Section 4. We
describe our experiments on Flickr tags in Section 5.

2. MODELS OF SOCIAL CORRELATION
We study a setting where a group of individuals (also

called agents or users) are nodes of a social network G. In
general, G is a directed graph and is generated from an
unknown probability distribution. We are concerned with
individuals performing a certain action for the first time,
e.g., purchasing a product, visiting a web-page, or tagging
a photo with a particular tag.1 After an agent performs the
action, we say that the agent has become active. We observe

1In many cases, e.g., purchasing certain products or using
certain tags, an individual might perform the action multiple
times. We focus on the first time the action is performed by
each individual, since subsequent occurrences of the same
action by the same individual is often more dependent on
the first occurrence than on the social network.

the system for a certain time period [0, T ]. Let W denote the
set of agents that are active at the end of this time period.

Social correlation, i.e., correlation between the behavior
of affiliated agents in a social network is a well-known phe-
nomenon. Formally, this means that for two nodes u and v
that are adjacent in G, the events that u becomes active is
correlated with v becoming active. There are three primary
explanations for this phenomenon: homophily, the environ-
ment (or confounding factors), and social influence.

Homophily. Homophily is the tendency of individuals to
choose friends with similar characteristics [4, 6]. This is a
pervasive phenomenon, and not surprisingly, leads to corre-
lation between the actions of adjacent nodes in a social net-
work. For example, one plausible hypothesis for why there is
social correlation in membership in an online community is
that individuals might know each other and become friends
after joining the community. Mathematically, in a pure ho-
mophily model, the set W of active nodes is first selected
according to some distribution, and then the graph G is
picked from a distribution that depends on W .

Confounding. The second explanation for correlation be-
tween actions of adjacent agents in a social network is exter-
nal influence from elements in the environment (also referred
to as confounding factors), which are more likely to affect
individuals that are located close to each other in the social
network. Mathematically, this means that there is a con-
founding variable X, and both the network G and the set
of active individuals W come from distributions correlated
with X. For example, two individuals who live in the same
city are more likely to become friends than two random in-
dividuals, and they are also more likely to take pictures of
similar scenery and post them on Flickr with the same tag.

Note that there is a fine distinction between this explana-
tion and homophily: homophily refers to situations where
the set W affects individuals’ choices to become friends,
while in confounding, both the choices of individuals to be-
come friends and their choice to become active are affected
by the same unobserved variable. It is possible to distinguish
between these models by looking at the time where the edges
of G are established. The focus of this paper, however, is
on distinguishing social influence from other types of social
correlation. Therefore, we study a common generalization of
the confounding and the homophily model as follows: first,
the pair (G,W ) is selected according to a joint probability
distribution, and then the time of activation for individuals
in W is picked i.i.d. according to a distribution T on [0, T ].
We call this model the correlation model. The main assump-
tion here is that the probability that an individual is active
can be affected by whether their friends become active, but
not by when they become active. This is in contrast with
the influence model, as defined below.

Influence. The third, and perhaps the most consequential
explanation for social correlation is social influence. This
refers to the phenomenon that the action of individuals can
induce their friends to act in a similar way. This can be
through setting an example for their friends (as in the case
of fashion), informing them about the action (as in the case
of viral marketing), or increasing the value of an action for
them (as in the case of adoption of a technology). Mathe-
matically, this can be modeled as follows: first, the graph G
is drawn according to some distribution. Then, in each of the
time steps 1, . . . , T , each non-active agent decides whether
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to become active. The probability of becoming active for
each agent u is a function p(x) of the number x of other
agents v that have an edge to u and are already active.2

Here, p(·) can be any increasing function, although later in
the paper we consider a special class of functions that pro-
vides a good fit with the real data and also corresponds to
a commonly used statistical model for estimating the prob-
ability of binary events, namely the logistic regression.

3. METHODOLOGY
In this section we present the methodology that we use

to measure social correlation and test whether influence is
a source of such correlation. We start in Section 3.1 by
explaining how logistic regression can be used to quantify
the extent of social correlation. In Section 3.2 we define
the shuffle test for deciding if influence is a likely source of
correlation, and prove that this test successfully rules out
influence as the source of correlation in the correlation (con-
founding/homophily) model defined in Section 2. Finally,
in Section 3.3 we define another test called the edge-reversal
test, which we evaluate experimentally.

