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Abstract

Mining and Managing Large-Scale Temporal Graphs

by

Bo Zong

Large-scale temporal graphs are everywhere in our daily life. From online

social networks, mobile networks, brain networks to computer systems, entities

in these large complex systems communicate with each other, and their interac-

tions evolve over time. Unlike traditional graphs, temporal graphs are dynamic:

both topologies and attributes on nodes/edges may change over time. On the one

hand, the dynamics have inspired new applications that rely on mining and man-

aging temporal graphs. On the other hand, the dynamics also raise new technical

challenges. First, it is difficult to discover or retrieve knowledge from complex

temporal graph data. Second, because of the extra time dimension, we also face

new scalability problems. To address these new challenges, we need to develop new

methods that model temporal information in graphs so that we can deliver useful

knowledge, new queries with temporal and structural constraints where users can

obtain the desired knowledge, and new algorithms that are cost-effective for both

mining and management tasks.

In this dissertation, we discuss our recent works on mining and managing

large-scale temporal graphs.

First, we investigate two mining problems, including node ranking and link

prediction problems. In these works, temporal graphs are applied to model the
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data generated from computer systems and online social networks. We formulate

data mining tasks that extract knowledge from temporal graphs. The discovered

knowledge can help domain experts identify critical alerts in system monitoring

applications and recover the complete traces for information propagation in online

social networks. To address computation efficiency problems, we leverage the

unique properties in temporal graphs to simplify mining processes. The resulting

mining algorithms scale well with large-scale temporal graphs with millions of

nodes and billions of edges. By experimental studies over real-life and synthetic

data, we confirm the effectiveness and efficiency of our algorithms.

Second, we focus on temporal graph management problems. In these study,

temporal graphs are used to model datacenter networks, mobile networks, and

subscription relationships between stream queries and data sources. We formu-

late graph queries to retrieve knowledge that supports applications in cloud ser-

vice placement, information routing in mobile networks, and query assignment

in stream processing system. We investigate three types of queries, including

subgraph matching, temporal reachability, and graph partitioning. By utilizing

the relatively stable components in these temporal graphs, we develop flexible

data management techniques to enable fast query processing and handle graph

dynamics. We evaluate the soundness of the proposed techniques by both real

and synthetic data.

Through these study, we have learned valuable lessons. For temporal graph

mining, temporal dimension may not necessarily increase computation complex-

ity; instead, it may reduce computation complexity if temporal information can

be wisely utilized. For temporal graph management, temporal graphs may include

relatively stable components in real applications, which can help us develop flex-

x



ible data management techniques that enable fast query processing and handle

dynamic changes in temporal graphs.
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Chapter 1

Introduction

Temporal graphs are ubiquitous in our daily life. From online social net-

works [101, 208], mobile networks [128, 133], road networks [63], brain net-

works [160], to computer systems [124, 209], entities in these large complex systems

are not isolated. Instead, they communicate with each other, and their interac-

tions evolve over time, which makes temporal graph a natural data model for such

dynamic relational data. To extract meaningful knowledge from these data, it is

critical to provide efficient and effective tools that is able to mine and manage

temporal graphs.

Unlike traditional graphs, temporal graphs are dynamic. First, topologies in

temporal graphs can evolve over time [118, 149, 152, 204]. For example, in ap-

plications of online social networks [208], temporal graphs are applied to model

dynamic communications between users, where nodes are users, and edges indi-

cate at which time who talked with whom. In this case, the topologies of these

temporal graphs evolve with the communication records between users. Second,

attributes on nodes/edges can be changed over time [27, 63, 130]. Take datacenter
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Chapter 1. Introduction

management as an example [207]. Temporal graphs are used to model datacenter

networks, where nodes represent servers, edges are connections between servers,

and attributes on nodes/edges denote the amount of available computation re-

sources. Node/edge attributes in these temporal graphs can change over time,

due to the dynamic workload in datacenters (e.g., new tasks join a datacenter,

or old tasks are finished and then leave a datacenter). The dynamics in temporal

graphs has inspired new applications that rely on mining and managing temporal

graphs.

A big track of applications rely on the knowledge discovered by mining tem-

poral graphs. Temporal graph data can be generated from a variety of domains,

such as cybersecurity [92, 97], system management [124, 146], medical health-

care [32, 171], and many others [119, 131, 186]. Applications in these domains

(e.g., malware detection in cybersecurity, root cause analysis in system manage-

ment, and treatment effectiveness prediction in medical healthcare) desire the

insights concealed in the collected data. Meanwhile, a common set of data mining

tasks over temporal graphs are able to serve the knowledge demand from different

applications. These tasks include pattern mining [39], anomaly detection [20],

ranking [209], link prediction [137], and so on [17, 25, 172]. For example, in the

application of malware detection, a key task is to build signatures for malware. In

this case, temporal graphs are collected from system call logs generated computer

systems, where nodes are basic system entities (e.g., processes, files, sockets, etc.)

and edges suggest at which time what kind of interactions happened between

these system entities. By performing pattern mining tasks over the data, we can

find discriminative patterns that are unique for malware and then these patterns
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can serve as signatures for malware. In sum, the knowledge discovered by mining

temporal graphs benefit various applications.

Another track of applications rely on querying and managing temporal graphs.

Real-life tasks, such as forensic analysis in cybersecurity [188], service placement in

datacenter management [77], and disease detection in medical healthcare [138], can

be formulated as querying problems against temporal graph data, including pat-

tern matching [207], similarity search [91], reachability [206], optimal path [187],

and so on [170]. Take forensic analysis in cybersecurity as an example. The goal of

this task is to detect the existence of suspicious activities in computer systems. In

this sense, forensic analysis can be served as a pattern matching problem: a query

is a small temporal graph indicating how system entities interact when a suspicious

activity happens, a database stores a large temporal graph recording a history of

system entity interactions, and the goal is to find matches in the database for

the specified pattern in the query. If any matches are found, suspicious activities

exist. To serve queries on temporal graphs and retrieve knowledge for different

applications, we need to provide efficient management tools that enable fast query

performance.

While dynamics in temporal graphs have brought us new opportunities, we

are also facing new technical challenges.

First, it is difficult to discover or retrieve knowledge from complex temporal

graph data.

• For mining, the key questions are what kind of new knowledge we can deliver

from temporal graph data and how to model such temporal information in

graphs so that we can deliver useful knowledge for real-life applications. The

answers to these questions remain unknown.
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• For management, the key challenge is how to build meaningful queries such

that users can obtain the desired knowledge. In other words, to retrieve

knowledge, we have to submit proper questions; however, over complex tem-

poral graph data, it is burdensome to formulate right queries.

Second, due to the high-level dynamics, we also face new scalability problems.

• For mining, because of the extra time dimension, the underlying search space

becomes much larger. Existing mining algorithm cannot scale or even deal

with the time dimension. New mining algorithms are desired to scale with

temporal graphs.

• For management, we usually need techniques, such as graph indexing, com-

pression, or partitioning, to speed up query processing. Existing data man-

agement techniques mainly focus on static graphs, and cannot deal with

dynamics in graphs. Therefore, it is critical to develop flexible data struc-

tures that efficiently manage temporal graphs.

My research work aims to address the new challenges raised by mining and

managing large-scale temporal graphs. The statement of this dissertation is as

follows.

To discover and retrieve knowledge from large-scale temporal

graphs, we need to understand how to utilize temporal structural in-

formation and develop cost-effective algorithms that scale with both

dynamics and size of graphs.

Driven by the statement, we have developed algorithms and tools to mine and

manage temporal graphs.
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In terms of temporal graph mining, we have investigated two important prob-

lems, including ranking problems and link prediction. These two problems support

critical applications in system management and online social networks. In this se-

ries of study, we investigate what kind of new knowledge are brought by temporal

information and how these new knowledge benefits real-life applications. More-

over, we analyze how temporal dimension in graphs raises computation difficulties

and develop mining algorithms to overcome these problems.

In terms of temporal graph management, we have tackled management prob-

lems such as subgraph matching, temporal reachability, and graph partitioning. In

particular, we studied these problems in the background of datacenter networks,

mobile networks, and stream processing systems, respectively. In these works, we

unveil the importance of managing temporal graphs, and demonstrate how tem-

poral information can help us address the scalability problems in temporal graph

management.

Next, we briefly introduce the works included in this dissertation.

1.1 Mining Temporal Graphs

Node ranking and link prediction are our recent focus in the category of mining

temporal graphs.

Node ranking in temporal graphs. Datacenters are computation facilities

used for hosting users’ services and data. They are powerful but complex. In

general, it is impossible for human beings to manually check whether a datacen-

ter performs normally. What we usually do is we plant sensors into datacenters

to monitor their performance. When these monitoring data suggests there are
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anomalies in the systems, alerts will be generated. A big headache for system ad-

mins is there are too many alerts, and they have no time to check the alerts one by

one. We also notice that among the large amount of alerts, some alerts are critical

and can trigger many other alerts. System admins should first fix problems be-

hind the critical alerts, and then other alerts will automatically disappear. In this

work, our goal is to help system admins find the most critical alerts so that they

can work on those alerts first. To address this problem, we first build temporal

graphs on alerts representing their dependencies over time. Because of temporal

dependency among alerts, the resulting temporal graphs are directed and acyclic.

This property inspires us to develop efficient inference algorithms that identify

alerts that have high probability to trigger a large number of other alerts. Note

that the idea in this work is not restricted to datacenters. It can also be applied to

managing other complex systems, like electricity power plants, aircraft systems,

and so on. Moreover, the proposed algorithms can also be applied in online social

networks for influence maximization problems.

Link prediction in temporal graphs. In online social networks, information

cascades are temporal graphs that record traces of information propagation. While

information cascades provide valuable materials for studying the processes gov-

erning information propagation, in practice it is difficult to obtain the complete

structures for information cascades, because of data privacy policies and noise. In

this work, we study a cascade inference problem: Given partially observed cas-

cades and a social network of users, the goal is to recover the structures for the

partially observed cascades. The search space of this problem is extremely large

because of the extra temporal dimension and pure graph size (i.e., the size of
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online social networks). To tackle the search scalability problem, we propose to

use both temporal and structural information in partial observations to identify

infeasible information flows between users and prune the search space. The re-

sulting algorithms improve the inference accuracy and scale well with large graphs

of millions of nodes and billions of edges.

From these studies we have learned valuable lessons. First, we have found

concrete evidences showing how knowledge discovered from temporal graphs ben-

efits applications from different areas. Second, we made an interesting observation

from these two problems. When we deal with temporal data, we usually think

they will complicate mining processes. But what we found in our study is if

we wisely utilize temporal information, we can even simplify mining algorithms,

which is counter-intuitive.

1.2 Managing Temporal Graphs

In the direction of temporal graph management, we have investigated subgraph

matching, temporal reachability, and graph partitioning.

Subgraph Matching in temporal graphs. In a cloud datacenter, a routine

task is to find a set of servers that can host users’ services. A user’s service may

include multiple resource requirements. For example, one user may want to rent

6 virtual machines. First, each machine may require different amount of compu-

tation resources, like memory, CPU, and bandwidth. Second, the user may want

these 6 machines to be connected in a specific way, like a star, a ring or even more

complex topology. When a user’s service arrives, we need to find qualified servers

as soon as possible in order to guarantee the system’s throughput. In this work,
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we represent users’ services as small graphs, nodes represent virtual machines in

services, edges represent the connections between machines, and attributes on

nodes and edges represent required resources. Cloud datacenters are modeled as

large temporal graphs. Nodes represent available servers, edges represent possible

connections, attributes represent available computation resources. In such graphs,

the attributes will change over time because of the dynamics in cloud. To this

end, the cloud service placement becomes a graph querying problem, and the goal

is to find subgraphs in the large graph that can match the query. We observe that

network structures in datacenters are relatively stable. Based on this observation,

we develop indexing techniques to speed up subgraph matching, and this index

can be efficiently updated when node/edge attributes in the large graph evolve.

In this work, we identify a key application for graph queries, and develop the first

graph index that can handle numerical attributes and their dynamic evolution.

Temporal reachability. In this work, we consider a set of moving entities

like buses or soldiers. When two entities are close enough to each other, they

can communicate; otherwise, they will be disconnected. Therefore, we can use

temporal graphs to model their dynamic connections over time. In this work, we

focus on information routing in such mobile networks. In particular, we aim to

minimize network communication cost when information are required to be sent

to a subset of entities within a time window. To solve this problem, we need to

check temporal reachability: whether one entity can send information to another

within a time window. In general, one information routing task could generate a

large number of temporal reachability queries. If we process those queries one by

one, it will be very slow. In the study, we found entities in mobile networks usually
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follow some periodic movement patterns, and develop indexing techniques based

on these patterns. This index can process temporal reachability queries in a batch,

which significantly improves the speed of reachability information collection. With

the reachability information, we can quickly find the optimal routing strategy by

existing linear programming solvers.

Partitioning in temporal graphs. In a stream processing system, data sources

and queries form a bipartite graph representing their subscription relationships.

While data sources continuously generate data as streams, queries subscribe to

one or multiple data sources to obtain the desired knowledge. This subscription

graph is temporal, as queries can dynamically arrive and leave. The number of

queries in the system could be huge. Therefore, it is difficult to host all the queries

in one single server. An intuitive idea is to distribute the queries into multiple

servers, but distributing queries will bring two problems. First, query distribution

will result in extra networking traffic, because we might need to send the stream

data from the same data sources to multiple servers. Second, balanced workload

among servers is preferred, which minimizes wasted computing resources. Inspired

by these constraints, we formulate a query placement problems: given the data

sources, queries, and servers, we want to place queries into servers so that workload

is balanced and the overall network traffic is minimized. We propose a full set

of algorithms to tackle this problem. First, for the case of static queries, we

develop bounded approximation algorithms. Second, for queries with dynamic

arrival and leaving, we find the popularity distribution of data sources is usually

stable in practice, and propose a probabilistic model to randomly assign queries

with performance guarantee. Finally, for dynamic queries where the popularity
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distribution of data sources changes over time, we develop heuristic algorithms

that empirically work well.

The following is the key insight drawn from our works on managing temporal

graphs. In many cases, we can identify relatively stable components from tempo-

ral graphs (e.g., stable network structure, periodic movement patterns, or stable

interest/popularity distribution). These stable parts can be very useful: they form

the backbone data structures in data management; on top of the backbones, we

can further build light-weight data structures that handle the dynamics.

1.3 Contributions

In the following, we summarize the key contributions of this dissertation.

• We identify key applications of mining and managing temporal graphs in

multiple domains. In terms of mining, Chapters 2 and 3 demonstrate how

mining temporal graphs discovers critical alerts in system management and

recovers the missing cascade structure in online social networks. In terms of

management, Chapters 4, 5, and 6 reveals the critical applications of tem-

poral graph management including service placement in datacenter man-

agement, information routing in mobile networks, and query assignment in

stream processing systems.

• We propose scalable mining algorithms to extract meaningful knowledge

from large-scale temporal graphs. (1) On critical alert mining, by leveraging

the directed acyclic property caused by temporal dependency among alerts,

we first develop fast approximation algorithms that is able to find near-
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optimal solutions, and then develop highly efficient sampling algorithms

that empirically work well on real-life data. (2) On information cascade in-

ference, we propose consistent trees as the model to infer the missing cascade

structures, and use both temporal and structural constraints obtained from

partial observations to prune the underlying search space. The resulting al-

gorithm improves inference accuracy and scales with large-scale graphs with

millions of nodes and billions of edges.

• Cost-effective algorithms are developed to manage large-scale temporal

graphs. We identify relatively stable components in temporal graphs, and

make use of the components to build backbone data structures that effi-

ciently deal with the dynamics in temporal graphs. (1) In dynamic subgraph

matching, the topologies of temporal graphs are quite stable, but node/edge

attributes are highly dynamic. We propose a graph index based on stable

topologies, and then develop grid-based indexes inside of the graph index

to handle dynamically changing node/edge attributes. The proposed index

can scale with millions of attribute updates per second, and process sub-

graph matching queries in a few seconds. (2) For temporal reachability in

mobile networks, topologies of temporal graphs are highly dynamic, and the

evolution of topologies follows periodic patterns. Based on this observa-

tion, we develop a graph index that processes temporal reachability queries

in a batch, which significantly improves the speed of finding optimal infor-

mation routing strategy in mobile networks. (3) In terms of stream query

assignment, topologies of temporal graphs are also dynamic, but the de-

gree distribution in the graphs is relatively stable in practice. This insight
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helps us develop a probabilistic model that randomly assign queries with

performance guarantee.

1.4 Thesis Organization

The rest of the dissertation is organized as follows. We start with mining prob-

lems, where critical alert mining and information cascade inference are discussed

in Chapters 2 and 3, respectively. Next, we move to management problems in

Chapters 4, 5, and 6, covering dynamic subgraph matching, temporal reachabil-

ity, and stream query assignment. At the end of this dissertation, we summarize

our works, and discuss future directions.

12



Chapter 2

Node Ranking in Temporal

Graphs

2.1 Introduction

System monitoring and analysis in datacenters and cybersecurity applications

produces alert sequences to capture abnormal events. For example, performance

metrics are posed on hosts in datacenters to measure the system activities, and

capture alerts such as high CPU usage, memory overflow, or service errors. Un-

derstanding the causal and dependency relations among these alerts is critical for

datacenter management [74, 134], cyber security [99], and device network diagno-

sis [124], among others.

While there exists a variety of approaches for modeling and deriving causal

relations [26, 158, 164], another important step is to efficiently suggest critical

alerts from a huge amount of observed alerts. Intuitively, these critical alerts

indicate the “root causes” that account for the observed alerts, such that if fixed,
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we may expect a great reduction of other alerts without blindly addressing them

one by one. We consider several real-life applications below.

Datacenters. System monitoring and analysis providers seek efficient and re-

liable techniques to understand a large number of system performance alerts in

datacenters. According to LogicMonitor1, a SaaS network monitor company, a

datacenter of 122 servers generates more than 20, 000 alerts per day. While it

is daunting for domain experts to manually check these alerts one by one, it is

desirable to automatically suggest a small set of alerts that are potentially causes

for a large amount of alerts, for further verification. These critical alerts also help

in determining key control points for datacenter infrastructures [134].

Intrusion detection [22, 98]. State-of-the-art intrusion detection systems pro-

duce large numbers of alerts from cyber network sensors, over tens of thousands

of security metrics, e.g., Host scan or TCP hijacking [22]. As suggested in [98], it

is observed that a few critical alerts generally account for over 90% of the alerts

that an intrusion detection system triggers. By handling only a small number of

critical alerts, a huge amount of effort and resource can be reduced. On the other

hand, critical alerts can reduce the number of “false alerts” and improve alarm

quality [22].

Network performance diagnosis [124]. Large-scale IP networks (e.g., North

America IPTV network) contain millions of devices, which generate a great num-

ber of performance alarms from customer call records and provider logs. Scalable

mining of critical alerts for a given set of symptom events benefits fast network

diagnosis [124].

1http://www.logicmonitor.com/
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These highlight the need for efficient algorithms to mine critical alerts, given

the sheer size of observed ones. In this chapter, we investigate efficient critical alert

mining techniques. We focus on a general framework with desirable performance

guarantees on alert quality and scalability.

(1) We formulate the critical alert mining problem: Given a set of alerts and

a number k, it aims to find a set of k critical alerts, such that the number of

alerts that are potentially caused by them is maximized. We introduce a generic

framework for mining critical alerts. In this framework, we learn and maintain a

temporal graph over alerts (referred to as an alert graph), a graph representation

of causal relations among alerts. Upon users’ requests, top critical alerts are mined

from alert graphs.

(2) We show that the critical alert mining problem is np-complete. Nonetheless,

we provide an algorithm with approximation ratio 1− 1
e
, in time O(k|V ||E|), where

|V | and |E| are the number of alerts and the number of their causal relations,

respectively. To further improve the efficiency of the algorithm, we propose a

bound and pruning algorithm that effectively reduces the size of alerts to be

verified as critical ones. In addition, we identify a special case: when alert graphs

are trees, it is inO(k|V |) time to find k critical alerts, with the same approximation

ratio.

(3) The quadratic time approximation may still be expensive for large alert graphs.

We further propose two fast heuristics for large-scale critical alert mining. These

algorithms induce trees that preserve the most probable causal relations from large

alert graphs, and estimate top critical alerts and their impact by only accessing
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the trees. The first one induces a single tree, while the second algorithm balances

alert quality and mining efficiency with multiple sampled trees.

(4) We experimentally verify our critical alert mining framework. Over real-life

datacenter datasets, our algorithms effectively identify critical alerts that trigger

a large number of other alerts, as verified by domain experts. We found that

our approximation algorithms mine a top critical alert from up to 270, 000 causal

relations (one day’s alert sequences) in 5 seconds. On the other hand, while our

heuristics preserve more than 80% of solution quality, they are up to 5, 000 times

faster than their approximation counterparts. The heuristics also scale well over

large synthetic alert graphs, with up to in total 1 million alerts and 10 million

relations.

In contrast to conventional causality modeling and mining, our algorithms

leverage effecitive pruning and sampling methods for fast critical alert mining. In

addition, we do not assume the luxury of accessing rich semantics from the alerts

that helps in improving mining efficiency, although our methods immediately ben-

efit from the semantics in specific applications [98, 124, 134], as well as domain

experts. Taken together with domain knowledge and causality mining tools, these

algorithms are one step towards large-scale critical alert analysis for datacenters,

intrusion detection systems, and network diagnosis systems.

2.2 Problem definition

We start with the notions of alert sequences and alert graphs. Then we intro-

duce the critical alert mining problem.
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Figure 2.1: Critical alert mining: pipeline

Performance metrics. A performance metric measures an aspect of system

performance. For datacenters, common types of performance metrics include CPU

and memory usage for virtual machines, error rate of disk writes for a service, or

communication time between two hosts. The same type of metrics over different

hosts, virtual machines, or services are considered as distinct performance metrics.

In practice, system service providers e.g., LogicMonitor may cope with 2 mil-

lion metrics from a datacenter with 5, 000 hosts. These metrics could correlate

with and cause each other due to functional or resource dependencies.

Alert and alert sequences. For a set of performance metrics P, alerts are deter-

mined by aggregating the metric values of interest. For example, in datacenters,

an alert is raised when the value of a performance metric (e.g., CPU usage) goes

beyond a pre-defined threshold (e.g., > 75%). In this work, we define an alert as

a triple u = (pu, tu, wu), where pu ∈ P is a performance metric u corresponds to,

tu denotes the timestamp when the alert u happened, and wu is the weight of u,

representing the benefit if u is fixed.

We use a sequence of alerts to characterize abnormal events for a specific

performance metric. Indeed, in practice the performance metrics are typically

periodically monitored to capture the abnormal events as alerts. We denote as
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~sp an alert series (an ordered sequence of alerts following their timestamps), for

a specific performance metric p ∈ P. Each entry of ~sp is either 0 (normal) or 1

(alert).

To characterize causal relations between two alerts, we next introduce a notion

of dependency rule. We also introduce alert graph as an intuitive graph represen-

tation for multiple dependency rules.

Dependency rule. Let p and q be two distinct performance metrics. A depen-

dency rule p
lpq−→ q denotes an alert issued on q at some time t is caused by an alert

issued on p at t′ ∈ [t− lpq, t− 1], where lpq is a lag from p to q (e.g., 5 minutes).

Note that we do not specify the time t, as a dependency rule describes a statistical

rule for all the observed alerts. Intuitively, a dependency rule indicates that alerts

on q occurs if and only if alerts on p occurs as the cause of the alerts on q; that

is, the alerts on p will trigger the alerts on q. If certain trouble shooting action is

taken to fix p, q is addressed accordingly [22, 124].

Dependency rules can be automatically learned from alert series [26, 158].

They can also be suggested by experts and existing knowledge bases [59]. To

smoothen the noise or error brought by rule generation process, we associate an

uncertainty to each dependency rule. In particular, we denote the uncertainty

by Pr(p
lpq−→ q), which is the probability that the corresponding dependency rule

holds.

Alert graph. An alert graph over a set of alerts V is a directed acyclic graph

G = (V,E, fe):

• V is the set of vertices in G, where each vertex v ∈ V is an alert from V .
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• E is a set of edges in G. Let u = (pu, tu, wu) and v = (pv, tv, wv) be two alerts

in V . There is an edge (u, v) ∈ E if and only if there exists a dependency

rule pu
lpupv−−−→ pv, where tu < tv, and tv − tu ≤ lpq.

• fe is a function that assigns for each edge (u, v) the probability that u causes

v, i.e., Pr(pu
lpupv−−−→ pv).

We shall use the following notations. Abusing the notions from tree topology,

we say u (resp. v) is a parent (resp. child) of v (resp. u) if (u, v) ∈ E, and the

edge (u, v) is an incoming edge of v. The topological order r of an alert u in G is

defined as follows. (a) r(u) = 0 if u has no parent, and (b) r(u) = 1 + max r(v),

for all its parents v.

Following the convention of causal relation and cascading models [142], we

assume that an alert is caused by a single alert issued earlier, if any. Intuitively,

a path from an alert u to another alert v in the alert graph indicates a potential

“causal chain” from u to v, indicated by e.g., the actual dependencies among the

vulnerabilities of the servers [43].

Critical alerts. We next introduce a metric to characterize critical alerts, in

terms of how many alerts are potentially caused by them via a cascading effect

(and hence are addressed if the critical ones are fixed). Given G = (V,E, fe), a set

of fixed alerts S ⊆ V , and an alert u ∈ V , we use a notion of alert-fixed probability

Pf to characterize the probability that u is fixed if S is fixed. More specifically,

• Pf(S, u) = 1 if u ∈ S,

• otherwise,

Pf (S, u) = 1−
∏

(u′,u)∈E

(

1− Pf (S, u
′)fe(u

′, u)

)

.
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Based on the alert-fixed probability, we next define a set function, denoted

as Gain, to characterize critical alerts. Given an alert graph G = (V,E, fe) and

S ⊆ V , the gain of S is a set function

Gain(S) =
∑

u∈V

wu · Pf (S, u).

As remarked earlier, here wu refers to the weight of u, i.e., the benfit if u is

fixed. Intuitively, Gain(S) computes the total expected benefits induced via fixing

a set of alerts S and subsequently addressing the alerts caused by S. The larger

Gain(S) is, the more “critical” S is.

We next introduce the critical alert mining problem.

Definition 1. Given an alert graph G and an integer k, the critical alert mining

problem (referred to as CAM) is to find a set of k critical alerts S ⊂ V such that

Gain(S) is maximized.

Finding the best set of k alerts which maximize the gain is desirable albeit

intractable.

Theorem 1. For a given alert graph G and an integer k, the problem CAM is

NP-complete.

Proof. We prove the NP-completeness of the decision version of CAM as follows.

(1) CAM is in NP. Indeed, given an alert graph G = (V,E) and a set of vertices

S ⊆ V , one can evaluate Gain by computing Pf(S, v) of each alert v in polynomial

time. (2) To show that CAM is NP-hard, we construct a reduction from the

maximum coverage problem, which is known to be np-hard [180]. An instance

of a maximum coverage problem consists of a set of sets S and an integer k. It
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selects at most k of these sets such that the number of elements that are covered

is no less than a bound B. A maximum coverage instance can be constructed as

a bipartite alert graph, with each “upside” node as a set in S, each “downside”

node a distinct element in these sets, and there is an edge from upside node to

downside node if the corresponding element is in the set denoted by the upside

node. In addition, the weights on edges are uniformly 1. Given the bound B, one

may verify that there is a solution for the maximum converage problem if and

only if there is a set S of k critical alerts with Gain(S) ≥ B. Therefore, CAM is

at least as hard as maximum coverage problem, and is NP-hard. Hence, CAM is

np-complete.

