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Correlations

Correlation between label and attributes
(classic IR hypothesis)

Correlation between label and labels and
attributes of known neighbors

Correlation between labels of unknown
neighbors




Collective classification (CC)

Definition
CC: Combined classification of inter-linked

objects using label-attribute correlations and
label-label neighbor correlations.

A major difference to general classification is
that inference for all unknown instances is
simultaneous.



Definition
Given a joint distribution of the unknown labels,

compute the marginal distribution for a single
node’s label.

Exact inference is intractable for arbitrary
networks.

Algorithms: variable elimination, junction
tree.

Most research is focused on approximate
inference.



A more formal view on the problem

The network structure is modeled as a
graph G=(V,E).

Each node is a variable defined over a
given domain.

V contains two types of variables: X and Y

Goal: Label the nodes in Y
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Local and global

EColla borative classiﬁcationj

Local

ICA Gibbs Loopy belief
sampling propagation

Mean field
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Iterative classification algorithm(ICA)

fCollaborative classiﬁcationj

Gibbs Loopy belief |VMean field |
sampling propagation
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ICA mechanics

Classify a node Y; based on its neighbors
N;

Use a local classifier f(N;) to compute the
best value of y;

lteratively apply to all Y; using the best
estimates of unknowns in N;

Use the labeling that stabilizes over time
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Gibbs sampling(GS)

fCollaborative classiﬁcationj

Loopy belief Mean field
propagation
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Gibbs sampling - basic idea

Sample from a multivariate joint distribution
(unknown explicitly)

Generates a series of samples based on
conditional distributions of each variable
Example: Sample values from (X, Y)
Start with initial X = xg
Sample yo = p(Y|X = Xo)
Sample x; = p(X|Y = y)..-
(X0, Y0), (X1, y1)... are samples from p(X, Y) if
p(x|x) are the true conditionals
Simpler to sample from conditional
distributions than to integrate over a joint
(especially if the latter is unavailable)
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Gibbs sampling for CC

The joint distribution is p( Y1, Y2, ... Yn)

Assume that we know the conditionals
P(Yk| Y1 = y1, ... Y1 = Yk—1, Yk41 = Yks1---)

Perform GS and estimate the marginals
p(Y:), Y; € Y based on the samples
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Assume we know the conditionals?

Assume we can estimate the conditional
p(Y;|N;) using a local classifier

Assume independence of indirect
neighbors p(Yi|N;) = p(YilY)

No guarantee that the estimated
conditionals are the true conditionals
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The mechanics of GS for CC

Initialize assignments of Y;
Perform a "burn-in" number of sample steps
Sample and count label assignments

Estimate marginals based on counts.
Decide on labels.
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Challenges of ICA and GS

Feature construction for local classifiers

Classifiers normally require fixed-length FVs
Choice of aggregation - max, count, exists, etc.

Local classifiers(Decision trees, Log.
Regression, SVM, etc.). Training.

Nodes ordering - robust to simple random,
based on label diversity etc.

Performance (running time)
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Feature construction
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Aggregation: count, avg, exists, proportion,
graph based, etc.
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Local classifiers

‘ Reference ‘ local classifier used |
Neville & Jensen [44] naive Bayes
Lu & Getoor [35] logistic regression

Jensen, Neville, & Gallagher [25] | naive Bayes,
decision trees
Macskassy & Provost [36] naive Bayes,
logistic regression,
weighted-vote

by relational neighbor,
class distribution
relational neighbor
McDowell, Gupta, & Aha [39] naive Bayes,
k-nearest neighbors
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Global methods

EColla borative classiﬁcationj

A Gibbs Loopy belief |7Mean field |
sampling propagation
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Additional notation

L is the set of labels, G(V, E) is the network
of objects

Three types of clique
potentials(distributions)

yiforeach Y; € Yis amapping ¢ : L — R*
i for each (Y;, X)) € E is a mapping

wij L — RT
n; for each (Y}, Y;) € E is a mapping

i LxL — R

24/50



Back to our example

Y1 Wiy Y1 Wi Y1 Wig
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SH
SH W,
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Just a little bit more notation

"Known" potential of a label y;
oi(¥i) = Viyi) 2-(v, x)ee Vi(Vi)

It is computed without considering
"unknown" neighbors
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Back to our example
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Pairwise Markov random field

Definition

A pairwise MRF is given by the pair

< G(V,E),V >, Gis agraph, V is a set of
potentials 1, n, ¢.