3.1 Measuring social correlation
The first step in our analysis is to obtain a measure of so-

cial correlation between the actions of an individual and that
of her friends in the network. This measure is designed to
recover the activation probability, assuming that the agents
follow the influence model defined in Section 2.

Recall that in the influence model, each individual flips an
independent coin in every time step to decide whether or not
to become active. In principle, the probability of this coin
can vary from agent to agent and from time to time; in the
simplest model, which is the focus of most of this paper, we
measure this probability as a function of only one variable:
the number of already-active friends the agent has.3 Note
that the parameter we use is the number of friends that have
become active at any earlier time step, as opposed to friends
who have become active immediately before. This is because
in online systems like Flickr actions are stored, and might
be observed by others much later.

As it turns out, for most tags in the Flickr data set, a
logistic function with the logarithm of the number of friends
as the explanatory variable provides a good fit for the proba-
bility. Therefore, for simplicity and to reduce the possibility
of overfitting, we use the logistic function with this variable,
that is, we estimate the probability p(a) of activation for an
agent with a already-active friends as follows:4

p(a) =
eα ln(a+1)+β

1 + eα ln(a+1)+β
, (1)

2This model assumes that time progresses in discrete steps.
A similar model with continuous time can be defined using
the Poisson distribution.
3We also considered using the fraction of the total popu-
lation that is active as another explanatory variable in our
estimation on the Flickr data set, but the results indicated
that this parameter is of no value: the corresponding coeffi-
cient is insignificant for almost all tags.
4We have also duplicated some of our experiments using a as
the explanatory variable. The results are not qualitatively
different, and almost always the likelihood of the fit is better
with the logarithmic variable.

where α and β are coefficients. Equivalently,

ln

(
p(a)

1− p(a)

)
= α ln(a+ 1) + β. (2)

The coefficient α measures social correlation: a large value
of α indicates a large degree of correlation. We estimate
α, β using maximum likelihood logistic regression. More pre-
cisely, let Ya,t be the number of users who at the beginning
of time t had a active friends and started using the tag at
time t. Similarly, let Na,t be those users who at time t were
inactive, had a active friends, but did not start using the tag
(at time t). Finally, let Ya =

∑
t Ya,t, and Na =

∑
tNa,t.

Then we compute the values of α and β that maximize the
expression ∏

a

p(a)Ya(1− p(a))Na , (3)

where p(a) is defined in (1). Typically, the values of Ya and
Na decrease quickly and lose their statistical significance as
a grows. Therefore, for practical reasons, we may restrict
the likelihood expression (3) to only all a ≤ R, for a care-
fully chosen value of R, while we accumulate all the values
corresponding to a > R to YR+1 and NR+1. While in gen-
eral there is no closed form solution, there are many software
packages that can solve such a problem quite efficiently; we
used Matlab’s statistics toolbox in our experiments.

3.2 The shuffle test
In this section we introduce the shuffle test for identify-

ing social influence. It is based on the idea that if influence
does not play a role, even though an agent’s probability of
activation could depend on her friends, the timing of such ac-
tivation should be independent of the timing of other agents.

Let G be the social network, and W = {w1, . . . , w`} be
the set of users that are activated during the period [0, T ].
Recall that in the correlation model, (G,W ) is drawn from
an arbitrary joint distribution. Assume that user wi is first
activated at time ti. Using the method in Section 3.1, we
compute Ya and Na, for a ≤ R, where R is a constant, and
use the maximum likelihood method to estimate α.

Next, we create a second problem instance with the same
graph G and the same set W of active nodes, by picking a
random permutation π of {1, . . . , `}, and setting the time
of activation of node wi to t′i := tπ(i). Again we use the
method in Section 3.1 to compute Y ′a and N ′a for a ≤ R, and
the social correlation coefficient α′. The shuffle test declares
that the model exhibits no social influence if the values of α
and α′ are close to each other.