2.3 Mining framework

In this section, we present a framework for critical alert mining. It consists of

three components as illustrated in Figure 2.1: (1) offline dependency rule mining;

(2) online alert graph maintenance; and (3) on-demand critical alert mining.

Offline dependency rule mining. Given a set of observed alert sequences, the

system mines the alerts of interest and their causal relations offline, and represent

them as a set of dependency rules. As there are a variety of methods to model

a causal relation, in this work we adopt Granger causality [26, 158], which can

naturally be represented by dependency rules. An alert sequence X is said to

Granger-cause another sequence Y if it can be shown, via certain statistic tests

on lagged values of X and Y , that the values of X provide statistically significant

information to predicate the future values of Y . More specifically,
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(1) We collect alert sequences for all performance metrics of interest as training

data, following two criteria as follows: (a) the alerts in training data should be the

latest ones such that the latest dependency patterns among performance metrics

can be captured; and (b) the alert information should be rich enough such that

learned dependency rules would be more robust. In our work, we treat the latest

one week alert data as the training data.

(2) We apply existing Granger causality analysis tools [158] to mine the depen-

dency rules, and apply conditional probabilities to estimate the uncertainty of the

rules [106].

The learned dependency rules are stored in knowledge bases to support on-

line alert graph maintenance. Moreover, existing knowledge bases such as event

causality scenarios [59], or vulnerabilities exploitation among cyber assets [43]

can also be “plugged” into our critical causal mining framework. The dependency

rules are then shipped to the next stage in the system to maintain alert graphs.

Online alert graph maintenance. Using dependency rules, our system con-

structs and maintains an alert graph G online from a range of newly issued alerts.

Upon an alert u from performance metric q is detected at time t, it first marks

u as a new alert in G. It then checks (1) if there exists dependency rules in the

form of p
lpq−→ q, and (2) whether there are alerts detected on performance metric

p during the time period [t− lpq, t). If there exists such an alert v on p, an directed

edge from v to u is inserted, and the rule uncertainty Pr(p
lpq−→ q) is associated

to the edge (v, u). Following the above steps, it maintains G online for newly

detected alerts.
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On-demand critical alert mining. The major task (and the focus of this

work) in the pipeline is to identify k critical alerts from alert graphs. In practice,

a user may specify a time window of interest, which induces an alert graph from

the maintained alert graph. It contains all the alerts detected during the time

window. However, the induced alert graphs can still be huge.

In this paper, we propose three algorithms to address the scalability issue: (1)

a quadratic time approximation with performance guarantees on the quality of

critical alerts, (2) a linear time approximation, which guarantees the alert quality

for tree-structured alert graphs; and (3) sampling-based heuristics which can be

tuned to balance the alert quality and response time. The critical alerts are then

returned to users for further analysis and verification.

2.4 Bound and pruning algorithm

Theorem 1 tells us that it is unlikely to find a polynomial time algorithm

to find the best k alerts with the maximum gain. All is not lost: we can find

polynomial time algorithms that approximately identify the most critical alerts.

The main result in this section is as follows.

Theorem 2. Given an alert graph G = (V,E, fe) and an integer k, (1) there

exists an algorithm in O(k|V ||E|) time with approximation ratio 1− 1
e
, where e is

the base of natural logarithm, and (2) there exists a 1− 1
e
approximation algorithm

in O(k|V |) time, when G is a tree.

Proof. We focus on showing the function Gain(·) has diminishing return as follows.
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(1) One could verify when u ∈ S1, u ∈ S2, or u = v, Pf(S1 ∪{v}, u)−Pf(S1, u) ≥

Pf(S2 ∪ {v}, u)− Pf(S2, u);

(2) For u /∈ S2∪{v}, we prove the diminishing return by mathematical reduction.

(a) Assume that all u’s parents u′ satisfy Pf(S1 ∪ {v}, u′)− Pf(S1, u
′) ≥ Pf (S2 ∪

{v}, u′)− Pf(S2, u
′).

(b) When u has only one parent, Pf(S ∪ {v}, u) − Pf(S, u) = fe(u
′, u)(Pf(S ∪

{v}, u)− Pf (S, u)), and it is easy to see the diminish return for u.

(c) Assume that when u has m parents, we have a − b ≥ c − d, where a =
∏

u′∈Np(u)
(1− fe(u

′, u)Pf(S1, u
′)), b =

∏

u′∈Np(u)
(1− fe(u

′, u)Pf(S1 ∪ {v}, u′)), c =
∏

u′∈Np(u)
(1− fe(u

′, u)Pf(S2, u
′)), and d =

∏

u′∈Np(u)
(1− fe(u

′, u)Pf(S2∪{v}, u′)).

Note that b ≥ d. Consider the case when u has m+ 1 parents, and w.l.o.g., u′′ is

the m+ 1-th parent satisfying x3 − x1 ≥ x4 − x2, where x3 = Pf(S1{v}, u′′), x1 =

Pf(S1, u
′′), x4 = Pf(S2 ∪ {v}, u′′), and x2 = Pf(S2, u

′′), where x1 ≤ x2. Therefore,

we have a(1−x1)−b(1−x3) = a−b−ax1+bx3 = (1−x1)(a−b)+(x3−x1)b, and

c(1−x2)−d(1−x4) = c−d−cx2+dx4 = (1−x2)(c−d)+(x4−x2)d. Thus, we obtain

a(1−x1)− b(1−x3) ≥ c(1− x2)− d(1−x4), which is Pf(S ∪{v}, u)−Pf(S, u) =

fe(u
′, u)(Pf(S ∪ {v}, u)− Pf(S, u)).

In all the cases, when u /∈ S2 ∪ {v}, its diminishing return holds. Hence,

Gain(·) is a submodular function. It is known that for maximizing a submodular

function, a greedy strategy achieves 1 − 1
e
approximation ratio [139]. Theorem 2

hence follows.
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Here e refers to Euler’s number (approximately 2.71828). Denote the optimal

k alerts as S∗, we present an efficient algorithm to identify k alerts S where

Gain(S) ≥ (1− 1
e
)Gain(S∗), in quadratic time.

We start with a greedy algorithm, denoted as Naive.

Naive greedy algorithm. Given an alert graph G = (V,E, fe) and an integer k,

Naive finds k critical alerts in k iterations as follows. (1) It initializes a set S0 to

store the selected alerts. (2) At the ith iteration, Naive checks each alert in V , and

greedily picks the alert si that maximizes the incremental gain Gain(Si−1 ∪ {si}),
where Si−1 is the set of critical alerts found at iteration i− 1. (3) It repeats the

above step until k alerts are identified.

One may verify that Naive is a 1 − 1
e
approximation algorithm. To see this,

observe that the set function Gain(·) is a monotonically submodular function. A

function f(S) over a set S is called submodular if for any subset S1 ⊆ S2 ⊂ S

and x ∈ S \ S2, f(S1 ∪ {x}) - f(S1) ≥ f(S2 ∪ {x}) - f(S2). It is known that for

maximizing a submodular function, a greedy strategy achieves 1− 1
e
approximation

ratio [139]. Hence it suffices to show that the function Gain is a monotonically

submodular function. Indeed, (1) one may verify that Gain is monotonic: for any

S1 ⊆ S2 ⊆ V , Gain(S1) ≤ Gain(S2); (2) the diminishing return of Gain can be

shown by mathematical reduction.

For complexity, Naive requires k iterations, and in each iteration, it scans all

the vertices u and computes Pf(Sk−1, u), which takes in total O(k|V ||E|) time.

Naive provides a polynomial time algorithm to approximate CAM within 1− 1
e
.

Nevertheless, the scalability issue of Naive makes it difficult to use in practice for

large alert graphs. For instance, when an alert graph of around 20K vertices and
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200K edges, Naive mines 6 critical alerts in more than 800 seconds. We next

present a faster approximation algorithm with the same approximation ratio. By

using pruning and verification, the algorithm is 30 times faster than Naive, as

verified in our experimental study.

2.4.1 Pruning and verification

To select a most promising alert at each iteration, Naive evaluates the in-

cremental gain for each alert in V \ S, and then selects the one of the highest

incremental gain, which runs in O(|V ||E|) time. Instead of blindly processing

every alert, we may efficiently filter “unpromising” alerts, and then evaluate the

exact gain for the remaining vertices. In particular, at each iteration i, for two

alerts v′ and v ∈ V \ Si−1, we compute upper bounds U ′
v, Uv and lower bounds

L′
v, Lv for Gain(Si−1∪{v}) and Gain(Si−1∪{v′}) , respectively. If v′ is already not

a critical alert, all the alerts v with L′
v > Uv can be safely skipped without losing

the alert quality.

We next derive an upper and lower bound for Gain(·), and present algorithms

to compute them efficiently. Instead of visiting each alert and causal relation in

G, these algorithms compute the bounds by visiting only local information of each

alert in G. This enables a fast estimation of Gain(·).

2.4.2 Upper bound

We introduce a notion of sum gain (denoted as SGain) to characterize the upper

bound for Gain(·). Given an alert graph G = (V,E, fe), an alert v ∈ V , and a set
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of selected critical alerts S ⊆ V , an upper bound is computed as SGain(S∪{v}) =
∑

u∈V wu · P̂f (S ∪ {v}, u), where

• P̂f(S ∪ {v}, u) = 1, if u ∈ S;

• P̂f(S ∪ {v}, u) =
∑

(u′,u)∈E P̂f (S ∪ {v}, u′)fe(u
′, u), if u /∈ S.

The sum gain SGain (as illustrated in Figure 2.2) is an upper bound for Gain(·).

Better still, it can be efficiently computed.

Proposition 1. Given an alert graph G = (V,E, fe), a set of critical alert S ⊆ V ,

and an alert u ∈ V \ S, (1) Gain(S ∪ {u}) ≤ SGain(S ∪ {u}); and (2) SGain can

be computed for all alerts in V in O(|E|) time.

We first prove Proposition 1 (1). We remark that SGain is built upon the

following generalization of Bernoulli’s inequality [129]. Given xi ≤ 1, we have

1−
n
∏

i=1

(1− xi) ≤
n
∑

i=1

xi.

We next conduct a mathematical induction over the topological order (Sec-

tion 2.2) of the alerts in G as follows.

• Consider the alerts u1 ∈ V with topological order 0: (1) if u1 ∈ S,

P̂f(S, u1) = 1 and Pf(S, u1) = 1; (2) otherwise, P̂f (S, u1) = 0 and

Pf(S, u1) = 0, since u1 has no parents. In both cases, Pf(S, u1) ≤ P̂f(S, u1).
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• Assume that alert ui ∈ V with topological order i satisfies Pf(S, ui) ≤

P̂f(S, ui). For an alert ui+1 ∈ V ,

Pf(S, ui+1) = 1−
∏

(u′,ui+1)∈E

(

1− Pf(S, u
′)fe(u

′, ui+1)
)

≤
∑

(u′,ui+1)∈E

Pf(S, u
′)fe(u

′, ui+1)

≤
∑

(u′,ui+1)∈E

P̂f(S, u
′)fe(u

′, ui+1)

= P̂f(S, ui+1)

Therefore, for any u ∈ V , Pf(S, u) ≤ P̂f (S, u). By definition, Gain(S ∪ {u}) ≤
SGain(S ∪ {u}). Hence, SGain is indeed an upper bound for Gain(·).

Upper bound computation. As a constructive proof for Proposition 1 (2), we

present a procedure (denoted as computeUpperBound) for SGain to compute the

upper bounds for all vertices in O(|E|) time.

The algorithm (not shown) follows a “bottom up” computation, starting from

the alerts with the highest topological order in G. (1) It first computes the

topological order for all the alerts in G. (2) Starting from the alert with the

highest topological order, it computes SGain for each alert u ∈ V \ S as follows:

(a) SGain(S ∪{u}) = SGain(S ∪{u})+wu, and (b) for each u′ ∈ Ni(u), it updates

SGain(S ∪ {u′}) by SGain(S ∪ {u′}) + fe(u
′, u)SGain(S ∪ {u}). (3) It repeats step

(2) until all the alerts are processed.

It takes O(|E|) time for computeUpperBound to obtain the topological order

by depth-first search in step (1). Each edge in G is visited exactly once in step

(2) and (3). Therefore, the algorithm runs in O(|E|) time.

The above analysis completes the proof of Proposition 1.
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Figure 2.2: Algorithm BnP: Upper and lower bound

2.4.3 Lower bound

To compute the lower bound of Gain(·), we introduce a notion local gain (de-

noted as LGain). Given an alert graph G = (V,E), an alert v ∈ V , a set of selected

alerts S ⊆ V , and an integer h, LGain of S ∪ {v} is defined as follows.

LGain(S ∪ {v}) =
∑

u∈V h
v

wu · Pf(S ∪ {v}, u),

where h is a tunable integer, and V h
v ⊆ V is a set of vertices that can be reached

from v in no more than h hops. Intuitively, LGain estimates a lower bound of

Gain(S) with the impact of an alert to its local “nearby” alerts in G (as illustrated

in Figure 2.2). One may verify the following.

Proposition 2. Given G = (V,E), S ⊆ V , for any alert u ∈ V \S, (1) Gain(S ∪

{v}) ≥ LGain(S ∪ {v}), and (2) LGain can be computed in O(
∑

v∈V |Eh
v |) time,

where Eh
v is the set of incoming edges in G of the alerts in V h

v .

We present a procedure computeLowerBound to compute LGain. For each alert

v ∈ V \ S (e.g., u3 in Figure 2.2), the algorithm visits the alerts in V h
v and their

incoming edges (e.g., (u′
3, u3)) once, and computes LGain following the definition,

in O(
∑

v∈V |Eh
v |) time.
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2.4.4 Algorithm BnP

Based on the upper and lower bounds, we propose an approximation, denoted

as BnP. BnP enables faster critical alert mining while achieving the approximation

ratio 1 − 1
e
. The algorithm follows Naive’s greedy strategy: given an integer

k, it conducts k iterations of search, each determines a top critical alert. The

difference is that in each iteration, it invokes a procedure Prune to identify a set

C of candidate alerts for consideration.

The procedure Prune (as illustrated in Figure 2.3) invokes computeUpperBounds

and computeLowerBounds to dynamically update the lower and upper bounds for

each alert by accessing their local information (lines 1-2), and filters the alerts

that are not critical:

1. it scans the lower bounds LGain of each alert, and find the maximum one as

bar (line 3);

2. it scans the upper bounds SGain of each alert, and prunes those with

SGain(u) < bar, adding the rest to a candidate alert set C.

Correctness and Complexity. The algorithm BnP achieves approximation

ratio 1− 1
e
, as it follows the same greedy strategy as Naive. Note that the pruning

procedure Prune does not affect the approximation ratio.

For complexity, let Cm be the maximum set of candidate sets in all the itera-

tions after pruning. For the alerts in Cm, it takes BnP O(|Cm||E|) time to find a

best alert. The total time for pruning is O(k(
∑

u∈V |Eh
u | + |E|)). Hence, it takes

BnP in total O(k(
∑

u∈V |Eh
u | + |Cm||E|)) time. Moreover, |Eh

u | is typically small,

and is tunable by varying h, as indicated by Proposition 2. For example, when
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Input: An alert graph G = (V,E, fe);

a set of critical alert S.

Output: a set of candidate alerts C.

1. computeUpperBound (G, S);

2. computeLowerBound (G, S);

3. set bar as the largest LGain over alerts in V \ S;

4. C ← ∅;

5. for each u ∈ V \ S

6. if SGain(u) ≥ bar

7. C ← C ∪ {u};

8. return C;

Figure 2.3: The pruning procedure Prune

h = 1, LGain can be computed in O(dm|E|) for all the alerts, where dm is the

largest in-degree in G. As h gets larger, the computation complexity gets higher,

leading to tighter lower bound LGain. In our experimental study, by setting h = 3,

95% of the alerts are pruned, which makes BnP 30 times faster than Naive without

losing alert quality.

Mining Alert Trees. When G is a directed tree, the algorithm BnP identifies

k critical alerts in O(k|V |) as follows. (1) Starting from the alerts u ∈ V of the

highest topological order, it computes Gain(u) = Gain(u) + wu, and makes an

update by Gain(u′) = Gain(u′) + fe(u
′, u)Gain(u), if u′ is the parent of u. (2) It

repeats (1) on the alerts following the decreasing topological order, until all the

31



Chapter 2. Node Ranking in Temporal Graphs

alerts are processed. One iteration over (1) and (2) identifies a critical alert. (3)

BnP repeats (1) and (2) to find k critical alerts.

Following the correctness analysis, BnP preserves the approximation ratio 1− 1
e

over trees. Moreover, each edge in G is visited once in a single iteration. Hence,

it takes O(k|V |) time of BnP over G as trees. Theorem 2 (2) hence follows.

2.5 Tree approximation

Algorithm BnP needs to process all the candidates and their causal relations,

which may not be efficient for a large amount of alert sequences. In extreme cases

where few alerts are pruned, BnP degrades to its naive greedy counterpart.

As indicated by Theorem 2(2), fast approximation exists for alert graphs as

trees. Following this intuition, we may make large alert graphs “small”, by spar-

sifying them into directed trees, which “preserve” most of alert dependency in-

formation in an alert graph. This enables both fast algorithms and low quality

loss.

2.5.1 Single-tree approximation

We start by introducing a heuristic algorithm ST. The basic idea is to induce

a maximum directed tree (forest) T from a given alert graph G, such that for any

set of alerts S in G, Gain(S) in T is “close” as much as possible to Gain(S) in G,

and a fast approximation can be performed over T without much quality loss.

Maximum directed tree. Given an alert graph G = (V,E, fe), a maximum

directed tree of G is a spanning tree T = (V,E ′), where E ′ ⊂ E, such that (1)
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for any u ∈ V , u has at most one incoming edge, and (2)
∑

〈u,v〉∈E′ fe(u, v) is

maximized. Intuitively, T depicts a “skeleton” of an alert graph G, where causal

relations always follow the most likely dependency rules.

Algorithm ST. Given an alert graph G = (V,E, fe), the single-tree approxima-

tion ST mines k critical alerts as follows. (1) ST first finds the maximum directed

tree T . To construct T , an algorithm simply selects, for each alert u in G, the

incoming edge (u′, u) with the maximum fe(u
′, u) among all its incoming edges.

(2) ST searches the k critical alerts following the algorithm BnP over T .

One may verify that it is in O(|E|) time to construct T . From Theorem 2(2),

it is in O(k|V |) time to find k critical alerts in T (as either a tree or a forest).

Hence, the algorithm ST takes in total O(|E|+k|V |) time. Note that the induced

T can be a set of disjoint trees, where the above complexity still holds.

2.5.2 Multi-tree sampling

Single-tree approximation provides fast mining method for large scale alerts.

On the other hand, using induced trees to approximate causal structures may lead

to biased results. For example, more dependency information could be lost for

alerts with more incoming edges. To rectify this, we propose a heuristic, denoted

as MTS, based on multi-tree sampling.

Algorithm MTS. The algorithm MTS is as illustrated in Figure 2.4. Given an

alert graph G = (V,E, fe), integer k and a sample number N , MTS starts by

initializing a set S0 as ∅, the alert-fixed probability for each node as 0 (line 1),

and identify the topological orders of the alerts in G.
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Algorithm MTS then finds a set S critical alerts in k iterations as follows. De-

note the selected critical set at iteration i−1 as Si−1. At each iteration i, (1) MTS

updates the alert-fixed probability P
(i−1)
f (Si−1, u) for each alert u ∈ V in G, fixing

Si−1 as the critical alerts (lines 3-4). (2) It then invokes procedure sampleTree to

sample N trees from G (lines 6-7), according to the updated alert-fixed probability

in (1). (3) For each alert u, MTS computes the weighted sum of u’s descendants

D(u, l) in each sampled tree Tu,l, and takes the average D(u, l) over all sam-

pled tress as an estimation of Gain(Si−1 ∪ {u}) (lines 8-9). It selects the alert u

that introduces the maximum improvement, and update Si−1 as Si by adding u

(lines 10-11), which is used to update Pf(·) in G in the next iteration.

Procedure sampleTree. Given an alert graph G and an integer N , the proce-

dure sampleTree (line 7) samples N trees (forest) from G at iteration i. More

specifically, it generates a single tree (or forest) Ti,l as follows. (1) It first sam-

ples a set of alerts Vi,l as the nodes for tree Ti,l following Bernoulli distributions.

For each alert u ∈ V and the updated P
(i−1)
f (u), MTS selects u with probability

1 − P
(i−1)
f (u), and inserts it to Vi,l. (2) MTS then samples an edge for each alert

u ∈ Vi,l. It randomly orders u’s parents. Starting from the first parent, u tries

to build an edge (u′, u) to its parent with probability fe(u
′, u), where u′ ranges

over all the parents of u, until an edge is selected (and attached to u), or all the

parents are visited. (3) MTS repeats (2) until all the alerts u ∈ Vi,l are visited.

It takes in total O(k ∗ N |E|) time for MTS to find k critical alerts. (a) MTS

takes in total O(k|E|) time to update Pf in G; (b) the total sampling time is in

O(k ∗N |E|); and (c) it takes in total O(k ∗N |V |) time to select the critical alerts.
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Input: Alert graph G = (V,E, fe),

integer k, the number of sampled trees N .

Output: A set S of k critical alerts.

1. S ← ∅; initializes Pf (·); i ← 0;

2. while i ≤ k Do

3. for each alert u in G Do

4. update P
(i−1)
f (Si−1, u);

5. l ← 0;

6. while l ≤ N Do

7. Ti,l ← sampleTree(G);

8. for each alert u in G Do

9. Gain(Si−1 ∪ {u}) ← Gain(Si−1) +
∑N

l=1
D(u,l)
N ;

10. select u with the maximum Gain(Si−1 ∪ {u});

11. Si ← Si−1 ∪ {u};

12. return Sk;

Figure 2.4: Algorithm MTS

In contrast to its single-tree counterpart, MTS leverages sampling to reduce

the bias: alerts with more parents and larger probability are more likely to have

a parent in a sampled tree. In addition, it synthesizes the gain estimation from

multiple trees, such that the noise from a single tree is smoothed. Indeed, we

found that using only 300 samples, MTS finds top 6 critical alerts with Gain(·)
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90% as good as Naive, and is 80 times faster. It reduces 10% more loss on Gain(·)

compared with ST (see Section 2.6).

2.6 Experiment

We applied both real-life and synthetic data to evaluate our algorithms. We

first provide a case study (Section 2.6.2). Using real-life data, we next investigate

(1) the efficiency and effectiveness of our algorithms (Section 2.6.3), (2) the impact

of the number of explored hops to the performance of BnP (Section 2.6.4), and (3)

how the number of samples affects MTS (Section 2.6.5). In addition, we evaluate

the scalability of our algorithms, over large synthetic data (Section 2.6.6).

2.6.1 Setup

Real-life data. We use real-life datacenter performance data (referred to as

LM), from LogicMonitor, an SaaS network monitoring company. The data spans

53 days from Nov. 23, 2013 to Jan. 14, 2014. It contains the sequences for 50,772

performance metrics from 9,956 services residing in 122 servers. Each metric is

reported every 2 minutes. The alerts are identified by specified rules provided by

LogicMonitor, where we assign a weight 1.0 to all the metrics.

Dependency rules and alert graphs. Dependency rules were mined from data

collected in 7 consecutive days, and are used to construct alert graphs using the

data from the following days. We used the tool developed by [158] to mine the

Granger causality among performance metrics as dependency rules (with the p-

value set to be 0.01 [158]). We then applied conditional probability to estimate
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the uncertainty of the rules [106]. From the dataset LM, we mined 46 sets of

dependency rules, where each set contains on average 2, 082 rules. Each set of

rules were mined in less than 60 minutes.

By applying the sets of dependency rules on the alert detected in the next single

day, we obtained 46 alert graphs, following the online alert graph construction

(Section 2.3). The number of alerts (resp. edges) ranges from 20, 248 to 25, 057

(resp. 162, 000 to 270, 370) for a single graph.

Synthetic alert graphs. For scalability tests over large alert graphs, we applied

the graph model proposed in [100] to generate large synthetic alert graphs (referred

to as SYN). In particular, the node degree and edge weights follow the empirical

distributions [179] learned from alert graphs over the real-life data LM. We ranged

the number of alerts from 100K to 1M, and the average degree of SYN graphs is

9.

Evaluation. To measure the quality of the critical alerts identified by an algo-

rithm A, we investigate a metric loss ratio of A defined as

loss ratio(A) = 1− Gain(SA)

Gain(SNaive)
,

where SNaive (resp. SA) is the set of critical vertices returned by the algorithm

Naive (resp. algorithm A). As Naive guarantees the alert quality within a bound,

loss ratio suggests how “close” the quality of the alerts from heuristic algorithms

and the optimal ones is. The less, the better.

Implementation. In addition to the proposed algorithms BnP, ST, and MTS, we

implemented the following baseline algorithms: (1) Naive, the greedy algorithms

without pruning strategy; (2) BnPUB, a simplified version of BnP, which only uses
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upper bound to filter unpromising alerts: it skips those alerts with upper bound

smaller than an alert with computed Gain(·) in each iteration (Section 2.4). (3)

MaxDeg, a simple strategy that returns the top k alerts with the largest weighted

sum of outgoing edges.

All the algorithms were implemented in C++, and all experiments were exe-

cuted on a machine powered by an Intel Core i7-2620M 2.7GHz CPU and 8GB of

RAM, using Ubuntu 12.10 with GCC 4.7.2. Each experiment was run 10 times,

and their average results are presented.

2.6.2 Case study

Using real-world data LM, our algorithms suggest reasonable critical alerts that

are indeed the source of a range of large amount of alerts, as verified by the do-

main experts from LogicMonitor. We illustrate three “causality patterns” induced

by top two critical alerts and their descendants following the weighted depen-

dency rules in Figure 2.5. (1) Our algorithms suggest that StorageUsed, a critical

alert that indicates insufficient memory, leads to poor performance of Web servers

(Apache), which typically triggers delayed Ping round-trip time (Ping-avgrtt)

from other servers. In another set of hosts, it leads to insufficient shared memory

over a range of servers, which typically triggers slower Shared Data Access write

time (SDA writetime) on their own. (2) A second critical alert DiskReadLatency

suggests I/O bottleneck for a range of abnormal status of database applications.

The disk access speed alert often triggers the unsolved back up requests from

another server, which leads to poor performance of CPU and database servers,

and further affects a range of database related requests from more outside servers.
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Figure 2.5: Critical alerts over LM

These causal patterns are consistent with the workflow of datacenters at Logic-

Monitor.

Our algorithms do not assume prior domain knowledge. On the other hand,

external knowledge and rules enable our algorithms to further improve the quality

of the critical alerts and causal patterns.

2.6.3 Overall performance evaluation

We first investigate the efficiency and effectiveness of the proposed algorithms,

using alert graphs from LM. In the following tests, we fixed the number of explored

hops in BnP as 3, and the number of sampled trees in MTS as 300.

As illustrated in Figure 2.6(a), the proposed algorithms BnP, MTS, and ST

consistently outperform the baseline algorithms Naive and BnPUB in efficiency,

while varying k, the number of required critical alerts. They introduce different

levels of efficiency improvement. Compared with Naive and BnPUB, BnP is 30

times and 17 times faster, respectively, without quality loss on solutions. With

some quality loss, ST is 5000 times and 3000 times faster than Naive and BnPUB,
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Figure 2.6: Mining performance on LM alert graphs

respectively, and MTS results in 80 times and 50 times speedup. In addition, all

the algorithms take more time when k varies from 1 to 6, as expected.

Figure 2.6(b) shows the loss ratio of ST and MTS, where k varies from 1 to

6. Compared with MaxDeg, MTS and ST obtain significant improvement on loss

ratio. As k increases, the loss ratio of MaxDeg is consistently more than 0.4;

meanwhile, the loss ratio of MTS and ST is around 0.1 and 0.2, respectively.

