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ABSTRACT
Time series motifs are approximately repeated patterns found
within the data. Such motifs have utility for many data min-
ing algorithms, including rule-discovery, novelty-detection,
summarization and clustering. Since the formalization of
the problem and the introduction of efficient linear time al-
gorithms, motif discovery has been successfully applied to
many domains, including medicine, motion capture, robotics
and meteorology.

In this work we show that most previous applications of
time series motifs have been severely limited by the defini-
tion’s brittleness to even slight changes of uniform scaling,
the speed at which the patterns develop. We introduce a
new algorithm that allows discovery of time series motifs
with invariance to uniform scaling, and show that it pro-
duces objectively superior results in several important do-
mains. Apart from being more general than all other motif
discovery algorithms, a further contribution of our work is
that it is simpler than previous approaches, in particular
we have drastically reduced the number of parameters that
need to be specified.

Categories and Subject Descriptors
H.2.8 [DATABASE MANAGEMENT]: Database Ap-
plications —Data mining

General Terms
Algorithms

Keywords
Time Series, Motifs, Random Projection, Uniform Scaling

1. INTRODUCTION
Time series motifs are approximately repeated patterns

found within the data. For many data mining areas the
detection of such repeated patterns is of essential impor-
tance. A few tasks, among others, that utilize time series
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motif detection are for example rule-discovery [21], novelty-
detection, clustering and summarization [26]. Motif discov-
ery has been successfully applied throughout a large range of
domains too, such as medicine [2][3], motion-capture [8][22],
robotics, video surveillance [13] and meteorology [21]. Here,
we show that the existing approaches for motif detection
are limited to discovering pattern occurrences of the same
length, failing to capture similarities when the occurrences
are uniformly scaled along the time axis. To motivate the
need for such uniform-scaling invariant motif discovery we
will examine a synthetic time series (synthetic data is used
here for ease of exposition, real-world examples are studied
in the experimental section). Consider the time series in
Figure 1.

Figure 1: A time series of length 600. What is the best
motif of length 120 (the length of the gray bar)?

If we are asked to point out the best repeated pattern of
length 120, the answer appears trivial: there is an obvious
repeated sine wave of approximate length 120 in two loca-
tions. However, as we can see in Figure 2, this is not the
true motif in this data set.

Figure 2: Top: An annotated version of Figure 1. Bottom
Left : The closest subsequence to A, using Euclidean dis-
tance, is in fact subsequence C. Bottom Right : By plotting
B on top of A we can see the reason for this unintuitive
result.

The reason for this unintuitive result is that A differs
from B by a linear scaling of 5%. This means that although
shorter subsections of the two subsequences are almost iden-
tical, when we attempt to align them, the cumulative error
of the out-of-phase sections will tend to dominate. Note
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that the problem here is exacerbated by the fact that the
patterns are complex, meaning that they have many peaks
and valleys, insuring that if two otherwise similar patterns
have different linear scaling, at least some peaks will have to
map to valleys, resulting in a large Euclidean distance. Mo-
tif discovery has been shown to be useful in many domains,
but practitioners have only used it for relatively simple pat-
terns (one or two peaks and valleys).

It is important to dismiss two apparent solutions to this
problem before introducing our technique:

• Why not replace the Euclidean distance with the Dy-
namic Time Warping (DTW) distance? While DTW
is a very useful tool for many data mining problems,
it is not the solution here. For example, if we have a
subsequence of length 500 that contains 10 heartbeats,
and another subsequence of length 500 that contains
9 heartbeats, DTW is no more useful than Euclidean
distance, because DTW must match every data point
in each sequence, and there is no meaningful way to
map 9 heartbeats to 10 heartbeats. What is required is
uniform scaling, which compares the original 500 data
points to a range of possible data points, say from 500
to 600, incorporating the second sequence.

• Why not search for shorter patterns, and after find-
ing the shorter motifs, somehow “grow” them with in-
variance to uniform scaling? This idea does seem at-
tractive initially. In the example in Figure 2, if we
shorten the required pattern length to 100 instead of
120, we do find a subsection of A and a subsection of
B to be the best motif. The problem is that in most
domains, if we reduce the length of patterns of inter-
est, the number of motifs will increase exponentially,
and post processing all these false alarms will require
considerable effort. To see this, consider the analogue
of discrete motifs in text. This paper has a motif of
the words “Hominidae” and “Homininae” with a ham-
ming distance of just one. We could try to discover this
motif by enumerating all motifs of length 4 with a ham-
ming distance less than two, and seeing which ones we
could grow to length 9. However there are thousands
of false alarms, including “well”/“will”, “tool”/“toll”,
“moti(f)”/“moti(on)” etc. Thus the idea of “growing”
motifs (under invariance to “noise”) appears unwork-
able in both real and discrete domains.

In this work we will show that we can efficiently discover
motifs under uniform scaling. Furthermore, we will show on
diverse datasets that accounting for uniform scaling allows
us to discover motifs which are objectively and subjectively
correct, and which are missed by the other time series motif
discovery algorithms.

