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Abstract In this paper we present extended defini-
tions of k-anonymity and use them to prove that a given
data mining model does not violate the k-anonymity
of the individuals represented in the learning examples.
Our extension provides a tool that measures the amount
of anonymity retained during data mining. We show
that our model can be applied to various data mining
problems, such as classification, association rule mining
and clustering. We describe two data mining algorithms
which exploit our extension to guarantee they will gener-
ate only k-anonymous output, and provide experimental
results for one of them. Finally, we show that our method
contributes new and efficient ways to anonymize data
and preserve patterns during anonymization.

1 Introduction

In recent years the data mining community has faced a
new challenge. Having shown how effective its tools are
in revealing the knowledge locked within huge databas-
es, it is now required to develop methods that restrain
the power of these tools to protect the privacy of indi-
viduals. This requirement arises from popular concern
about the powers of large corporations and govern-
ment agencies—concern which has been reflected in the
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actions of legislative bodies (e.g., the debate about and
subsequent elimination of the Total Information Aware-
ness project in the US [10]). In an odd turn of events, the
same corporations and government organizations which
are the cause of concern are also among the main pur-
suers of such privacy-preserving methodologies. This is
because of their pressing need to cooperate with each
other on many data analytic tasks (e.g., for coopera-
tive cyber-security systems, failure analysis in integra-
tive products, detection of multilateral fraud schemes,
and the like).

The first approach toward privacy protection in data
mining was to perturb the input (the data) before it is
mined [4]. Thus, it was claimed, the original data would
remain secret, while the added noise would average out
in the output. This approach has the benefit of simplic-
ity. At the same time, it takes advantage of the statistical
nature of data mining and directly protects the privacy
of the data. The drawback of the perturbation approach
is that it lacks a formal framework for proving how much
privacy is guaranteed. This lack has been exacerbated by
some recent evidence that for some data, and some kinds
of noise, perturbation provides no privacy at all [20,
24]. Recent models for studying the privacy attainable
through perturbation [9,11,12,15,17] offer solutions to
this problem in the context of statistical databases.

At the same time, a second branch of privacy pre-
serving data mining was developed, using cryptographic
techniques. This branch became hugely popular [14,19,
22,27,37,42] for two main reasons: First, cryptography
offers a well-defined model for privacy, which includes
methodologies for proving and quantifying it. Second,
there exists a vast toolset of cryptographic algorithms
and constructs for implementing privacy-preserving data
mining algorithms. However, recent work (e.g., [14,23])
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has pointed that cryptography does not protect the
output of a computation. Instead, it prevents privacy
leaks in the process of computation. Thus, it falls short
of providing a complete answer to the problem of pri-
vacy preserving data mining.

One definition of privacy which has come a long way
in the public arena and is accepted today by both legis-
lators and corporations is that of k-anonymity [34]. The
guarantee given by k-anonymity is that no information
can be linked to groups of less than k individuals. The k-
anonymity model of privacy was studied intensively in
the context of public data releases [3,7,8,18,21,26,29,
32,33], when the database owner wishes to ensure that
no one will be able to link information gleaned from the
database to individuals from whom the data has been
collected. In the next section we provide, for complete-
ness, the basic concepts of this approach.

We focus on the problem of guaranteeing privacy of
data mining output. To be of any practical value, the
definition of privacy must satisfy the needs of users of
a reasonable application. Two examples of such appli-
cations are (1) a credit giver, whose clientele consists of
numerous shops and small businesses, and who wants to
provide them with a classifier that will distinguish credit-
worthy from credit-risky clients, and (2) a medical com-
pany that wishes to publish a study identifying clusters
of patients who respond differently to a course of treat-
ment. These data owners wish to release data mining
output, but still be assured that they are not giving away
the identity of their clients. If it could be verified that the
released output withstands limitations similar to those
set by k-anonymity, then the credit giver could release
a k-anonymous classifier and reliably claim that the pri-
vacy of individuals is protected. Likewise, the authors of
a medical study quoting k-anonymous cluster centroids
could be sure that they comply with HIPAA privacy
standards [36], which forbid the release of individually
identifiable health information.

One way to guarantee k-anonymity of a data mining
model is to build it from a k-anonymized table. How-
ever, this poses two main problems: first, the perfor-
mance cost of the anonymization process may be very
high, especially for large and sparse databases. In fact,
the cost of anonymization can exceed the cost of min-
ing the data. Second, the process of anonymization may
inadvertently delete features that are critical for the suc-
cess of data mining and leave out those that are useless;
thus, it would make more sense to perform data mining
first and anonymization later.

To demonstrate the second problem, consider the
data in Table 1, which describes loan risk information
of a mortgage company. The Gender, Married, Age and
Sports Car attributes contain data that is available to the
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Table 1 Mortgage company data

Name Gender  Married Age Sports Loan
car risk

Anthony  Male Yes Young  Yes Good

Brian Male Yes Young  No Good

Charles Male Yes Young  Yes Good

David Male Yes Old Yes Good

Edward Male Yes Old Yes Bad

Frank Male No Old Yes Bad

Alice Female No Young No Good

Barbara Female No Old Yes Good

Carol Female No Young  No Bad

Donna Female Yes Young  No Bad

Emily Female Yes Young  Yes Bad

Fiona Female Yes Young Yes Bad

Table 2 Anonymized mortgage company data

Gender Married Age Sports car Loan risk

Male * Young * Good

Male * Young * Good

Male * Young * Good

Male * Old * Good

Male * Old * Bad

Male * Old * Bad

Female No * * Good

Female No * * Good

Female No * * Bad

Female Yes * * Bad

Female Yes * * Bad

Female Yes * * Bad

public, while the Loan Risk attribute contains data that
is known only to the company. To get a 2-anonymous
version of this table, many practical methods call for the
suppression or generalization of whole columns. This
approach was termed single-dimension recoding [25]. In
the case of Table 1, the data owner would have to choose
between suppressing the Gender column and suppress-
ing all the other columns.

The methods we describe in this paper would lead
to full suppression of the Sports Car column as well as
a partial suppression of the Age and Married columns.
This would result in Table 2. This kind of generaliza-
tion was termed multi-dimensional recoding [25]. While
more data is suppressed, the accuracy of the decision
tree learned from this table (Fig. 1) is better than that
of the decision tree learned from the table without the
Gender column. Specifically, without the Gender col-
umn, it is impossible to obtain a classification better
than 50% good loan risk, 50% bad loan risk, for any set
of tuples.

In this paper we extend the definition of k-anonymity
with definitions of our own, which can then be used
to prove that a given data mining model is k-anon-
ymous. The key for these extended definitions is in
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Table 3 Table anonymization
(A) Original (B) 2-Anonymized (C) Public
Married Zipcode Income Zipcode Income Zipcode Name
Young Old Yes No

11001 High 110XX High 11001 John

obad | aget | Lot | | iy 11001  Low  110XX  Low 11001 Lisa

Loaf 1 Loar 2 Loaf 3 Loaf 4 12033 Mid 120XX  Mid 12033 Ben
12045 High 120XX  High 12045 Laura

Fig. 1 Mortgage company decision tree

identifying how external data can be used to perform
a linking attack on a released model. We exemplify how
our definitions can be used to validate the k-anonymity
of classification, clustering, and association rule mod-
els, and demonstrate how the definitions can be incor-
porated within a data mining algorithm to guarantee
k-anonymous output. This method ensures the k-
anonymity of the results while avoiding the problems
detailed above.