Compared with MTS, ST receives higher efficiency at the cost of solution quality

loss. When the number of required critical alerts varies from 1 to 6, MTS and

ST share the same trend: the loss ratio decreases. Compared with BnP that
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returns critical alerts without quality loss, ST and MTS are 180 and 3 times

faster, respectively, at the cost of small quality loss.

In all cases, we observe that the total Gain(·) increases with larger k with

diminish return (not shown). This is consistent with its submodularity.

2.6.4 Performance evaluation of BnP
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Figure 2.7: BnP performance on LM alert graphs

In this set of experiments, we focus on the impact of the number of hops h (for

lower bound computation) to the performance of BnP. We fixed k as 1. Besides

running time, we investigate the pruning ratio of BnP, defined as |V |−|C|
|V |

, where
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|V | is the total alert number in an alert graph G, and |C| is the average size of

the candidate set C (Section 2.4) after pruning, for all the k iterations.

Figure 2.7(a) and Figure 2.7(b) illustrate how the computation time of different

components in BnP varies, and how the pruning ratio varies, respectively, while the

number of explored hops h varies from 1 to 5. The result tells us the following. (1)

When h increases from 1 to 3, the response time of BnP drops. Indeed, as observed

from Figure 2.7(b), the efficiency improvement comes from the increasing number

of pruned alerts. With more alerts pruned, the amount of time taken on Gain

evaluation, which is the dominating cost, drops accordingly. (2) When the number

of hops increases from 3 to 5, the response time of BnP increases. As the number

of hops grows from 3 to 5, we can see that the pruning ratio of BnP marginally is

improved from Figure 2.7(b); however, the amount of computation time for lower

bound in BnP dramatically increases, which becomes the dominating computation

cost. According to our result, when the number of explored hops is set to be 3,

BnP achieves the best performance on LM alert graphs.

In addition, as shown in Figure 2.7(b), BnP consistently outperforms BnPUB in

terms of pruning ratio, since the upper and lower bounds in BnP introduce more

powerful pruning to reduce unnecessary computation.

2.6.5 Performance evaluation of MTS

In this set of experiments, we demonstrate how the number of sampled trees

affect the performance of MTS.

Figure 2.8(a) tells us the following. (1) While the number of required critical

alerts is fixed, the response time of MTS is proportional to the number of sampled
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Figure 2.8: MTS performance on LM alert graphs

trees (varies from 5 to 500). (2) When the number of samples is fixed, the response

time of MTS grows linear to the number of required critical alerts. In all cases,

MTS takes no more than 15 seconds.

Figure 2.8(b) illustrates how the number of sampled trees influences the ef-

fectiveness of MTS. When the number of sampled trees increases, the loss ratio

of MTS decreases, while the reduction of loss ratio diminishes. As the number

of sampled trees changes from 5 to 100, the loss ratio of MTS is significantly im-

proved; meanwhile, as the number of sampled trees changes from 100 to 500, the

loss ratio is marginally improved. In addition, fixing the number of sampled trees,
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when the number of required critical alerts is increased, the loss ratio of all MTS

variants decreases.

2.6.6 Scalability
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Figure 2.9: Scalability results on SYN graphs

On SYN alert graphs, we fixed the number of required critical alerts to be 3,

and evaluate the scalability of BnP, MTS, ST, Naive, and BnPUB. Note that the

number of hops explored in BnP is fixed to be 3, and the number of sampled trees

in MTS is fixed to be 300.

Figure 2.9 reports the scalability results. When the number of alerts in SYN

graphs increases from 100K to 1000K, the response time of MTS and ST linearly

grows. In particular, when a SYN graph has 1M alerts and more than 90M edges,

MTS and ST return 3 critical alerts in 4 minutes and 13 seconds, respectively.

On the other hand, Naive, BnPUB, and BnP cannot finish the computation in an

hour, even for alert graphs with 100K alerts (hence are not shown). Indeed, the

efficiency of BnP relies on the amount of alerts it can prune. In the worst case, it

works as slow as Naive. In contrast, MTS and ST are much less sensitive to the

growth of graph size, and are more promising for large alert graphs.
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2.6.7 Summary

We found the following. (1) With pruning strategy, BnP outperforms baseline

algorithms in terms of efficiency up to 30 times, without loss of solution quality.

(2) While MTS is up to 80 times faster than baseline algorithms, the resulting loss

ratio is around 0.1. (3) ST is up to 5000 times faster than baseline algorithms,

with loss ratio around 0.2.

2.7 Related work

Causality models and analysis. Causal relations among time series data have

been modeled with Granger causality [175], lagged correlation [124], Bayesian

networks [142, 136], among others. Granger causality measures a cause in terms

of whether it passes Granger Test, i.e., whether it helps in predicating the future

events, beyond what can be predicted by using only the historical events. Lagged

correlation characterizes causal relations with the correlation between two time

series shifted in time relative to one another. Causal Bayesian networks interprets

causal relations with graphical models, in which the predecessors of a node are

interpreted as directly causing the variable associated with that node.

A variety of causality mining techniques have been studied [26, 158, 164], varied

with causality models. Silverstein et al. [164] proposed algorithms to mine causal

relations in large databases by estimating the conditional probability of rules of

interest. For Granger causality, Arnold et al. [26] applied Lasso Granger method

to find a set of events that are conditionally dependent with regression, without

exhaustively performing pairwise Granger Test. A toolbox for detecting Granger
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causality is developed [158]. These methods stop at identifying causal relations.

Our work, on the contrary, efficiently identifies the most critical alerts rather

than suggesting all possible causal relationships. On the other hand, efficient

causality mining techniques, as well as existing knowledge bases on event causality

scenarios [59] serve as preprocessing in our critical causal mining framework.

Root cause analysis. We are aware of a range of domain-specific studies that

aims to find the “root causes”. Given a set of observed symptom events, the

problem is to identify the set of root causes that can best explain the symptom.

In intrusion detection, Julisch [98] leveraged alert clustering techniques to indi-

cate root causes for system alarms. A hierarchical clustering process is iteratively

performed over groups of similar alarms, until the top causes are identified. In net-

work performance diagnosis, Mahimkar et al. [124] proposed methods to identify

potential root causes as the events that have statistically significant (lagged) cor-

relations with a set of known symptom events. In contrast, we propose a general

computational framework for efficient root cause analysis over large-scale alert

sequences in networks. While we do not have the luxury to assume the access

of rich domain-specific semantics that benefit event filtering, any such knowledge

serves as preprocessing to reduce the input size of our problem.

Influence maximization. Node influence evaluation aims to select a group

of nodes with maximized influence, under various information diffusion models,

such as independent cascade model [113], linear threshold model [101], competing

model [41, 90], continuous-time model [65, 155], and credit distribution model [81].

The problem is, however, highly intractable (#P-hard). Sampling methods such as

Monte Carlo simulations are usually applied to estimate node influence. Nonethe-
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less, these approaches typically take massive amount of computation time and are

hard to scale over large graphs [120]. To improve the scalability, various pruning

algorithms have been proposed to reduce the number of Monte Carlo simula-

tions [56, 65, 82, 205], and heuristic algorithms have been studied to estimate

node influence [49, 51, 52, 141]. In contrast to these works, we identify efficient

algorithms for critical alert mining, with desirable performance guarantees on alert

quality and efficiency. Striking a balance between mining quality and efficiency,

these algorithms suggest scalable mining for large scale alert analysis.

2.8 Summary

In this chapter, we study the critical alert mining problem. Despite its in-

tractability, we develop approximation algorithms with quality guarantees, as well

as fast heuristics that preserve at least 80% of solution quality, and perform up

to 5, 000 times faster than their approximation counterparts.

This work is a first step towards large-scale critical alerts mining. We are

conducting experiments over various large real-life datasets and causality models.

One topic is to extend our techniques for distributed network monitoring systems

and datacenters. Another topic is to dynamically maintain the alert graphs and

mined critical alerts. In addition, to further improve the alert quality, one wants

to combine the mining framework with external semantics and knowledge bases,

and to automatically interpret the critical alerts for various application domains.
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Link Prediction in Temporal

Graphs

3.1 Introduction

In various real-life networks, users frequently exchange information and influ-

ence with each other. The information (e.g., messages, articles, recommendation

links) is typically created from a user and spreads via links among users, leaving a

trace of its propagation. Such traces are typically represented as temporal graphs,

namely, information cascades, where (a) each node in a cascade is associated with

the time step at which it receives the information, and (b) an edge from a node

to another indicates that a user propagates the information to and influences its

neighbor [38, 78].

A comprehensive understanding and analysis of cascades benefit various emerg-

ing applications in social networks [44, 102], viral marketing [27, 64, 153], and

recommendation networks [121]. In order to model the propagation of informa-
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Figure 3.1: A cascade of an Ad (partially observed) in a social network G from
user Ann, and its two possible tree representations T1 and T2.

tion, various cascade models have been developed [60, 167, 183]. Among the most

widely used models is the independent cascade model [102], where each node has

only one chance to influence its inactive neighbors, and each node is influenced by

at most one of its neighbors independently. Nevertheless, it is typically difficult to

observe the entire cascade in practice, due to the noisy graphs with missing data,

or data privacy policies [110, 156]. It is important to develop techniques that can

infer the cascades using partial information. Consider the following example.

Example 1. The temporal graph G in Figure 3.1 depicts a fraction of a social

network ( e.g., Twitter), where each node is a user, and each edge represents an

information exchange. For example, edge (Ann,Bill) with a weight 0.7 repre-

sents that a user Ann sends an advertisement (Ad) about a released product ( e.g.,

“Iphone 4s”) with probability 0.7. To identify the impact of an Ad strategy, a

company would like to know the complete cascade starting from their agent Ann.

Due to data privacy policies, the observed information may be limited: (a) at time

step 0, Ann posts an Ad about “Iphone 4s”; (b) at time step 1, Bill is influenced

by Ann and retweets the Ad; (c) by time step 3, the Ad reaches Mary, and Mary

retweets it. As seen, the information diffuses from one user to his or her neighbors
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with different probabilities, represented by the weighted edges in G. Note that the

cascade unfolds as a tree, rooted at the node Ann.

To capture the entire topological information of the cascades, we need to make

inferences on the temporal graph. Given the above partially observed information,

two such inferred cascades are shown as trees T1 and T2 in Figure 3.1. T1 illustrates

a cascade where each path from the source Ann to each observed node has a length

that exactly equals to the time step, at which the observed node is influenced, while

T2 illustrates a cascade where any path in T2 from Ann to an observed node has a

length no greater than the observed time step when the node is influenced, due to

possible delay in observation, e.g., Mary is known to be influenced by (instead of

exactly at) time step 3. The inferred cascades provide useful information about the

missing links and users that are important in the propagation of the information.

The above example highlights the need to make reasonable inference about

the cascades, according to only the partial observations of influenced nodes and

the time at or by which they are influenced. Although cascade models and a set

of related problems, e.g., influence maximization, have been widely studied, much

less is known on how to infer the cascade structures, including complexity bounds

and approximation algorithms.

In this chapter, we investigate the cascade inference problem, where cascades

follow the widely used independent cascade model. To the best of our knowledge,

this is the first work towards inferring cascades as general trees following indepen-

dent cascade model, based on the partial observations. The rest of this chapter

are organized as follows.
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• We introduce the notions of (perfect and bounded) consistent trees in Sec-

tion 3.2. These notions capture the inferred cascades by incorporating con-

nectivity and time constraints in the partial observations. To provide a

quantitative measure of the quality of inferred cascades, we also introduce

two metrics, based on the size of the consistent trees and the likelihood

when a diffusion function of the network graph is taken into account, re-

spectively. These metrics give rise to two optimization problems, referred to

as the minimum consistent tree problem and minimum weighted consistent

tree problem.

• We investigate the problems of identifying perfect and bounded consistent

trees, for given partial observations, in Section 3.3 and Section 3.4, respec-

tively. These problems are variants of the inference problem. We show that

these problems are all np-complete. Worse still, the optimization problems

are hard to approximate: unless p = np, it is not possible to approximate

the problems within any constant ratio. Nevertheless, we provide approxi-

mation and heuristic algorithms for these problems. For bounded trees, the

problems are O(|X|∗ log fmin

log fmax
)-approximable, where |X| is the size of the par-

tial observation, and fmin (resp. fmax) are the minimum (resp. maximum)

probability on the graph edges. We provide such polynomial approximation

algorithms. For perfect trees, we show that it is already np-hard to even

find a feasible solution. However, we provide an efficient heuristics using a

greedy strategy. Finally, we address a practical special case for perfect tree

problems, which are O(d ∗ log fmin

log fmax
)-approximable, where d is the diameter of

the graph, which is typically small in practice.
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• We experimentally verify the effectiveness and the efficiency of our algo-

rithms in Section 3.5, using real-life data and synthetic data. We show

that our inference algorithms can efficiently infer cascades with satisfactory

accuracy.

• We discuss the related work in Section 3.6 and conclude this chapter in

Section 3.7.

3.2 Consistent Trees

We start by introducing several notions.

Diffusion graph. We denote a social network as a directed graph G = (V,E, f),

where (a) V is a finite set of nodes, and each node u ∈ V denotes a user; (b)

E ⊆ V × V is a finite set of edges, where each edge (u, v) ∈ E denotes a social

connection via which the information may diffuse from u to v; and (c) a diffusion

function f : E → R+ which assigns for each edge (u, v) ∈ E a value f(u, v) ∈ [0, 1],

as the probability that node u influences v.
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Cascades. We first review the independent cascade model [102]. We say an

information propagates over a graph G following the independent cascade model

if (a) at any time step, each node in G is exactly one of the three states {active,

newly active, inactive}; (b) a cascade starts from a source node s being newly

active at time step 0; (c) a newly active node u at time step t has only one chance

to influence its inactive neighbors, such that at time t + 1, (i) if v is an inactive

neighbor of u, v becomes newly active with probability f(u, v); and (ii) the state

of u changes from newly active to active, and cannot influence any neighbors

afterwards; and (d) each inactive node v can be influenced by at most one of its

newly active neighbors independently, and the neighbors’ attempts are sequenced

in an arbitrary order. Once a node is active, it cannot change its state.

Based on the independent cascade model, we define a cascade C over graph G

= (V,E, f) as a directed tree (Vc, Ec, s, T ) where (a) Vc ⊆ V , Ec ⊆ E; (b) s ∈ Vc

is the source node from which the information starts to propagate; and (c) T is a

function which assigns for each node vi ∈ Vc a time step ti, which represents that

vi is newly active at time step ti. Intuitively, a cascade is a tree representation of

the “trace” of the information propagation from a specified source node s to a set

of influenced nodes.

Indeed, one may verify that any cascade from s following the independent

cascade model is a tree rooted at s.

Example 2. The graph G in Figure 1 depicts a social graph. The tree T1 and T2

are two possible cascades following the independent cascade model. For instance,

after issuing an ad of “Iphone 4s”, Ann at time 0 becomes “newly active”. Bill

and Jack retweet the ad at time 1. Ann becomes “active”, while Bill and Jack are
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turned to “newly active”. The process repeats until the ad reaches Mary at time

step 3. The trace of the information propagation forms the cascade T1.

As remarked earlier, it is often difficult to observe the entire structure of a

cascade in practice. We model the observed information for a cascade as a partial

observation.

Partial observation. Given a cascade C = (Vc, Ec, s, T ), a pair (vi, ti) is an

observation point, if vi ∈ V is known (observed) to be newly active at or by time

step ti. A partial observation X is a set of observation points. Specifically, X is a

complete observation if for any v ∈ Vc, there is an observation point (v, t) ∈ X . To

simplify the discussion, we also assume that pair (s, 0) ∈ X where s is the source

node. The techniques developed in this paper can be easily adapted to the case

where the source node is unknown.

We are now ready to introduce the idea of consistent trees.

3.2.1 Consistent trees

Given a partial observation X of a graph G = (V,E, f), a bounded consistent

tree Ts = (VTs
, ETs

, s) w.r.t. X is a directed subtree of G with root s ∈ V , such

that for every (vi, ti) ∈ X , vi ∈ VTs
, and s reaches vi by ti hops, i.e., there exists

a path of length at most ti from s to vi. Specifically, we say a consistent tree is

a perfect consistent tree if for every (vi, ti) ∈ X and vi ∈ VTs
, there is a path of

length equals to ti from s to vi.

Intuitively, consistent trees represent possible cascades which conform to the

independent cascade model, as well as the partial observation. Note the following:

(a) the path from the root s to a node vi in a bounded consistent tree Ts is not
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necessarily a shortest path from s to vi in G, as observed in [111]; (b) the perfect

consistent trees model cascades when the partial observation is accurate, i.e., each

time ti in an observation point (vi, ti) is exactly the time when vi is newly active;

in contrast, in bounded consistent trees, an observation point (v, t) indicates that

node v is newly active at the time step t′ ≤ t, due to possible delays in the

information propagation, as observed in [44].

Example 3. Recall the graph G in Figure 1. The partial observation of a cascade

in G is X = {(Ann, 0), (Bill, 1), (Mary, 3)}. The tree T1 is a perfect consistent

tree w.r.t. X, where T2 is a bounded consistent tree w.r.t. X.

Now consider the trees in Figure 3.2. One may verify that (a) T3, T4 and T5

are bounded consistent trees w.r.t. X; (b) T3 and T4 are perfect consistent trees

w.r.t. X, where T5 is not a perfect consistent tree. (c) T6 is not a consistent tree,

as there is no path from the source Ann to Mary with length no greater than 3 as

constrained by the observation point (Mary, 3).

3.2.2 Cascade inference problem

We introduce the general cascade inference problem. Given a social graph

G and a partial observation X , the cascade inference problem is to determine

whether there exists a consistent tree T w.r.t. X in G.

There may be multiple consistent trees for a partial observation, so one often

wants to identify the best consistent tree. We next provide two quantitative

metrics to measure the quality of the inferred cascades. Let G = (V,E, f) be a

social graph, and X be a partial observation.

55



Chapter 3. Link Prediction in Temporal Graphs

Minimum weighted consistent trees. In practice, one often wants to identify

the consistent trees that are most likely to be the real cascades. Recall that

each edge (u, v) ∈ E in a given network G carries a value assigned by a diffusion

function f(u, v), which indicates the probability that u influences v. Based on

f(u, v), we introduce a likelihood function as a quantitative metric for consistent

trees.

Likelihood function. Given a graph G = (V,E, f), a partial observation X and

a consistent tree Ts = (VTs
, ETs

, s), the likelihood of Ts, denoted as LX(Ts), is

defined as:

LX(Ts) = P(X | Ts) =
∏

(u,v)∈ETs

f(u, v). (3.1)

Following common practice, we opt to use the log-likelihood metric, where

LX(Ts) =
∑

(u,v)∈ETs

log f(u, v)

GivenG andX , a natural problem is to find the consistent tree of the maximum

likelihood in G w.r.t. X . Using log-likelihood, the minimum weighted consistent

tree problem is to identify the consistent tree Ts with the minimum −LX(Ts),

which in turn has the maximum likelihood.

Minimum consistent trees. Instead of weighted consistent trees, one may

simply want to find the minimum structure that represents a cascade [125]. The

minimum consistent tree, as a special case of the minimum weighted consistent

tree, depicts the smallest cascades with the fewest communication steps to pass
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the information to all the observed nodes. In other words, the metric favors those

consistent trees consist with the given partial observation with the fewest edges.

Given G and X , the minimum consistent tree problem is to find the minimum

consistent trees in G w.r.t. X .

In the following sections, we investigate the cascade inference problem, and

the related optimization problems using the two metrics. We investigate the

problems for perfect consistent trees in Section 3.3, and for bounded consistent

trees in Section 3.4, respectively.

3.3 Cascades as perfect trees

As remarked earlier, when the partial observation X is accurate, one may want

to infer the cascade structure via perfect consistent trees. The minimum (resp.

weighted) perfect consistent tree problem, denoted as PCTmin (resp. PCTw) is to

find the perfect consistent trees with minimum size (resp. weight) as the quality

metric.

Though it is desirable to have efficient polynomial time algorithms to identify

perfect consistent trees, the problems of searching PCTmin and PCTw are nontriv-

ial.

Proposition 3. Given a graph G and a partial observation X, (a) it is np-

complete to determine whether there is a perfect consistent tree w.r.t. X in G;

and (b) the PCTmin and PCTw problems are np-complete and apx-hard.

One may verify Proposition 3(a) by a reduction from the Hamiltonian path

problem [180], which is to determine whether there is a simple path of length
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|V | − 1 in a graph G =(V,E). Following this, one can verify that the PCTmin and

PCTw problems are np-complete as an immediate result.

Proposition 3(b) shows that the PCTmin and PCTw problems are hard to ap-

proximate. The apx class [180] consists of np optimization problems that can

be approximated by a polynomial time (ptime) algorithm within some positive

constant. The apx-hard problems are apx problems to which every apx problem

can be reduced. Hence, the problem for computing a minimum (weighted) perfect

consistent tree is among the hardest ones that allow ptime algorithms with a

constant approximation ratio.

It is known that if there is an approximation preserving reduction (AFP-

reduction) [180] from a problem Π1 to a problem Π2, and if problem Π1 is apx-hard,

then Π2 is apx-hard [180]. To see Proposition 3(b), we may construct an AFP-

reduction from the minimum directed steiner tree (MST) problem. An instance of

a directed steiner tree problem I = {G, Vr, Vs, r, w} consists of a graph G, a set

of required nodes Vr, a set of steiner nodes Vs, a source node r and a function w

which assigns to each node a positive weight. The problem is to find a minimum

weighted tree rooted at r, such that it contains all the nodes in Vr and a part of Vs.

We show such a reduction exists. Since MST is apx-hard, PCTmin is apx-hard.

3.3.1 Bottom-up searching algorithm

Given the above intractability and approximation hardness result, we intro-

duce a heuristic WPCT for the PCTw problem. The idea is to (a) generate a

“backbone network” Gb of G which contains all the nodes and edges that are pos-

sible to form a perfect consistent tree, using a set of pruning rules, and also rank
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the observed nodes in Gb with the descending order of their time step in X , and

(b) perform a bottom-up evaluation for each time step in Gb using a local-optimal

strategy, following the descending order of the time step.

Backbone network. We consider pruning strategies to reduce the nodes and

the edges that are not possible to be in any perfect consistent trees, given a graph

G = (V,E, f) and a partial observation X = {(v1, t1), . . . , (vk, tk)}. We define a

backbone network Gb = (Vb, Eb), where

• Vb =
⋃{vj |dist(s, vj) + dist(vj , vi) ≤ ti} for each (vi, ti) ∈ X ; and

• Eb = {(v′, v)|v′ ∈ Vb, v ∈ Vb, (v
′, v) ∈ E}

Intuitively, Gb includes all the possible nodes and edges that may appear in a

perfect consistent tree for a given partial observation. In order to construct Gb, a

set of pruning rules can be developed as follows: if for a node v′ and each observed

node v in a cascade with time step t, dist(s, v′) + dist(v′, v) > t, then v′ and all

the edges connected to v′ can be removed from Gb.

Algorithm. Algorithm WPCT, as shown in Figure 3.3, consists of the following

steps:

Initialization (line 1). The algorithm WPCT starts by initializing a tree T , by

inserting all the observation points into T . Each node v in T is assigned with a

level l(v) equal to its time step as in X . The edge set is set to empty.

Pruning (lines 2-10). The algorithm WPCT then constructs a backbone network

Gb with the pruning rules (lines 2-9). It initializes a node set Vb within tmax hop

of the source node s, where tmax is the maximum time step in X (line 2). If there

exists some node v ∈ X that is not in Vb, the algorithm returns ∅, since there is no
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Figure 3.3: Algorithm WPCT: initialization, pruning and local searching
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path from s reaching v with t steps for (v, t) ∈ X (line 3). It further removes the

redundant nodes and edges that are not in any perfect trees, using the pruning

rules (lines 5-8). The network Gb is then constructed with Vb and Eb at line 9.

The partial observation X is also sorted w.r.t. the time step (line 10).

Bottom-up local searching (lines 11-17). Following a bottom-up greedy strategy,

the algorithm WPCT processes each observation point as follows. For each i in

[1, tmax], it generates a (bipartite) graph Gt. (a) It initializes a node set Vt as the

union of three sets of nodes V1, V2 and V3 (line 12), where (i) V1 is the nodes in the

observation points with time step ti, (ii) V2 is the nodes v in the current perfect

consistent tree T with level l(v) = ti, and (iii) V3 is the union of the parents for

the nodes in V1 and V2. (b) It constructs an edge set Et which consists of the

edges from the nodes in V3 to the nodes in V1 and V2. (c) It then generates Gt

with Vt and the edge set Et, which is a bipartite graph. After Gt is constructed,

the algorithm WPCT invokes procedure PCTl to compute a “part” of the perfect

tree T , which is an optimal solution for Gt, a part of the graph Gb which contains

all the observed nodes with time step ti. It expands T with the returned partial

tree (line 15). The above process (lines 11-15) repeats for each i ∈ [1, tmax] until

all the nodes in X are processed. Algorithm WPCT then checks if the constructed

T is a tree. If so, it returns T (line 16). Otherwise, it returns ∅ (line 17). The

above procedure is as illustrated in Figure 3.4.

Procedure PCTl. Given a (bipartite) graph Gt, and two sets of nodes V and Vs in

Gt, the procedure PCTl computes for Gt a set of trees Tt = {T1, . . . , Ti} with the

minimum total weight (line 2), such that (a) each Ti is a 2-level tree with a root

in Vs and leaves in V , (b) the leaves of any two trees in Tt are disjoint, and (c) the
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Figure 3.4: The bottom-up searching in the backbone network

trees contain all the nodes in V as leaves. For each Ti, PCTl assigns its root r in

Vs a level l(r) = ti − 1 (line 4). Tt is then returned as a part of the entire perfect

consistent tree (line 5). In practice, we may either employ linear programming,

or an algorithm for MST problem (e.g., [154]) to compute Tt.

Example 4. The cascade T1 in Figure 1, as a minimum weighted perfect consis-

tent tree, can be inferred by algorithm WPCT as illustrated in Figure 3.4. WPCT

first initializes a tree T with the node Mary. It then constructs Gt as the graph

induced by edges (Tom, Mary), (Jack, Mary), and (Mike, Mary). Intuitively, the

three nodes as the parents of Mary are the possible nodes which accepts the mes-

sage at time step 2. It then selects the tree with the maximum probability, which

is a single edge (Mike, Mary), and adds it to T . Following Mike, it keeps choosing

the optimal tree structure for each level, and identifies nodes Jack. The process

repeats until WPCT reaches the source Ann. It then returns the perfect consistent

tree T as the inferred cascade from the partial observation X.

Correctness. The algorithm WPCT either returns ∅, or correctly computes a

perfect consistent tree w.r.t. the partial observation X . Indeed, one may verify
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that (a) the pruning rules only remove the nodes and edges that are not in any

perfect consistent tree w.r.t. X , and (b) WPCT has the loop invariant that at

each iteration i (lines 11-15), it always constructs a part of a perfect tree as a

forest.

Complexity. The algorithmWPCT is in time O(|V ||E|+|X|2+tmax∗A), where tmax

is the maximum time step in X , and A is the time complexity of procedure PCTl.

Indeed, (a) the initialization and preprocessing phase (lines 1-9) takes O(|V ||E|)

time, (b) the sorting phase is in O(|X|2) time, (c) the bottom-up construction is

in O(|tmax ∗ A|), which is further bounded by O(|tmax ∗ |V |3) if an approximable

algorithm is used [154]. In our experimental study, we utilize efficient linear

programming to compute the optimal steiner forest.

The algorithm WPCT can easily be adapted to the problem of finding the

minimum perfect consistent trees, where each edge has a unit weight.