2. RELATED WORK
The importance of uniform scaling for indexing and match-

ing time series has been noted and addressed in several com-
munities, including motion-capture [16] and music. How-
ever, it has yet to be addressed for the motif problem. The
idea that approximately repeated patterns can be informa-
tive has permeated the field of bioinformatics for decades
[20], and was hinted at in time series data mining literature
for as perhaps as long. However, the first formal definition of
time series approximately repeated patterns, the time series

motif, appeared as recently as 2003 [9]. Since then, there
have been dozens of papers that use time series motifs in
a variety of applications (hereafter we will use time series
motifs and motifs interchangeably).

Garbay and colleagues have used time series motifs in
different medical applications, including medical telepres-
ence [10] and intensive care monitoring. Minnen et al. use
motifs in a series of papers that examine the utility of mon-
itoring on-body sensors [22]. Tanaka et al. use motifs to
find patterns in sports motion capture data [28]. Murakami
et al. use motifs to discover regularities in the behavior of
robots [23]. In a series of papers Abe and colleagues [1] have
used motifs as an input to rule finding algorithms in medical
domains. Androulakis and colleagues use motifs for a vari-
ety of bioinformatics problems, for example finding “regimes
with similar kinetic characteristics” in autoignition [2], and
selecting maximally informative genes [3]. Hamid et al. use
motifs as a primitive in a video surveillance application [13].
Celly and Zordan [8] use motifs to create Animated People
Textures (APT) from motion-capture recordings; Applica-
tions for APT include video based animations for electronic
games and creating background elements and special effects
for movies.

Arita et al. [5] use time series motifs in a “real-time hu-
man proxy” (i.e telepresence) application. The idea is that
motif discovery is used offline to capture typical human mo-
tions, for example “pointing with right hand” or “head nod-
ding”. These complex actions can then be represented and
efficiently transmitted as a single symbol, rather than a com-
plex set of real valued motion trajectories. The authors do
understand the need for uniform scaling in their application.
This is achieved by a combination of human intervention and
a quadratic time dynamic programming technique.

In spite of this wealth of works that use or extend the no-
tion of time series motifs, none of them address the uniform
scaling problem. Perhaps the most sophisticated extension
to the original motif paper is [28], yet even this work ex-
plicitly states “We can not extract motifs whose lengths are
different from each other though they have the same behav-
ior”. This is exactly the problem solved in this work.

3. SIMILARITY UNDER UNIFORM SCAL-
ING

We start by briefly revising the uniform scaling distance
as introduced in [18]. Suppose that we have a query time
series Q = (q1, q2, . . . , qmq ) and a candidate matching se-
quence C = (c1, c2, . . . , cmc). Without loss of generality,
assume that mq ≤ mc. A uniformly scaled version of the
query Q with scaling factor

mq

s
is the time series Qs =

(qs
1, q

s
2, . . . , q

s
s), where qs

i = qdi mq
s
e (see Figure 3).

Figure 3: Comparing Q and C directly (Left) yields larger
Euclidean distance. Right : Stretching Q with 8% produces
Qs which resembles very closely the prefix of C.
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The uniform scaling distance du(Q,C) is defined as the
optimal squared Euclidean distance between some prefix of
C with length s ≥ mq and the query scaled to the size of
that prefix. Or more formally:

du(Q,C) = min
mq≤s≤mc

s∑
i=1

(qs
i − ci)

2 (1)

To check all s, equation (1) computes (mc −mq + 1) Eu-
clidean distances between the scaled query and a prefix of
C. As for most practical purposes a very small rescaling
is required to identify the best match (see Section 6), du

has an overall amortized cost of Θ(cmq), for some constant
c > 1 [18]. With this in mind, one can think of the near-
est neighbor search under uniform scaling as a search under
Euclidean distance but in a new, denser sample space. In
this space every original candidate sequence C is replaced
with a neighborhood of c new sequences.

4. NEAREST NEIGHBOR MOTIFS
Now, we formally introduce the time series motif finding

problem. As searching for motifs in the denser uniform scal-
ing space can be hard under the original motif definition, we
also provide an equivalent alternative definition that will be
utilized in the proposed approach.

Time series motifs are defined as the approximate occur-
rences of a subsequence in the time series S = (s1, s2, . . . , sn)
at several significantly different positions [19]. “Approxi-
mate” here is expressed in terms of a distance function d and
a range r, i.e. two subsequences Sm

i = (si, si+1, . . . , si+m−1)
and Sm

j = (sj , sj+1, . . . , sj+m−1) are approximately similar
if d(Sm

i ,Sm
j ) ≤ r. The starting positions i and j are as-

sumed to be significantly different, if there exists i1 such
that i < i1 < j and d(Sm

i ,Sm
i1) > r. This ensures that while

looking for approximate appearances of a subsequence we
are not considering its slightly shifted versions, which often
will be within range r from it. Two approximately similar,
with respect to r and d, subsequences that start at signifi-
cantly different positions are called a non-trivial match.

Using the introduced terminology, the formal definition of
a motif is as follows [19]:

Definition 1. Range Motif. Given a time series S, a sub-
sequence length m and a range r, the most significant range
motif of length m in S is the subsequence Sm

i , which has the
highest count of non-trivial matches Sm

j , such that d(Sm
i ,Sm

j )
≤ r.