Intuitively, the reason that the shuffle test correctly rules
out social influence in instances generated according to the
correlation model is the following: in an instance generated
from this model, the time stamps ti are independent, iden-
tically distributed (i.i.d.) from a distribution T over [0, T ].
The second instance constructed above only permutes all
time stamps, and hence the new t′i’s are still i.i.d. from
the same distribution T . Therefore, the two instances come
from the exact same distribution, and hence they should lead
to the same expected social correlation coefficient α. The
only thing that remains to be proven is that this coefficient
is concentrated around its expectation (where the expecta-
tion is taken over the random choice of the time stamps,
conditioning on a fixed choice of G and W ). In the next
section, we formalize this intuition, leading to Theorem 1.
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3.2.1 Theoretical analysis
To aid our analysis, we make three simplifying assump-

tions. First, we assume that the distribution T of the acti-
vation times is uniform over [0, T ]. Second, we modify the
test to pick each t′i independently from T , instead of us-
ing a permutation of the original time stamps. Neither of
these assumptions is necessary, but it simplifies the argu-
ments without substantively changing the techniques.

The third set of assumptions ensures that there are enough
data to gather statistics. Let d−i (d+

i ) be the indegree (out-
degree) of node wi, and let dW−i (dW+

i ) be the indegree
(outdegree) of node wi in the subgraph induced by W (re-
call that W is the set of users that became active). Also, let
W ′ = {w1, . . . , w`′}, where `′ ≥ ` be the set of nodes in W
and their neighbors (note that the first ` nodes are those
in W ). Then we make the following assumptions:

1. ` = Θ(n).

2. d−i , d
+
i ≤ d

max, for i ≤ `′ and for some constant dmax.

3.
∣∣{i : dW−i ≥ R+ 1}

∣∣ = Θ(n).

These assumptions are not the strictest possible for our re-
sults to hold, but they are nevertheless quite natural and
simple to state. In particular, we make the first assumption
only to simplify the notation (otherwise the results hold with
probabilities that depend on ` and `′ instead of n).

Theorem 1. Let G = (V,E) be a directed graph on n
nodes and let W = {w1, . . . , w`} ⊂ V be the set of nodes that
become active during the time period [0, T ]. Assume that the
activation time ti of the node wi is picked i.i.d. from the
uniform distribution over {1, . . . , T}, and assume that the
three assumptions hold. Let α denote the social correlation
coefficient computed using the method in Section 3.1. Then,
with high probability5 the value of α is close to its expecta-
tion, where the probabilities are over random choices of the
activation times.

Proof. The main part of the proof is Lemma 2 where we
show that the values of Ya and Na are concentrated. This is
proved using concentration inequalities for martingales. We
can then show (details deferred for the full version of the
work) that when we apply logistic regression with inputs
that are close to each other, the social correlation values α
recovered are also close to each other. Therefore, with high
probability the value of α recovered is close to its expectation
whp.

Lemma 2. Assume the conditions of Theorem 1, and let Ya
and Na, a ≤ R+ 1, defined as in Section 3.1. Then we have
that Ya and Na are close to their expectations whp.

Proof. First we calculate E[Ya], for a fixed a. We in-
troduce some notation. Let Y ia = 1 if when node wi used
the tag had a active neighbors and 0 otherwise. Notice that
we have Ya =

∑r
i=1 Y

i
a . The probability that exactly a of

the dW−i neighbors are active when node wi used a tag is
0 if dW−i < a. Otherwise, if a ≤ R, this probability is
1/(dW−i + 1), since node wi and its neighbors have the same
probability to be the ath node among them that used the

5The term “with high probability,” abbreviated whp., refers
to an event that holds with probability that tends to 1 as
n→∞.

tag. Finally, if a = R + 1 (recall that R + 1 corresponds
to the ensemble of all the values greater than R), then the
probability is (dW−i −R)/(dW−i + 1).

Thus, we have

E[Ya] =
∑̀
i=1

E[Y ia ] =
∑

i:dW−i ≥a

1

dW−i + 1
,

for a ≤ R, and

E[Ya] =
∑̀
i=1

E[Y ia ] =
∑

i:dW−i ≥R+1

dW−i −R
dW−i + 1

,

for a = R+ 1. One can verify that from our assumptions we
have that both of these quantities are Θ(n).