This paper is organized as follows: In Sect. 2 we
reiterate and discuss Sweeney’s and Samarati’s formal
definition of k-anonymity. We then proceed in Sect. 3 to
extend their definition with our definitions for k-anon-
ymous data mining models. In Sect. 4 we exemplify the
use of these definitions, and we present two k-anony-
mous data mining algorithms in Sect. 5. Section 6 shows
experimental results using one of the algorithms from
Sect. 5. Section 7 discusses related work. We present our
conclusions in Sect. 8.

2 k-Anonymity of tables

The k-anonymity model was first described by Sweeney
and Samarati [32], and later expanded by Sweeney [34,
31] in the context of data table releases. In this section
we reiterate their definition and then proceed to analyze
the merits and shortcomings of k-anonymity as a privacy
model.

The k-anonymity model distinguishes three entities:
individuals, whose privacy needs to be protected; the
database owner, who controls a table in which each row
(alsoreferred to as record or tuple) describes exactly one
individual; and the attacker. The k-anonymity model
makes two major assumptions:

1. The database owner is able to separate the columns
of the table into a set of quasi-identifiers, which are
attributes that may appear in external tables the
database owner does not control, and a set of private
columns, the values of which need to be protected.
We prefer to term these two sets as public attributes
and private attributes, respectively.

2. The attacker has full knowledge of the public attri-
bute values of individuals, and no knowledge of
their private data. The attacker only performs link-
ing attacks. A linking attack is executed by taking
external tables containing the identities of individ-
uals, and some or all of the public attributes. When
the public attributes of an individual match the pub-
lic attributes that appear in a row of a table released
by the database owner, then we say that the individ-
ualis linked to that row. Specifically the individual is
linked to the private attribute values that appear in
that row. A linking attack will succeed if the attacker
is able to match the identity of an individual against
the value of a private attribute.

Asaccepted in other privacy models (e.g., cryptography),
it is assumed that the domain of the data (the attributes
and the ranges of their values) and the algorithms used
for anonymization are known to the attacker. Ignor-
ing this assumption amounts to “security by obscurity,”
which would considerably weaken the model. The
assumption reflects the fact that knowledge about the
nature of the domain is usually public and in any case of
a different nature than specific knowledge about indi-
viduals. For instance, knowing that every person has a
height between zero and three meters is different than
knowing the height of a given individual.

Under the k-anonymity model, the database owner
retains the k-anonymity of individuals if none of them
can be linked with fewer than k rows in a released table.
This is achieved by making certain that in any table
released by the owner there are at least k rows with
the same combination of values in the public attributes.
Since that would not necessarily hold for every table,
most of the work under the k-anonymity model [7,18,21,
32-34] focuses on methods of suppressing, altering, and
eliminating attribute values in order that the changed
table qualify as k-anonymous.

Table 3 illustrates how k-anonymization hinders link-
ing attacks. The joining of the original Table 3(A) with
the public census data in 3(C) would reveal that Laura’s
income is High and Ben’s is Middle. However, if the
original table is 2-anonymized to that in 3(B), then the
outcome of joining it with the census data is ambiguous.
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It should be noted that the k-anonymity model is
slightly broader than what is described here [34], espe-
cially with regard to subsequent releases of data. We
chose to provide the minimal set of definitions required
to extend k-anonymity in the next section.

2.1 The k-anonymity model: pros and cons

The limitations of the k-anonymity model stem from
the two assumptions above. First, it may be very hard
for the owner of a database to determine which of the
attributes are or are not available in external tables.
This limitation can be overcome by adopting a strict
approach that assumes much of the data is public. The
second limitation is much harsher. The k-anonymity
model assumes a certain method of attack, while in real
scenarios there is no reason why the attacker should not
try other methods, such as injecting false rows (which
refer to no real individuals) into the database. Of course,
it can be claimed that other accepted models pose simi-
lar limitations. For instance, the well-accepted model of
semi-honest attackers in cryptography also restricts the
actions of the attacker.

A third limitation of the k-anonymity model pub-
lished recently in the literature [28] is its implicit assump-
tion that tuples with similar public attribute values will
have different private attribute values. Even if the
attacker knows the set of private attribute values that
match a set of k individuals, the assumption remains that
he does not know which value matches any individual
in particular. However, it may well happen that, since
there is no explicit restriction forbidding it, the value of
a private attribute will be the same for an identifiable
group of k individuals. In that case, the k-anonymity
model would permit the attacker to discover the value
of an individual’s private attribute.

Despite these limitations, k-anonymity is one of the
most accepted models for privacy in real-life applica-
tions, and provides the theoretical basis for privacy
related legislation [36]. This is for several important rea-
sons: (1) The k-anonymity model defines the privacy of
the output of a process and not of the process itself. This
isin sharp contrast to the vast majority of privacy models
that were suggested earlier, and it is in this sense of pri-
vacy that clients are usually interested. (2) It is a simple,
intuitive, and well-understood model. Thus, it appeals
to the non-expert who is the end client of the model.
(3) Although the process of computing a k-anonymous
table may be quite hard [3,29], it is easy to validate that
an outcome is indeed k-anonymous. Hence, non-expert
data owners are easily assured that they are using the
model properly. (4) The assumptions regarding separa-
tion of quasi-identifiers, mode of attack, and variability
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of private data have so far withstood the test of real-life
scenarios.

3 Extending k-anonymity to models

We are now ready to present the first contribution of
this paper: an extension of the definition of k-anonymity
beyond the release of tables. Our definitions are accom-
panied by a simple example to facilitate comprehension.

Consider a mortgage company that uses a table of
past borrowers’ data to build a decision tree classifier
predicting whether a client would default on the loan.
Wishing to attract good clients and deter bad ones, the
company includes the classifier on its Web page and
allows potential clients to evaluate their chances of get-
ting a mortgage. However, it would be unacceptable if
somebody could use the decision tree to find out which
past clients failed to return their loans. The company
assumes that all the borrowers’ attributes (age, marital
status, ownership of a sports car, etc.) are available to an
attacker, except for the Loan Risk attribute (good/bad
loan risk), which is private.

Figure 1 describes a toy example of the company’s
decision tree, as induced from a set of learning exam-
ples, given in Table 1, pertaining to 12 past clients. We
now describe a table which is equivalent to this decision
tree in the sense that the table is built from the tree and
the tree can be reconstructed from the table. The equiv-
alent table (Table 2) has a column for each attribute that
is used in the decision tree and a row for each learning
example. Whenever the tree does not specify a value
(e.g., Marital Status for male clients), the value assigned
to the row will be *.