One could also be interested in the subsequence that has
the second largest count of similar subsequences. This subse-
quence is called second-motif. Other, less significant motifs,
can also be defined similarly.

There exists a close analogy between motif detection based
on Definition 1 and density estimation methods using neigh-
borhood of fixed volume [11]. Indeed, detecting a time series
motif is very similar to computing the density around each
subsequence, where the examples in the subsequence neigh-
borhood are its non-trivial matches. The most significant
motif is simply the sequence whose neighborhood has max-
imum density (i.e. largest number of neighbors).

One of the problems of the fixed range neighborhood, how-
ever, is that specifying the right range is not always intu-
itive [11]. Consider for example Figure 4. Even a person

Figure 4: The same time series sampled at different rate.
Using the same range r, one detects two different motifs.

of expertise may not be able to provide the right range to
detect the motif in the time series, as different time series
may be sampled at different rate and hence require different
ranges r. Therefore, probing a number of possible ranges
is inevitable. In this process, very small ranges will result
in empty neighborhoods, and no motif detection, while large
ranges will return as most significant some not so interesting
patterns. As pointed out in Section 3, allowing a uniform
scaling factor will further increase the number of examples
and the probability of having higher density regions, i.e.
small neighborhoods populated with many examples. Thus,
the task of specifying appropriate ranges for detecting the
most significant motif in the uniformly scaled space becomes
rather difficult.

Here, we express the concept of significant motifs in terms
of nearest neighbors. The k-Nearest-Neighbor (kNN) method
provides an alternative approach to nonparametric density
estimation. It is more adaptive to variations in the space
density and alleviates the problem of specifying the not so
intuitive range parameter. Firstly, we introduce the term
non-trivial nearest neighbor as:

Definition 2. Non-trivial nearest neighbor. Let Sm
i and

Sm
j be two subsequences of length m in a time series S of

length n. We say that Sm
j , 1 ≤ j ≤ n–m+1 is a non-

trivial neighbor of Sm
i , 1 ≤ i ≤ n–m+1, if there exists a

subsequence Sm
i1 in S, such that i < i1 < j and d(Sm

i ,Sm
i1) >

d(Sm
i ,Sm

j ). The nearest non-trivial neighbor to Sm
i , is the

non-trivial neighbor Sm
j with minimal distance d(Sm

i ,Sm
j ).

Similarly, one can define the second or another more re-
mote non-trivial nearest neighbor. Using the k non-trivial
nearest neighbors to a sequence we come with a formaliza-
tion which, equivalently to Definition 1, captures the notion
of approximately similar patterns in the time series data.

Definition 3. Nearest-Neighbor Motif. The most signifi-
cant nearest neighbor motif of length m in a time series S
of length n, is the subsequence Sm

i , 1 ≤ i ≤ n–m+1 which
has minimal distance to its non-trivial nearest neighbor Sm

j ,
1 ≤ j ≤ n–m+1.

The kth most significant motif is now defined as the se-
quence with minimal average distance to its k nearest neigh-
bors. Definitions 2 and 3 can naturally be extended for
motifs under uniform scaling if the length of the matching
sequence Sm

j is allowed to differ from the length of Sm
i , and

if the Euclidean distance d(Sm
i ,Sm

j ) is replaced with the
uniform scaling distance du:

Definition 4. Uniform Scaling Motif. The most signifi-
cant uniform scaling motif of length mq, in a time series S
of length n, is the subsequence S

mq

i , 1 ≤ i ≤ n–mq+1 which
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has minimal uniform scaling distance du(S
mq

i ,Smc
j ) to its

non-trivial nearest neighbor Smc
j , 1 ≤ j ≤ n–mc+1.

For the rest of the paper we derive an effective and ef-
ficient probabilistic approach to detecting the best motifs
under uniform scaling, and also show that such motifs often
represent far more “interesting” patterns in the data, than
the motifs under Euclidean distance.

5. PROBABILISTIC MOTIF DETECTION
For a time series S of length n the brute force motif detec-

tion algorithm will perform Θ(n2) pairwise distance compu-
tations, between subsequences S

mq

i and Smc
j . As discussed

in Section 3, if each of these computations is performed with
uniform scaling, then they will have a complexity of Θ(cmq).
This means that the total cost of finding the most significant
motif under uniform scaling, using a brute force search, will
become Θ(cn2mq). Lower bounding techniques, such as the
one suggested in [18], can speed up the computation of the
uniform scaling distances. For larger values of n, however,
the algorithm still remains intractable.

Rather than computing all pairwise distances, the ap-
proach proposed here runs a filter linear in n, and removes
from consideration a large number of subsequences. In a
following refinement step, only the uniform scaling distance
between the nonfiltered sequences is computed. The filter-
ing step is derived from the random projection algorithm
proposed by Buhler and Tompa [6]. Though probabilistic,
we demonstrate that the approach has a high motif detec-
tion rate. The gain in speed-up over the brute force search,
however, is enormous.

5.1 The Random Projection Algorithm
The following “challenge” problem, introduced by Pevzner

and Sze [24], has inspired much endeavor in the bioinformat-
ics community since it appeared few years ago: Given is a
sample of t = 20 nucleotide strings of length n = 600. An
unknown motif M of length l = 15 is used to generate t
new motif occurrences. Every occurrence differs from M in
exactly d = 4 base pairs (letters). Each one of these motif
occurrences is planted at a random location in one of the t
nucleotide strings. The goal is to detect the planted (l, d)-
motif.