Note that the terms are not independent. Thus, to show
concentration, we will employ Azuma’s inequality [7]. For a
fixed a we define the (Doob’s) martingale

Xi = E[Ya | t1, t2, . . . , ti].

We have that X0 = E[Ya] and X` = Ya. Note that we have

that |Xi −Xi−1| ≤ dW+
i + 1, since a node affects only itself

the nodes for which it is a contact. Then Azuma’s inequality
implies that

Pr(|Ya − E[Ya]| > λ) = Pr(|X` −X0| > λ) ≤ 2e
− λ2

2
∑

(dW+
i

+1)2 ,

which is o(1) for λ = ω(
√
n).

To compute the value of E[Na] we have to be a bit more
careful, since a node can contribute multiple time periods to
Na. First, note that we have to count also the neighbors of
the nodes in W . Recall that W ′ = {w1, . . . , w`′}, is the set
of active nodes and their neighbors.

Let us write Na =
∑`′

i=1N
i
a, where N i

a counts the number
of timesteps before node wi becoming active (if at all) and
had exactly a active contacts. Let us compute E[N i

a], first
for i ≤ `. Of course, this equals 0 if dW−i < a. Otherwise,
the expected time until one of the dW−i +1 nodes (wi and its
contacts) becomes activated is T/(dW−i + 2), thus E[N i

0] =
T (dW−i + 2). With probability dW−i /(dW−i + 1) the first

node is not wi, hence we have E[N i
1] =

dW−i
dW−i +1

· T

dW−i +2
.

More generally we get that

E[N i
a] =

dW−i − a+ 1

dW−i + 1
· T

dW−i + 2
,

for a ≤ R, and

E[N i
a] =

dW−i −R
dW−i + 1

· d
W−
i + 1−R

2
T,

for a = R + 1. (The first fraction is the probability that wi
becomes activated after R + 1 neighbors, and then it is ex-
pected to arrive in the middle of the leftover period.)

For i > ` we can show with similar arguments that E[N i
a] =

0 if dW−i < a, otherwise

E[N i
a] =

T

dW−i + 1
,

for a ≤ R, and

E[N i
a] =

R+ 1

dW−i + 1
T,
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for a = R + 1. By our assumptions for the graph we have

that Na =
∑`′

i=1N
i
a = Θ(Tn).

Again we show concentration by using the Azuma inequal-
ity. We define

Zi = E[Na | t1, t2, . . . , ti],

and notice that we have |Zi − Zi−1| ≤ T (d+
i + 1), with the

same reasoning as previously. So we get that

Pr(|Na − E[Na]| > λ) = Pr(|Zr − Z0| > λ) ≤ 2e
− λ2

2
∑
T2(d+

i
+1)2 ,

which is o(1) for λ = ω(T
√
n).

3.2.2 Detecting influence
We showed that the values of α that we obtain with the

correlation model are close to each other with high proba-
bility with and without the timestep shuffle. Now we con-
trast this with the influence model and we show that in
the latter case the values of α that we compute with and
without the timestep shuffle are in general different. We
demonstrate this fact with a simple example. Consider a
line graph with n + 1 nodes, v0, v1, v2, . . . , vn, and edge set
the {(vi, vi+1); i = 0, 2, . . . , n − 1}. For simplicity we as-
sume that that node v0 is has initially used a tag; this does
not change the nature of our example. For some p ∈ [0, 1],
consider now the influence model with α = log2(p/(1 − p))
and β = 0, and we observe the system for T time steps (with
Tp being sufficiently small, say Tp < n/2). During the T
steps, the nodes will start to use the tags from left to right,
and at each step, the probability that the leftmost inactive
node will become active equals p. Then at the end of the T
steps, if the number of new active nodes is denoted by L, we
have E[Y1] = E[L] = Tp and E[N1] = T (1− p).