The motivation for the definitions which follow is that
if the equivalent table is k-anonymous, the decision tree
should be considered to be “k-anonymous” as well. The
rationale is that, because the decision tree in Figure 1
can be reconstructed from Table 2, it contains no fur-
ther information. Thus, if a linking attack on the table
fails, any similar attack on the decision tree would have
to fail as well. This idea that a data mining model and
a k-anonymous table are equivalent allows us to define
k-anonymity in the context of a broad range of models.
We begin our discussion by defining a private database
and then defining a model of that database.

Definition 1 (A private database) A private database T
is a collection of tuples from a domain D = A x B =
Ay X XA xByx---xBy.Aq,...,Ayare public attri-
butes (a.k.a. quasi-identifiers) and By, . .., By are private
attributes.

We denote A = Ay x --- x Ay the public subdomain
of D. For every tuple x € D, the projection of x into A,
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denoted x4, is the tuple in A that has the same assign-
ment to each public attribute as x. The projection of a
table T into A is denoted T4 = {x4 : x € T}.

Definition 2 (A model) A model M is a function from
a domain D to an arbitrary output domain O.

Every model induces an equivalence relation on D,
ie,Vx,ye D,x =y & M(x) = M(y) . The model par-
titions D into respective equivalence classes such that
[x]I={yeD:y=x}

In the mortgage company decision tree example, the
decision tree is a function that assigns bins to tuples in
T. Accordingly, every bin within every leaf constitutes
an equivalence class. Two tuples which fit into the same
bin cannot be distinguished from one another using the
tree, even if they do not agree on all attribute values.
For example, although the tuples of Anthony and Brian
do not share the same value for the Sports Car attribute,
they both belong to the good loan risk bin of leaf I. This
is because the tree does not differentiate tuples accord-
ing to the Sports Car attribute. On the other hand, while
the tuples of David and Edward will both be routed to
leaf 2, they belong to different bins because their loan
risk classifications are different.

The model alone imposes some structure on the
domain. However, when a data owner releases a model
based on a database, it also provides information about
how the model relates to the database. For instance,
a decision tree model or a set of association rules may
include the number of learning examples associated with
each leaf, or the support of each rule, respectively. As
we shall see, a linking attack can be carried out using the
partitioning of the domain, together with the released
populations of different regions.

Definition 3 (A release) Given a database 7 and a
model M, a release Mt is the pair (M,pr), where pr
(for population) is a function that assigns to each equiv-
alence class induced by M the number of tuples from T
that belong to it, i.e., pr([x]) = |T ([x]| .

Note that other definitions of a release, in which the
kind of information provided by p is different, are pos-
sible as well. For example, a decision tree may provide
the relative frequency of a bin within a leaf, or just
denote the bin that constitutes the majority class. In
this paper we assume the worst case, in which the exact
number of learning examples in each bin is provided.
The effect of different kinds of release functions on the
extent of private data that can be inferred by an attacker
is an open question. Nevertheless, the anonymity anal-
ysis provided herein can be applied in the same manner
for all of them. In other words, different definitions of p7

would reveal different private information on the same
groups of tuples.

As described, the released model partitions the
domain according to the values of public and private
attributes. This is reasonable because the users of the
model are intended to be the database owner or the
client, both of whom supposedly know the private attri-
butes’ values. We now turn to see how the database and
the release are perceived by an attacker.

Definition 4 (A public identifiable database) A public
identifiable database Tip = {(idy,x4) : x € T} is a pro-
jection of a private database T into the public subdo-
main A, such that every tuple of 74 is associated with
the identity of the individual to whom the original tuple
in T pertained.

Although the attacker knows only the values of public
attributes, he can nevertheless try to use the release Mt
to expose private information of individuals represented
in T1p. Given a tuple (idy,x4) € Tip and a release, the
attacker can distinguish the equivalence classes to which
the original tuple x may belong. We call this set of equiv-
alence classes the span of x 4.

Definition 5 (A span) Given a model M, the span of a
tuple a € A is the set of equivalence classes induced by
M, which contain tuples x € D, whose projection into A
isa. Formally, Sps(a) = {[x] : x € DAx4 = a}. When M is
evident from the context, we will use the notation S(a).

In the aforementioned mortgage company’s decision
tree model, every leaf constitutes a span, because tuples
can be routed to different bins within a leaf by changing
their private Loan Risk attribute, but cannot be routed
to other leaves unless the value of a public attribute
is changed. For example, an attacker can use the pub-
lic attributes Gender and Married to conclude that the
tuples of Barbara and Carol both belong to leaf 4. How-
ever, although these tuples have different values for the
public attributes Age and Sports Car, the attacker cannot
use this knowledge to determine which tuple belongs to
which bin. These tuples are indistinguishable from the
attacker’s point of view, with respect to the model: both
share the same span formed by leaf 4.

We will now consider the connection between the
number of equivalence classes in a span and the private
information that can be inferred from the span.

Claim 1 If S(a) contains more than one equivalence
class, then for every two equivalence classes in the span,
[x] and [y], there is at least one combination of attribute
values that appears in [x] and does not appear in [y].

Proof By definition, for every equivalence class [x] €
S(a), there exists x € [x] such that x4 = a. Let [x] and
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[v] be two equivalence classes in S(a), and let x € [x],
y € [y] be two tuples such that x4 = y4 = a. Since x and
y have the same public attribute values, the only way
to distinguish between them is by their private attribute
values. The equivalence classes [x] and [y] are disjoint;
hence, the combination of public and private attribute
values x is not possible for [y], and the combination
of public and private attribute values y is not possible
for [x].

Given a pair (id;, z4) € Tip such that z4 = a, the values
of pr([x]) and p7([y]) allow the combination of private
attributes possible for z to be exposed. For example, if
pr([x]) = 0, the attacker can rule out the possibility that
Z=4X.

Claim 2 1f S(a) contains exactly one equivalence class,
then no combination of private attributes can be elimi-
nated for any tuple that has the same span.

Proof Letxy € Abeatuplesuchthat S(xq) = S(a). Let
¥,z € D be two tuples such that y4 = z4 = x4. Regard-
less of the private attribute values of y and z, it holds
that [y] = [z]. Otherwise, S(x4) would contain more
than a single equivalence class, in contradiction to the
assumption. Therefore, y and z both represent equally
possible combinations of private attribute values for the
tuple x4, regardless of the population function p7.

Corollary 1 A release exposes private information on
the population of a span if and only if the span contains
more than one equivalence class.

We will now see exactly how a release can be exploited
to infer private knowledge about individuals. Given a
public identifiable database 71p and a model M, we use
S@) 7, = {(Ady,x4) € Tip : S(x4) = S(a)]} to denote
the set of tuples that appear in 71p and whose span is
S(a). These are tuples from T1p which are indistinguish-
able with respect to the model M —each of them is asso-
ciated with the same set of equivalence classes. Knowing
the values of pr for each equivalence class in S(a) would
allow an attacker to constrain the possible private attri-
bute value combinations for the tuples in S(a)7y,. For
example, in the mortgage company’s decision tree, the
span represented by leaf 4 (Female, Unmarried) contains
two equivalence classes, which differ on the private attri-
bute Loan Risk. Tuples that belong to the good equiva-
lence class cannot have the private attribute bad Loan
Risk, and vice versa. Given tuples that belong to a span
with more than one equivalence class, the populations
of each can be used to constrain the possible private
attribute value combinations, hence compromising the
privacy of the individuals.