Perfect consistent SP trees. The independent cascade model may be an

overkill for real-life applications, as observed in [50, 107]. Instead, one may iden-

tify the consistent trees which follow the shortest path model [107], where cascades

propagate following the shortest paths. We define a perfect shortest path (sp) tree

rooted at a given source node s as a perfect consistent tree, such that for each ob-

servation point (v, t) ∈ X of the tree, t = dist(s, v); in other words, the path from

s to v in the tree is the shortest path in G. The PCTw (resp. PCTmin) problem for

sp trees is to identify the sp trees with the maximum likelihood (resp. minimum

size).

Proposition 4. Given a graph G and a partial observation X, (a) it is in ptime

to find a sp tree w.r.t. X; (b) the PCTmin and PCTw problems for perfect sp
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trees are np-hard and apx-hard; (c) the PCTw problem is approximable within

O(d∗ log fmin

log fmax
), where d is the diameter of G, and fmax (resp. fmin) is the maximum

(resp. minimum) probability by the diffusion function f .

We next provide an approximation algorithm to the PCTw problem for sp trees.

Given a graph G and a partial observation X , the algorithm, denoted as WPCTsp

(not shown), first constructs the backbone graph Gb as in the algorithm WPCT.

It then constructs node sets Vr = {v|(v, t) ∈ X}, and Vs = V \ Vr. Treating Vr as

required nodes, Vs as steiner nodes, and the log-likelihood function as the weight

function, WPCTsp approximately computes an undirected minimum steiner tree

T . If the directed counterpart T ′ of T in Gb is not a tree, WPCTsp transforms T ′

to a tree: for each node v in T ′ with more than one parent, it (a) connects s and

v via the shortest path, and (b) removes the redundant edges attached to v. It

then returns T ′ as an sp tree.

One may verify that (a) T ′ is a perfect sp tree w.r.t. X , (b) the weight

−LX(T
′) is bounded by O(d ∗ log fmin

log fmax
) times of the optimal weight, and (c) the

algorithm runs in O(|V 3|) time, leveraging the approximation algorithm for the

steiner tree problem [180]. Moreover, the algorithm WPCTsp can be used for

the problem PCTmin for sp trees, where each edge in G has the same weight. This

achieves an approximation ratio of d.

3.4 Cascades as bounded trees

In this section, we investigate the cascade inference problems for bounded

consistent trees. In contrast to the intractable counterpart in Proposition 3(a),
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the problem of finding a bounded consistent tree for a given graph and a partial

observation is in ptime.

Proposition 5. For a given graph G and a partial observation X, there is a

bounded consistent tree in G w.r.t. X if and only if for each (v, t) ∈ X, dist(s, v) ≤
t, where dist(s, v) is the distance from s to v in G.

Indeed, one may verify the following: (a) if there is a node (vi, ti) ∈ X where

dist(s, vi) > ti, there is no path satisfies the time constraint and T is empty; (b)

if dist(s, vi) ≤ ti for each node (vi, ti) ∈ X , a BFS tree rooted at s with each

node vi in X as its internal node or leaf is a bounded consistent tree. Thus, to

determine whether there is a bounded consistent tree is in O(|E|) time, via a BFS

traversal of G from s.

Given a graph G and a partial observation X , the minimum weighted bounded

consistent tree problem, denoted as BCTw, is to identify the bounded consistent

tree T ∗
s w.r.t. X with the minimum − logLX(T

∗
s ) (see Section 3.2).

Theorem 3. Given a graph G and a partial observation X, the BCTw problem is

(a) np-complete and apx-hard; and

(b) approximable within O(|X| ∗ log fmin

log fmax
), where fmax (resp. fmin) is the maxi-

mum (resp. minimum) probability by the diffusion function f over G.

We can prove Theorem 3(a) as follows. First, the BCTw problem, as a decision

problem, is to determine whether there exists a bounded consistent tree T with

−LX(T ) no greater than a given bound B. The problem is obviously in np. To

show the lower bound, one may show there exists a polynomial time reduction from
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Input: graph G and partial observation X.

Output: a bounded consistent tree T in G.

1. tree T = (Vt, Et), where Vt := {s|(s, 0) ∈ X}, Et := ∅;

2. compute tk bounded BFS DAG Gd of s in G;

3. foreach ti ∈ [t1, tk] Do

4. foreach node v where (v, ti) ∈ X and l(v) = i Do

5. ifi > ti return ∅;

6. find a path ρ from s to v with the

minimum weight w(ρ) = −Σ log f(e) for each e ∈ ρ;

7. T = T ∪ ρ;

8. return T as a bounded consistent tree;

Figure 3.5: Algorithm WBCT: searching bounded consistent trees via top-down
strategy

the exact 3-cover problem (X3C). Second, to see the approximation hardness, one

may verify that there exists an AFP-reduction from the minimum directed steiner

tree (MST) problem.

We next provide a polynomial time algorithm, denoted as WBCT, for the

BCTw problem. The algorithm runs in linear time w.r.t. the size of G, and with

performance guarantee as in Theorem 3(b).

Algorithm. The algorithm WBCT is illustrated in Figure 3.5. Given a graph G

and a partial observation X , the algorithm first initializes a tree T = (Vt, Et) with

the single source node s (line 1). It then computes the tk bounded BFS directed
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acyclic graph (DAG ) [33] Gd of the source node s, where tk is the maximum time

step of the observation points in X , and Gd is a DAG induced by the nodes and

edges visited by a BFS traversal of G from s (line 2). Following a top-down

strategy, for each node v of (v, t) ∈ X , WBCT then (a) selects a path ρ with the

minimum Σ log f(e) from s to v, and (b) extends the current tree T with the path

ρ (lines 3-7). If for some observation point (v, t) ∈ T , dist(s, v) > t, then WBCT

returns ∅ as the tree T (line 5). Otherwise, the tree T is returned (line 8) after

all the observation points in X are processed.

Correctness and complexity. One may verify that algorithm WBCT either cor-

rectly computes a bounded consistent tree T , or returns ∅. For each node in the

observation point X , there is a path of weight selected using a greedy strategy,

and the top-down strategy guarantees that the paths form a consistent tree. The

algorithm runs in time O(|E|), since it visits each edges at most once following a

BFS traversal.

We next show the approximation ratio in Theorem 3(b). Observe that for a

single node v in X , (a) the total weight of the path w from s to v is no greater than

−|w| log fmin, where |w| is the length of w; and (b) the weight of the counterpart of

w in T ∗, denoted as w′, is no less than−|w∗| log fmax. Also observe that |w| ≤ |w∗|.
Thus, w/w∗ ≤ log fmin

log fmax
. As there are in total |X| such nodes, LX(T )/LX(T

∗) ≤

|X| w
w∗
≤ |X| log fmin

log fmax
. Theorem 3(b) thus follows.

Minimum bounded consistent tree.

We have considered the likelihood function as a quantitative metric for the

quality of the bounded consistent trees. As remarked earlier, one may simply

want to identify the bounded consistent trees of the minimum size. Given a
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social graph G and a partial observation X , the minimum bounded consistent tree

problem, denoted as BCTmin, is to identify the bounded consistent tree with the

minimum size, i.e., the total number of nodes and edges. The BCTmin problem is

a special case of BCTw, and its main result is summarized as follows.

Proposition 6. The BCTmin problem is (a) np-complete, (b) apx-hard, and (c)

approximable within O(|X|), where |X| is the size of the partial observation X.

Proposition 6(a) and 6(b) can both be shown by constructing reductions from

the MST problem, which is np-complete and apx-complete [180].

Despite of the hardness, the problem can be approximated within O(|X|) in
polynomial time, by applying the algorithm WBCT over an instance where each

edge has a unit weight. This completes the proof of Proposition 6(c).

3.5 Experiment

We next present an experimental study of our proposed methods. Using both

real-life and synthetic data, we conduct three sets of experiments to evaluate (a)

the effectiveness of the proposed algorithms, (b) the efficiency and the scalability

of WPCT and WBCT.

Experimental setting. We used real-life data to evaluate the effectiveness of

our methods, and synthetic data to conduct an in-depth analysis on scalability by

varying the parameters of cascades and partial observations.

(a) Real-life graphs and cascades. We used the following real-life datasets. (i)

Enron email cascades. The dataset of Enron Emails 1 consists of a social graph

1http://www.cs.cmu.edu/ enron/
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of 86, 808 nodes and 660, 642 edges, where a node is a user, and two nodes are

connected if there is an email message between them. We tracked the forwarded

messages of the same subjects and obtained 260 cascades of depth no less than

3 with more than 8 nodes. (ii) Retweet cascades (RT). The dataset of Twitter

Tweets 2 [193] contains more than 470 million posts from more than 17 million

users, covering a period of 7 months from June 2009. We extracted the retweet

cascades of the identified hashtags [193]. To guarantee that a cascade represents

the propagation of a single hashtag, we removed those retweet cascades containing

multiple hashtags. In the end, we obtain 321 cascades of depth more than 4, with

node size ranging from 10 to 81. Moreover, we used the EM algorithm from [157]

to estimate the diffusion function.

(b) Synthetic cascades. We generated a set of synthetic cascades unfolding in an

anonymous Facebook social graph 3, which exhibits properties such as power-law

degree distribution, high clustering coefficient and positive assortativity [186]. The

diffusion function is constructed by randomly assigning real numbers between 0

and 1 to edges in the network. The generating process is controlled by size |T |. We

randomly choose a node as the source of the cascade. By simulating the diffusion

process following the independent cascade model, we then generated cascades

w.r.t. |T | and assigned time steps.

(c) Partial observation. For both real life and synthetic cascades, we define un-

certainty of a cascade T as σ = 1− |X|
|VT |

, where |VT | is the size of the nodes in T ,

and |X| is the size of the partial observation X . We remove the nodes from the

2http://snap.stanford.edu/data/twitter7.html
3http://current.cs.ucsb.edu/socialnets
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Enron Twitter
Algorithms Precision

d=3 d=4 d = 4 d = 5

precv 100% 100% 97.2% 93.2%
WPCT

prece 78.2% 82.4% 86.1% 82.6%

precv 100% 70.1% 73.6% 66.1%
WBCT

prece 69% 55.7% 60.6% 41.7%

Table 3.1: precv and prece over real cascades

given cascades until the uncertainty is satisfied, and collect the remaining nodes

and their time steps as X .

(d) Implementation. We have implemented the following in C++: (i) al-

gorithms WPCT, and WBCT; (ii) two linear programming algorithms PCTlp

and BCTlp, which identify the optimal weighted bounded consistent trees and the

optimal perfect consistent trees using linear programming, respectively; (iii) two

randomized algorithms PCTr and BCTr, which are developed to randomly choose

trees from given graphs. PCTr is developed using a similar strategy for WPCT,

especially for each level the steiner forest is randomly selected (see Section 3.3);

asWBCT does, BCTr runs on bounded BFS directed acyclic graphs, but randomly

selects edges. (iv) to verify various implementations of WPCT, an algorithm PCTg

is developed by using a greedy strategy to choose the steiner forest for each level

(see Section 3.3). We used LP solve 5.5 4 as the linear programming solver.

We used a machine powered by an Intel(R) Core 2.8GHz CPU and 8GB of

RAM, using Ubuntu 10.10. Each experiment was run by 10 times and the average

is reported here.

Experimental results. We next present our findings.

4http://lpsolve.sourceforge.net/5.5/
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Effectiveness of consistent trees. In the first set of experiments, using real life

cascades, we investigated the accuracy and the efficiency of our cascade inference

algorithms.

(a) Given a set of real life cascade T = {T1, . . . , Tk}, for each cascade Ti =

(VTi
, ETi

) ∈ T, we computed an inferred cascade Ti
′ = (VTi

′ , ETi
′) according to

a partial observation with uncertainty σ. Denote the nodes in the partial obser-

vation as VX . We evaluated the precision as prec =
Σ(|(VTi

′∩VTi
)\VX |)

Σ(|VTi
′\VX)|

, and rec =

Σ(|(VTi
′∩VTi

)\VX |)

Σ(|VTi
\VX)|

. Intuitively, prec is the fraction of inferred nodes that are missing

from Ti, while rec is the fraction of missing nodes that are inferred by Ti
′.

For Enron email cascades, Figure 3.6(a) and Figure 3.6(b) show the accu-

racy of WPCT, PCTg and PCTr for inferring cascades, while σ is varied from

0.25 to 0.85. PCTlp does not scale over the Enron dataset and thus is not shown.

(i) WPCT outperforms PCTg and PCTr on both prec and rec. (ii) When the un-

certainty increases, both the prec and rec of the three algorithms decrease. In

particular, WPCT successfully infers cascade nodes with prec no less than 70%

and rec no less than 25% even when 85% of the nodes in the cascades are re-

moved. Using the same setting, the performance of WBCT, BCTlp and BCTr

are shown in Figure 3.6(c) and Figure 3.6(d), respectively. (i) Both BCTlp

and WBCT outperform BCTr, and their prec and rec decrease while the uncer-

tainty increases. (ii) BCTlp has better performance than WBCT. In particular,

both BCTlp and WBCT successfully infer the cascade nodes with the prec no less

than 50% and with the rec no less than 25%, even when 85% of the nodes in the

cascades are removed.
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For retweet cascades, the prec and the rec of WPCT, PCTg and PCTr are

shown in Figure 3.6(e) and in Figure 3.6(f), respectively. While the uncertainty

increases from 0.25 to 0.85, (i) WPCT outperform PCTr and PCTg, and (ii) the

performance of all the algorithms decreases. In particular, WPCT successfully

infers the nodes with the prec more than 80% and the rec more than 35%, while

the uncertainty is 25%. Similarly, the prec and the rec of WBCT and BCTr are

presented in Figure 3.6(g) and Figure 3.6(h), respectively. As BCTlp does not

scale on retweet cascades, its performance is not shown. While the uncertainty

σ increases, the prec and the rec of the algorithms decrease. For all σ, WBCT

outperforms BCTr; in particular, WBCT correctly infers the nodes with prec no

less than 60% and rec no less than 25%, when σ is 25%.

(b) To further evaluate the structural similarity of Ti and Ti
′ as described in (a),

we also evaluate (i) precv = |V ′′|
|V ′|

for nodes V ′ = (VTi
′ ∩ VTi

) \ VX , where V ′′ ∈ V ′

are the nodes with the same topological order in both T ′
i and Ti, and (ii) prece =

|E′|
|ETi

′ |
for E ′ = ETi

∩ETi
′, following the metric for measuring graph similarity [150].

The average results are as shown in Table 3.1, for σ =50%, and the cascades of

fixed depth. As shown in the table, for WPCT, the average precv is above 90%,

and the average prece is above 75% over both datasets. Better still, the results

hold even when we set σ = 85%. For WBCT, precv and prece are above 65%

and above 40%, respectively. For WPCT, precv and prece have almost consistent

performance on both datasets; however, for WBCT, the precv and prece of the

inferred Enron cascades are higher than those of the inferred retweet cascades. The

gap might result from the different diffusion patterns between these two datasets:

we observed that there are more than 70% of cascades in the Enron dataset whose
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structures are contained in the BFS directed acyclic graphs of WBCT, while in the

Twitter Tweets there are less than 45% of retweet cascades following the assumed

graph structures of WBCT.

Efficiency over real datasets. In all the tests over real datasets, PCTr, BCTr, PCTg

andWBCT take less than 1 second. BCTlp does not scale for retweet cascades, while

PCTlp does not scale for both datasets. On the other hand, while WPCT takes less

than 0.4 seconds in inferring all the Enron cascades, it takes less than 20 seconds

to infer Twitter cascades where d=4, and 100 seconds when d = 5. Indeed, for

Twitter network the average degree of the nodes is 20, while the average degree

for Enron dataset is 7. As such, it takes more time for WPCT to infer Twitter

cascades in the denser Twitter network. In our tests, the efficiency of all the

algorithms are not sensitive w.r.t. the changes to σ.

Efficiency and scalability over synthetic datasets. In the second set of experiments,

we evaluated the efficiency and the scalability of our algorithms using synthetic

cascades.

(a) We first evaluate the efficiency and scalability of WPCT and compare WPCT

with PCTr and PCTg.

Fixing uncertainty σ = 50%, we varied |T | from 30 to 240. Figure 3.7(c) shows

that WPCT scales well with the size of the cascade. Indeed, it only takes 2 seconds

to infer the cascades with 300 nodes.

Fixing size |T | = 100, we varied the uncertainty σ from 0.25 to 0.85. Fig-

ure 3.7(d) illustrates that while all the three algorithms are more efficient with

larger σ, WPCT is more sensitive. All the three algorithms scale well with σ.
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As PCTlp does not scale well, its performance is not shown in Figure 3.7(c)

and Figure 3.7(d).

(b) Using the same setting, we evaluated the performance of WBCT, compared

with BCTlp and BCTr.

Fixing σ and varying |T |, the result is reported in Figure 3.7(a). First, WBCT

outperforms BCTlp, and is almost as efficient as the randomized algorithm BCTr.

For the cascade of 240 nodes, WBCT takes less than 0.5 second to infer the struc-

ture, while BCTlp takes nearly 1000 seconds. Second, while WBCT is not sensitive

to the change of |T |, BCTlp is much more sensitive.

Fixing |T | and varying σ, Figure 3.7(b) shows the performance of the three

algorithms. The figure tells us that WBCT and BCTr are less sensitive to the

change of σ than BCTlp. This is because WBCT and BCTr identify bounded

consistent tree by constructing shortest paths from the source to the observed

nodes. When the maximum depth of the observation point is fixed, the total

number of nodes and edges visited by WBCT and BCTr are not sensitive to σ.

Summary. We can summarize the results as follows. (a) Our inference algo-

rithms can infer cascades effectively. For example, the original cascades and the

ones inferred by WPCT have structural similarity (measured by prece) of higher

than 75% in both real-life datasets. (b) Our algorithms scale well with the sizes of

the cascades, and uncertainty. They seldom demonstrated their worst-case com-

plexity. For example, even for cascades with 240 nodes, all of our algorithms take

less than two seconds.
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3.6 Related work

We categorize related work as follows.

Cascade Models. To capture the behavior of cascades, a variety of cascade mod-

els have been proposed [31, 79, 83, 103, 104], such as Suscepctible/Infected (SI)

model [31], decreasing cascade model [103], triggering model [102], Shortest Path

Model [107], and the Susceptible/Infected/Recover (SIR) model [104]. In this pa-

per, we assume that the cascades follow the independent cascade model [79], which

is one of the most widely studied models (the shortest path model [107] is one of

its special cases).

Cascade Prediction. There has been recent work on cascade prediction and

inference, with the emphasis on global properties (e.g., cascade nodes, width,

size) [42, 70, 108, 114, 156, 167, 183] with the assumption of missing data and

partial observations. The problem of identifying and ranking influenced nodes is

addressed in [108, 114], but the topological inference of the cascades is not consid-

ered. Wang et al. [183] proposed a diffusive logistic model to capture the evolution

of the density of active users at a given distance over time, and demonstrated the

prediction ability of this model. Nevertheless, the structural information about

the cascade is not addressed. Song et al. [167] studied the probability of a user

being influenced by a given source. In contrast, we consider a more general in-

ference problem where there are multiple observed users, who are influenced at

different time steps from the source. Fei et al. [70] studied social behavior predic-

tion and the effect of information content. In particular, their goal is to predict

actions on an article based on the training dataset. Budak et al. [42] investigated

the optimization problem of minimizing the number of the possible influencing
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nodes following a specified cascade model, instead of predicting cascades based on

partial observations.

All the above works focus on predicting the nodes and their behavior in the

cascades. In contrast, we propose approaches to infer both the nodes and the

topology of the cascades in the graph-time domain.

Network Inference. Another host of work study network inference problem,

which focuses on inferring network structures from observed cascades over the

unknown network, instead of inferring cascade structures as trees [66, 80]. Manuel

et al. [80] proposes techniques to infer the structure of a network where the

cascades flow, based on the observation over the time each node is affected by

a cascade. Similar network inference problem is addressed in [66], where the

cascades are modeled as (Markov random walk) networks. The main difference

between our work and theirs is (a) we use consistent trees to describe possible

cascades allowing partial observations; (b) we focus on inferring the structure of

cascades as trees instead of the backbone networks.

Closer to our work is the work by Sadikov et al. [156] that consider the pre-

diction of the cascades modeled as k-trees, a balanced tree model. The global

properties of cascades such as size and depth are predicted based on the incom-

plete cascade. In contrast to their work, (a) we model cascades as general trees

instead of k-balanced trees, (b) while Sadikov et al. [156] assume the partial cas-

cade is also a k-tree and predict only the properties of the original cascade, we

infer the nodes as well as topology of the cascades only from a set of nodes and

their activation time, using much less available information. (c) The temporal in-

formation (e.g., time steps) in the partial observations is not considered in [156].
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Problem Complexity Approximation time

BCTmin np-c, apx-hard |X| O(|E|)
BCTw np-c,apx-hard |X| ∗ log fmax

log fmin
O(|E|))

PCTmin (sp tree) np-c, apx-hard d O|V 3|
PCTw (sp tree) np-c, apx-hard d ∗ log fmax

log fmin
O|V 3|

PCTmin np-c, apx-hard – O(|tmax ∗ |V |3)
PCTw np-c, apx-hard – O(|tmax ∗ |V |3)

Table 3.2: Complexity and approximability

3.7 Summary

In this chapter, we investigat cascade inference problem on temporal graphs

based on partial observation. We propose the notions of consistent trees for captur-

ing the inferred cascades, namely, bounded consistent trees and perfect consistent

trees, as well as quantitative metrics by minimizing either the size of the inferred

structure or maximizing the overall likelihood. We establish the intractability and

the hardness results for the optimization problems as summarized in Table 3.2.

Despite the hardness, we develop approximation and heuristic algorithms for these

problems, with performance guarantees on inference quality. We verify the effec-

tiveness and efficiency of our techniques using real life and synthetic cascades. Our

experimental results show that our methods are able to efficiently and effectively

infer the structure of information cascades.

77



Chapter 3. Link Prediction in Temporal Graphs

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.3  0.4  0.5  0.6  0.7  0.8

P
re

ci
si

on

The uncertainty of the observation (σ)

WPCT
PCTr
PCTg

(a) PCT@Enron: prec

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.3  0.4  0.5  0.6  0.7  0.8

R
ec

al
l

The uncertainty of the observation (σ)

WPCT
PCTr
PCTg

(b) PCT@Enron: rec

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.3  0.4  0.5  0.6  0.7  0.8

P
re

ci
si

on

The uncertainty of the observation (σ)

WBCT
BCTr

BCTlp

(c) BCT@Enron: prec

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.3  0.4  0.5  0.6  0.7  0.8
R

ec
al

l

The uncertainty of the observation (σ)

WBCT
BCTr

BCTlp

(d) BCT@Enron: rec

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.3  0.4  0.5  0.6  0.7  0.8

P
re

ci
si

on

The uncertainty of the observation (σ)

WPCT
PCTr
PCTg

(e) PCT@RT: prec

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.3  0.4  0.5  0.6  0.7  0.8

R
ec

al
l

The uncertainty of the observation (σ)

WPCT
PCTr
PCTg

(f) PCT@RT: rec

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.3  0.4  0.5  0.6  0.7  0.8

P
re

ci
si

on

The uncertainty of the observation (σ)

WBCT
BCTr

(g) BCT@RT: prec

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.3  0.4  0.5  0.6  0.7  0.8

R
ec

al
l

The uncertainty of the observation (σ)

WBCT
BCTr

(h) BCT@RT: rec

Figure 3.6: The prec and rec of the inference algorithms over Enron email cas-
cades and Retweet cascades
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Figure 3.7: Efficiency and scalability over synthetic cascades
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Subgraph Matching in Temporal

Graphs

4.1 Introduction

Temporal graphs have been applied to model frequently updated datacenter

networks [149]. Node/edge on these graphs contain numerical values describ-

ing network states, such as machines’ CPU/memory usage and links’ available

bandwidth. These numerical values are frequently updated to reflect network

dynamics [149].

Given a cloud residing in a datacenter network, it is important to place ser-

vices into the cloud so that users’ requirements are satisfied [35, 77]. Cloud service

placement can be naturally formulated as dynamic subgraph matching queries:

Given a large temporal graph G with numerical node/edge labels and a smaller

query graph Q with user-specified numerical node/edge labels (e.g., required com-

putation and communication resources), the goal is to return a set of subgraphs
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Figure 4.1: A user-defined accounting service with diverse memory and band-
width requirements on nodes and edges

of G, each of which is structurally isomorphic to Q, and whose node/edge labels

are compatible with Q (i.e., the corresponding nodes/edges can provide enough

computation and network resources). Consider the following example.

Example 5. In Figure 4.1, an accounting service is defined as a query graph.

Numerical labels on nodes represent the amount of memory required for diverse

types of servers, while labels on edges represent the amount of bandwidth required

among servers. Given such a query graph, a cloud administrator is obliged to find

a subgraph from a temporal cloud graph to place the service. A qualifying subgraph

should be structurally isomorphic to the query graph, and its nodes/edges should

have enough resources to satisfy the specified requirements.

The aforementioned subgraph matching problem not only brings a new, criti-

cal graph query application, but also new challenges to existing techniques. First,

existing graph indexing techniques, e.g., [67, 89, 176, 191, 198, 201], focus more

on graph structure and fixed node/edge labels, while datacenter networks usually

have quite stable structure, but more frequent label updates. Although some in-

cremental graph indexing algorithms are available [191], they are not designed to
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accommodate frequent label updates (e.g., 10−50% node/edge labels are updated

every 10 seconds [149]). Second, existing techniques supporting approximate or

probabilistic graph matching can hardly handle partially ordered numerical labels

in service placement. For example, a server with 32G free memory can accommo-

date a service requiring 1G memory, even when these two values are very different

from each other. These challenges motivate us to develop a new graph indexing

mechanism that is specific for datacenter networks and service placement.

In this chapter, we propose a graph index framework Gradin (Graph index for

dynamic (temporal) graphs with numerical labels) to address the above challenges.

Gradin encodes subgraphs into multi-dimensional vectors and organizes them such

that it can efficiently search the matches of a query’s subgraphs and combine them

into full matches of the query graph. First, we propose a multi-dimensional index

that supports vector search and is able to handle frequent updates. Different from

existing indexes that are efficient for index updates but suffer from low pruning

power, we develop a search algorithm that preserves the pruning power. Moreover,

we present a theoretical analysis of how index parameters affect update and search

performance. Second, we propose pruning techniques to enable a fast combination

of partial matches of a query graph. A naive solution is costly, when the number

of matches for a query’s subgraphs is large. Using a minimum cover of subgraphs

in a query and subgraphs’ fingerprints, our method is able to significantly improve

query response time.

Our work identifies a key application of graph query in cloud computing. We

develop a new graph index framework that accelerates subgraph matching on

temporal graphs of numerical labels. To the best of our knowledge, this is the
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first study on this topic. Using both real and synthetic datasets, we demonstrate

that Gradin outperforms the baseline approaches up to 10 times.

4.2 Problem definition

For the sake of simplicity, we examine undirected graphs where only nodes

have single labels, and assume that labels are normalized [35, 151]. Our work can

be extended to general graphs where both nodes and edges have multiple labels.

Data graph. A data graph G is represented by a tuple (V,E,A), where (1) V is

a finite set of nodes; (2) E ⊆ V × V is a set of edges; and (3) A : V → [0, 1] is a

function that assigns a numerical label to each node u ∈ V .