Assume now that we perform the shuffle test. Then for
i = 1, . . . , L, let Y i1 be 1 if node vi became active after
node vi−1, and N i

1 the number of time steps that node vi
did not become active although node vi−1 was (0 if node vi−1

became active after node vi). Then we have Y1 =
∑L
i=1 Y

i
1

and E[Y1] = E[L/2] = Tp/2, since the probability that
node vi−1 becomes active before node vi is 1/2. Similarly,

N1 =
∑L
i=1N

i
1 and

E[Nv
1 ] =

T∑
i=1

1

T
· i

Tp
·
(
i

2
− 1

)
.

This follows since node vi becomes active at time step i
with probability 1/T , the probability that node vi−1 arrives
before is i/Tp and in that case the arrival time is uniformly
distributed in [0, i] so the expected number of times that
node vi does not become active is i/2− 1. Therefore,

E[Nv
1 ] =

(T + 1)(2T − 5)

12Tp
,

and so,

E[N1] =
(T + 1)(2T − 5)

12
.

Hence we see that the input to the regression function is in
general very different and as a result the values of α will in
general be very different.

3.3 The edge-reversal test
In this section we introduce the second test for distinguish-

ing influence similar to the one used in the obesity study [2]:
we reverse the direction of all the edges and run logistic re-
gression on the data using the new graph (which we call the
reverse graph) as well6. Since other forms of social corre-
lation (other than social influence) are only based on the
fact that two friends often share common characteristics or
are affected by the same external variables and are indepen-
dent of which of these two individuals has named the other
as a friend, we intuitively expect reversing the edges not to
change our estimate of the social correlation significantly.
On the other hand, social influence spreads in the direction
specified by the edges of the graph, and hence reversing the
edges should intuitively change the estimate of the corre-
lation. We will test this hypothesis on several classes of
instances generated using probabilistic models of different
forms of social correlation.

4. SIMULATIONS

4.1 Generative models
To verify the validity of the techniques described in Sec-

tion 3, we define three generative models one corresponding
to a setting where there is no social correlation, one corre-
sponding to a setting that there is only social influence and
one that there is social correlation but not influence. In each
model, we will try to keep other aspects of the model as close
to Flickr’s data as possible. In particular, in all models the
network (both number of users and connections) grows at
the same rate as in the real Flickr data, and we will try to
let the number of users that become active in each time step
to follow the pattern corresponding to a tag in the real data.

The first model concerns a setting where there is no social
correlation—influence or otherwise—in the pattern of acti-
vations. The second model is for a setting where influence is
the only form of social correlation; this model is defined to
match the logistic regression model described earlier. The
third model seeks to capture situations where agents that
are close to each other in the network are affected by the
same external factors (the environment) that make them
more likely to be activated. We now describe the models.

The no-correlation model. For every tag in the real data,
we can generate a no-correlation instance as follows: the
network grows exactly in the same way as in the real data.
In each time step, we look at the real data to see how many
new agents use the tag, and pick the same number of agents
uniformly at random from the set of agents that have already
joined the network and have not been picked yet.

The influence model. This model is parameterized in
terms of two parameters, α and β. The network, and the
growth pattern of the network is kept as in the real data.
In every time step, each node in the set of nodes that has
joined the network but not activated yet flips a coin inde-
pendently to decide if to become active in this time step.
The probability of activation for this node is computed us-
ing (2), where a is the number of friends of this node that
have become active in one of the previous time steps.

6Note that we are only able to use this test because in Flickr
data set, a significant number of edges are directed.
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(a) Histogram. (b) Empirical CDF.

Figure 1: Distribution of α for the no-correlation
model.

The correlation (no-influence) model. Again, we keep
the network and the pattern of growth of the population
the same as in the real data. The model is parameterized in
terms of one parameter L, and follows the pattern of a given
tag in the real data. Before generating the action data, we
select a set S of nodes by sequentially picking a number of
centers at random, and adding a ball of radius 2 around each
to S.7 We stop this process as soon as the size of S reaches
the prespecified number L. Then, we generate the set of
agents that become active in each time step in a manner
similar to the one in the no-correlation model, except that
in each time step we pick the set of agents to become active
uniformly at random from S.

4.2 Measuring correlation
Our first set of experiments focuses on the measurement of

correlation in the network. In Figure 1 we display the results
of the application of logistic regression to the no-correlation
model. We can see that the distribution of the values of α
is centered at zero and most of the mass is around there.