On the basis of this discussion we define a linking
attack as follows:
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Definition 6 (Linking attack using a model) A linking
attack on the privacy of tuples in a table 7 from domain
A x B, using a release M, is carried out by

1. Taking a publicidentifiable database 71p which con-
tains the identities of individuals and their public
attributes A.

2. Computing the span for each tuple in 71p.

3. Grouping together all the tuples in Tip that have
the same span. This results in sets of tuples, where
each set is associated with one span.

4. Listing the possible private attribute value combi-
nations for each span, according to the release M.

The tuples that are associated with a span in the third
step are now linked to the private attribute value com-
binations possible for this span according to the fourth
step.

For instance, an attacker who knows the identity, gen-
der and marital status of each of the mortgage company’s
clients in Table 1 can see, by applying the model, that
Donna, Emily and Fiona will be classified by means of
leaf 3 (Female, Married). This leaf constitutes the span of
the relevant tuples. It contains two equivalence classes:
one, with a population of 3, of individuals who are iden-
tified as bad loan risks, and another, with a population
of 0, of individuals who are identified as good loan risks.
Therefore the attacker can link Donna, Emily and Fiona
to 3 bad loan risk classifications. This example stresses
the difference between anonymity and inference of pri-
vate data. As mentioned in Sect. 2.1, anonymity depends
only on the size of a group of identifiable individuals,
regardless of inferred private attribute values. Hence,
so long as the k constraint is 3 or less, this information
alone does not constitute a k-anonymity breach.

Definition 7 (k-anonymous release) A release M is k-
anonymous with respect to a table T if a linking attack
on the tuples in T using the release M7 will not succeed
in linking private data to fewer than k individuals.

Claim 3 A release M7 is k-anonymous with respect to a
table T if, for every x € T, either or both of the following
hold:

L S(a) = {[xl}
2. 1Ska)Tl = K

Recall that while S(x4)7 may be different for various
tables T, the set of equivalence classes S(x4) depends
only on the model M.

Proof Assume an attacker associated an individual’s
tuple (idy,x4) € Tip with its span S(x4). We will show
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that if one of the conditions holds, the attacker cannot
compromise the k-anonymity of x. Since this holds for
all tuples in 7', the release is proven to be k-anonymous.

1. S(xa) = {[x]}. Since the equivalence class [x] is the
only one in S(x4), then according to Claim 2, tuples
whose span is S(x4) belong to [x] regardless of their
private attribute values. Therefore, no private attri-
bute value can be associated with the span, and the
attacker gains no private knowledge from the model
in this case. In other words, even if the attacker man-
ages to identify a group of less than k individuals and
associate them with S(x4), no private information
will be exposed through this association.

2. |S(xa)7| > k. In this case, the model and the equiva-
lence class populations might reveal to the attacker
as much as the exact values of private attributes
for tuples in T that belong to equivalence classes in
S(x4). However, since |S(x4)7| > k, the number of
individuals (tuples) that can be associated with the
span is k or greater.

Note that the first condition pertains to a case that
is not mentioned in the original k-anonymity model.
This condition characterizes a span that groups tuples
by public attributes alone. In the context of tables it is
equivalent to suppressing the private attribute values
for a set of rows. Clearly there is no privacy risk in this
case, even if the set contains less than k rows.

We conclude this section by stressing how the for-
mal definitions relate to the intuitive notion of anonym-
ity that was presented in the beginning of the section.
Each equivalence class relates to a subset of tuples which
adhere to the same condition on public and private attri-
butes. In that sense, the equivalence class is equivalent
to a unique combination of public and private attri-
butes in a row that appears in the private database. Just
as a private database does not necessarily adhere to
k-anonymity constraints, an equivalence class may con-
tain any number of tuples. However, the spans represent
the data as perceived by an attacker whose knowledge
is limited to public attributes. Tuples that share the same
span have a similar projection on the public domain. k
or more tuples that share the same span would result
in k or more rows that have the same public attribute
values in an equivalent table.

4 Examples
In this section we show how the definition of model

k-anonymity given in Sect. 3 can be used to verify
whether a given data mining model violates the

k-anonymity of individuals whose data was used for its
induction.

4.1 k-Anonymity of a decision tree

Assume a mortgage company has the data shown in
Table 4 and wishes to release the decision tree in Fig. 2,
which clients can use to see whether they are eligible for
aloan. Can the company release this decision tree while
retaining 3-anonymity for the data in the table?

The Marital Status of each individual is common
knowledge, and thus a public attribute, while the clas-
sification good/bad loan risk is private knowledge. We
will consider two cases, in which the Sports Car attribute
can be either public or private.

The decision tree is a function that maps points in the
original domain to the leaves of the tree, and inside the
leaves, to bins, according to the class value. Hence those
bins constitute partitions of the domain—each bin forms
an equivalence class and contains all the tuples that are
routed to it.

For example, the leaf /ypmarried cOntains one good
loan risk classification, and one bad loan risk classifica-
tion. That is, that leaf contains two bins, distinguished
by means of the Loan Risk attribute. One tuple from 7'
is routed to the bin labeled bad, and one tuple is routed
to the bin labeled good.

When both Sports Car and Marital Status are public
attributes, the decision tree compromises k-anonymity.
For example, the tuple John is the only one in the span
containing the equivalence classes good, bad in the leaf

Table 4 Mortgage company data

Name Marital Sports Loan
status car risk
Lisa Unmarried Yes Good
John Married Yes Good
Ben Married No Bad
Laura Married No Bad
Robert Unmarried Yes Bad
Anna Unmarried No Bad
Sports Car |lo
Yes No
Ives . 0good |Ino
Marital Status 3 bad
Married Unmarried
1 good 1 good
0 bad 1 bad
IMarried lUnmarried

Fig. 2 A k-anonymous decision tree
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IMarried- Note that in the special case that all the attri-
butes in a decision tree are public and the Class attribute
is private, the tree is k-anonymous if and only if every
leaf contains at least k learning examples or no learning
examples at all.

If the Sports Car attribute is private, the decision tree
implies juSt two spans: UMarried/good: lMarried/bad> lno/good,
Ino/bad} for John, Ben, and Laura (since the attacker can
route these tuples to any of the leaves INo, IMarried ), and
{{Unmarried/good> !Unmarried/bad> no/good> Inobad} fOr Lisa,
Robert, and Anna (since the attacker can route these
tuples to any of the leaves INo, /Unmarried)- AS each of
these spans contains 3 tuples, the decision tree main-
tains 3-anonymity.