Detecting the hidden signal turns out to be rather difficult
as two occurrences might have as many as eight differences,
which disguises the original motif considerably. While deter-
ministic solutions of the problem are exponential in the motif
length l, and hence impractical, Pevzner and Szi show that
approaches, such as sampling or expectation maximization
detect local minima while searching for the (15,4)-motif.

In [6], Buhler and Tompa demonstrate an interesting prob-
abilistic approach that efficiently identifies the challenge mo-
tif as well as other difficult motifs, e.g. the (14,4)-, (16,5)-,
and (18,6)-motifs. They study the family of locality-preserving
hash functions h(w) [14], that project the l-letter words

w(w1, w2, . . . , wl) over an alphabet Σ, into l̂-letter words

(l̂ < l). I.e. h(w) : Σl → Σl̂, and h(w) = ŵ(wi1 , wi2 , . . . , wi
l̂
).

The basic observation is that if we select l̂ ≤ l−d positions at
random from all l-letter subsequences in the strings, there
is high probability that at least ε > 1 occurrences of the
planted motif will hash to the same bucket (string). On
the contrary, all other l-letter strings are likely to hash into

buckets with less than ε elements. The algorithm derived
by Buhler and Tompa, called PROJECTION, performs I
iterations, repeatedly selecting a different hash function hi

using a random set of projecting dimensions {wi}. After
hashing all l-letter subsequences, the threshold ε is applied
to filter out buckets that are unlikely to contain the motif
occurrences. Finally, a refinement step based on expecta-
tion maximization infers the motif that would maximize the
likelihood of observing the unfiltered buckets from each it-
eration.

Using a random set of dimensions for hashing by PRO-
JECTION is reasonable, as it guarantees that a set of ran-
dom words over the alphabet Σ will be uniformly spread
across all possible hash values. Here, of course, an im-
plicit assumption is made, that all letters in the alphabet
are equiprobable. Another limitation of locality-preserving
hashing is that it is effective for a relatively small number
of projected dimensions (10∼20) [14]. Applying it to larger
subsequences would practically require all pairwise subse-
quence comparisons to be performed.

5.2 PROJECTION For Time Series Motifs
PROJECTION can be adapted to detect time series range

motifs (see Definition 1), provided there is a suitable repre-
sentation of the real value data with a finite alphabet. Chiu
et al. [9] demonstrate one such adaptation. They first con-
vert all extracted time series subsequences to a Symbolic
Aggregate approXimation (SAX) form [19] (Figure 5).

Figure 5: Symbolic aggregate approximation of a time se-
ries as the four letter word “dbad”. The size of the alphabet
used is 4 (Σ = {a, b, c, d}). The grey horizontal cut-lines
outline equal volume segments under the normal distribu-
tion curve.

SAX normalizes every sequence Sm to have mean zero and
standard deviation one. Then, using a user specified word
length l, it computes its piecewise aggregate approximation

PAA(Sm) = S̄(s̄1, s̄2, . . . , s̄l), where s̄i = l
m

∑ m
l

i

j= m
l

(i−1)+1 sj .

Finally it splits the area under the normal curve into |Σ|
segments, where |Σ| is a user specified alphabet size. Every
value s̄i in the PAA representation is then substituted with
the letter wi, which labels the corresponding normal curve
segment. This operation transforms the initial sequence Sm

into the l-letter word w.
Assigning letters to segments of equal volume under the

normal curve guarantees the implicit assumption of PRO-
JECTION for equiprobable symbols. Therefore, all colli-
sions during the hashing process are most likely a result of
the similarities between certain sequences.

The time series motif discovery continues by building a
sparse collision matrix Mnxn (see Figure 6). At each itera-
tion of the projection algorithm, when two sequences con-
verted to the SAX words wx and wy are subsequently pro-
jected to the same value hi(wx) = hi(wy) = ŵx, a counter
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Figure 6: Left : Iteration 1 of the projection algorithm. Di-
mensions 1 and 4 are selected as projecting dimensions. The
corresponding positions for the identically projected strings
in the collision matrix are increased with one. Right : The
collision matrix after the second iteration.

for cell (x, y) in M is incremented by one. At the end of
the algorithm, all cells in M with counters bigger than the
threshold ε are returned as possible locations of the most
significant motifs. For these, and only these, locations the
algorithm computes the actual Euclidean distance between
their corresponding sequences. The algorithm, though sub-
quadratic in theory, is empirically demonstrated in [9] to be
approximately linear with respect to the time series size n
both in terms of memory requirements and in terms of the
number of brute force Euclidean distance computations.