In Figure 2 we can see the application of the logistic re-
gression to the influence model. Recall from Section 3 that
this model is based on the logistic function, which we are
trying to fit. Not surprisingly, we recover the values of α
that we set in our model. Thus, Figure 2 essentially dis-
plays those values of α.

Finally, in Figure 3 we see the results in the correlation
model. Note that here as well the values of α that we recover
are positive.

4.3 Distinguishing influence
After establishing the presence of correlation in users’ be-

havior, we turn to tests for the source of this correlation.
First we apply the shuffle test and then we turn to the edge-
reversal test.

4.3.1 Shuffle test
Let us first observe the influence model, where the val-

ues of α with the original tagging times are high. From the
intuition gained in Section 3.2, we expect to see those val-
ues to decrease, when we shuffle the tagging timesteps. In

7We have chosen a radius of 2 here since because the network
is highly connected, a ball of radius 3 can become very large,
while a ball of radius 1 only consists of the neighbors of a
node, which is often too small.

(a) Histogram. (b) Empirical CDF.

Figure 2: Distribution of α for the influence model.

(a) Histogram. (b) Empirical CDF.

Figure 3: Distribution of α for the correlation model.

Figure 4(a) we can observe the results for some of the tags.
Notice how the cumulative density function (CDF) is shifted
to the left, which means that when we reverse the edges the
value of α decreases. In Figure 4(b) we can see the values
in absolute terms.

Now we switch to the correlation model. According to the
analytical findings of Section 3.2, the values of α that we
obtain with and without the shuffling should not differ with
high probability. Figure 5 confirms our analytical findings
and shows that for almost all tags the values of α retrieved
are very close with and without the shuffle.

4.3.2 Edge-reversal test
Now we present the results of our second influence-detection

test, the edge reversal, confirming the results of the previous
section. First we apply it to the influence model, depicting
the results in Figure 6. Similarly to the previous test, there
is a significant difference in the values of α in the forward
and backward direction.

On the contrary, in the correlation model, as seen in Fig-
ure 7, the values of α essentially coincide. In Figure 7(a) we
can notice that the two CDFs essentially coincide. In Fig-
ure 7(b) we see a more detailed picture. Here every point
corresponds to a tag, and the graph shows the value of α in
the network versus the value of α in the network with the
edges reversed. Take notice of the proximity of the points
to the line y = x.
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(a) Empirical probability den-
sity.

(b) α of original and shuffled
tagging timesteps.

Figure 4: Shuffle test for the influence model.

(a) Empirical probability den-
sity.

(b) α of original and shuffled
tagging timesteps.

Figure 5: Shuffle test for the correlation model.

(a) Empirical probability den-
sity.

(b) α of direct vs. reversed
edges.

Figure 6: Edge-reversal test for the influence model.

(a) Empirical probability den-
sity.

(b) α of direct vs. reversed
edges.

Figure 7: Edge-reversal test for the correlation
model.

5. EXPERIMENTS ON REAL DATA
After verifying that our techniques are effective for the

simulated data, we apply them on real-world data, namely
on the Flickr social network. First we describe the data
set. Then we show that there is positive correlation in the
users’ behavior. Finally, we address the issue of the source of
correlation. We apply the tests of Section 3, and we conclude
that influence is not a likely source of the correlation.

5.1 The Flickr dataset
We analyzed the tagging behavior of users for a period of

16 months. The final number of users was about 800K. Since
the majority of users did not exhibit any tagging behavior
at all, we restricted our attention to the set of users who
have tagged any photo with any tag, which is about 340K
users. Looking at this subgraph at the end of the 16-month
period, the size of the giant component is 160K users, the
second one has size 16, and there are 165K isolated users.

The number of directed edges between the users is 2.8M
and, on the average, for a given user u, the proportion of
u’s contacts that do not have u as a contact is 28.5%. In
Figure 8 we depict the size of the subgraph that we analyze
as a function of time. (The growth rate of the entire network
exhibits a very similar behavior.)