Query graph. A query graph is defined as Q = (V ′, E ′, A′, p), where (1) V ′ and

E ′ are a node set and an edge set, respectively; (2) A′ : V ′ → [0, 1] is a labeling

function; and (3) p is a predicate function that assigns a predicate for each node

u′ ∈ V ′. In other words, p specifies search conditions: p(u′, u) defines a predicate

A′(u′) op A(u), where (1) u′ is a node in a query graph; (2) u is a matched node

of u′ in a data graph; and (3) op is a comparison operator drawn from the set {<,

≤, =, 6=, ≥, >}. Here, we focus on the predicate A′(u′) ≤ A(u).

Compatibility. Given two graphs H1 = (V1, E1, A1) and H2 = (V2, E2, A2), H2 is

compatible with H1, if (1) H1 is structurally graph isomorphic to H2 by a bijective

function f : V1 → V2; and (2) ∀u ∈ V1, A1(u) ≤ A2(f(u)).

Graph update in datacenters. In datacenter networks, the most frequent

updates come from numerical values on nodes and edges. (1) Update frequency is

close to, or even higher than query frequency, and (2) a large portion (10− 50%)
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of nodes/edges in a data graph are frequently updated. In contrast, the physical

connections of nodes are relatively stable. Thus, topological update is not the

focus of this study.

Definition 2 (Dynamic subgraph matching). Given a data graph G with its

node/edge labels frequently updated, a query graph Q, and an integer r, Dynamic

subgraph matching for cloud service placement is to find up to r compatible sub-

graphs of Q from G.

The number of returned subgraphs r is decided by applications. To place a

service into a cloud, we might need more than one compatible subgraphs in or-

der to optimize the performance of the whole cloud [127]: (1) some compatible

subgraphs might not be available due to the network dynamics and the query

processing delay; and (2) cloud administrators might be interested in optimiz-

ing other performance metrics, such as network congestion [34] and transmission

cost [127].

Dynamic subgraph matching is a hard problem. By a reduction from the

well-known subgraph isomorphism problem [73], the problem can be shown to be

NP-complete. On the other hand, for small query graphs and sparse datacenter

networks, it is possible to build indices to solve the matching problem in a practical

manner. In the following sections, we investigate the feasibility and principles of

building a graph index on networks with partially ordered numerical labels, and

study how to speed up index update while preserving search speed. We will also

discuss how to optimize query processing.
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4.3 An overview of Gradin

Fragment. A fragment h = (Vh, Eh, Ah) is a connected subgraph from a graph

H = (V,E,A), where (1) Vh ⊂ V and Eh ⊂ E are a node set and an edge set,

respectively; and (2) ∀u ∈ Vh, Ah(u) = A(u).

In particular, we use g to denote a fragment extracted from a data graph G,

referred as a graph fragment, and use q to denote a fragment extracted from a

query graph Q, referred as a query fragment. To facilitate index building and

searching, we represent fragments by fragment coordinates.

Fragment coordinate. Given the canonical labeling [190] of a fragment h of

k nodes, the fragment coordinate, denoted by x(h), is a k-dimensional vector,

where the i-th dimension contains the information about the i-th visited node in

its canonical labeling. In particular, the i-th dimension of a fragment coordinate

could either be the id or the label of the i-th visited node in the canonical labeling.

id visited order

1

2

3

4

1-2 2-3 3-4 4-2

(v1,v2,v3,v4) (0.1, 0.7, 0.6, 0.3)

v1

v2

0.1

0.7

0.6 0.3
fragment coordinate

id label

canonical labeling

v3 v4 v4

v1

v3

v2

Figure 4.2: A fragment with its canonical labeling (top right) and fragment
coordinates (bottom right)

Figure 4.2 shows an example of fragment coordinates. (1) The canonical la-

beling of the fragment is shown in the top-right corner, where i denotes the i-th

visited node, and i−j denotes a visit from the i-th visited node to the j-th visited

node. (2) The coordinate (v1, v2, v3, v4) stores node id information, and the coor-

dinate (0.1, 0.7, 0.6, 0.3) stores node label information. Note that each graph has
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a unique canonical labeling, and the fragment coordinates specify how to assign

ids and labels to nodes and edges.

In addition, we refer to the coordinate of node id information as an id coor-

dinate, and the coordinate of label information as a label coordinate. When the

context is clear, the term fragment coordinate is used without ambiguity.

Let Q be a query graph. A region in a data graph is worth searching, if for any

query fragment q, the region contains graph fragments that are compatible with q;

otherwise, we can safely exclude that region from search. Gradin implements this

idea in two components: offline index construction and online query processing.

Ds3
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x (g2,1), x (g2,2), ...

x (g3,1), x (g3,2), ...

..
.

..
.

s1 s2 s3

s4
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+

Gradin filtering

(b) Online query processing

Figure 4.3: Gradin consists of two parts: (1) offline index building and (2) online
query processing

Offline index construction. Let G be a data graph and S be a graph structure

set that is decided by existing structure selection algorithms [191]. For each

structure s ∈ S, we use subgraph mining technique [190] to search Ds, which

contains all the graph fragments in G of the structure s. Using the canonical

labeling of structures as keywords, graph fragments are organized by inverted
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indices. To further optimize search and storage, graph fragments in the inverted

indices are denoted by their fragment coordinates.

Figure 4.3(a) illustrates an example of the offline index construction. G is a

data graph at the top-left corner, and S at the top-right corner is a set of structures

we aim to index. First, Dsi – all graph fragments corresponding to structure si –

are mined from the data graph. Using an inverted index, the canonical labeling

of si points to Dsi. In particular, the inverted index stores fragment coordinates.

Online query processing. As shown in Figure 4.3(b), given a query graph Q,

Gradin searches the compatible subgraphs of Q in three steps. (1) Decompo-

sition. Gradin decomposes Q into query fragments, whose structures have been

indexed. (2) Filter. For each query fragment q, Gradin first finds the set of graph

fragments sharing the same structure, and only returns those fragments that are

compatible with q. The returned set of graph fragments is also referred to as

candidate set Cq. (3) Join. Gradin conducts fragment join among candidate sets.

By stitching fragments in candidate sets, Gradin returns compatible subgraphs for

Q.

To provide a good query processing performance, Gradin needs to enable fast

search and join at the filter and the join phase. We need to address two challenges:

(1) frequent updates and (2) the large search space for fragment join.

Frequent updates. It is preferable to build a search index for Ds (the graph

fragments of structure s), especially when the size of Ds is very large (e.g., the

number of 3-star, a star structure with three branches, in a medium-size datacenter

network reaches 10M). However, when node labels are frequently updated, it is

non-trivial to build the desired search index. On the one hand, a sophisticated
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search index (e.g., R-tree [88]) offers strong pruning power; however, it is costly

to perform updates [165]. On the other hand, a simple search index (e.g., an

inverted index) provides faster index update speed; however, the index’s pruning

power decreases and longer time is needed for filtering the remaining candidates.

In Section 4.4, we discuss how we address this challenge.

The large search space for fragment join. This challenge includes two as-

pects. First, since the size of a candidate set can be very large, a näıve join

algorithm will be extremely slow. Second, since a query graph might be decom-

posed into dozens of query fragments (e.g., a 10-star query graph contains 110

query fragments of no more than 2 edges), it is preferable to select a subset of

query fragments that covers the query graph and minimizes the amount of redun-

dant intermediate results. In Section 4.5, we propose a two-step algorithm that

prunes the large search space for fragment join.

4.4 Fragment index

In this section, we present an index FracFilter that efficiently processes frequent

updates, and preserves search speed.

4.4.1 Naive solutions

Let Ds be the set of graph fragments of structure s. There are three basic

options to build a search index for Ds: (1) R-tree variant, (2) inverted index, or

(3) grid index.
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R-tree variant. One might build R-tree variants [48, 88] based on fragment

label coordinates to offer good pruning power. However, when node labels are

frequently updated, the search trees will process a massive number of update

operations. Update operations on R-tree variants are costly [165]. Even though

with sophisticated insertion strategies R-tree-like search structures can process

around 16, 000 updates per second [165], they will spend a considerable amount

of time in processing index updates. For example, in a datacenter network of 3, 000

nodes, when 30% node labels are updated, in the case of graph fragments of the

structure 3-star, more than 5M label coordinates need to be updated. Therefore,

the state-of-the-art R-tree variant might take more than 5 minutes to update the

index. As queries need to wait on index update, the throughput of the whole

system will suffer.

Inverted index. One might consider fragment id coordinates, and build inverted

indices on id coordinates with the canonical labeling as keywords. To prune

unpromising graph fragments for a query fragment qs, we have to verify all graph

fragments in Ds. Since updates on node labels never change id coordinates, these

indices take little index update cost; however, the size of Ds is usually large (e.g.,

tens of millions), so a thorough scan will slow down query processing.

Grid index. One might apply grid indices to allow affordable update opera-

tions [45, 163]. The general idea is as follows. (1) The multi-dimensional space

of label coordinates are partitioned into grids. (2) The fragments in the same

grid are managed with a light-weight data structure (e.g., list). (3) If a fragment

label coordinate is updated, update operations will be conducted only when the

updated coordinate moves out of the original grid. (4) When a query fragment
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arrives, we issue a range query based on its label coordinate: (a) mark those frag-

ments in the grids that are fully covered by the range query as candidates; and (b)

verify those fragments in the grids that are partially covered by the range query.

Note that the search speed depends on the amount of time taken by verification.

If we apply a naive method that compares the targeted graph fragments with

the query fragments, it will take a considerable amount of time. Consider the

following example.

Example 6. 10M graph fragments of the structure 3-star ( i.e., 4D coordinates)

are managed by a grid index with 10,000 grids. Suppose graph fragments are

uniformly distributed, each grid covers 1,000 fragments. A 10-star query has 720

query fragments of the structure 3-star. Suppose a query fragment is uniformly

distributed, it will partially cover 505 grids in average. Therefore, a query fragment

needs up to 4 ∗ 505 ∗ 1000 = 2.02M comparisons to complete verification, and in

total we need up to 720∗2.02M = 1454.4M comparisons for one indexed structure.

In Example 6, we consider the case of node labels and single label per node.

In a general case of edge labels and multiple labels per node/edge, the number

of comparisons will proportionally increase. Therefore, the verification phase will

slow down by a large amount of comparisons.

In the following discussion, we introduce an index FracFilter that addresses

both update and search issues. FracFilter is a grid-based index that inherits the

merit of update efficiency; moreover, we propose a verification algorithm that

accelerates search by avoiding redundant comparisons.
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4.4.2 FracFilter construction

We start with the construction of FracFilter. For an indexed structure, a

FracFilter is constructed by two steps: (1) it partitions the label coordinate space

into grids, and (2) maps graph fragments into the corresponding grids.

s
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12 13 14 15
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(b) λ = 4

Figure 4.4: FracFilters of density 2 (left) and 4 (right): s in the top right corner
is the structure of Ds, points are label coordinates, and the integer in each grid is
the grid id.

Partition the space into grids. Let λ be a positive integer, called grid density,

ns be the number of fragments with structure s, and d be the number of dimen-

sions for fragments’ label coordinates. One partition strategy is to uniformly slice

label coordinate space into λ parts for each dimension; however, this strategy

might result in unacceptable index searching and updating performance when la-

bel coordinate distribution is skew. Therefore, we consider to use the empirical

distribution of label coordinates in each dimension to partition the space: (1)

slice each dimension into λ parts, and each part contains ns

λ
fragments; and (2)

independently repeat this procedure in each dimension. In this way, we obtain

λd d-dimensional grids in total. Moreover, each grid is associated with a grid id

represented by a base-λ integer. Suppose the i-th dimension of a grid falls into
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the j-th partition, then the i-th bit of the grid id is j. The advantages of using

the above way to assign a grid id include (1) the ease of designing fragment map-

ping functions, and (2) the ease of avoiding redundant comparisons (discussed in

Section 4.4.3).

Figure 4.4 demonstrates two FracFilters of density 2 and 4, respectively, on a

2-dimensional space: (1) grids are disjoint, (2) a point (fragment) is covered by

one and only one grid, and (3) the whole space is covered.

Map fragments into grids. Let g be a graph fragment, x(g) = (x1, x2, ..., xk)

be g’s fragment coordinate, and gid be the id of the grid to which g should be

mapped. The mapping function is designed as follows. (1) Starting with x1, if x1

falls into the j1-th partition, we set the first bit of gid to be j1. (2) At the i-th

dimension, if xi falls into the ji-th partition, we set the i-th bit of gid to be ji. (3)

Repeat this process for all dimensions. we use lists to manage fragments in grids.

The pseudo code of the construction algorithm is shown in Figure 4.5 for refer-

ence. The above construction algorithm shows that a FracFilter can be constructed

in linear time, and the following result indicates the computation complexity.

Proposition 7. Let λ be the grid density, ns be the number of fragments, and

d be the number of dimensions of a label coordinate space. We can construct a

FracFilter in O(max (λd, dns)).

Remark. (1) The construction algorithm will be executed once for each indexed

structure. In other words, if we index 5 structures and obtain 5 sets of graph

fragments, the construction algorithm will be executed for 5 times, and each run

builds a FracFilter for the corresponding structure. (2) We define the grid density λ

and divide each dimension into λ partitions for the ease of discussion. Indeed, with
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Input: (1) grid density λ;

(2) the number of dimensions d;

(3) a list of label coordinates of Ds, frag;

Output: a FracFilter, filter.

1. grid.resize(λd)

2. locX.resize(len(frag)), locY .resize(len(frag))

3. for i in range(0, len(frag))

4. gid = gridID(frag[i])

5. grid[gid].append(frag[i])

6. locX[i] = gid

7. locY [i] = len(grid[gid]) − 1

8. return filter (grid, locX, locY , d, λ)

Figure 4.5: The Algorithm sketch for constructing a FracFilter

little modification, the construction algorithm along with its theoretical results

works in the cases where each dimension is divided into a variable number of

partitions.

4.4.3 Searching in FracFilter

In this section, we present how a FracFilter avoids unnecessary comparisons

and accelerates search for a query fragment. When a query fragment arrives, we

formulate a range query that is a multi-dimensional box with the query fragment’s
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label coordinate as the bottom corner and (1.0, 1.0, ..., 1.0) as the top corner. The

range query divides the label coordinate space into three regions R1, R2, and R3:

(1) R1 contains the grids that are fully covered by the range query; (2) R2 contains

the grids that are partially covered by the range query; and (3) R3 contains rest

of the grids. Figure 4.6 gives examples of R1, R2, and R3. In particular, we mark

fragments in R1 as candidates, discard fragments in R3, and verify fragments in

R2.
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Figure 4.6: The same query fragment (the red dot) requests fragment searching
on two FracFilters of density 2 (left) and 4 (right).

For graph fragments in R2, a naive verification algorithm blindly makes com-

parisons in every dimension; however, for some dimensions, comparisons are un-

necessary. Consider an example in Figure 4.6(b). A query fragment falls into grid

5 (114 in base-4 form), and grid 5(114), 6(124), 7(134), 9(214), and 13(314) are in

R2. For fragments in grid 5(114), we have to take all dimensions into consideration

for verification. However, for fragments in grid 6(124) and 7(134), we only need

to consider dim2 since their label values in dim1 is surely greater; and similarly,

for fragments in grid 9(214) and 13(314), we only need to consider dim1.
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Let cq be the grid where a query fragment falls, and c be a grid in R2. We

obtain the following pruning rule.

Lemma 1. Comparisons at the i-th dimension are necessary, only if the i-th bit

of cq’s id equals the i-th bit of c’s id.

A natural question is how many comparisons we can avoid from this rule.

Suppose that (1) label coordinates of graph fragments are uniformly distributed

in grids and (2) a query fragment’s label coordinate is uniformly distributed in

grids as well, the following result shows the expected number of comparisons a

FracFilter makes for verification.

Theorem 4. Given λ, grid density, d, the number of dimensions, and ns, the

number of graph fragments, the expected number of extra comparisons for an ar-

bitrary query fragment is dns

λd

(

λ+1
2

)d−1
.

Proof. We show the expected number of comparisons a FracFilter requires for an

arbitrary query fragment. (1) The probability that a query fragment falls into

grid cq with a base-λ id adad−1 · · · a1 is 1
λd . (2) The number of grids in R2 that

need d more comparisons for each graph fragment is 1 (cq itself), the number of

grids that need d − 1 more comparisons is
∑d

j=1(λ− aj − 1), and in general, the

number of grids that need d − k more comparisons for each graph fragment is
∑

(j1,j2,··· ,jk)

∏k
i=1(λ−aji −1) where (j1, j2, · · · , jk) enumerates all k-combinations

of (1, 2, · · · , d). Taking summation over all possible cq, the number of grids that

need d − k more comparisons is
(

d
k

)

λd−k
[λ(λ−1)

2

]k
. Thus, the expected number of
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comparisons is derived by

EX =
ns

λd

1

λd

d
∑

k=1

k ·
(

d

k

)

λk
[λ(λ− 1)

2

]

d−k

= −ns

λd

(λ− 1)d+1

2d

[

(
2

λ− 1
+ 1)

d
]′

=
dns

λd

(λ+ 1

2

)

d−1

.

Therefore, Theorem 4 is proved.

Consider an inverted index that scans the whole set of graph fragments taking

dns comparisons, and a naive verification algorithm on a grid index that scans

dns

λd

[(

λ+1
2

)d −
(

λ−1
2

)d]
in average (the derivation is similar to the proof of Theo-

rem 4). The ratio from the number of comparisons made by a FracFilter to the

number by the inverted index is d
λd

(

λ+1
2

)d−1
; similarly, the ratio from a FracFilter

to the naive verification algorithm is 2(λ+1)d−1

(λ+1)d−(λ−1)d
. In other words, when d = 7 (a

3-star fragment with single node and edge labels), and λ = 25, this ratio is lower

than 0.005 for the inverted index, and lower than 0.18 for the naive verification

algorithm.

Remark. (1) Theorem 4 demonstrates that a FracFilter of a larger grid density

has a faster pruning speed in average. In particular, when λd ≤ ns

2
, the first

derivatives of the above ratios will be negative so that the efficiency will increase

if λ increases; moreover, when λd ≤ ns

2
, the second derivatives of the above ra-

tios will be positive so that the efficiency gain will diminish if λ increases. (2)

Although in practice graph fragments might not strictly uniformly distributed in

grids, our experimental results show that FracFilter performs well with both real

and synthetic fragment distributions in Section 4.6.
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4.4.4 Index update in FracFilter

In this section, we discuss the update operations in FracFilter. When a graph

fragment is updated, it triggers one of the two events in FracFilter: bounded or

migration. (1) If an update triggers bounded, the fragment stays in the same grid.

(2) If an update triggers migration, the fragment moves out of the old grid, and

moves into another one.

Given a fragment update, FracFilter is updated in two steps: (1) find which

grid should accommodate the updated fragment; and (2) decide which event this

update triggers and take the corresponding action to update FracFilter. In the

second step, if the update triggers event bounded, it takes no update operation;

if the update triggers event migration, it takes two operations: (a) delete the

fragment from the old grid’s fragment list, and (b) insert the updated fragment

into the right grid.

Suppose the label coordinate of an updated fragment is uniformly distributed

in the space, we obtain the following complexity result for index update in

FracFilter.

Theorem 5. Given d is the number of dimensions and λ is the grid density,

FracFilter takes 2(1− 1
λd ) operations per update in average.

Proof. For an arbitrary update, the probability of staying in the original grid is 1
λd .

Thus, the expected number of operations an update takes is 0 · 1
λd +2 ·(1− 1

λd ).

Remark. Theorem 5 suggests that a FracFilter of smaller grid density λ is more

likely to take fewer update operations. In Figure 4.7, we make the same update to

the fragment in the bottom-left corner: (1) the update in the FracFilter of λ = 2

97



Chapter 4. Subgraph Matching in Temporal Graphs

0 1.0

1.0

dim2

dim1

2 3

0 1

s

Ds

(a) λ = 2

0 1.0

1.0

dim2

dim1

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

s

Ds

(b) λ = 4

Figure 4.7: An update on FracFilter of density 2 (left) and 4 (right), respectively.
When a fragment in bottom left corner is updated, it triggers a bounded event on
the left, but a migration event on the right.

triggers a bounded event, and requires no operation (Figure 4.7(a)); however, (2)

the update in the FracFilter of λ = 4 triggers a migration event requiring a deletion

and an insertion on lists (Figure 4.7(b)). Indeed, if an update triggers a migration

event in a FracFilter of smaller grid density, it must triggers a migration event

in a FracFilter of larger grid density; on the other hand, if an update triggers

a migration event in a FracFilter of larger grid density, it might only trigger a

bounded event in a FracFilter of smaller grid density. Note that a larger grid

density λ brings better search performance at the cost of higher memory usage

and slower update performance. In practice, one can try different λ, and use the

one that best fit the application.

4.5 Optimize query processing

In this section, we discuss how to accelerate subgraph matching at the fragment

join phase. Various heuristics have been proposed to join paths or two-level trees

in a selected order such that the amount of redundant intermediate results is
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reduced [173, 201]. Different from these studies, we deal with general subgraphs

in this work. In particular, we need to address two critical issues. First, we need to

define the join selectivity of general subgraphs, and propose an algorithm to find

a set of query fragments that minimizes redundancy. Second, in a considerable

number of cases, no matter which join order we apply, a naive join will take a long

time. Consider the following example.

Example 7. Cq1, Cq2, and Cq3 are the candidate sets of query fragment q1, q2,

and q3, and the size of these candidate sets is uniformly 106. In the data graph,

there is no matched subgraph, but we do not know it when we conduct the join.

In this case, no matter how we place the join order, a naive join for the first two

candidate sets will take 1012 comparisons.

In this paper, we propose a two-step method to address the above issue: (1) we

use minimum fragment cover to find a set of query fragments whose candidate sets

potentially involve the minimum amount of redundant intermediate results; and

(2) fingerprint based pruning is applied to prune redundant comparisons between

a pair of candidate sets.

4.5.1 Minimum fragment cover

Minimum fragment cover finds a small set of selective query fragments with

small candidate sets to reduce computation cost at the join phase, with the con-

straint that the result of fragment join over this small set of query fragments is

equivalent to that over the whole set of query fragments. There are two intuitions

behind minimum fragment cover. (1) We only need a subset of query fragments

that jointly cover all nodes and edges in the query graph, and we refer to such
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a subset as a fragment cover. (2) As there are multiple ways to select fragment

covers, one might prefer to take the one of a smaller search space for fragment

join. In the following, we define an optimization problem that implements the

above intuition.

Given a fragment cover {q1, q2, ..., qk} and their corresponding candidate sets

{Cq1, Cq2 , ..., Cqk}, the joint search space size is bounded by exp (J),

J = log(

k
∏

i=1

|Cqi|) =
k
∑

i=1

log(|Cqi|).

Indeed, one may prefer a fragment cover that optimizes the upper bound J . There-

fore, with J as the objective function, we define the minimum fragment cover

problem as follows.

Definition 3 (Minimum fragment cover). Given a query graph Q with its whole

set of query fragments {q1, q2, ..., ql} and their candidate sets {Cq1, Cq2, ..., Cql},

a minimum fragment cover is a subset of query fragments {qi1, qi2, ..., qik} such

that (1) this subset is a fragment cover, and (2) its corresponding J is minimum.

However, the following result indicates that it is difficult to find the minimum

fragment cover in polynomial time. Instead, one can obtain an approximated

solution in polynomial time with approximation guarantee.

Theorem 6. The minimum fragment cover problem is NP-complete; however,

there exist greedy algorithms with an approximation ratio O(lnn), where n is the

sum of the number of nodes and the number of edges.

Proof. To prove the NP-completeness of the minimum fragment cover problem,

one could reduce an arbitrary set cover instance [73] to a minimum fragment cover
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instance by (1) constructing a depth-1 tree where each leaf maps to an element in

the ground set and (2) constructing a smaller depth-1 tree for each set where a leaf

maps to an element contained by the set. One can verify that this transformation

runs in polynomial time, and a solution to the transformed instance is a solution

to the original set cover instance. Since the minimum fragment cover problem is

NP, the NP-completeness of the problem follows. Moreover, an arbitrary mini-

mum fragment cover instance can be easily transformed into a set cover instance.

Therefore, the approximation guarantee O(lnn) for set cover [73] can be applied

to minimum fragment cover. In sum, the correctness of Theorem 6 is proved.

4.5.2 Fingerprint based pruning

The intuition of fingerprint based pruning includes two aspects. (1) Given a

fragment cover, it is preferable to join fragments in an order such that it results in

connected subgraphs at every intermediate step. Indeed, disconnected subgraphs

at intermediate step will lead to an explosion of the search space. To obtain a con-

nected intermediate subgraph, two query fragments at any intermediate step have

to share a set of nodes. In other words, these overlapping and non-overlapping

nodes form the join conditions for graph fragments. (2) Suppose join operations

are conducted between two candidate sets Cq1 and Cq2 where q1 and q2 share

several common nodes. Let gi be a graph fragment from Cq1. It is very likely

that only a small portion of graph fragments in Cq2 share the required common

nodes with gi; meanwhile, only this small portion of graph fragments are worth

checking. Therefore, instead of linearly scanning Cq2, it is preferable for gi to only

check those graph fragments of the required common nodes. With this spirit, we
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propose fingerprint based pruning that (1) extracts the required common nodes

for fragment join, (2) makes fingerprints based on these common nodes, and (3)

prunes redundant search if two fragments have different fingerprints.
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Figure 4.8: An example of fingerprint based pruning

To illustrate how we perform fingerprint based pruning, an example is pre-

sented in Figure 4.8.

First, for a query graph Q, three query fragments q1, q2, and q3 form a fragment

cover, and their id coordinates are (v1, v2), (v2, v3, v5), and (v3, v5, v4), respectively.

Second, the order of fragment join is as follows. (a) Join the candidate sets of

q1 and q2; and (b) join the intermediate subgraphs from (a) with the candidate

set of q3.

Third, starting with q1 and q2, they share v2 that is the second dimension of

q1’s id coordinate, and the first dimension of q2’s id coordinate. Thus, for each

graph fragment gi in the candidate set of q2, the fingerprint of gi is constructed

by the node id at the first dimension of its id coordinate. Using fingerprints as

keys, graph fragments from q2’s candidate set are organized by an inverted index.

Given a graph fragment gj from Cq1, we first extract its fingerprint by the node id
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at the second dimension of its id coordinate. With its fingerprint, we search q2’s

inverted index, and only check those graph fragments sharing gj’s fingerprint.

Fourth, at intermediate steps, a similar procedure is conducted. As shown

in Figure 4.8, the intermediate query graph q4 is obtained by joining q1 and q2,

and we next join q4 with q3. The common nodes of q4 and q3 are node v3 and

node v5. v3 and v5 are the nodes at the third and the fourth dimension of q4’s

id coordinate; meanwhile, they are at the first and second dimension of q3’s id

coordinate. Similarly, we obtain the fingerprints of q3’s candidate fragments, and

organize them by an inverted index. For a graph fragment gi of q4, we first

extract gi’s fingerprint, locate those graph fragments sharing its fingerprint by

q3’s inverted index, and only check those promising graph fragments.

In addition, given a fragment cover, the join order is determined by a heuristic

algorithm. We start with the query fragment of the smallest candidate set in the

fragment cover. At each step, we select the query fragment that shares common

nodes with the query fragments that have been joined. If there exist multiple such

query fragments, we select the one with the smallest candidate set. We repeat

this process until all the query fragments in a fragment cover are joined.

4.6 Experiments

Using real and synthetic data, we conducted three sets of experiments to eval-

uate the performance Gradin. Both real and synthetic data are used to evaluate

Gradin’s performance on query processing and index construction/update. The

synthetic data is used to study its scalability.
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Gradin is implemented in C++. All experiments were executed on a machine

powered by an Intel Core i7-2620M 2.7GHz CPU and 8GB of RAM, using Ubuntu

12.10 with GCC 4.7.2. Each experiment was run 10 times. In particular, for query

processing, each run includes 100 query graphs. For all experiments, their average

results are presented.