6. LEARNING MOTIFS UNDER UNIFORM
SCALING

A significant drawback of the above time series motif find-
ing approach is that it requires supervision in selecting a
large set of input parameters. Namely, the tuple (|Σ|, m, l,

d, l̂, I), with elements respectively the alphabet size (|Σ|),
the minimum time series motif length (m), the length of
its string representation (l), the number of letter differences
allowed between two motif occurrences (d), the number of

hashed dimensions (l̂), and the number of iterations neces-
sary to detect the motif (I). This differs from the original
PROJECTION algorithm, which assumes that all strings
are over the four-letter DNA alphabet, and that the motif
has fixed size l and number of differences d (e.g. for the
challenge problem l=15 and d=4). Therefore, what needs

to be estimated is only the tuple (l̂, I)1.
Here we show that the time series motif projection algo-

rithm of [9] can be extended to capture motifs under the
uniform scaling distance du (see Definition 3). We further
demonstrate that an optimal, in terms of effectiveness and
efficiency, tuple (|Σ|, l, d, l̂, I) can be learned off-line in a
completely unsupervised manner, requiring the user to pro-
vide only the minimum time series motif length m.

We first make two observations that allow for the efficient
adaptation of the uniform scaling distance in the random
projection algorithm. The first observation suggests that
one can eliminate large scaling factors in the computation of
the distance, as they lead to excessive stretches of S

mq

i , that
cannot result in a significant motif. The maximal scaling
factor, evaluated on a number of real-world data sets, which

1Both algorithms also require the filtering threshold ε, but
the authors show that low values as ε = 1 or 2 are reasonable
and perform satisfactorily.

impacts the accuracy is 10% ∼ 40%. The second observation
is that there is no need to check every scaling factor either,
as close scaling factors produce similar results. For example,
if we have stretched S

mq

i 5% and identified the motifs, next
we might skip stretching it 6% as with high probability the
most significant motifs across the data set remain the same.

To compute the maximum scaling factor that is sufficient
to detect any possible motifs for a data set, we study the cu-
mulative empirical distribution of the scalings on the train-
ing data. Suppose that on the training set the probability
that the most significant motif requires x% scaling is px.
The cumulative distribution P (x ≤ k) =

∑k
x=0 px now gives

us the scaling factor k that is sufficient to detect the best
motif under uniform scaling with a high confidence (see Fig-
ure 7 left). The results are computed on the brain activity
data set discussed in the next section and are consistent with
results from the other data sets too.

Figure 7: Left: Cumulative distribution of the maximal
scaling factor that can impact the most significant motif.
Large scaling factors (>20%) seldomly produce a significant
motif. Right: Checking every single scaling may not be nec-
essary. For some data sets checking every second (or third)
factor still leads to detecting the most significant motif with
very high probability.

In the experiments here we impose the constraint P (x ≤
k) = 1, i.e. we check all scalings that have produced a
significant uniform scaling motif for any of the training time
series. As seen from Figure 7, the maximum scaling factor k
that can impact the most significant motif is relatively small.
The heuristic holds across different motif lengths mq too.
We further observe that increasing mq leads to a decrease in
k. This can intuitively be explained with the fact that larger
motif lengths define a higher dimensional, and hence sparser,
space where all nearest neighbors start drifting apart.

An evaluation of the second observation is presented in
Figure 7 right (the statistics are again computed for the
brain activity data). The graph shows that if, for example,
the scaling factor is increased by 4% at a time, on some
data sets (e.g. Dataset C and Dataset D), one can still de-
tect more than 95% of the most significant motifs. The fact,
again inferred from the training data, can be used in op-
timizing the search for other unseen time series generated
from a similar process. Combining the two results allows
us to achieve speed-up that makes the uniform scaling dis-
tance computation comparable to the computation of the
Euclidean distance.

To cope with the requirement of supervision in the algo-
rithm’s parametrization, we look at some of the properties
of the space defined by the projected sequences.

Let us assume that the tuple (|Σ|, l) is fixed. Using these
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alphabet and word sizes, we apply SAX to map the best
motif occurrences S

mq

i and Smc
j for a time series t into the

equal length words wi and wj respectively. If dt is the Ham-
ming distance between these two words, then the maximum
Hamming distance on the training set is: d = maxt dt. For
a particular projection size l̂ ≤ l−d, with analysis similar to
the one in [6], we obtain the lower bounding probability of
any two motifs in the training set to be hashed in the same
bin:

pd =

(l−d

l̂

)(
l
l̂

) (2)

We would like to perform I iterations of PROJECTION
and guarantee that at least one of the functions hi hashes
together the motif occurrences for any time series t in the
training set. In I independent trials the probability that
none of the hashing functions detects the most significant
motif, expressed as a function of the tuple θ = (|Σ|, l, d, l̂, I),
is:

p(θ) = (1− pd)I (3)

There are several important observations to point out
here. Firstly, increasing I minimizes p(θ), and hence the
chance of omitting a motif. Secondly, the probability pd

is monotonically increasing when decreasing the projection
size l̂. Therefore, decreasing l̂ also minimizes p(θ). However,
the large number of iterations I and the small projection
sizes l̂ also increase the number of dissimilar sequences that
would hash together. All those false positive pairs will not
be filtered by the algorithm, and the actual distance between
the sequences will be evaluated.