Out of a collection of about 10K tags that users had used,
we selected a set of 1, 700, and analyzed each of them in-
dependently. We selected tags of various types (event, col-
ors, objects, etc.), various numbers of users (most of them
were used by more than 1, 000 users), and various growth
patterns: bursty (e.g., “halloween,”“katrina”), smooth (e.g.,
“photos,”) and periodic (e.g., “moon”).

5.2 Measuring correlation
First we confirm the existence of correlation in the Flickr

data set as expected. In Figure 9 we can see the distribution
of α along the tags of Flickr. Note that for almost all the
tags the value is higher than 1, suggesting that correlation is
prevalent in users’ tagging activities for almost all the tags.
This correlation is not necessarily due to social influence; we
examine this issue next.

5.3 Distinguishing influence
After establishing the presence of correlation in users’ be-

havior, we turn to the test for the source of this correlation.
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Figure 8: Growth of the Flickr network.

(a) Histogram. (b) Empirical CDF.

Figure 9: Distribution of α for the Flickr social net-
work.

(a) Empirical probability den-
sity.

(b) α of original timesteps vs.
shuffled timesteps.

Figure 10: Shuffle test for the Flickr social network.

(a) Empirical probability den-
sity.

(b) α of direct vs. reversed
edges.

Figure 11: Edge-reversal test for the Flickr social
network.

First we apply the shuffle test and then we turn to the edge-
reversal test.

In Figure 10 we show the results of applying the shuffle
test on the Flickr data set. In Figure 10(a), notice that the
two cumulative distribution functions essentially coincide.
It seems that the correlation that we observed in Section 5.2
cannot be attributed to influence. This indicates that either
users do not tend to browse their contacts’ photos to a large
extent, or even when they browse, they do not tend to start
using the tags they see.

In Figure 10(b) we see more details. Once again, every
point corresponds to a tag, and the graph shows the value
of α in the Flickr network versus the value of α in the net-
work with the edges reversed. As before, notice the striking
proximity of the points to the line y = x.

Finally, in Figure 11 we observe the results of applying the
edge-reversal test to the Flickr network, which once again
confirms all our previous observations.

5.4 Some influence in Flickr
While it is true that influence does not play an important

role in users’ tagging behavior in Flickr, we can actually
discover that there is some limited effect by looking at the
difference between similar tags. As a concrete example, con-
sider the tag “graffiti”; the difference between the values of α
in the two edge directions is essentially 0. A lot of users used
the misspelled tag“grafitti.” Here the difference turns out to
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be slightly larger (still small though). It is easy to imagine
that indeed there is some propagation of the misspelled ver-
sion. (The analogy with the TA who grades two homeworks
with the same mistakes should make this concept clear!) Fi-
nally, with a third, even less common spelling (“graffitti”),
the difference increased yet more.

6. CONCLUSIONS
In this paper we applied statistical analysis on the data

from a large social system in order to identify and measure
social influence as a source of correlation between the actions
of individuals with social ties. This is an instance of the
age-old problem of distinguishing correlation from causation.
This problem is very difficult in general; however, in our
case, we used the availability of data about the time-step of
each action, as well as asymmetric social ties between the
agents in order to study this problem.

There are still many interesting open directions left for
future research. First, our techniques provide only a quali-
tative indication of the existence of influence and not a quan-
titative measure. Furthermore, we do not provide any for-
mal verification of our results. For example, is it indeed the
case that in Flickr users’ tagging behavior, influence has a
limited role? Or, can we pinpoint social networks and be-
haviors where influence is indeed prevalent and verify our
tests? Also, what happens when different sources of social
correlation are present, as is usually the case? All these im-
portant questions might be tricky to answer and probably
require the design of controlled user experiments. Further-
more, it would be very interesting to extend our theoretical
model for distinguishing between social influence and other
forms of correlation in social networks. Under what condi-
tions the information about the time step of events is enough
to achieve this goal? How can the pattern of the “spread”
of an action be used to identify social influence even in a
setting where all social ties are symmetric? How can we
find an “influential” node just by looking at the data about
the spread of an action? Given the great potential of viral

marketing technologies to shape the future of marketing on
the Internet, this and many other related questions are of
tremendous practical value.
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