4.2 Clustering

Assume that a data owner has the data shown in Table 5
and generates the clustering model shown in Fig. 3. Now,
he wishes to release the knowledge that his customers
form four major groups: One in zip code 11001, com-
prising customers with various income levels; a second
group, of high income customers, living mainly in zip

Table 5 Individuals’ data

Name Zip code Income
John 11001 98k
Cathy 11001 62k
Ben 13010 36k
Laura 13010 115k
William 14384 44k
Lisa 15013 100k

Income

120k ——

100k ——

80k ——

60k ——

40k ——

20k ——

11001 11022 13010 14384 15012 15013
Zip Code

Fig. 3 Clustering model
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codes 13010 and 14384; a third group, of low income
customers, living mainly in zip codes 13010, 14384 and
15012; and a fourth group in zip code 15013, comprising
medium and high income customers. This knowledge is
released by publication of four centroids, ¢y, ¢z, ¢3, ¢4,
which represent those groups, and imply a partitioning
of the domain into four areas, Cy, ..., Cy4, by assigning
the nearest centroid to each point in the domain.

The zip code of each individual is common knowl-
edge, but the income level is private data held only by
the data owner. We ask whether the data owner can
release this knowledge while retaining 2-anonymity for
the data in the table.

Each of the areas C; implied by the centroids consti-
tutes an equivalence class, and every tuple x is assigned
an equivalence class according to its Zip Code and
Income attribute values. The span of a tuple x consists of
all the areas that x may belong to when the income cor-
responding to that tuple is varied across the full range
of the data.

The span of John and Cathy is {C} }, because no matter
what their income is, any tuple whose zip code is 11001
would be associated (according to Figure 3) with ;.
Because this span has two tuples, it maintains their ano-
nymity.

The span of Ben, Laura and William is {Cy, C3},
because unless their income is known, each tuple in the
span can be related to either of the two centroids ¢, ¢3.
This ambiguity maintains the anonymity of these tuples.

The span of Lisa is {C3, C4}. It can be seen that this
span is not shared by any other tuple; thus, by our defi-
nitions, this clustering model compromises 2-anonymity.
To see why, consider an attacker who attacks the model
with a public table which includes individual names and
zip codes. Given the populations of the equivalence clas-
ses, the attacker knows that at least one individual has
to be related to c4. The attacker concludes that Lisa’s
tuple is the only candidate, and thus Lisa’s income level
is high. Hence Lisa’s privacy has been breached.

4.3 k-Anonymity of association rules

Assume that a retailer providing both grocery and phar-
maceutical products wishes to provide association rules
to an independent marketer. While everyone can see
what grocery products a customer purchased (i.e., such
items are public knowledge), pharmaceutical products
are carried in opaque bags whose content is known only
to the customer and the retailer.

After mining the data of some 1,000 customers, the
retailer discovers two rules: (Cherries = Viagra), with
8.4% support and 75% confidence, and (Cherries, Birth-
day Candles = Tylenol), with 2.4% support and 80%
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confidence. Can these rules be transferred to the mar-
keter without compromising customer anonymity?

Given a rule and a tuple, the tuple may contain just a
subset of the items on the left-hand side of the rule; all
of the items on the left-hand side of the rule; or all of
the items on both the left-hand side and the right-hand
side of the rule. Applying these three options for each
of the two rules results in a model with nine equivalence
classes.!

By looking at customers’ shopping carts, any attacker
would be able to separate the customers into three
groups, each constituting a span:

S1: Those who did not buy Cherries. The model does not
disclose any information about the private items of
this group (this span contains a single equivalence
class).

S>: Those who bought both Cherries and Birthday Can-
dles. Using the confidence and support values of
the rules, the attacker can learn private information
about their Viagra and Tylenol purchases (this span
contains four equivalence classes).

S3: Those who bought Cherries and did not buy Birth-
day Candles. Using the confidence and support
values of the rules, the attacker can learn private
information about their Viagra purchases (this span
contains two equivalence classes).

We can now compute the implied population of every
span. There are % = 112 customers who bought
cherries (with or without birthday candles). There are
% = 30 customers who bought both cherries and
birthday candles, and 112 — 30 = 82 customers who
bought cherries and did not buy birthday candles. There
are 1,000 — 112 = 888 customers who did not buy cher-
ries at all. Therefore, a linking attack would link 888, 30
and 82 individuals to Sy, S7 and S3, respectively. Using
the confidence of the rule (Cherries, Birthday Candles
= Tylenol), an attacker can deduce that of the 30 cus-
tomers linked to Sz, 24 bought Tylenol and 6 did not,
which is a breach if the retailer wishes to retain k-ano-
nymity for k > 30.

We conclude that if the objective of the retailer is to
retain 30-anonymity, then it can safely release both rules.
However, if the retailer wishes to retain higher anonym-

ity, the second rule cannot be released because it would

n fact there are only seven equivalence classes, since the rules
overlap: A tuple that does not contain items from the left-hand
side of the first rule (‘no cherries’) cannot be classified as contain-
ing the items on the left-hand side or on both sides of the second
rule.

allow an attacker to link a small group of customers to
the purchase of Tylenol.

5 k-Anonymity preserving data mining algorithms

In the previous section we used our definition of k-
anonymity to test whether an existing model violates the
anonymity of individuals. However, it is very probable
that the output of a data mining algorithm used on non-
anonymized data would cause a breach of anonymity.
Hence the need for techniques to produce models which
inherently maintain a given anonymity constraint. We
now demonstrate data mining algorithms which guaran-
tee that only k-anonymous models will be produced.

5.1 Inducing k-anonymized decision trees

We present an algorithm that generates k-anonymous
decision trees, given a set of tuples 7', assuming |T| > k.
The outline is given in Algorithm 1. We accompany the
description of the algorithm with an illustration of a
3-anonymous decision tree induction, given in Fig. 4.
It shows an execution of the algorithm using the data
in Table 4 as input. Marital Status is a public attribute;
Sports Car and Loan risk are private attributes. The
result of the execution is the decision tree in Fig. 2.

The algorithm is based on concepts similar to those
of the well-known ID3 decision tree induction algorithm
[30]. The algorithm begins with a tree consisting of just
the root and a set of learning examples associated with
the root. Then it follows a hill climbing heuristic that
splits the set of learning examples according to the value
the examples have for a selected attribute. Of all the
given nodes and attributes by which it can split the data,
the algorithm selects the one which yields the highest

Algorithm 1 Inducing k-anonymous decision tree

1: procedure MAKETREE(T,A k)
>T —dataset, A —list of attributes, kK —anonymity parameter

2: r < root node.
3: candList < {(a,r) :a € A}
4: while cand List contains candidates with positive gain do
5: bestCand < candidate from candList with highest gain.
6: if bestCand maintains k-anonymity then
7: Apply the split and generate new nodes N.
8: Remove candidates with the split node from
candList.
9: candList < candListU {(a,n) :a € A,n € N}.
10: else
11: remove bestCand from candList.
12: end if

13: end while
14: return generated tree.
15: end procedure
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Fig. 4 Inducing a
3-anonymous decision tree
{(Sports Car,p),

(Marital Status,/o))

bo=(John,Lisa} 0
b,={Ben,Laura, Robert,Anna}|

so={bo,P1}

Ty ={John, Lisa, Ben,
®  Laura, Robert,Anna}

gain (for a specific gain function —e.g., Information Gain
or the Gini Index), provided that such a split would not
cause a breach of k-anonymity. Note that unlike the ID3
algorithm, our algorithm does not use recursion; we con-
sider instead all the splitting possibilities of all the leaves
in a single queue, ordered by their gain. That is because
splitting leaves might affect the k-anonymity of tuples
in other leaves.