The two objectives that we try to optimize now are the
effectiveness and the efficiency of the system. On one hand,
to obtain an effective system, that produces very few false
dismissal while searching for the most significant motifs, one
needs to minimize p(θ). On the other hand, the efficiency
of the system depends on how many iterations I are neces-
sary to be performed and how many false positives are also
returned for the subsequent refinement. As each iteration
goes through all n subsequences, the cost of the hashing op-
erations is Θ(In). If E0 is the number of sequences that are
less than or equal to d symbols apart, and Ei the number
of sequences that are d + i symbols apart, then the term∑l−1

i=0 Ei[1− (1− pd+i)
I ], estimates the expected number of

brute force comparisons to be performed during the refine-
ment step. To summarize, we derive the following discrete
optimization problem, where the effectiveness objective is
expressed as a constraint:

minimize : L(θ) = In +

l−1∑
i=0

Ei[1− (1− pd+i)
I ] (4)

subj. to : p(θ) ≤ q (5)

From constraints (5) the number of iterations I can be ex-

pressed as a function of (|Σ|, l, l̂). Namely, I log(1−pd) ≤ q

which yields I(|Σ|, l, l̂) = d log q
log(1−pd)

e. In the experiments we

set q = 0.05, which together with the requirement that the
two before mentioned observations should hold with prob-
ability higher than 0.95, guarantees that the probability of

detecting the best motifs for all time series in the training
set is at least 0.9.

After substituting I in (4), L(θ) is minimized by perform-
ing a full search in the discrete space defined by |Σ| ∈ [2, 10],

l ∈ [2, 20] and l̂ ∈ [2, l − d], where the intervals are deter-
mined based on the bounds within which the locality pre-
serving hashing and the SAX algorithm are known to be
effective. Note, that the search is over a relatively small
space of discrete tuples, which allows for the training proce-
dure to identify the optimal parametrization in reasonable
time (within minutes for our experiments), and requires no
supervision at all.

7. EXPERIMENTAL EVALUATION
We demonstrate the usefulness of the uniform scaling dis-

tance for detecting motifs in three real-world data sets -
brain activity data, motion capture time series, and time
series extracted from the shapes of projectiles2. The data
sets are selected from diverse domains, and are with different
characteristics as periodicity, amount of noise, approximate
length of the available motifs, and also variable length of the
time series for the example.

An evaluation for the expected number of false dismissals,
introduced by the probabilistic scheme, as well as the aver-
age speed-up over the brute force approaches is also pre-
sented.

7.1 Motifs in Brain Activity Time Series
Physiological data, such as respiratory recordings, heart-

beats or brain waves, often contain scaled motifs that are
indicative either of normal activities or of certain precondi-
tions. Here we study three data sets of brain wave recordings
from epileptic patients [4] (see Figure 8). The time series
in Dataset E were recorded during epileptic attacks, while
Dataset C and Dataset D contain recordings from seizure-
free periods.

Finding the most significant motif in the data can be valu-
able for one of the primary tasks in the field, namely pre-
dicting the seizure periods. The assumption here is that
very similar patterns are likely to have similar continua-
tions, which can be used in forecasting the unobserved out-
comes [27]. On the other hand, the strong similarity in motif
occurrences in seizure data as E, can help in isolating groups
of neurons that trigger identical activity during the epileptic
attacks.

Each data set contains 100 time series of length 4096
points. We split them into a training and testing set of
50 time series each. Note that the time series were recorded
from different patients, and still similar patterns can be ob-
served across the patients, which is essential for the learning
procedure to be effective. As the low frequency noise can ac-
cumulate quickly and disguise the real patterns, we further
run a low pass moving average filter of size ten data points
to smooth the data. Both, the Euclidean distance and the
uniform scaling distance find some subjectively interesting
motifs, yet the uniform scaling motifs are often more mean-
ingful visually. For example, noisy “plateaus” are often de-
tected by the Euclidean distance (see the graph for Data set
D), whereas the uniform scaling usually identifies bursts or
periodic patterns which are more useful for better diagnosis

2All data used in the evaluation is available at http://www.
cs.ucr.edu/~eamonn/SIGKDD07/UniformScaling.html
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Figure 8: Brain-wave data sets. Motifs discovered by sim-
ple Euclidean distance and with uniform scaling. The sliding
window length is set to mq = 174 (recordings for 1 sec.). The
detected motif occurrences for C, D and E have lengths mc

equal to 184, 185 and 192 respectively. The uniform scaling
motifs are often more interpretable and visually meaningful.

and treatment.
For the three data sets the maximal scaling that can im-

pact the most significant motif has been found to be around
15% (see Section 6). The best tuple (|Σ|, l, l̂, I) for the
random projection algorithm, learned also on the training
data, is given in Table 1. For every corresponding tuple,
the table also summarizes the average test accuracy of the
method when every single scaling factor is checked (column
1); and when every second or third scaling factor is checked
(columns 2 and 3). The results are consistent with the ex-
pectation computed on the training set (see Figure 7), and
show that a speed-up can be obtained in computing the uni-
form scaling distance by checking every third (Data sets C
and D) or every second (Data set E) scaling factor and still
obtain relatively high accuracy rate in the detected motifs.

Table 1: Optimal parameters for the three data sets and motif
detection test accuracy with respect to the scaling factor step.