For an assignment y of all Y the MRF is
associated with

P(y[x) = aIlyny ¢i(¥i) (v, v)ee ni(¥i. ¥))
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Interpretation

The MRF defines a joint p.d.f. of all
"unknown" labels

Each P(y|x) is the probability of a given
world y

Same as before obtaining the marginal for
P(Y; = y;) would require summing over
exponential number of terms

#P problem — approximation
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Global CC as a variational method

Instead of working with the actual
distribution defined by the MRF, work with
an approximate "trial" distribution

The "trial" distribution should be simpler (to
compute/store)

It should be easier to extract marginals from
the "trial" distribution

The "trial" should be fitted to the actual
distribution
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Loopy belief propagation (LBP)

fCollaborative classiﬁcationj

Siooa

sampling propagation
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LBP

Loopy belief propagation is defined on a
pairwise MRF

It is a discrete time message passing
algorithm

At each step a message m;_,;(y;) is passed
from unknown node Y; to Y]

mij(y;) =
o Zy;eL nij(Yi, ¥1)0i(¥i) HykeN,-mY\Y,- My—.i(¥r)

32/50



LBP example

Y W e
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LBP mechanics

Initially all messages are set to 1

Perform message passing until messages
stabilize

Compute beliefs
bi(yi) = ai(¥i) Iy .enny Mi—i(¥i)

bi(y;) is the approximation of the marginal
probability of y; for node Y;
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Relaxation labeling via mean-field (MF)

fCollaborative classiﬁcationj

Siooa

ICA Gibbs Loopy belief Mean field
sampling propagation
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MF is defined on MRF

MF can be described by the following fixed
point equation:

b. ]
bi(yi) = adi(y) Tyeny [yer ni ™ (ir %)
lterative method for computing the fixed
point equation
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Experiments
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Comparison of content-based (CO) and CC
classification

Comparison of local classifiers for Local
CC. Logistic regression (LR) versus Naive
Bayes (NB)

Comparison of Global and Local CC

Eight different classifiers:

CO + NB/LR
ICA + NB/LR
GS + NB/LR
LBP

MF
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Experimental setup

Real world data
CORA - |V| = 2708, |E| = 5429, |L| = 7
Citeseer - |V| = 3312, |E| =4732,|L| =6

Synthetic data |V| = 1000, |L = 5]

Varying homophily and link density for
synthetic data

10-fold cross validation
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Choice of features

Document terms for both CO and local CC
methods

Count aggregation of terms

MRF with clique and node potentials for
Global CC
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Sampling for fold validation

Create folds for training and evaluation
"Snowball sampling" (SS) evaluation
Select a random core node
Expand, choosing a node based on the class
distribution
Expand |X|/k times
Create split.
Use the |X|/k sample for testing and the rest for
training
Random sampling (RS) - Partition |X] in k
folds randomly
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Sampling challenges

SS may result in one and the same node
appearing in multiple folds

Average the accuracy of each instance and
than average over all training

Matched (M) average accuracy - only for
instances that appear in at least one SS
split
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Learning the parameters

For CO and Local CC - local classifiers
parameters

For MF and LBP - clique potentials

Gradient-based optimization approaches on
the labeled nodes in the training splits
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Experimental results - real-world datasets

Cora Citeseer
Algorithm SS | RS | M SS RS | M

CO-NB 0.7285 | 0.7776 | 0.7476 0.7427 | 0.7487 | 0.7646
ICA-NB 0.8054 | 0.8478 | 0.8271 0.7540 | 0.7683 | 0.7752
GS-NB 0.7613 | 0.8404 | 0.8154 || 0.7596 | 0.7680 | 0.7737
CO-LR 0.7356 | 0.7695 | 0.7393 0.7334 | 0.7321 | 0.7532
ICA-LR 0.8457 | 0.8796 | 0.8589 || 0.7629 | 0.7732 | 0.7812
GS-LR 0.8495 | 0.8810 | 0.8617 || 0.7574 | 0.7699 | 0.7843

LBP 0.8554 | 0.8766 | 0.8575 || 0.7663 | 0.7759 | 0.7843

MF 0.8555 | 0.8836 | 0.8631 0.7657 0.7732 | 0.7888

CC dominates CO
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MF 0.8555 | 0.8836 | 0.8631 || 0.7657 | 0.7732 | 0.7888

CC dominates CO

LR dominates NB

ICA and GS comparable by accuracy
Slight dominance of Global over Local

47/50



Experimental results - synthetic datasets

09

08 - CO-NB
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g 05 -+ CO-LR
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< 04 - GS-LR

0.3 ——LBP
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Experimental results - synthetic datasets

1
09
0.8 —— GO-NB
0.7 —=ICA-NB
—-— GS-NB
0.6
E - CO-LR
3 05 - iCA-LR
< 04 - GS-LR
—+LBP
0.3 —MF
0.2
0.1
0
0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 09
Link Density
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Practical observations

MF and LBP are hard to work with.
Initialization and convergence issues.

ICA is faster than GS (14m vs. 3h on
Citeseer with NB)

ICA converges in <10 iterations, while GS
requires 200 "burn-in" + 800 samples
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