For simplicity, we embed generalization in the pro-
cess by considering each possible generalization of an
attribute as an independent attribute. Alternatively, e.g.,
for continuous attributes, we can start with attributes at
their lowest generalization level. Whenever a candidate
compromises anonymity and is removed from the candi-
date list, we insert into the candidate list a new candidate
with a generalized version of the attribute. In that case,
when generating candidates for a new node, we should
consider attributes at their lowest generalization level,
even if they were discarded by an ancestor node.

To decide whether a proposed split in line 6 would
breach k-anonymity, the algorithm maintains a list of all
tuples, partitioned to groups T according to the span s
they belong to. Additionally, at every bin on every leaf,
the span containing that bin s(b) is stored. Lastly, for
every span there is a flag indicating whether it is pointed
to by a single bin or by multiple bins.

Initially, in line 2, the following conditions hold:

— the only leaf is the root;

— there are as many bins as class values;

— there is just one span if the class is private;

— there are as many spans as class values if the class is
public.

If the class is private, the population of the single span
is T and its flag is set to multiple. If it is public, the pop-
ulation of every span is the portion of 7 which has the
respective class value, and the flag of every span is set to
single.

In Fig. 4, we begin with the root node /y, which con-
tains two bins, one for each class value. As the class value
is private, only one span sy is created: it contains the two
bins and its flag is set to multiple. T'sy, the population of
50, is comprised of all the tuples.
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Possible Specifications:

Sports Car lo

No Iy

by=(Ben,Laura}, by;=({}
byy={Anna},b,,={ }

Possible Specifications:
{(Marital Status,lyes),

10
Sports Car (Marital Status, o)}
Yes No
N $

Yes Tes

Marital Status

Nes

b,={John,Lisa}, Married Unmarried

b4={Ben,Laura,Anna}
by={Robert} b5={}

Ivarrieq

by=(Robert}

bg={John}
b=}

baz(L\sa)—Ilunmamed

sg={bg,b3,b4,b5}

TS ={John,Lisa, Ben,
© " Laura,Robert,Anna}

81={bg,b7.b10.D11} 82={0g,0g,01 1,012}

Ts 4 ={John, Ben,Laura} T52=(Lisa, Robert, Anna}

When a leaf is split, all of its bins are also split. The
algorithm updates the data structure as follows:

— If the splitting attribute is public, then the spans are
split as well, and tuples in 7y are distributed among
them according to the value of the splitting attribute.
Every new bin will point to the corresponding span,
and the flag of every new span will inherit the value
of the old one.

— If the splitting attribute is private, then every new
bin will inherit the old span. The flag of that span
will be set to multiple.

If splitting a leaf results in a span with population smaller
than k and its flag set to multiple, k-anonymity will be
violated. In that case the splitting is rolled back and the
algorithm proceeds to consider the attribute with the
next largest gain.

In the example, there are two candidates for splitting
the root node: the Sports Car attribute and the Marital
Status attribute. The first one is chosen due to higher
information gain. Two new leaves are formed, /yes and
INo, and the bins are split among them according to the
chosen attribute. Since the Sports Car attribute is pri-
vate, an attacker will not be able to use this split to
distinguish between tuples, and hence the same span
so is maintained, with the same population of size >3
(hence 3-anonymous). There are two remaining candi-
dates. Splitting Ino with MaritalStatus is discarded due
to zero information gain. The node /yes is split using the
public MaritalStatus. As a consequence, all the bins in
s are also split according to the attribute, and sy is split
to two new spans, s1 and s, each with a population of
three tuples, hence maintaining 3-anonymity.

5.2 Inducing k-anonymized clusters

We present an algorithm that generates k-anonymous
clusters, given a set of tuples 7', assuming |7| > k. The
algorithm is based on a top-down approach to cluster-
ing [35].

The algorithm starts by constructing a minimal span-
ning tree (MST) of the data. This tree represents a single
equivalence class, and therefore a single span. Then, in
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Result

Fig. 5 Inducing k-anonymous clusters

consecutive steps, the longest MST edges are deleted to
generate clusters. Whenever an edge is deleted, a clus-
ter (equivalence class) C; is split into two clusters (two
equivalence classes), C; and Cj;. As a consequence,
everyspan M = {Cy,...,C,;,...,Cy} that contained this
equivalence class is now split into three spans:

1. §1 = {Cy,...,Ci,...,Cy}, containing the points
from C; which, according to the public attribute val-
ues, may belong only to C;;;

2. 8§ = {Cy,...,Cy,...,Cp}, containing the points
from C; which, according to the public attribute val-
ues, may belong only to C;,;

3. 85 = {(,...,Cy,Cy,...,Cy), containing the
points from C; which, according to the public attri-
bute values, may belong either to C;, and Cj,.

The points that belonged to M are now split between the
three spans. If we can link to each of the new spans at
least k points, or no points at all, then the split maintains
anonymity. Otherwise, the split is not performed. Edges
are deleted iteratively in each new cluster, until no split
that would maintain anonymity can be performed. When
this point is reached, the algorithm concludes. The algo-
rithm can also be terminated at any earlier point, when
the data owner decides that enough clusters have been
formed.

To see how the algorithm is executed, assume a data
domain that contains two attributes. The attribute age is
public, while the attribute result, indicating a result of a
medical examination, is private. Figure 5 shows several
points in the domain, and an MST that was constructed
over these points.

The algorithm proceeds as follows: At first, the MST
forms a single cluster (equivalence class) Cy, containing
all the points, and a single span S; = {C7}. Then the edge
CD, which is the longest, is removed. Two clusters form
as aresult: C, = {A,B,C} and C3 = {D, E, F, G}. Con-
sequently, we get three spans: S = {C3}, to which the

points A, B, C are linked; S3 = {C3}, to which the points
D,E,F,G are linked; and S4 = {C3, C3}, to which no
point is linked, and can therefore be ignored. In Cs, the
longest edge is DE. Removing it will split the cluster into
C4 = {D} and Cs = {E, F, G}. Then the span S3, which
contains the split cluster Cz, is split into three spans:
Ss = {C4}, to which no point is linked; S¢ = {Cs}, to
which no point is linked; and S7 = {C4, Cs}, to which the
points D, E, F,G are linked. Note that although point
D is the only one in equivalence class Cy, this does not
compromise k-anonymity, because the public attributes
do not reveal enough information to distinguish it from
the points E, F, G in cluster Cs. Although the algorithm
may continue to check other possible splits, it can be
terminated at this point, after forming three clusters.

6 Experimental evaluation

In this section we provide some experimental evidence
todemonstrate the usefulness of the model we presented.
We focus on the decision tree classification problem and
present results based on the decision tree algorithm from
Sect. 5.1.