(|Σ|, l, l̂, I) step=1 step=2 step=3
Data set C (4, 7, 6, 45) 0.90 0.90 0.90
Data set D (6, 10, 5, 35) 1.00 0.88 0.86
Data set E (3, 10, 8, 31) 0.92 0.92 0.7

We also compute the average speed improvement for a
single scaling factor. Figure 9 left presents the improvement
introduced by random projection in terms of the number
of performed operations, as compared with the brute force
searching algorithm. For all three data sets, the probabilis-
tic method performs less than 1% of the operations per-
formed by the brute force method. For completeness, we
also include the results for a brute force search that uses an
early abandon cut-off criterion. The early abandoning is a
simple technique that keeps track of the minimal distance
found so far, and every time when computing the distance
between two new elements, it terminates if it estimates that
the current minimum will be exceeded. Note, however, that
though the early abandoning can speed up the nearest neigh-
bor search, it still has to perform all pairwise comparisons.

Figure 9: Brain Activity Data. Left: Average improvement
in distance computation of PROJECTION for a single scal-
ing over the brute force search, and the brute force search
extended with early abandon criterion. Right: Improvement
in running time.

The graph shows that PROJECTION performs approx-
imately 2% of all operations performed by early abandon.
This means that the algorithm, prior to the refinement step,
has removed from consideration a vast number of the pair-
wise distance comparisons. The results point out the much
better pruning capability of the locality preserving hashing,
compared to the popular triangular inequality. For com-
parison, [7] reports that the triangular inequality prunes
between 50%-70% distance computations, which we exceed
here notably. This, however, comes at the price of a possi-
bility for some false dismissals.

The speed-up introduced by the method is presented in
Figure 9 right. The result does not correlate exactly with
the improvement in performed operations, because of the
relatively large number of iterations that have to be per-
formed by the algorithm to guarantee that constraint (5)
is satisfied (i.e. that the most significant motif will not be
omitted). Still, the probabilistic approach takes only 2%-
3% of the time necessary for the brute force algorithm to
complete.

Figure 10: Brain Activity Data Set C. Left: Average im-
provement in performed operations with respect to the time
series length. Right: Average improvement in running time.

The number of performed operations and the running time
naturally dependent on the size of the time series in the
data set too. We illustrate this in Figure 10. The figure
shows the results for data set C, where for each time se-
ries in the training/testing data sets we have taken only the
beginning (the first 500, 1000, etc. points). Retraining of

the algorithm to obtain the best tuple (|Σ|, l, l̂, I) is re-
quired, because the length of the time series determines the
number of subsequences that will be extracted from it using
a sliding window, which impacts the density of the input
space. For shorter time series the second additive term in
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optimization problem (4) will be naturally smaller, which
favors selecting smaller word and projection sizes. For ex-
ample, when the time series are 500 data points long, the
best tuple is (|Σ|, l, l̂, I) = (6, 3, 1, 18). For all lengths, the
test accuracy of the method remains the same - more than
95% when every single and around 90% when every second
scaling step is checked. The worse running time of the algo-
rithm for the data set of lengths 500 is due to the additional
implementation overhead for supporting the sparse collision
matrix. In our realization, the matrix is implemented as a
set of hash tables which we index using the projected SAX
words as keys. Incrementing the time series length, however,
increases the brute force search requirements quadratically
while the PROJECTION solution scales linearly, and thus
at some point becomes more efficient.

7.2 Motion-capture Motifs
Motion-capture data finds increasing utility in a number

of domains, such as animation, computer games or train-
ing simulators [8]. Finding significant motifs under uniform
scaling in applications from those areas can also be very
useful. For example, detecting the motifs in movements, re-
gardless of slight time stretches, can allow users to interact
better with console games, such as the popular Nintendo
Wii. In animation, on the other hand, motion-capture se-
quences are often stitched together to form larger animated
episodes. To be more realistic and continuous, the stitching
process requires the extrapolation of the first episode with
several frames before attaching the second episode. Finding
similar motifs and looking at their continuation can help in
detecting more suitable extrapolation frames.

In this set of experiments, we have a collection of 75
motion-capture sequences with duration of 10sec-30sec. The
motions captured are martial arts movements - kicks, blocks,
punches and retracting movements. The time series that we
extract from the data comprise the z-coordinate of the sen-
sor attached to the left arm of the actor (see Figure 11).
For ease of the evaluation, all time series are resampled to
a length of 1200 data points. We split the data into 40 time
series training set, and 35 time series test set. For minimum
motif length we use mq = 120 which for most sequences
corresponds to 2sec-3sec movements.

Similar actions are never repeated by humans in precisely
the same way, and rather tend to differ in how they stretch
in time. This explains why the Euclidean distance, though
robust in general, will fail in these cases. In Figure 11, for
example, we search for the best motif under Euclidean dis-
tance (the top frames and the graph underneath them) and
also under uniform scaling (bottom frames and graph). In
the beginning of the sequence the actor repeats the same
blocking movement twice but the second occurrence is ∼7%
longer than the first one. This is detected by the uniform
scaling distance, while the Euclidean distance in this case
detects two quite different actions. Note also that the sub-
sequent few frames for the two motif occurrences, detected
by the uniform scaling distance, are also quite similar. This
demonstrates how very similar motifs can be used in extrap-
olating motion-capture episodes when building animations.