4.6.1 Experiment setup

Data graphs. We used the following network topologies as data graphs. (1)

BCUBE is a network architecture for datacenters [87]. We generated BCUBE

networks as follows. (a) The number of nodes in the networks ranges from 3, 000

to 15, 000 with step 2, 000; and (b) the average degree of a network is between

18 and 20. In particular, a BCUBE network of 3, 000 nodes was used to compare

Gradin with its baselines, and the rest networks were used to evaluate Gradin’s

scalability. (2) CAIDA1 dataset contains 122 Autonomous System (AS) graphs,

from January 2004 to November 2007. In particular, we used the largest AS graph

of 26, 475 nodes and 106, 762 edges to compare query processing and indexing

performance between Gradin and its baselines.

Numerical labels and updates. We obtained the numerical labels and their

updates from the ClusterData2. It contains the trace data from about 11k ma-

chines over about a month-long period in May 2011 [151]. For each machine,

we extracted its CPU and memory usage traces, and each trace is represented

as a sequence of normalized numerical values between 0 and 1. Moreover, we

1http://snap.stanford.edu/data/as-caida.html
2http://code.google.com/p/googleclusterdata/

wiki/ClusterData2011 1
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Figure 4.9: Query processing performance on B3000 and CAIDA with 100 com-
patible subgraphs returned

randomly mapped a cluster machine to a node in a data graph, and obtained

numerical labels on nodes along with their updates. In particular, we applied

the node labels/updates from ClusterData to the evaluation for query processing

(Section 4.6.2) and indexing performance (Section 4.6.3).
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In order to explore how our technique performs on different numerical label

distributions, we generated labels and updates from statistical distributions of

estimated parameters (using ClusterData as sample data). The generated labels

are applied to the evaluation for scalability in Section 4.6.4.

Query graphs. As query graphs are usually small [184, 201], we consider all

possible connected graphs of 3 to 10 edges as possible queries, and the numerical

labels on nodes are randomly drawn from 0 to 1.

Baselines. Five baselines are considered: VF2, UpdAll, NaiveGrid, NaiveJoin,

and UpdNo. (1) VF2 [58] is a state-of-the-art subgraph search algorithm without

any index. (2) UpdAll indexes fragment label coordinates with multi-dimensional

search trees. This index enables fast candidate search; however, update opera-

tions are costly on the search tree. In particular, we implemented two versions

of search trees: (a) a multi-dimensional binary tree of better update processing

performance is used to compare indexing performance in Section 4.6.3; and (b)

an R-tree [88] of faster query processing performance is used to compare query

processing performance in Sections 4.6.2 and 4.6.4. (3) NaiveGrid is a grid index

with a naive verification algorithm. (4) NaiveJoin uses FracFilter at the filtering

phase, but a naive join is applied for fragment join. (5) UpdNo is an inverted in-

dex where each entry points to a list of fragments of the same structure. It never

updates index; however, it requires a large amount of comparisons for searching

candidate fragments.
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4.6.2 Query processing

In the first set of experiments, we investigated the query processing perfor-

mance of Gradin on the BCUBE graph of 3,000 nodes (B3000) and the largest

CAIDA graph (CAIDA).

Since a service placement task might require multiple compatible subgraphs

to be returned [34, 127], in the experiments, the number of returned compatible

subgraphs r is set to be 5, 10, or 100. Formally, given a graph G, taking a query

graph Q as input, we find up to r compatible subgraphs.

Pruning power. We evaluate the pruning power of Gradin, UpdAll, NaiveGrid, and

UpdNo, by measuring comparison cost ratio and filtering time. (1) Comparison

cost ratio defines the ratio from the amount of label comparisons executed by

Gradin to the amount by NaiveGrid. In particular, the comparison cost ratio is

100% for NaiveGrid. (2) Filtering time defines the total amount of time spent

in searching candidate fragments. All the evaluations are conducted by varying

query graph size (the number of edges).

On B3000, Figure 4.9(a) and Figure 4.9(b) present the pruning power of

UpdAll, UpdNo, NaiveGrid, and Gradin: Figure 4.9(a) presents the comparison cost

ratio of Gradin with grid density 5, 15, and 25 (referred to as Gradin-5, Gradin-15,

and Gradin-25), respectively, while Figure 4.9(b) only presents the filtering time of

the Gradin with grid density 25 (it always outperforms the other two variants). On

the one hand, when query size increases, the Gradin variant of a greater grid den-

sity receives better pruning power; however, the power gain is diminishing when

grid density grows. On the other hand, the filtering time of all algorithms in-

creases, when graph query size increases. In particular, (1) as query size increases
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from 3 to 10, the filtering time of Gradin increases from 0.046 to 1.387 seconds,

which is close to the performance of UpdAll (later, we will show that UpdAll is

4-10 times slower in index construction and update.); and (2) in terms of filtering

time, Gradin is up to 10 times faster than UpdNo, and is around 5 times faster

than NaiveGrid.

On CAIDA, Figure 4.9(d) and Figure 4.9(e) present consistent results: (1)

Gradin with grid density 25 has the best pruning power, but the power gain is

diminishing when grid density grows; and (2) in terms of filtering time, Gradin is

close to UpdAll, is 10 times faster than UpdNo, and is up to 5 times faster than

NaiveGrid.

In sum, the above results verify our theoretical analysis in Theorem 4.

Query processing time. We evaluate the total query processing time of Gradin,

UpdAll, UpdNo, NaiveGrid, and VF2. The total query processing time includes

query decomposition time, filtering time, and fragment join time. In addition, all

the evaluations are conducted by varying query graph size (the number of edges).

First, we studied the total query processing time of different techniques, and

set the number of returned compatible subgraphs to be 100. Figure 4.9(c) and

4.9(f) present the total query processing time on B3000 and CAIDA, respectively.

Since Gradin with grid density 25 always outperforms Gradin with density 5 or 15,

we only present the query processing time of Gradin with grid density 25. On both

data graphs, we observe two common trends: (1) Gradin processes queries as fast

as UpdAll does; (2) Gradin outperforms UpdNo up to 10 times; and (3) Gradin is up

to 5 times faster than NaiveGrid. In particular, on B3000, as the query size grows

from 3 to 10, the query processing time of Gradin increases from 0.046 to 1.62
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seconds, while UpdNo’s query processing time increases from 0.40 to 15.2 seconds,

and NaiveGrid’s query processing time increases from 0.27 to 6.12 seconds, which

achieves up to 10 times and 5 times speedup, respectively; meanwhile, on CAIDA,

as the query size grows, the query processing time of Gradin increases from 0.29

to 1.98 seconds, while UpdNo’s query processing time increases from 2.44 to 17.5

seconds, and NaiveGrid’s query processing time increases from 1.46 to 9.98 seconds,

which is around 8 times and 5 times speedup, respectively. Moreover, VF2 cannot

scale on both B3000 and CAIDA: (1) on B3000, when the query size is more than

8, VF2 cannot process 100 queries within 12 hours; and (2) on CAIDA, even when

the query size is 3, VF2 cannot process 100 queries within 6 hours. In the case of

NaiveJoin, within 6 hours, it cannot process 100 queries of size 4 on B3000, and

cannot process 100 queries of size 3 on CAIDA (not shown).
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Figure 4.10: Query processing on B3000 returning 5 or 10 matches

Second, we investigated how VF2, NaiveJoin, and Gradin perform when the

number of returned subgraphs is smaller by setting the number of returned sub-

graphs to be 5 or 10. The query processing time on B3000 is presented in Fig-

ure 4.10(a) and Figure 4.10(b). Two observations are made: (1) VF2 is faster
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when the query size is small; and (2) Gradin performs better when the query size

is relatively large (e.g., ≥ 8 edges). When a query graph is smaller, the num-

ber of matched subgraphs in a data graph is larger in general, and the amount

of redundant search for VF2 is smaller as well. Since VF2 does not conduct a

global pruning as Gradin does, VF2 earns a better performance when the query

size is small. However, when a query graph is relatively large, the number of

matched subgraphs decreases, and VF2 cannot successfully skip the redundant

search. Meanwhile, the pruning power of Gradin is pronounced, especially when

the query size gets larger. In particular, when the query size is 10, Gradin per-

forms around 50 times better than VF2 if 5 subgraphs are returned, and around

100 times better if the number of returned subgraphs is 10. On CAIDA, even

when the number of returned subgraphs is 5, VF2 cannot process 100 queries of

size 3 within 6 hours (not shown); however, Gradin is able to process 100 queries

of size 10 within 6 minutes (i.e., 3.6 seconds per query). In the case of NaiveJoin,

even when the number of returned subgraphs is 5, within 6 hours, it cannot pro-

cess 100 queries of size 4 on B3000, and cannot process 100 queries of size 3 on

CAIDA (not shown).

Remarks. (1) When a query graph’s structure is indexed, Gradin can directly

answer the query without fragment join. For example, we can answer query graph

of size 3 on B3000 after the filtering phase. (2) We indexed fragments of no more

than 3 edges on B3000, while the indexed fragments on CAIDA have no more

than 2 edges. On B3000, as the query size increases from 4 to 10, the fragment

join time increases from 0.004 to 0.20; meanwhile, on CAIDA, the fragment join

time increases from 0.011 to 1.72, when the query size grows from 3 to 10. This
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Table 4.1: Index construction time (sec)

Data graph UpdAll Gradin-5 Gradin-15 Gradin-25

B3000 85.3 18.5 19.6 21.1
CAIDA 61.6 17.1 17.4 17.5

shows that our fragment join algorithms effectively prune redundant search. The

experiments also show that as less sophisticated structures are indexed, it usually

takes more time on fragment join, since we need more query fragments to cover

a query graph, which results in a larger number of join operations. (3) As the

fragment join time is largely reduced by our optimization techniques, the impor-

tance of reducing filtering time is highlighted. Using FracFilter, Gradin successfully

reduces filtering time.

4.6.3 Indexing performance

In the second set of experiments, we investigated the indexing performance

of Gradin on the BCUBE of 3000 nodes (B3000) and the largest CAIDA graph

(CAIDA). In particular, we built Gradin variants of grid density 5, 15, and 25,

referred to as Gradin-5, Gradin-15, and Gradin-25.

Index construction. We evaluate index construction time and index size of

UpdAll and Gradin variants. Index construction time measures the amount of time

spent in building index after graph fragments are mined, and we separately report

the amount of time for mining graph fragments.

On B3000, we built Gradin variants and UpdAll based on fragments of no more

than 3 edges. It took us 370 seconds to mine fragments from B3000, obtaining
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Table 4.2: Index size (MB)

Data graph UpdAll Gradin-5 Gradin-15 Gradin-25

B3000 1644 607 610 615
CAIDA 1486 583 585 589

fragments of 5 different structures. Index construction time and index size of

UpdAll and Gradin variants are shown in Tables 4.1 and 4.2, respectively. All

Gradin variants take less time and space to build indices on B3000.

On CAIDA, we built Gradin variants and UpdAll based on fragments of no

more than 2 edges, and mined fragments of 2 different structures including one-

edge and two-edge paths in 268 seconds. The performance results are reported in

Tables 4.1 and 4.2, respectively. All Gradin variants take less time and space to

build indices on CAIDA as well.

Index update. We evaluate index update performance of Gradin and UpdAll

by measuring their update processing time while varying the percent of updated

nodes. Given a data graph, the percent of updated nodes is the percentage of nodes

whose labels are updated. Since a node might appear in multiple fragments, if the

label of a node is updated, multiple fragments might be simultaneously updated

as well. Given a set of updated nodes, we first find the corresponding updated

fragments, and then apply those fragment updates to a graph index. The time

spent in updating a graph index is referred to as update processing time.

Figure 4.11(a) presents the update processing time of UpdAll, Gradin-5, Gradin-

10, and Gradin-25 on B3000: (1) Gradin variants outperform UpdAll, and (2) when

the percent of updated nodes increases, the update processing time of all algo-
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Figure 4.11: Update processing time on B3000 and CAIDA

rithms increases. In sum, Gradin variants are about 10-20 times faster than UpdAll

on B3000.

Figure 4.11(b) shows update processing time on CAIDA. The trends are con-

sistent with those shown in Figure 4.11(a), and Gradin variants are 13-20 times

faster than UpdAll on CAIDA.

Remarks. (1) As we consider more complex structures to build graph indices,

it usually takes more time on index update. For both UpdAll and Gradin, a more

complex structure increases the number of dimensions of the corresponding search

index, which in turn increases update complexity. (2) When Gradin-5 processes

updates, about 40% of updates trigger bounded events, which requires no update

operations on Gradin. However, this ratio drops from 40% to 15%, as we apply

Gradin-25. Even though Gradin-25 takes more time to process updates that trigger

migration events, it is still efficient since update operations are merely insertions

and deletions on lists. In contrary, UpdAll processes all updates with costly inser-

tions and deletions on multi-dimensional search trees. It is Gradin’s partial update
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strategy and inherent low-cost update operations that make Gradin more efficient

on index update.

4.6.4 Scalability

In the third set of experiments, we investigated the scalability of Gradin by

varying the size of a BCUBE graph.

Constrained by security policies and communication latency, a service place-

ment usually considers a few racks in a datacenter3 [77, 127]. Suppose there are

40 machines in each rack 4, we ranged the number of racks in a datacenter from

125 to 3754, and generated six BCUBE graphs of 5, 000, 7, 000, 9, 000, 11, 000,

13, 000, and 15, 000 nodes.

Node labels and updates were generated from beta distributions B(a, b) of

estimated parameters. The reasons why we employed beta distributions include

(1) per machine attributes (i.e., available CPU time/memory) in ClusterData

are normalized between 0 and 1, while beta distribution is one of the widely-

used distributions that could generate random numbers in such an interval; and

(2) there exist efficient algorithms to estimate parameters a and b from sample

data5. In particular, the estimated parameters based on machine CPU time are

a ≈ 7.91 and b ≈ 7.03, and the estimated parameters based on machine memory

are a ≈ 2.42 and b ≈ 2.73. Moreover, the corresponding distributions are referred

to as SYNCPU and SYNMEM, respectively.

In addition, the grid density of Gradin is set to 25, and the indexed structures

have no more than 2 edges.

3http://msdn.microsoft.com/en-us/library/windowsazure/jj717232.aspx
4http://news.cnet.com/8301-10784 3-9955184-7.html
5http://en.wikipedia.org/wiki/Beta distribution
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Table 4.3: Construction time and index size of Gradin

Graph size 5K 7K 9K 11K 13K 15K

Tmine (sec) 49 89 142 227 357 513
Tindex (sec) 2.8 4.0 4.3 6.2 7.0 7.8
Size (MB) 65 100 111 176 202 229
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Figure 4.12: Scalability on BCUBE graphs of 5K - 15K nodes

Index construction. We evaluated index construction time and index size of

Gradin by varying data graph size. As shown in Table 4.3, When the graph size

increases, for a data graph of 15, 000 nodes with more than 150, 000 edges, Gradin

is constructed in less than 10 minutes (including fragment mining), taking 229MB

memory.
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Index update. We evaluated the index update performance of Gradin by varying

data graph size. In particular, the percent of updated nodes is fixed to 30%.

As seen in Figure 4.12(a) and 4.12(c), Gradin takes less than 2 seconds to process

more than 9M updates, outperforms UpdAll in all cases, and the resulting speedup

is up to 20 times. Indeed, when data graph size gets larger, Gradin can efficiently

process updates.

Query processing. We evaluated the query processing performance of Gradin by

varying data graph size. In particular, the query size (the number of edges) is fixed

to 7, and Gradin returns the first 100 distinct compatible subgraphs. Since VF2

and NaiveJoin cannot scale on the query graphs of size 7 (they cannot process 100

query graphs within 6 hours), Figure 4.12(b) and 4.12(d) only reports the query

processing time of Gradin, UpdAll, NaiveGrid, and UpdNo. When a data graph has

15K nodes with more than 150K edges, Gradin can process a query graph of size

7 within 3 seconds in average. In terms of query processing time, Gradin is close

to UpdAll, and outperforms UpdNo and NaiveGrid in all cases, with up to 8 times

speedup.

4.6.5 Summary

We summarize the experimental results as follows. (1) Gradin is efficient for

index updates. Gradin outperforms the baseline algorithm UpdAll, and the speedup

is up to 10 times on our datasets. (2) The search algorithm and fragment join

algorithms in Gradin accelerate query processing. Gradin outperforms the baseline

algorithms VF2, NaiveGrid, NaiveJoin, and UpdNo. While VF2 cannot scale on

larger query graphs, Gradin processes all query graphs in 4 seconds, matches the
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query processing speed of UpdAll, and is up to 10 times and 5 times faster than

UpdNo and NaiveGrid, respectively.

4.7 Related Work

Subgraph matching. Subgraph matching is one of the most critical primi-

tives in many graph applications, such as pattern search in protein-protein in-

teraction networks [194, 210], chemical compounds [89, 191], program invocation

graphs [198, 201], and communication networks [77, 184]. In these applications,

subgraph matching queries have been defined in their own ways, and a variety of

techniques have been proposed to resolve the corresponding challenges.

Subgraph matching queries are usually defined by the NP-hard subgraph iso-

morphism [73]. Although branch-and-bound based algorithms, such as Ullmann’s

algorithm [178] and VF2 [58], were proposed to improve the search efficiency, these

algorithms still cannot scale on large graphs [67, 191].

To accelerate subgraph-isomorphism based subgraph matching, a variety of

graph indices have been proposed. Among them, substructure based indexing is

the most widely adopted framework. Although the indexed substructures could

be diverse, such as paths [76, 201], trees [159, 194], or general subgraphs [54,

95, 173, 189, 191], they follow a common spirit: a small data graph, or a small

region in a large data graph, is worth searching, if it contains a query graph’s

substructures. In addition, He et al. [89] proposed closure-tree, an R-tree-like

search index, which only checks the data graphs that are similar to a query graph

and prunes unpromising search for dissimilar data graphs.
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In addition to exact matches, an inexact subgraph matching query is a more

general and flexible graph primitive. Given a query graph, it aims to find similar

subgraphs in data graphs, where similarity is usually defined by graph edit dis-

tance [192]. To speed up query processing, substructure based indices are widely

adopted, such as Grafil [192], SAPPER [198], and many others [105, 132, 176, 185].

Note that all the graph indices discussed above are designed for static data

graphs with discrete node/edge labels; however, in our problem setting, node/edge

labels are dynamically updated, and these labels are numerical values. The above

indices cannot efficiently process subgraph matching queries on dynamic graphs

with numerical labels: (1) frequent graph updates result in serious index mainte-

nance issues; and (2) numerical node/edge labels cannot be naturally supported

by most of those indices. In this paper, we propose a graph index addressing these

issues.

Meanwhile, variants of subgraph matching queries have been studied. Tong

et al. [177] proposed a proximity-based score function, and the top-k subgraphs

of the highest score are returned as output. Cheng et al. [55] relaxed matching

conditions: instead of an adjacent node pair, a pair of reachable nodes in a data

graph is also eligible to match an edge on a query graph. Similarly, in [210], a pair

of nodes that satisfy a pre-defined distance constraint is eligible to match an edge

on a query graph as well. Moreover, Fan et al. [68, 69] defined subgraph matching

by graph simulation, and Yuan et al. [197] studied the subgraph matching prob-

lem on uncertain graphs with categorical labels. Different from them, our work

focuses subgraph-isomorphism based queries where data graphs have dynamically

changing numerical labels.
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Closer to our work are the studies from Wang et al. [47], Mondal et al. [130]

and Fan et al. [67]. In [67], incremental algorithms are proposed to answer a fixed

set of queries on dynamic graphs. In this paper, we consider a different setting

and aim to serve arbitrary subgraph matching queries on dynamic graphs. Wang

et al. [47] also considered the dynamic nature of data graphs; however, our work

is different from theirs as follows: (1) in [47], the proposed technique aims to an-

swer approximate matching, while we propose a solution for exact matching; and

(2) although node/edge uncertainty represented by numerical values are also con-

sidered, the proposed indexing technique is still based on categorical node/edge

labels [182]; thus it cannot solve the challenge in our problem setting. Mondal

et al. [130] studied how to make node replication decisions based on dynamically

changing workload to optimize the performance for queries such as reading neigh-

bors’ data. Instead, our work focuses on how to improve the performance for

more sophisticated subgraph matching queries on dynamic graphs with numerical

labels.

Multi-dimensional index. Multi-dimensional indices have been studied for ap-

plications that monitor moving objects. Early works [48] used variants of R-tree

to index moving objects and accelerate range/kNN queries; however, the update

operations in these techniques are usually costly, while data points are frequently

updated in the applications [163, 166]. To address the issue from frequent data

updates, grid based indices are proposed [45, 135, 162, 163, 196]. In particular,

Chakka et al. [45] used a grid based index to manage a large number of trajectories,

Mouratidis et al. [135] and Yu et al. [196] discussed how to use grid based indices

to accelerate kNN queries, Šidlauskas et al. [163] conducted an experimental study
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to compare grid based indices with variants of R-tree in update-intensive appli-

cations, and the possibility of incorporating parallelism into grid based indices is

investigated in [162]. Our grid based index shares this spirit. It differs in the fol-

lowing aspects. (1) We show theoretical results on a more general setting: instead

of two-dimensional space widely discussed in the above works, we focus on index-

ing points in a general multi-dimensional space, and derive theoretical bounds for

update and search performance. (2) We discuss how index parameters affect up-

date and query performance with both theoretical and experimental results. (3)

We investigate the feasibility and principles of applying multi-dimensional indices

to prune redundant search for dynamic subgraph matching queries.

4.8 Summary

In this chapter, we identify a new important application of graph query in cloud

computing and define a general subgraph matching problem on temporal graphs

of numerical labels. We introduce a new method called Gradin to index graphs

of numerical labels. Gradin can efficiently process frequent index updates and

prune unpromising matches. In particular, FracFilter, one important component

of Gradin, is proposed to keep the cost of update operations low and enable fast

search. Minimum fragment cover and fingerprint based pruning are proposed

for fast query processing. Our experimental results show that Gradin has better

index update and query processing performance in comparison to the baseline

algorithms.
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Temporal Reachability

5.1 Introduction

Delay Tolerant Networks (DTNs) are communication networks that lack con-

tinuous connectivity due to node mobility, failures or other factors. They expe-

rience frequent partitioning, and end-to-end paths between two nodes may even

never exist. Routing in DTNs uses a store-carry-forward approach [94], where in-

termediate nodes delay the transmission of messages until new links are available

and the messages are “eventually” delivered with some delay. When the lack of

connectivity is due to node mobility, the movement of nodes can be exploited to

carry the messages.

In recent years, routing protocols for multicast in DTNs have received con-

siderable attention [72, 116, 203]. Multicast protocols optimize the transmission

cost by sharing routing paths among multiple destinations. Recent advances allow

us to achieve a good tradeoff between minimization of the transmission cost and
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maximization of the delivery rate. However, due to the nature of DTNs, proper

delivery cannot always be guaranteed.

To guarantee the connectivity, nodes can be equipped with long-range commu-

nication devices [202] which would be used if end-to-end communication cannot be

otherwise achieved. Since long-range communication is expensive, its utilization

should be limited as much as possible. Providing an extra long-range communica-

tion to guarantee delivery introduces the new challenging problem of minimizing

its cost.

In this paper we formulate the problem of optimizing the long-range commu-

nication cost in a network of moving nodes as a reachability problem on temporal

graphs, called demand cover.

• Our model considers a set of moving nodes (e.g., people or vehicles) that are

equipped with devices providing two kinds of communication. A short-range

communication (e.g., radio), considered non-costly, can occur between two

nodes when they are close to each other. A remote (long-range) communica-

tion (e.g., cellular or satellite), which involves a cost, can occur at any time

independently of the node positions. Therefore, the dynamic short-range

connections between nodes form temporal graphs that evolve over time.

• In our model, a set of continuously-updated data objects need to be shared

among nodes. Each data object needs to be received by a subset of destina-

tions. For each destination, its deadline (time instant at which the object

is needed) is specified. To avoid receiving non-recent copies of objects, a

latency is also specified. In other words, if two nodes are reachable on the

temporal graph formed by short-range connections within a time window
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which guarantees both freshness of the data object and arrival by the dead-

line, the data request can be fulfilled with small cost.

• When no such time windows exist for a pair of nodes, we have to use costly

remote transmissions to accomplish the request. To this end, our goal is to

find the set of remote transmissions that minimizes the communication cost

subject to the aforementioned delay constraints.

To our knowledge, we are the first to analyze the problem of optimizing the long-

range communication cost for multicast in DTNs.

The described problem has several practical applications.

• Consider a network of city buses, in which the transportation agency wants

to provide passengers with personalized news that depends on their position,

traveling plan etc. Each bus can obtain the updates by the cellular network

(costly). However, it is more convenient to share the information among

various buses via radio communication (non-costly).

• Another example considers soldiers or military vehicles that move following

a specific strategy. They need to access certain information related to their

location (e.g., satellite images). In this case, the only options available are

satellite communication (highly costly) and node-to-node communication.

• The proposed approach also has applications in data ferrying [145, 202].

A set of moving nodes (ferries) is charged for gathering data. Depending

on time constraints on data delivery, the ferries may decide whether to use

short-range or long-range communication.
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Note that in the above examples, the node trajectories and the traffic demands

are known in advance.

Solving the demand cover problem introduces new challenges due to the tem-

poral constraints. A data object may need to be transmitted remotely more than

once, due to either lack of connectivity or the need of satisfying a latency con-

straint. For example, consider the four nodes in Figure 5.1(a) that move following

certain trajectories. Initially, nodes 2 and 3 are in contact. At time t1, nodes 2

and 4 enter in each other’s radio range and a new contact begins. At time t2,

the contact between nodes 2 and 3 ends since they move away from each other.

Three of these nodes (shown with triangles) need to receive the same data object.

Each of them has a given deadline (ta, tb and tc, respectively) and a latency (δa, δb

and δc, respectively). A remote transmission to node 3 at time t1 covers the data

needs ra and rb. Although rc can be reached by transmitting the object to node

4 at any time after t1, the latency δc cannot be satisfied. Therefore, an updated

copy of the object needs to be transmitted after tc − δc.

In this paper, we prove that the demand cover problem is NP-hard and present

a baseline graph-based approach for it. In order to make this problem feasible on

large datasets, we formulate it as a temporal reachability problem and develop

a novel graph-indexing-based solution. Due to the index, we are able to handle

thousands of destinations on a network with millions of encounters in less than 10

seconds, with an improvement of up to 100 times compared to a naive approach.

The rest of this chapter is organized as follows. We start with the preliminaries

in Section 5.2. In Section 5.3, we define the temporal reachability problem demand

cover that formalizes the problem of optimizing the long-range communication

cost in a network of moving nodes, demonstrate its NP-hardnes, and develop a
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(a) (b)

Figure 5.1: An example of a DTN among moving nodes. (a) The four solid
lines represent four trajectories. To simplicity we use the x-axis indicating the
time. The big dashed circles represent the radio range of nodes. Nodes that are
involved in a transition (contact beginning or contact end) are filled. Three data
needs (r1, r2 and r3) are represented with filled triangles. Their deadlines are ta,
t2 and t3, respectively while their latencies are δa, δ2 and δ3, respectively. (b)
The corresponding temporal graph. Snapshots of the connectivity graph at three
different times are depicted within big ovals. Temporal links joining contiguous
snapshots are represented with dotted lines.

baseline algorithm. In Section 5.4, we propose a novel indexing system for quickly

solving demand cover on graphs optimally. Our system compresses temporal

graphs and uses an efficient filtering approach to retrieve a small portion of nodes

that are relevant for achieving an optimal solution. In Section 5.5, we evaluate

the proposed approach on two real and one synthetic datasets, and show that

an exact solution can be found in reasonable time in datasets with millions of

encounters. Finally, we discuss related work in Section 5.6 and summarize this

work in Section 5.7.