To conduct our experiments we use a straightforward
implementation of the algorithm, based on the Weka
package [41]. We use as a benchmark the Adult data-
base from the UC Irvine machine learning repository
[13], which contains census data, and has become a com-
monly used benchmark for k-anonymity. The data set
has 6 continuous attributes and 8 categorial attributes.
We use the income level as the class attribute, with two
possible income levels, < 50K or > 50K. After records
with missing values have been removed, there are 30,162
records for training and 15,060 records for testing (of
which 24.5% are classified > 50K). For the categorial
attributes we use the same hierarchies described in [18].
We dropped the continuous attributes because of 1D3
limitations. The experiment was performed on a 3.0GHz
Pentium IV processor with 512 MB memory.

The anonymized ID3 algorithm uses the training data
to induce an anonymous decision tree. Then the test
data (in a non-anonymized form) is classified using the
anonymized tree. For all values of k the decision tree
induction took less than 6 seconds.

6.1 Accuracy versus Anonymity Tradeoffs in ID3

The introduction of privacy constraints forces loss of
information. As a consequence, a classifier is induced
with less accurate data and its accuracy is expected to
decrease. Our first goal is to assess how our method
impacts this tradeoff between classification accuracy and
the privacy constraint.
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Fig. 6 Classification error versus k parameter

Figure 6 shows the classification error of the anon-
ymous ID3 for various k& parameters. We provide an
ID3 baseline, as well as a C4.5 baseline (obtained using
0.27 confidence factor), to contrast the pruning affect of
k-anonymity. In spite of the anonymity constraint, the
classifier maintains good accuracy. At k = 750 there is
a local optimum when the root node is split using the
Relationship attribute at its lowest generalization level.
At k = 1,000 this attribute is discarded since it compro-
mises anonymity, and instead the Marital Status attribute
is chosen at its second lowest generalization level, yield-
ing better classification.

We compare the classification error with the one
obtained using the top-down specialization (TDS) algo-
rithm presented in [18] on the same data set and the
same attributes and taxonomy trees. The TDS algorithm
starts with the topmost generalization level and chooses,
in every iteration, the best specialization. The best spe-
cialization is determined according to a metric that mea-
sures the information gain for each unit of anonymity
loss. The generalization obtained by the algorithm is
then used to anonymize all the tuples. We compare our
anonymous decision tree with an ID3 tree induced with
the anonymized TDS output. The results obtained using
TDS also appear in Fig. 6. In contrast to the TDS algo-
rithm, our algorithm can apply different generalizations
on different groups of tuples, and it achieves an average
reduction of 0.6% in classification error with respect to
TDS.

6.2 Model-based k-Anonymization
In Sect. 3 we discussed the concept of equivalence

between data mining models and their table represen-
tation. Based on this concept, we can use data mining
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Table 6 Classification metric comparison

k k-optimal Anonymous-DT
10 5,230-5280 5,198
25 5,280-5330 5,273
50 5,350-5410 5,379
100 5,460 5,439

techniques to anonymize data. Each span defines an
anonymization for a group of at least k tuples.

When the data owner knows in advance which tech-
nique will be used to mine the data, it is possible to
anonymize the data using a matching technique. This
kind of anonymization would be very similar to embed-
ding the anonymization within the data mining process.
However, when the algorithm for analysis is not known
in advance, would a data-mining-based anonymization
algorithm still be useful? To answer this question, we
next assess the value of the anonymous decision tree as
an anonymization technique for use with other classifi-
cation algorithms.

To make this assessment, we measured the classifica-
tion metric (originally proposed in [21]) for the induced
decision trees. This metric was also used in [7] for opti-
mizing anonymization for classification purposes. In our
terminology, the classification metric assigns a penalty
1 to every tuple x that does not belong to the major-
ity class of S(x), CM = >\ IMinority(S)|. We compare
our results with the k-Optimal algorithm presented in
[7], which searches the solution domain to find an opti-
mal anonymization with respect to a given metric. We
discarded the Relationship attribute, since it is not used
in [7]. Note also that we do not make use of the Age
attribute, which is used in [7]. This puts our algorithm at
a disadvantage. [7] reports several CM values, depend-
ing on the partitioning imposed on the Age attribute and
the limit on number of suppressions allowed (our algo-
rithm makes no use of suppressions at all). We present
in Table 6 the ranges of CM values reported in [7] along-
side the CM results achieved by our algorithm. Our algo-
rithm obtains similar (sometimes superior) CM results
in a shorter runtime.

Successful competition with optimal single-dimen-
sion anonymizations using multi-dimensional anonymi-
zations has already been discussed in [26]. However, our
results give rise to an additional observation: Intuitively
it may seem that using a specific data mining algorithm
to generalize data would “over-fit” the anonymization
scheme to the specific algorithm, decreasing the abil-
ity to successfully mine the data using other algorithms.
However, the CM results presented above suggest that
this kind of anonymization may be at least as useful as
metric-driven (and algorithm oblivious) anonymization.
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6.3 Privacy risks and ¢-diversity

Asmentionedin Sect. 2.1, k-anonymity makesnorestric-
tion regarding the private attribute values. As a conse-
quence, it is possible that a k-anonymous model would
allow the attacker a complete inference of these values.
In this section, our goal is to assess how many individu-
als are prone to immediate inference attacks and inves-
tigate whether such inference can be thwarted using the
£-diversity model [28].

Specifically, we look at the number of individuals
(learning examples) for whom an attacker may infer the
class attribute value with full certainty. This is done by
considering all the spans for which all the tuples share
the same class, and counting the number of tuples asso-
ciated with these spans. Figure 7 shows the percentage
of tuples exposed to such inference, as a function of
the parameter k. Avoiding this kind of inference com-
pletely requires high values of k, and even in those cases
the attacker may still be able to infer attribute values
with high probability.

The ¢-diversity model suggests solving this problem
by altering the privacy constraint to one that requires
a certain amount of diversity in class values for every
group of identifiable tuples. For example, entropy
{-diversity is maintained when the entropy of the class
values for every such group exceeds a threshold value
log(?).

We altered our algorithm to enforce the entropy
¢-diversity constraint: instead of checking the number
of tuples associated with each span, we calculated the
class entropy and compared it to the threshold log(¢),
ruling out splits in the tree that violate this constraint.
Before presenting the results, we make some observa-
tions about entropy ¢-diversity. In the given data set
there are two class values. This means that the best level

% Exposed

obn . ... .
10 25 50 75 100 150 200 250 500 7501000
k parameter

Fig. 7 Percentage of Exposed tuples
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Fig. 8 Confidence level versus accuracy

of diversity we can hope for is entropy 2-diversity, when
there is equal chance for each class value, in which case
we have no classification ability. Therefore, in this con-
text, the parameters for k-anonymity and ¢-diversity are
not comparable.

However, when we have two class values and ¢ < 2,
entropy £-diversity allows us to limit the attacker’s con-
fidence in inference attacks. For example, to deny the
attacker the ability to infer a class value with confi-
dence >85%, we should keep the entropy higher than
—0.85x1og 0.85—0.15x1og 0.15 = 0.61. This amounts to
applying entropy £-diversity with £ = 1.526 (log 1.526 =
0.61). Based on this, Fig. 8 displays the tradeoff between
the confidence limit imposed on the attacker and the
accuracy of the induced decision tree. According to our
results, so long as the confidence limit is high enough, the
¢-diversity constraint allows the induction of decision
trees without a significant accuracy penalty. The lowest
achievable confidence level is 75.1%, as it pertains to
the class distribution in the root node. Moreover, every
split of the root node will result in a node with confi-
dence> 85%. Therefore, a confidence limit of 85% or
lower prohibits the induction of a useful decision tree.