The data is quite different from the EEG data studied ear-
lier. The time series have no periodicity and no significant
noise is present either. The best tuple learned by PROJEC-
TION on the training set is (|Σ|, l, l̂, I) = (4, 5, 5, 1). Using

projection size l̂ equal to the word size l implies that the

Figure 11: Motion-capture data. Top: The best motif
detected using Euclidean distance and four corresponding
frames extracted from each of the two motif occurrences.
Bottom: The best motif under uniform scaling. The corre-
sponding frames are part of the same action repeated twice.

best motifs for all of the training time series have been sym-
bolized by SAX to the exactly same letter representation.
Naturally in this case only one iteration is required to ob-
tain a hit for any of the motifs in the collision table. The
accuracy evaluated on the test time series is: 94% (scaling
step = 1), 85% (scaling step = 2) and 85% (scaling step
= 3). The best motifs were again estimated to require less
than 20% scaling. The method again performs less than
10% of the operations performed by early abandon, which is
comparable to the results for the EEG series of length 1000.

7.3 Projectile Shapes
While the ideas in this paper apply only to real-valued

time series, it has long been noted that in many cases it
is possible to meaningfully convert data types as diverse
as DNA [15], text [12], XML, video and shapes [17] into
time series. In such cases we believe that our motif finding
algorithm may be of utility in those domains. As a concrete
example we consider the problem of finding motifs in parts
of two-dimensional shapes. Figure 12 shows an example of
a projectile point (arrowhead) converted into time series.

Figure 12: A two-dimensional shape, such as an arrow-
head, can be converted to a one-dimensional pseudo time
series by tracing the boundary of the shape and recording
the local angle.
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There are many examples of important databases of shapes
in various scientific domains, but as hinted at in Figure 12 we
will consider arrowheads here as our motivating domain. At
the authors institution, the Lithic Technology Laboratory
estimates that they have over one million projectile points,
and many other institutions have even larger collections.
Figure 13 illustrates the surprising diversity of arrowhead
shape.

Figure 13: A random selection of arrowheads hints at the
great variability of possible shapes. Note that the two in the
bottom right corner have broken tips.

We could consider the problem of finding the pair of ar-
rowheads which are most similar, perhaps by hierarchically
clustering the shapes and examining the leaf nodes. How-
ever, anthropologists are typically more interested in the ar-
rangement of local details [25] (barbs, tips, shoulders, tangs
etc). In addition, many arrowheads are broken, frustrating
attempts at whole matching.

A query suggested to us by an anthropologist is to exam-
ine a large collection of arrowheads to find smaller reoccur-
ring details. We formalized this by assuming the region of
interest occupied one quarter of the boundary.

Note that the one-dimensional representation of shapes we
are using does not guarantee rotation invariance, we solve
this problem simply by concatenating each signal with one
quarter of itself as shown in Figure 14.

Figure 14: Converting a collection of shapes to a format
suitable for motif mining. Note that because we are inter-
ested in motifs which occupy about 1/4 of the boundary, we
have concatenated 1/4 of each signal to itself (dashed line).

Given this representation there is only one minor modifi-
cation to be made to our algorithm. As the sliding window
is moving across the long time series which represents the
entire collection, it will not extract subsequences which con-
tain elements from two different shapes (i.e two different
colors in Figure 14).

We performed an experiment on a database of 1,231 di-
verse arrowheads which come from all over North America.
These images were obtained from the UCR Lithic Technol-
ogy Laboratory and from various public domain resources.

Motif discovery without uniform scaling revealed the ob-
vious but uninteresting motif of arrowhead tips. However,
when we attempted motif discovery allowing uniform scal-

ing of up to 40%, several interesting motifs did occur. For
brevity we will just consider the best motif, which is shown
in Figure 15.

Figure 15: The best motif discovered under a maxi-
mum uniform scaling of 40%. The shorter sequence closely
matches the longer one when scaled up by 38%.

Figure 16 shows the motifs in context in the original ar-
rowheads.

Figure 16: The best motif under uniform scaling corre-
sponds to the double notches of cornertang arrowheads.

In our follow up investigation we found that cornertang
shape has long intrigued anthropologists. These objects are
relatively rare and are found almost exclusively in Texas.

It is important to note that the shapes of the two full ar-
rowheads shown in Figure 16 are not particularly close when
measured under the Euclidean, Warping, Chamfer or Haus-
dorff [17] distance measures (The Castroville cornertang is
much longer and more pointed). It is only by examining
subsections that local similarities are revealed.

8. CONCLUSIONS
We studied the problem of detecting time series motifs,

which occur with different stretch along the time axis. Such
motifs were demonstrated to have important utility in areas
as diverse as medical recording analysis, improving game
interactivity and animation, or in categorization of shapes.
The work introduced an effective and efficient approach for
identifying the existing motifs. The algorithm learns a suit-
able parametrization in a fully unsupervised manner, using
a training set of time series from the domain under study.
Though probabilistic, the scheme was shown to have a very
low rate of omitting the true motifs.

Our current efforts are targeted towards applying this
methodology as part of other learning tasks as subsequence
clustering and classification, novelty detection, and even
forecasting. We are also exploring the applicability of the
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approach to other applications, such as the categorization
of songs by only using small representative tunes.
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