5.2 Preliminaries

In this section we describe some basic concepts concerning DTNs that intro-

duce our approach. We consider a network of moving nodes whose trajectories are
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known in advance or can be predicted. When two nodes enter each other’s radio

coverage area, a link between them is formed and a contact (or encounter) begins.

A contact between two nodes terminates when they lose radio connectivity as

they move away from each other. Contact beginnings and contact ends are also

called transitions. The status of the network at a certain time instant can be de-

scribed by a connectivity graph, whose vertices represent moving nodes and a link

is placed between two nodes if their distance is within a given threshold d, called

radio range. The network dynamics can be described by a series of snapshots of

the connectivity graph over the time horizon [40, 94]. All the snapshot graphs are

aggregated in a unique composite graph (named space-time graph) where vertices

corresponding to the same moving node in two consecutive connectivity graphs

are joined by a temporal link. In contrast to spatial links, temporal links are di-

rected. A message can travel across a so called space-time path. If some spatial

links toward the destination are available, the message is forwarded, otherwise

the message is carried by the moving node (a temporal link is traversed) and

forwarded when another suitable node is encountered. In the following, we refer

to route for indicating the space-time path that a message traverses.

Figure 5.1(b) shows the space-time graph corresponding to Figure 5.1(a).

Three snapshot graphs are represented, each of them describing the connectiv-

ity of the network at the time intervals [t0, t1), [t1, t2) and [t2, tMAX), respectively.

Contiguous snapshots are joined by temporal links (in dotted line). Each snapshot

is associated with its lifetime, i.e. the extent in time that it refers to. Message

routes travel across paths of the space-time graph that can include both spatial

and temporal links.
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5.3 Problem Statement

In this section we define formally the demand cover problem and give some

baseline approaches for it. We consider a set of n nodes (numbered 1, 2, . . . , n)

that move following certain trajectories (T1, T2, . . . , Tn, respectively). A trajectory

associates each time instant t in the range [t0, tMAX) with the position in the space

(typically a plane) that the corresponding node occupies at time t. At a specific

time, two nodes can communicate with each other through a so called contact

transmission (short-range, typically radio) if they are in contact, i.e. their Eu-

clidean distance is within a fixed threshold d. The contact transmission (between

nodes) does not involve any cost. Each node can also communicate at any time

with a data source (Internet or a central server) through a costly remote trans-

mission (cellular or satellite), with a certain cost. Our approach can be extended

to a decentralized scenario where a central server is not available and data are

distributed among nodes.

We consider the problem of delivering data objects to multiple destinations.

In contrast to other multicast approaches in which static messages are sent to

multiple destinations, we consider the problem of sharing data objects that are

continuously updated over time. The dynamic character of data objects intro-

duces new constraints: each destination needs to receive the object before a given

deadline and with a delay that is limited by a given latency. We define the data

demand I of a data object as a set of data needs, i.e. triples of the form (i, t, δ),

where i, t and δ represent the destination, the deadline and the latency, respec-

tively. We call the instant t−δ release time. It represents the earliest time instant

in which an object can leave the data source.
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The data flow is modeled by two kinds of transmissions: a remote transmission

is denoted by a pair (i, t), where i represents the node that receives the object

and t is the time instant in which the transmission occurs; a contact transmis-

sion, is represented by a triple (i1, i2, t) where i1, i2, t represent the node that

transmits the object, the node that receives the object and the time instant at

which the transmission occurs, respectively. For simplicity, all the transmissions

are considered instantaneous. Although it may not be true in all cases, the move-

ment between nodes is usually very slow compared to the speed of transmission.

Therefore, in most cases all the necessary objects can be transmitted before the

contact terminates. We say that a remote transmission (is, ts) covers a data need

(id, td, δ) if there exists a sequence of contact transmissions (i0, i1, t1), (i1, i2, t2),

. . ., (ik−1, ik, tk) with i0 = is and ik = id, such as ts ≤ t1 ≤ t2 ≤ . . . ≤ tk ≤ td

and td − ts ≤ δ. The set of data needs covered by a remote transmission is also

called coverage of the remote transmission. The demand cover problem is defined

as follows:

Problem definition: Given a set of trajectories and a data object with demand

I, find the minimum set of remote transmissions that covers all the data needs in

I.

The formulated problem can be shown to be NP-hard (even in the 2D plane)

by reduction from the well known Set-cover problem. Given a family of sets

S = {S1, S2, ..., Sm} of elements taken from a set C, Set-cover calls for finding the

minimum sub-family of S that covers all the elements of C.

Theorem 7. Any instance of Set-cover can be reduced in polynomial time to an

instance of the demand cover problem.
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Proof. Let the family S = {S1, S2, . . . , Sn} be an instance of Set-cover where

elements are taken from a universe set C (i.e. Si ∈ C for each i = 1, 2, . . . , n) of

size m. Choose d, ts and td arbitrarily and set δ = td − ts. For each element c

of C, consider a fixed (non-moving) node jc (called destination) and a data need

(jc, td, δ). Set the positions of these nodes along a line so that any two contiguous

nodes are at a distance 2 · d from each other. Consider n points p1, p2, . . . , pn in

a parallel line at a distance dl = 2 · d ·max(m,n) from the first line. Given a set

Si, for each element c of Si consider a node with a straight trajectory that starts

from pi and ends to the location of jc. Informally, these nodes are introduced to

carry the data object from the initial location to the destination. Note that dl

has been chosen so as to guarantee that any two nodes are always at a distance

greater then d from each other, except for the destination. The number of moving

nodes is z =
∑n

i=1 |Si|. The speed of each moving node is assigned in the following

way. Divide the time interval [ts, td] in z slots of the same length, each of them

associated to a moving node. Each node remains without moving until its time

slot is reached. Then it moves with a constant speed that allows it to reach the

destination before the time slot terminates (speed = 4 · z
δ
·d ·max(m,n) or higher).

Then it stops again.

A data object transmitted by a remote transmission at time ts to a node in pi

is shared among all the nodes at position pi and carried to the destinations that

correspond to elements of Si. No other nodes receive the data object. Therefore

an optimal set of remote transmissions corresponds to an optimal sub-family of S
for Set-cover.
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An example of reduction is given in Figure 5.2. Points in the left-hand side

correspond to sets, while nodes in the right-hand side model elements. The min-

imal sub-family that covers all destinations is {S2, S4}, since an object can be

carried from point p2 to j1 and j3 and from point p4 to j2, j4 and j5.

Figure 5.2: (a) An example of reduction from Set-cover. Each set Si of the family
S is associated to a point pi in the left-hand side. The fixed nodes j1, j2, . . . , j5 in
the right-hand side are associated to elements. The dashed circle delimits the radio
range, of length d. Moving nodes follow the trajectories depicted by solid lines.
The minimal sub-family that covers all destinations is {S2, S4}, corresponding to
points p2, p4.

5.3.1 ILP formulation

The demand cover problem can be formulated in ILP (Integer Linear Pro-

gramming) and solved by a standard solver. Here we give an ILP formulation and

show that solving it on large datasets is infeasible.

We consider a set of n moving nodes numbered 1 through n and a special

node that represents the central server, numbered 0. We write i →t j if node

i can communicate with node j at time t (i.e. they are within distance d or

i = 0). We also consider a discrete set T of time instants that correspond to

transitions or deadlines of data needs. This restriction does not compromise the
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result. In fact, given an optimal solution for demand cover, it is always possible

to modify this solution in such a way that each transmission between two nodes

is delayed until the contact between them ends (right before the link breaks) or

a data need that involves one of the nodes expires, without increasing the cost.

Since communication is assumed to be instantaneous, the contact length is not

important.

We employ two classes of boolean variables. The first class contains variables

of the kind xi,j,t,r, where i and j represent nodes, t represents a time instant

and r = (ir, tr, δr) ∈ I represents a data need, which models the flow of data

objects. The variable xi,j,t,r has value 1 if i send a message to j at time t to

satisfy the data need r. Variables of this kind are considered for i →t j and

tr−δr ≤ t ≤ tr. The second class of variables, of the kind yi,t, counts the number of

remote transmissions. Each variable says whether a remote transmission between

the central server and a particular node occurs at a certain time or not. The

complete formulation follows.

min
∑

t∈T

n
∑

i=1

yi,t

s.t.
∑

t∈T
t≥tr−δr
t≤tr

∑

i=0...n
i→tir

xi,ir,t,r ≥ 1 ∀r = (ir, tr, δr) ∈ I (5.1)

∑

t′∈T
tr−δr≤t′≤t

∑

i=0...n
i→t′j1

xi,j1,t′,r − xj1,j2,t,r ≥ 0 (5.2)

∀r = (ir, tr, δr) ∈ I, ∀j1, j2, t | j1 →t j2

yi,t ≥ x0,i,t,r ∀r ∈ I, i = 1 . . . n, t ∈ T (5.3)

xi,j,t,r, yi,t ∈ {0, 1}
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Constraint 5.1 models the fact that for each data need, the data object must be

sent to the destination at a time instant between the release time and the deadline.

Constraint 5.2 models the propagation of data objects. It says that if a data object

is transmitted from a source j1 to j2 at time t for satisfying a data need r, then j1

must receive the object before t and after the release time. Finally, constraint 5.3

assigns value 1 to each variable of the kind yi,t if a message is transmitted from

the central server to node i at time t in order to satisfy some data need.

Solving this formulation with standard solvers is infeasible on large instances.

The main problem concerns the number of variables and constraints. Even con-

sidering a sparse network with 100 nodes, 100 encounters per node and 100 data

needs, we have hundreds of millions of variables and constraints. In our exper-

iments we obtained hundreds of billions of variables and constraints, therefore

executing it was not possible.

5.3.2 A naive approach for the demand cover problem

An improvement on executing the ILP program can be obtained by reducing

the problem to Set-cover. Each candidate remote transmission can cover a set of

data needs. The minimum set of remote transmissions that covers all the data

needs corresponds to the minimum Set-cover in the family of associated sets.

Since remote transmissions can occur at any time, the number of sets for the Set-

cover family is huge. However, not all time instants need to be considered. To

guarantee that all the data needs are covered, one can consider only time instants

that correspond to the release time of a data need. We note that the release

time is the earliest time instant in which the data object needs to be sent for a
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data need to be satisfied. Delaying a remote transmission after the release time

does not help with serving the data needs, unless some other release times are

overtaken. Given a candidate remote transmission, the set of covered data needs

can be computed by exploring the space-time graph (through depth-first search

or breadth-first search).

5.3.3 A compact graph representation

The naive approach requires exploring a space-time graph, whose size can

be huge. However, this graph can be compacted thanks to two observations.

First, in each snapshot graph, all the vertices that are in the same connected

component have the same reachability properties, so one vertex can be taken as

a representative of all the others. Second, when a transition occurs, connected

components of the snapshot graph that do not contain any nodes involved in the

transition are not influential.

To generate the compressed graph, we focus on two class of transitions. A split

transition causes a connected component to be divided in two connected compo-

nents. A merge transition causes two components to merge into a single connected

component. We generate a space-time graph considering only these two kinds of

transitions. Then, for all snapshot graphs, each connected component is collapsed

into one single vertex. At this point, all the edges of the graph are directed and can

be classified as follows: (i) split edges, which connect splitting components with

their partitions; (ii) merge edges, which connect merging components with the

resulting components and (iii) non-influential edges, which connect components

that do not change. Finally, each non-influential edge is removed by collapsing
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its endpoints and each vertex is labeled with its lifetime (note that a vertex can

span several snapshots), which we call component lifetime.

One example of a compressed graph is shown in Figure 5.3, which refers to the

example in Figure 5.1. Boxes represent vertices of the compressed graph. Edges

of the connected graph are represented by solid lines. The extent of a box in time

represents the component lifetime. For instance, the extent of the component c1 is

[t0, tMAX) (the whole time horizon) since this component is never involved in any

split or merge. The naive approach can be executed on the compressed graph in

place of the cumbersome space-time graph. The family for Set-cover is obtained

by building a set for each vertex of the compressed graph whose lifetime contains

the release time of some data needs. Each set can be computed by exploring the

compressed graph.

Figure 5.3: The compressed graph representation of the example in Figure 5.1.
A compressed graph is depicted over the space-time graph. Boxes and solid lines
represent vertices and edges of the compressed graph, respectively. The extent of
a box in time represents the component lifetime. Three data needs are represented
(by filled triangles) with their extent in time. From left to right: ra = (2, ta, δa),
rb = (3, tb, δb), rc = (4, tc, δc).
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5.4 An indexing system for the demand cover

problem

Solving the demand cover problem efficiently raises several challenges. First,

for each vertex v of the compressed graph, the set of data needs that can be covered

by v needs to be retrieved. This operation may be very expensive when the size

of the graph is large. Second, Set-cover is NP-hard, therefore no polynomial-time

solutions exist (unless P=NP) in the general case. For small instances, Set-cover

can be solved optimally in acceptable time by pruning techniques as branch-and-

bound. In our case, however, the number of sets generated is usually very high,

since a data need can potentially be covered by many vertices. Many of these

sets are redundant, i.e. they are fully contained in other sets. For example in

Figure 5.3 the set of data needs covered by c6 contains only rc. The vertex c4 cov-

ers the set {ra, rb, rc}, which contains the data need covered by c6. Therefore, c6

can be excluded by the computation since all the data needs that can be covered

by it can also be covered by c4. Removing redundant sets leads to a consider-

able reduction of the Set-cover instance. However, removing the redundancy by

traditional methods is expensive, since it requires one to find maximal sets [195].

Additionally, in a typical application, a large number of data objects are requested

and each data object has its own set of data needs. Solving the demand cover

problem for each data object can be extremely expensive.

We propose a novel approach, Path-wise indexing (PIE, for short), which builds

an index of the set of trajectories with the purpose of efficiently performing queries

of the form: given a set of data needs, return the minimum set of remote transmis-

sions that covers all the data needs. We use a preprocessing-filtering-optimization
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scheme to solve the demand cover problem. Given a database of trajectories, a

preprocessing phase generates a compact data index. When a query (represented

by a set of data needs) has to be performed, we use the data index to gener-

ate a lightweight instance of Set-cover (filtering phase). Set-cover is then solved

optimally (optimization phase) and the solution is returned.

The proposed indexing system has several advantages. First, the index is much

more compact than the compressed graph, and hence requires less memory and is

much more efficiently manageable. Second, the set of vertices in the compressed

graph from which the data needs are reachable can be identified fast. Note that

current reachability indexes cannot be efficiently applied to our problem since

many reachability tests need to be performed. Finally, we can efficiently prune

nodes of the compressed graph that are not promising and generate a small in-

stance for Set-cover. Next, we introduce the proposed index and describe the

three phases of our indexing system: preprocessing, filtering and optimization.

5.4.1 Index structure

The key idea is that the set of data needs covered by a node in a path p of

the compressed graph includes the set of data needs covered by other subsequent

nodes p. Therefore, a node can be taken as a representative of a portion of the

path. Moreover, a node of the compressed graph can be uniquely determined by

a path and a time instant. This implies that we can use the coverage of a pair

(p, t) in place of the coverage of the corresponding compressed node. We denote

the coverage of (pi, t) as C(pi, t). Based on these considerations, we partition

the compressed graph into a set of disjoint paths and build a compact graph,
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named a PIE graph, whose vertices represent disjoint paths and edges preserve

the connectivity across paths. Each vertex of the PIE graph is labeled with a

time interval (named lifetime) that is the union of the lifetimes of its composing

vertices. Instead of exploring all the nodes of a path, we can determine a set of

time instants that is representative of the whole path by exploring the compact

PIE graph.

Figure 5.4(a) shows an example. The small circles and thin edges form the

compressed graph, while the big ovals represent disjoint paths. Consider the path

p3. The set of data needs covered by p3 at time ta is C(p3, ta) = {r1, r2}. Since

no other data needs (i, t, δ) have (t − δ) ∈ [ta, tb), (p3, ta) is representative of the

interval [ta, tb). tb coincides with the release time of r3 (i.e. (tr3− δ3)). Therefore,

its coverage (C(p3, tb) = {r3}) cannot be contained in C(p3, ta). The pair (p3, tb)

is instead representative of the remaining part of the path. The path p3 produces

only two sets (C(p3, ta) and C(p3, tb)) for Set-cover. In general, up to 4 sets would

be produced without indexing, since we may have many other non reachable data

needs whose release times falls within all vertices of p3. Next we describe in details

the three steps of our method: preprocessing, filtering and optimization.

5.4.2 Preprocessing

Given the set of trajectories, first a compressed graph (GC) is generated. The

graph is then decomposed into a disjoint set of paths. There is a large number

of possible ways to partition the graph into disjoint paths. A suitable partition

strategy should satisfy the following properties: (i) the number of disjoint paths

is minimal and (ii) the number of edges across two paths is minimal. In general,
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Figure 5.4: (a) An example of PIE graph. The small circles and thin arrows form
the compressed graph. Each path is circumscribed by an oval and its lifetime is
reported. Links between paths are represented by thick arrows. They are labeled
by the ends of the lifetimes of their source vertices. Solid triangles within circles
represent data needs. (b) Validity intervals of a set of data needs in a path p3.
Bars represent the extent of validity intervals of data needs. The minimal family
of sets for this path is {C(p3, ta), C(p3, tb)}.

finding the minimum set of disjoint paths that covers a graph is a non-trivial

problem [62]. However, since the compressed graph is a DAG and is generated by

a simple split-merge model, we can use optimally the following simple strategy:

pick one vertex a time (proceeding in time order) and elongate it by random walk

until a vertex without outgoing edges is reached.

We can prove that across two paths no more than one edge exists in each

direction. Indeed, each edge of the compressed graph comes from a merge or a

split between two components. In the case of merge, the source vertex cannot

have other outgoing edges, while in the case of split, the target vertex cannot

have other incoming edges. This implies that no edges can exist between internal

nodes of two different paths, and hence each edge connecting two paths can be
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either outgoing from the last vertex of the source path or incoming to the first

vertex of the target path. Since the compressed graph is a DAG, and each path

is elongated as much as possible, at most two edges can connect two paths, one

in each direction.

We associate each edge (pi, pj) of the PIE graph with the end of the lifetime

of the source vertex in pi. We denote this time instant as ft(pi, pj). It represents

the time in which a data object can traverse the edge (pi, pj). Figure 5.4 depicts

an example of PIE graph. The small vertices and thin edges form the compressed

graph, while the big vertices and thick edges represent the PIE graph.

5.4.3 Filtering

For each vertex p of the PIE graph, our filtering algorithm finds a set of time

instants TIp that are representative of the whole path p, and the family S of

corresponding sets. Our strategy guarantees that the coverage of each vertex of

the compressed graph is fully contained in at least one set in S. Since the PIE

graph is much smaller than the compressed graph, exploring the former is much

more advantageous in terms of elaboration time and memory consumption.

The filtering procedure considers two steps: backflow and prune. Backflow

propagates the data needs in reverse order from the destination paths to all the

possible source paths. For each path, we compute the validity interval of a data

need, which defines the time interval in which the data object must reach the path

for the data need to be covered. At the end, each path is associated with a set of

data needs that it can cover with their validity intervals. The coverage of a pair

(p, t) can be identified by the set of data needs such as their validity intervals in p
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include t. After the validity intervals are generated, the prune procedure computes

the family of sets for Set-cover. It collects the family of maximal coverage sets of

each path, i.e. the set of time instants whose coverage is not strictly contained in

the coverage of any other time instant in the path.

Before describing these two procedures in detail, we give an example. Fig-

ure 5.4(b) shows the path p3 of the example in Figure 5.4(a) and the validity

interval of each data need in it. The validity intervals of r1 and r2 start at the

beginning of the path, since their release time precede it. These intervals end at

times t1 and t2, respectively, times associated to outgoing edges (see Figure 5.4).

Each of them represents the last time instant in which the data object must leave

the path to be able to reach the respective data need. For the data need r1 (r2

resp.), if the data object leaves the path after t1 (t2 resp.), the destination cannot

be reached. The validity interval of r3 starts at time tb = tr3−δ3, corresponding to

the release time of r3, and ends at time t3, time associated to the unique outgoing

edge that can reach r3. The representative time instants for this path are ta and

tb, corresponding to maximal sets of data needs. Therefore, the minimal family

of sets for this path is S = {C(p3, ta), C(p3, tb)}. Note that no other time instants

have a coverage that is not included in at least one set of the family.

Backflow

We define the validity interval of a data need r = (i, t, δ) in a path p (named

valid int(r, p)) recursively in the following way:

If p has lifetime [b, e) and is the destination path of r (i.e. t ∈ [b, e)), we have:

valid int(r, p) = [max(b, t− δ), t).
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If p is a non-destination path with lifetime [b, e) that links to a set of paths

p1, p2, . . . , pk with validity intervals [b1, e1), [b2, e2), . . . , [bk, ek), respectively:

valid int(r, p) =







Φ if ft(p, pi) 6∈ [bi, ei) ∀i = 1 . . . k

[t1, t2) otherwise

where t1 = max(b, t− δ) and t2 is the maximum t′ such as t′ = ft(p, pi) for some

i = 1 . . . k and t′ ∈ [bi, ei).

Intuitively the end of a validity interval in a path is given by the last time

instant in which the data object can flow in another path that has a compatible

validity interval, while the beginning of a validity interval is limited by t− δ and

the starting time of the path.

The coverage of a pair (p, t) can be identified by the set of data needs whose

validity intervals include t. Intuitively, if validity intervals are represented by

horizontal bars (as in Figure 5.4(b)), the coverage of a pair (p, t) can be easily

identified by drawing a vertical line and taking all the data needs whose validity

intervals are intersected. For instance, in Figure 5.4b) a vertical line drawn at

time ta intersects the validity intervals of r1 and r2. Therefore, the coverage of

(p, ta) is {r1, r2}. This property is formally stated by the following lemma:

Lemma 2. Let (T, I) be an instance of demand cover, where T is the set of

trajectories and I is the set of data needs, and GP be the corresponding PIE

graph. Given a vertex p of GP and a time instant t, the coverage of p at time t is:

C(p, t) = {r ∈ I | t ∈ valid int(r, p)}

valid int(r, p) can be computed for all paths in a breadth-first search fashion,

by starting from the path containing r and exploring the PIE edges in reverse
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time order until the release time is reached. When a new vertex is visited, the

validity interval of r in it is updated. The complexity is O(|EP |), where EP is the

set of edges in the PIE graph.

Prune

For each path p, we identify the minimum-size set TIp of time instants that

is representative of the whole path, i.e. such that for all t ∈ lifetime(p) we

have C(p, t) contained in at least one set C(p, t′) with t′ ∈ TIp. This problem

corresponds to the problem of finding the maximal sets in the family of all possible

coverage sets of p (i.e. {C(p, t)|t ∈ lifetime(p)}).
Figure 5.5 shows an example path with the validity intervals of five data needs.

The coverage of a time instant can be easily identified by drawing a vertical line

and taking all the validity intervals that it intersects. The representative time

instants for this path are t1, t2 and t3, corresponding to the maximal sets of data

needs. Note that no other time instants have a coverage that is not included in

the coverage of at least one of the time instants t1, t2 or t3.

In general, the maximal sets can be found in time O(mn), where m is the

number of maximal sets and n is the size of the input [195]. In our case, since

each element corresponds to a contiguous interval, we can find the maximal sets

in linear time. Our procedure slides a vertical line across the path in reverse time

order, and takes all the time instants that correspond to maximal sets. Each

position t of the line corresponds to a coverage C(p, t). As the line is slid, the

coverage is modified, by either adding or deleting data needs. Whenever a deletion

follows an addition, the current coverage is taken as a maximal set. Note that

additions correspond to the end of validity intervals, while deletions correspond to
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Figure 5.5: An example of maximal coverage sets in a path. Bars represent the
extent of validity intervals of data needs. The coverage of the time instants t1,
t2 and t3 are maximal sets among all the coverage sets in the path. The family
of maximal sets can be found by sliding a vertical line in reverse time order and
taking each time instant that corresponds to the beginning of a validity interval
(indicated by the symbol “-” at the top) that occurs right after the end of the
same or another validity interval (indicated by the symbol “+”). This family has
minimum size.

the beginning of validity intervals. In Figure 5.5, the coverage associated with the

sliding line is initially empty. When the line intersects the validity interval of r4,

r4 is added to the coverage (additions are indicated by the symbol “+” at the top).

The interval of r5 is then encountered and r5 is also added to the coverage. When

the beginning of the validity interval of r4 is encountered (at time t3), the current

coverage is taken as maximal set and r4 is deleted (indicated by the symbol “-”).

Other two additions are then encountered (r2 and r3) followed by a deletion (r5).

The coverage at time t2 (before deleting r5) is then taken as another maximal

set. The last maximal set is taken at time t1, after another addition and another

deletion are encountered. The following lemma states that this procedure finds

all and only the maximal sets in the family of coverage sets.

Lemma 3. Let (T, I) be an instance of demand cover and GP be the PIE graph

built from (T, I). Given a path p of GP , consider the sequence of time in-

stants t1, t2, . . . , tk corresponding to extremes (beginnings or ends) of validity in-
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tervals in reverse time order and the set TIp = {ti | ti is a beginning time and

ti−1 is an ending time}.

1. For each time instant t ∈ lifetime(p) we have: ∃t′ ∈ TIp | C(p, t) ⊆ C(p, t′);

2. For each time instant t′ ∈ TIp we have: ∄t ∈ lifetime(p) | C(p, t′) ⊂ C(p, t);

3. For each pair of distinct time instants t′, t′′ ∈ TIp we have C(p, t′) 6= C(p, t′′).

A clear consequence of this lemma is that the family of maximal sets generated

by our procedure has minimum size. TIp can be built in time O(|I| · log(|I|)).

5.4.4 Optimization

After the filtering process, a post-pruning (in short PP) phase is applied in

order to remove sets that are fully contained in other sets. Note that although

the purpose of the filtering procedure is to remove these sets, this procedure is

not guaranteed to be exhaustive, since redundant sets can occur across different

paths. The post-pruning phase can be applied to the naive approach as well.

We use an Integer Linear Program to solve Set-cover optimally. Finally, the

optimal set of remote transmissions is extracted from the optimal subfamily re-

turned by Set-cover.

5.4.5 Adaptive extension

In real world, it is difficult for many applications to guarantee that moving

objects travel with known trajectories over a long time interval. However, it is

reasonable to assume that moving objects stick to known traveling plans in near

future. In this case, the time dimension is partitioned into discrete time slots,
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where trajectories of moving objects are updated after each time slot. PIE can

adapt to this variation without much modification. In the following, we briefly

introduce two possibilities: null-initial-state and adaptive extensions.

The most straightforward way is to build an independent index for each time

slot. We call it null-initial-state extension because this method simply ignores

previous knowledge and treats each time slot as a new start. One weakness of

this method is that it neglects information objects transmitted during the prior

time slots, producing more remote transmissions. An alternative is to apply the

adaptive extension. To reuse data objects transmitted before, we keep track of the

distribution of the objects over the nodes, together with the remote transmission

time of each object, and use them as initial state for the new time slot. Some

data needs can be satisfied without any additional remote transmissions and will

not be considered in the computation.

5.5 Experiment

5.5.1 Dataset

Cabs Mobility [144] (CAB, for short) contains mobility traces of taxi cabs in

San Francisco, USA. It consists of GPS coordinates of 536 taxis collected over

23 days in the San Francisco Bay Area. The average time interval between two

consecutive location updates is less than 10 seconds.