7 Related work

The problem of k-anonymity has been addressed in
many papers. The first methods presented for k-
anonymization were bottom-up, relying on generaliza-
tion and suppression of the input tuples [32,33,40].
Heuristic methods for k-anonymization that guarantee
optimal k-anonymity were suggested in [7,25]. Iyengar
[21] suggested a metric for k-anonymizing data used in
classification problems, and used genetic algorithms for
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the anonymization process. A top-down approach, sug-
gested in [18], preserves data patterns used for deci-
sion tree classification. Another top down approach,
suggested in [8] utilizes usage metrics to bound gen-
eralization and guide the anonymization process. When
the above methods are compared to specific implemen-
tations of ours (such as the one described in Sect. 5.1),
several differences are revealed. First, while all these
methods anonymize an attribute across all tuples, ours
selectively anonymizes attributes for groups of tuples.
Second, our method is general and thus can be eas-
ily adjusted for any data mining task. For example, one
could think of applying our method in one way for classi-
fication using decision trees and in another for classifica-
tion using Bayesian classifiers. In both respects, using our
method is expected to yield better data mining results, as
was demonstrated in Sect. 6 for decision tree induction.

A recent independent work [26] discusses multi-
dimensional global recoding techniques for anonymiza-
tion. Anonymity is achieved by mapping the domains of
the quasi-identifier attributes to generalized or altered
values, such that each mapping may depend on the com-
bination of values over several dimensions. The authors
suggest that multi-dimensional recoding may lend itself
to creating anonymizations that are useful for building
data mining models. Indeed, the methods we presented
in this paper can be classified as multi-dimensional global
recoding techniques, and complement the aforemen-
tioned work. Another multi-dimensional approach is
presented in [3]. The authors provide an O(k)-approxi-
mation algorithm for k-anonymity, using a graph
representation, and provide improved approximation
algorithms for k = 2 and k& = 3. Their approximation
strives to minimize the cost of anonymization, deter-
mined by the number of entries generalized and the level
of anonymization. One drawback of applying multi-
dimensional global recoding before mining data is the
difficulty of using the anonymized results as input for
a data mining algorithm. For example, determining the
information gain of an attribute may not be trivial when
the input tuples are generalized to different levels. Our
approach circumvents this difficulty by embedding the
anonymization within the data mining process, thus
allowing the data mining algorithm access to the non-
anonymized data.

Embedding k-anonymity in data mining algorithms
was discussed in [6] in the context of pattern discovery.
The authors do not distinguish between private and pub-
lic items, and focus on identifying patterns that apply
for fewer than k transactions. The authors present an
algorithm for detecting inference channels in released
sets of itemsets. Although this algorithm is of exponen-
tial complexity, they suggest an optimization that allows
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running time to be reduced by an order of magnitude.
A subsequent work [5] shows how to apply this tech-
nique to assure anonymous output of frequent itemset
mining. In comparison, our approach allows breaches
of k-anonymity to be detected and k-anonymization to
be embedded in a broader range of data mining mod-
els. We intend to further explore the implications of our
approach on itemset mining in future research.

Several recent works suggest new privacy definitions
that can be used to overcome the vulnerability of k-
anonymity with respect to data diversity. Wang et al.
[39] offer a template-based approach for defining pri-
vacy. According to their method, a data owner can define
risky inference channels and prevent learning of specific
private attribute values, while maintaining the useful-
ness of the data for classification. This kind of privacy is
attained by selective suppression of attribute values. [28]
presents the ¢-diversity principle: Every group of indi-
viduals that can be isolated by an attacker should contain
at least ¢ “well-represented” values for a sensitive attri-
bute. As noted in [28], k-anonymization methods can
be easily altered to provide ¢-diversity. We showed in
Sect. 6 that our method can also be applied to ¢-diver-
sification by adding private value restrictions on spans.
Our definitions can be easily augmented with any further
restriction on private attributes values, such as those pre-
sented in [39]. Kantarcioglu et al. [23] suggest another
definition for privacy of data mining results, according
to the ability of the attacker to infer private data using
a released “black box” classifier. While this approach
constitutes a solution to the inference vulnerability of
k-anonymity, it is not clear how to apply it to data min-
ing algorithms such that their output is guaranteed to
satisfy privacy definitions.

A different approach for privacy in data mining sug-
gests that data mining should be performed on per-
turbed data [2,9,11,12,15,16,23]. This approach is
applied mainly in the context of statistical databases.

Cryptographic methods were proposed for privacy-
preserving data mining in multiparty settings [14,19,
22,27,37]. These methods deal with the preservation
of privacy in the process of data mining and are thus
complementary to our work, which deals with the pri-
vacy of the output.

We refer the interested reader to [38] for further dis-
cussion of privacy preserving data mining.

8 Conclusions
Traditionally, the data owner would anonymize the data

and then release it. Often, a researcher would then take
the released data and mine it to extract some knowledge.
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However, the process of anonymization is oblivious to
any future analysis that would be carried out on the data.
Therefore, during anonymization, attributes critical for
the analysis may be suppressed whereas those that are
not suppressed may turn out to be irrelevant. When
there are many public attributes the problem is even
more difficult, due to the curse of dimensionality [1]. In
that case, since the data points are distributed sparsely,
the process of k-anonymization reduces the effective-
ness of data mining algorithms on the anonymized data
and renders privacy preservation impractical.

Using data mining techniques as a basis for k-
anonymization has two major benefits, which arise from
the fact that different data mining techniques consider
different representations of data. First, such anonymiza-
tion algorithms are optimized to preserve specific data
patterns according to the underlying data mining tech-
nique. While this approach is more appealing when the
data owner knows in advance which tool will be used to
mine the data, our experiments show that these anon-
ymizations may also be adequate when this is not the
case. Second, as illustrated in sect. 3, anonymization
algorithms based on data mining techniques may apply
different generalizations for several groups of tuples
rather than the same generalization for all tuples. In
this way, it may be possible to retain more useful infor-
mation. This kind of anonymization, however, has its
downsides, one of which is that using different general-
ization levels for different tuples requires that the data
mining algorithms be adapted. Therefore, we believe
that this model will be particularly useful when the ano-
nymity constraints are embedded within the data mining
process, so that the data mining algorithm has access to
the non-anonymized data.

To harness the power of data mining, our work pro-
poses extended definitions of k-anonymity that allow
the anonymity provided by a data mining model to be
analyzed. Data owners can thus exchange models which
retain the anonymity of their clients. Researchers look-
ing for new anonymization techniques can take advan-
tage of efficient data mining algorithms: they can use the
extended definitions to analyze and maintain the ano-
nymity of the resulting models, and then use the ano-
nymity preserving models as generalization functions.
Lastly, data miners can use the definitions to create algo-
rithms guaranteed to produce anonymous models.
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