GeoLife GPS Trajectories [7] (GeoLife, for short) is a GPS trajectory dataset

collected in (Microsoft Research Asia) GeoLife project by 165 users in a period of

over two years.
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Synthetic trajectories (SYN, for short) consists of 10K nodes that move ran-

domly on a 2-D plane with size 3600 km2 over 10 days. Starting from a uniformly

random position, the speed of each node is updated periodically with normal dis-

tribution (µ = 1.2 m/s and σ = 1) as well as its direction (µ = current direction

and σ = 1 radiant). The updating rate is generated with exponential distribution

(µ = 60 sec).

For all datasets, the radio range is set to 100 meters. The data needs are gen-

erated by the following process. First, for each moving node, the number of data

needs is generated with a Poisson distribution. Then, each data need is generated

with a deadline uniformly distributed and a latency normally distributed (µ = 15

min and σ = 1).

5.5.2 Implementation

We implemented the naive approach described in Section 5.3.2 on the space-

time graph. We also implemented the naive approach on the compressed graph

(called naive-c for short) and the PIE indexing system (Section 5.4). All methods

include the post-pruning phase described in Section 5.4.4. We tried a version

without the post-pruning phase, obtaining a slight degradation of performances

in each method. We also tried to run the ILP program described in Section 5.3.1,

but it did not terminate due to the huge number of variables and constraints

(hundreds of billions) considered. All the approaches were implemented in C++

(Dev C++ IDE ver. 4.9.9.2). The experiments were performed on a DELL Intel

core I7 CPU with 2 Gb of memory. For the ILP solver we use lp solver 5.5.2.0

[37], an open source tool based on branch-and-bound.
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5.5.3 Response time

Each dataset is first preprocessed and its PIE index is generated. Figure 5.6(a)

reports the preprocessing time on CAB, concerning a number of datasets span-

ning from 1 to 13 days. Depending on the dataset size, the preprocessing phase

take tens through thousands of seconds. Although the preprocessing phase is

sometimes expensive, it is executed only once. The rate of compression of the

PIE graph and the compressed graph with respect to the space-time graph is

shown in Figure 5.6(b). The compressed graph is about 16 times smaller than the

space-time graph and PIE further reduces the size of about three times.

On CAB, the execution time for demand cover queries is shown in Figure 5.6(c)

and 5.6(d). Figure 5.6(c) shows the execution time for a number of datasets

spanning from 1 to 13 days. The average number of data needs per cab per day is

set to 2. The reported times represent an average over 10 queries. PIE performs

about two times faster than naive-c and four times faster than naive in almost all

cases. In order to evaluate the scalability over the size of the query, we generate

queries by varying the expected number of data needs per cab per day from 1 to

4. The results over 1 day are reported in Figure 5.6(d). For more than 4 expected

data needs, the naive method is unable to answer queries in acceptable time.

We also execute the adaptive extension (Section 5.4.5) on CAB, for one day

with time slot 15 minutes. Over a total number of 1089 data needs, null-initial-

states method returns 675 remote transmissions, while the adaptive method re-

turns 617 ones, with approximately a 10% improvement. For reference, the num-

ber of transmissions suggested by using full knowledge is 480. All the results of

the adaptive extension refer to an average over 10 executions.
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Figure 5.6: Performances as functions of the size of the dataset (number of days)
and the number of data needs.

Figure 5.6(e) show the execution time for demand cover queries on GeoLife.

The expected number of data needs per person per day is set to 10. The results

refer to a set of datasets, each of them spanning a time interval ranging from 1 to

30 days. As for CAB, the reported times represent an average over 10 queries. In

this dataset, PIE scales better than naive and naive-c with length of the spanning

interval. For SYN, the results are reported in Figure 5.6(f). They refer to one
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data need per node per day. The naive approach here is not able to terminate in

acceptable time even for one day, therefore we report only PIE and naive-c. PIE

performs about three orders of magnitude faster then naive-c.

5.5.4 Scalability over query size

 0.0001

 0.001

 0.01

 0.1

 1

 0  2  4  6  8  10  12  14  16

R
es

po
ns

e 
T

im
e 

(s
ec

on
ds

)

Expected Number of Requests (λ)

PIE
Naive-c

Naive

(a) GeoLife

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0  1  2  3  4  5  6
R

es
po

ns
e 

T
im

e 
(s

ec
on

ds
)

Expected Number of Requests (λ)

PIE
Naive-c

(b) SYN

Figure 5.7: Scalability over query size

Figure 5.7 shows the execution time at varying the expected number of data

needs per node per day, on GeoLife and SYN datasets (we refer to Section 5.5 for

CAB). On both datasets the time interval spans one day. On GeoLife (a), PIE is

over one order of magnitude faster than naive-c and about two orders of magnitude

faster than naive when the time interval spans more than three days. Increasing

the number of data needs, the degradation of performance is less pronounced in

PIE. On SYN (b), PIE is about three orders of magnitude faster than naive-c. The

results for naive are not reported since it was not able to terminate in acceptable

time even for one data need.
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Figure 5.8: Preprocessing time and index size produced by CIDP on different
datasets. The first row refers to CAB, the second row refers to GeoLife and the
last row refers to SYN.

5.5.5 Preprocessing

The preprocessing time and the index size of PIE for all datasets are reported

in Figure 5.8. Since the preprocessing phase does not apply to naive, we do not

compare with it. In order to verify the scalability, we evaluate the algorithm on a

number of datasets. For CAB, each dataset spans a number of days ranging from

150



Chapter 5. Temporal Reachability

1 to 13. For GeoLife, each dataset spans a number of days from 1 to 30. For SYN,

the spanned interval ranges from 1 day to 10 days.

For CAB, the time for preprocessing and the size of index are presented in

Figure 5.8(a) and 5.8(b), respectively. For GeoLife, the preprocessing time and

the index size of PIE are shown in Figure 5.8(c) and 5.8(d), respectively. In

GeoLife, the preprocessing time is less than that for CAB and the index size

is smaller. The main reason is that the number of events (contact beginnings

and contact ends) captured in GeoLife is much smaller than the one in CAB.

In GeoLife, the average number of events per day is 1, 401, while in CAB it is

809, 558.

For SYN, the preprocessing time and the index size is shown in Figure 5.8(e)

and Figure 5.8(f), respectively. This experiment performs on a number of datasets,

each of them spanning a number of days ranging from 1 to 5. The number of events

captured in SYN is 904, 818 per day, which is comparable to that in CAB. Since

SYN contains 10, 000 moving nodes, the average number of events per node per

day is 90.5 while for CAB it is 1, 510. Therefore a moving node in CAB has

more opportunities to connect to other nodes and it takes more time to identify

connected components.

5.5.6 Filtering capability

In Figure 5.9, the filtering time and the size of the input family for Set-cover

obtained by naive, naive-c and PIE are reported, respectively for all datasets. For

naive, the filtering time refers to the time for generating the family of sets. PIE

strongly outperforms naive on both filtering time and size of the input family
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Figure 5.9: Evaluation of filtering capability. The first row refers to CAB, the
second row refers to GeoLife and the last row refers to SYN.

generated for Set-cover in all cases. Figure 5.9(a), 5.9(c) and 5.9(e) show that

PIE performs more than 100 times faster than naive. PIE performs more than

two times faster than naive-c in CAB and up to three order of magnitude faster

than naive-c in SYN. Figure 5.9(b), 5.9(d) and 5.9(f) show that the size of the

input family filtered by PIE is much smaller than the one generated by naive and

naive-c. The size of the input family after post-pruning (referred as Pruned) is
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also reported and show that in SYN and GeoLife the input family generated by

PIE is almost the most compact one. For CAB, the high number of encounters

per node degrades the performances. However, PIE produces a family eight times

smaller than one generated by naive-c.

5.5.7 Communication cost
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Figure 5.10: Communication cost with varying number of requests per cab per
day

In Figure 5.10 we show the communication cost obtained by our solution,

compared to a layman approach that performs a remote transmission for each

data need. We do not distinguish between naive and PIE since they produce the

same result. We perform this experiment on CAB. The queries are generated by

varying the expected number of data needs per cab per day λ from 1 to 20. With

λ = 20 our solution reduces the number of transmissions by more than 50% and

the gain increases with λ.
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5.6 Related Work

Previous works on DTNs focus on three types of contacts including scheduled,

predicted and opportunistic contacts. Scheduled contacts result from applica-

tions of known trajectories, such as deep-space communication and data service

in developing regions [21, 94, 122, 145]. Predicted contacts are considered when

there exist mobility patterns in applications [23, 84, 117, 123, 168, 169, 200]. Op-

portunistic contacts deal with completely uncertain circumstances where mobile

nodes meet each other by random chance. Our work falls into the category of

scheduled contacts [94, 145].

Graph representations are widely applied in studying routing strategies. In [40,

128, 145], evolving graphs are employed to model topological mutations in DTNs.

In our work, we use compression and indexing techniques to efficiently explore

evolving graphs with the purpose of minimizing the communication cost.

Multicast for DTNs has recently drawn considerable attention. In [203], se-

mantic models are proposed to unambiguously describe multicast in the context

of DTNs. The throughput of multicast is discussed in [116] and mobility-assisted

routing is used to improve the throughput bound of wireless multicast. In [72],

multicast problems in DTNs are considered in a social network setting where cen-

trality and community in DTNs are employed to help determine the appropriate

selection of relays, with the objective of minimizing the delay of multicast mes-

sage transmissions. In this paper, we study a novel optimization problem which is

similar to the traditional multicast problems. However, instead of minimizing the

delay of message transmissions, we are interested in minimizing the communica-

tion cost subject to some time constraints. To this end, the question of whether a
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node is reachable from another node is more important than the question of how

a message flows in the network. In our problem setting, the DTN is a medium to

propagate information, and our goal is to maximize the role it plays in information

sharing.

Graph indexing systems have been widely studied by the database community.

The most common approaches aim to efficiently solve problems as graph match-

ing [132, 199] or reachability test [53, 96]. The closest to our work are systems

for reachability tests, which aim to efficiently check if two vertices are reachable

from each other (a path that connects them exists) in a directed graph. Some

systems use chains [93] (generalization of paths) decomposition or path-tree [96]

decomposition. The underlying idea is that if a vertex u of a chain (or a tree-

of-paths) is reachable from another vertex v, all the vertices downstream in that

chain are reachable from v. We use a similar idea, but our system is designed to

fast identify the regions of the graph that can reach a given destination instead of

verifying the reachability between pairs. Moreover, we give a method for quickly

identifying a small subset of representative vertices that allows us to solve the

demand cover problem optimally and with reasonable efficiency on large datasets.

5.7 Summary

In this chapter, we present a new approach that optimizes the long-range com-

munication cost for multicast in DTNs. By formalizing the optimization problem

as a temporal reachability problem and showing its NP-hardness, we provide a

graph-indexing-based solution. Our system can solve the problem optimally on

large real instances (dataset with million of events and queries with thousands of
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nodes) in less than 10 seconds in most cases. There are two potential extensions

to our work. First, we can take into account the uncertainty in mobility and data

needs. For this, we need to fit stochastic mobility models in our framework and

optimize the expected communication cost. Finally, we can consider the problem

of scheduling new trajectories with the purpose of guaranteeing the connectivity,

in the case when the communication with a central data source is not always

available.
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Partitioning in Temporal Graphs

6.1 Introduction

Complex Event Processing (CEP) has been popular for many applica-

tions [115]. Platforms such as S4 [12, 140], Storm [14], Photon [24], MillWheel [19]

and Amazon’s Kinesis [3], enable scalable data analytics over data streams. More

recently, we are observing the rise of stream processing platforms that ingest

slower-rate data streams, but allow more expressive operations. For example, the

back-end that supports the Cortana personal assistant [10] executes, on behalf of

its users, queries that monitor and process traffic, weather, news, and other events,

and forwards events of interest to its users (Figure 6.1). Such queries typically

hold the following properties.

(a) They usually bring low network and computation overheads (e.g., processing

weather updates for a region);
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(b) They may join multiple streams, such as a personal event stream (e.g.,

calendar updates) with a global stream (e.g., traffic updates), to generate

user events (e.g., reminder to leave to catch next appointment);

(c) They support a very expressive programming model (e.g., using UDF’s ex-

pressed in LINQ [9], or JavaScript as in Amazon’s Lambda [4]).

Property (a) and (c) suggest that it is natural to execute each query in a single

server (unlike systems that scale-out processing to deal with high stream data

rates), but due to (b) the processing overhead is often not trivial to estimate from

the query. Even though each query is rather “small”, the expectation is that there

will be a very large number of queries that need to be supported with low network

and computational resources. Hence, the main challenge in building a platform

to support a vast number of “small” queries is to allocate queries to servers such

as to minimize network and compute overheads.

Figure 6.1 depicts a typical platform that hosts queries on behalf of users.

External to the system, there are event sources that generate events of interest to

the users; these can be events of general interest, such as news, weather, stocks,

traffic, flight updates, and personalized events, such as calendar events, user loca-

tion events, etc. Event gateways ingest events from each source, and then forward

them to the internal processing nodes (query evaluators). In practice, user-defined

queries can dynamically arrive and leave; therefore, events are essentially flowing

in a temporal graph.

It is important to observe that there is one or very few event gateways per

event source, but then the gateway(s) forward the stream to all query evaluators

that host user queries that depend on that event source, potentially by replicating
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Figure 6.1: Example of events flowing from the event sources to the query
evaluators, and finally to users. In addition to global events, there are also per-
sonalized event sources; in this example, a query combines traffic updates with
calendar events to generate notifications for the user (e.g., time to leave to be on
time for next appointment given current traffic). Note that as user queries can
dynamically come and go, the data flow graph is temporal.

the stream multiple times. The query evaluators execute their queries and forward

the results to the end-users. In this work, we study specifically the problem of

minimizing the network overhead for forwarding the events from the event gate-

ways to query evaluators while balancing the load among the query evaluators.

We assume that the service is hosted in a generic compute platform, such as Azure

Compute [15], Amazon’s EC2 [2], or Rackspace [11]; this is a typical requirement

for many modern services as it separates the management of the platform from

the operation of the service. Hence, we cannot control the assignment of the query

evaluators to the underlying platform, and cannot rely on an efficient transport

(e.g., multicast) of the events from the gateways to the evaluators. However, we
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can assume that each stream will be delivered at most once to each query eval-

uator, even when the evaluator serves multiple queries operating on that stream.

Hence, there is a unique network connection per stream between the gateway and

each of the query evaluators interested in the stream, and we want to minimize

the network overheads incurred by those connections.

As a simple example, consider that all streams have the same popularity and

that their aggregate rate is W (this is the rate from the event sources to the

gateways). The aggregate rate W can be many 10’s of Gbps, even though each

individual stream is much smaller. The rate from the gateways to the evaluators

will be at least W (best case). However, if there are k query evaluators, typically

k is many 100’s, a naive allocation of queries of evaluators can result into W

incoming rate per evaluator, which can violate the evaluator’s capacity, and a

total rate inside the platform of k ·W , which incurs significant network load.

Our approach strives to minimize total network load, and at the same time be

mindful of capacity constraints and processing overheads incurred when executing

the queries. These are non-trivial because the platform allows a flexible query

processing programming model. In other words, a solution that places all queries

using the same stream to the same query evaluator does not scale for popular

queries and streams. One approach to capture this requirement would be to

associate capacity limits for all critical resources of the system (e.g., network

bandwidth, processing and memory demands per server). However, this approach

requires a priori knowledge of those limits, and in our experience may result in

very unbalanced allocations that are not desirable from an operational point of

view. Instead, our allocation strives to balance the load in the system and reduce

network overheads.
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The main insight that enables us to optimize the allocation of queries to eval-

uators is the observation that many queries will use the same input streams. For

example, many users may be interested in traffic updates from the same city, or

weather updates for the same region. This is akin to the existence of many appli-

cations for e.g., smart-phones that present weather, news, and other information

to end-users using the same sources, and the large number of users for many of

these similar applications. Hence, we anticipate large benefits by co-locating sim-

ilar queries to the same query evaluator, and transporting the relevant network

streams once.

Three practical requirements complicate query assignment.

1. Queries should be able to subscribe to more than one stream. This is re-

quired, for example, to support joins, and it is a common feature in many

CEP systems.

2. The assignment of queries to servers should be semi-permanent, which means

that the platform should avoid moving queries between servers. For example,

to reduce overheads, as this requires moving (query) state while guaranteeing

that the query does not miss any stream updates. Obviously, queries will be

re-assigned when their server fails, but such events should be an exception.

Hence, the platform must make a good decision when assigning a query to

a server upon query arrival.

3. We expect churn both in the queries (queries have limited lifetime) and in

servers (due to server failures and re-cycles). The queries arrive and depart

dynamically, and the assignment of queries to servers should be robust to

query and server dynamics.
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In this work, we propose and study the problem of assigning streaming queries

to query evaluators (servers), under the requirements and assumptions described

above. We model the data flow in the system as temporal graphs, use both analysis

and simulations to understand the complexity of the problem, and design efficient

algorithms for assigning queries to servers.

The remaining of this chapter are organized as follows. In Section 6.2, we

formulate the problem of assigning streaming queries to servers in the context

of an online platform that hosts queries on behalf of the users as a service. We

show that the problem of reducing network load while balancing server load is

NP complete in Section 6.3, and provide approximation bounds in Section 6.4. In

Section 6.5, we use the offline algorithms to reason about the performance of the

assignment process, and to draw inspiration to develop effective algorithms for

online cases. Using analysis and simulation in Section 6.6, we identify the online

heuristic that gives the best performance, even under query and server churn,

and is often up to four times better than (naive) random assignment. We discuss

related work in Section 6.7 and summarize this work in Section 6.8

6.2 System Model and Assumptions

We consider a stream processing platform with the following three key com-

ponents (see also Figure 6.1): (event) sources, queries, and servers (query evalu-

ators).

Sources. A source is a publisher that generates new events as a data stream at

some rate. S = {s1, s2, . . . , sm} denotes a set of sources, and w(s) is the rate of

events published by source s ∈ S. The total event rate for a subset of sources
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S ′ ⊆ S is denoted by w(S ′) =
∑

s∈S′ w(s). For convenience, and without loss of

generality, we shall treat sources as if located in the event gateways.

Queries. A query subscribes to one or multiple sources and processes the events

originating from the sources. A set of queries is denoted by Q = {q1, q2, . . . , qn},

and the set of sources subscribed by a query q ∈ Q is represented as Sq, which is

a subset of the set of sources S.

If two queries subscribe to identical sets of sources, we say that they are of the

same query type. Let T ⊆ 2S be the complete set of distinct query types. Each

query q ∈ Q has a query type t ∈ T , where t = Sq. Given n queries, we have

n =
∑

t∈T nt, where nt is the number of queries of query type t.

Moreover, N(s) denotes the subset of queries that subscribe to source s, that

is, N(s) = {q ∈ Q | s ∈ Sq}.

Servers. A server is a container that evaluates queries. We assume there are

k ≥ 1 servers in a stream processing platform. (The terms “server” and “query

evaluator” are used interchangeably; we mostly use “server” for brevity.)

6.2.1 Query Assignment Problem

We consider optimizing query assignment with respect to the following two

criteria: network traffic and server load.

Network Traffic. We are interested in minimizing network traffic between

sources and servers. If a server hosts at least one query that subscribes to a

source s, then this contributes w(s) to the network traffic cost. This implies that

it is desirable to co-locate queries that use the same source(s). Formally, the total
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network traffic cost of a server that hosts queries Q′ ⊆ Q is defined as

f(Q′) =
∑

s∈S

w(s) · 1{s is required by some q ∈ Q′}.

The total network traffic of an assignment of queries to servers according to the

sets of queries Q1, Q2, . . . , Qk assigned to respective servers 1, 2, . . . , k is given by:
∑k

j=1 f(Qj).

Server Load. A query assignment is feasible if it approximately balances the

processing load of servers up to a given slackness. In practice, it is non trivial to

quantify the capacity of a server. Servers are typically hosted by virtual machines

in a cloud service platform. The capacity of a server depends on several factors

including the processing requirements of queries, and other factors such as the load

of virtual machine to which the server is assigned. Therefore, we aim at balancing

the load over different servers which does not require knowing exact capacities of

individual servers. The underlying assumption is that the system operates at a

load that allows for a feasible query assignment. In this case, balancing the load

across different servers is a natural objective.

In this work, we assume that each query contributes a fixed processing load

to the server it is assigned to. For simplicity of exposition, we assume queries

contribute identical processing loads, say of unit value, but our results naturally

generalize to non identical query processing loads. In this way, the processing load

of a server corresponds to the number of queries assigned to this server.

Given a slackness parameter ν ≥ 0 for balancing the load across servers, a

query assignment to k servers is specified by a partitioning of the set of queries

Q into k disjoint subsets Q1, Q2, . . . , Qk. A query assignment is said to be ν-load
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balanced, if it satisfies the following condition:

|Qj| ≤ (1 + ν)
n

k
, for j = 1, 2, . . . , k. (6.1)

Throughout the paper, we interchangeably refer to the parameter ν as the slack-

ness parameter or relative relaxation parameter.

Query Assignment Problem (QA) Let P(Q) be the set of all possible k-

partitions Q1, Q2, . . . , Qk of the set of queries Q such that (a) Q1∪Q2∪· · ·∪Qk =

Q; and (b) Qi ∩Qj = ∅ for every i 6= j.

The QA problem is defined as follows: given a set of sources S, a set of queries

Q, a set of k servers, and a slackness parameter ν ≥ 0, find (Q1, Q2, . . . , Qk) ∈
P(Q) which minimizes the network traffic

k
∑

j=1

f(Qj)

subject to the server load balancing constraints (6.1).

6.3 Hardness and Benchmark

In this section, we first discuss the computational complexity of the query

assignment problem (QA), and then characterize the inefficiency of a standard

load balancing strategy that assigns each query by sampling a server uniformly at

random.

6.3.1 NP Hardness

In general, it is computationally hard to find an optimal solution for an arbi-

trary QA instance in polynomial time as showed in the following theorem.
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Theorem 8. Query assignment problem is NP-complete.

Proof. The proof consists of two steps: (a) we first prove QA’s decision problem

is NP-hard; and (b) show that it is NP.

First, we prove its NP-hardness by a reduction from the well-known bin packing

problem [73].

The decision problem of QA is described as follows: Given the set of sources

S, the set of queries Q, k servers, a slackness parameter ν ≥ 0, and a real number

γ ≥ 0, does there exist (Q1, Q2, . . . , Qk) ∈ P(Q) such that (a)
∑k

j=1 f(Qj) ≤ γ,

and (b) every server is ν-load balanced?

Consider a special case of QA’s decision problem, where (a) each query sub-

scribes to exactly one source, (b) each source publishes events at a unit rate

w(s) = 1 for every s ∈ S, and (c) γ = |S|. In other words, we need to find a fea-

sible solution such that queries of the same type are assigned to the same server.

We can reduce an arbitrary instance of bin packing problem to an instance of the

special case under consideration: (a) we reduce an item to a query type, where

the item’s size is reduced to the number of queries for the corresponding type; (b)

the number of bins is reduced to the number servers; and (c) the size of each bin

is reduced to the upper limit for each server’s load. Since bin packing problem is

NP-hard, we conclude that QA’s decision problem is NP-hard.

Second, given a solution to QA’s decision problem, we can check whether it

is feasible in polynomial time, so the QA problem is NP. Therefore, QA is NP-

complete.

The following competitive ratio holds for every feasible query assignment.
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Proposition 8. For every assignment of queries to servers, the network traffic

cost is at most k times the optimum network traffic cost, where k is the number

of servers.

6.3.2 Random Query Assignment

A naive query assignment strategy is to assign each query to a server sampled

independently, uniformly at random. This is a standard load balancing strategy

that can be implemented by hash partition of query identifiers. This strategy can

efficiently balance the number of queries over servers. Specifically, it is known to

guarantee the maximum server load of n/k +O
(

√

(n log k)/k
)

with probability

o(1) for n ≫ k log3 k [148]. However, this strategy can be grossly inefficient

with respect to network traffic cost, which we show analytically below and also

experimentally in Section 6.6.

Proposition 9. Consider the set of sources S (|S| = m) and k servers, with ds

denoting the number of queries subscribed to source s ∈ S. The expected network

traffic cost under uniform random query assignment strategy is

(

1− 1

m

∑

s∈S

(

1− 1

k

)ds
)

km. (6.2)

Proof. Consider an arbitrary source s ∈ S and an arbitrary server j ∈ K. Under

random query assignment, at least one query that requires input from source s is

assigned to server j with probability 1− (1− 1/k)ds. Summing over all servers j

gives the expected number of servers to which the stream of source s need to be

transferred. Summing further over all sources s ∈ S gives the expected number
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of streams that need to be transferred from sources to servers, which corresponds

to total network traffic.

Proposition 9 implies that the naive strategy can easily achieve the upper

bound in Proposition 8 and result in a large amount of network traffic cost. From

Equation 6.2, the expected network traffic cost of random query assignment is

nearly equal to the worst-case network cost whenever 1
m

∑

s∈S (1− 1/k)ds ≪ 1.

In fact, the worst-case network traffic cost is achievable under the random query

assignment policy: consider m sources and n queries partitioned into k bal-

anced pieces so that there are m/k sources and n/k queries in respective pieces

S1, S2, . . . , Sk and Q1, Q2, . . . , Qk, and assume that each query in Qj only sub-

scribes to the sources in Sj and none in S \ Sj. The subscription between

queries and sources corresponds to a collection of k disconnected complete bi-

partite graphs, each of which has m/k sources and n/k queries. In this case, the

expected network traffic cost is

(1− (1− 1/k)n/k)km,

which for large n tends to the worst-case network traffic cost of km. On the other

hand, the best strategy in this case is to assign each piece of queries to a distinct

server, which achieves minimal network traffic and perfect load balancing. Note

that the inefficiency of the naive strategy can be made arbitrarily large by taking

k large enough.

The high network traffic cost caused by naive strategies such as random query

assignment asks for the design of more sophisticated query assignment algorithms.

In the next section, we focus on offline QA problem, and propose approximation
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algorithms with better performance guarantees. In Section 6.5, we discuss online

algorithms that irrevocably assign queries to servers at their arrival.

6.4 Offline Query Assignment

In this section, we investigate practical approximation algorithms for offline

QA problem.

We first consider approximation algorithms for the general case where each

query subscribes to one or multiple sources, which we refer to as multi-source QA.

For sources with identical event rates, we propose an approximation algorithm

that guarantees the network traffic cost of at most 2dmax(1+ log k) of the optimal

network traffic cost, where dmax is the maximum number of sources required as

input to a query, and k is the number of servers. Since the value of dmax is usually

a small constant in practice [24], this is a much tighter bound compared with

the worst-case bound of k. We also develop several heuristic query assignment

algorithms that exhibit competitive performance in practice.

Moreover, we develop a 2-approximation algorithm for the case where each

query subscribes to exactly one source, which we refer to as single-source QA.

6.4.1 Multi-Source Query Assignment

We first present an approximation algorithm and then introduce two heuristics

for offline multi-source QA.

Minimum Query Type Packing

In this section, we establish the following main theorem.
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Theorem 9. Suppose that all sources have identical event rates. There exists a

polynomial-time algorithm for multi-source QA with the approximation ratio

2dmax(log k + 1)

where dmax = maxq∈Q|Sq| is the maximum number of sources subscribed by a

query. Furthermore, the same bound holds for sources of arbitrary rates with an

extra factor ω = maxs∈S w(s)/mins∈S w(s).

Theorem 9 tells us that when queries subscribe to a number of sources that is

bounded by a constant, we have an approximation guarantee of O(log(k)) where k

is the number of servers. This result is of practical interest in applications where

each query subscribes to a few sources, and the asserted approximation ratio comes

from an algorithm that approximately solves a single-server minimum query type

packing problem, which we introduce shortly. We shall prove the correctness of

Theorem 9 in the following three steps.

1. We show that if we can optimally solve k single-server minimum query type

packing (MQP) problems, then we can approximate multi-source QA within

factor 2(1 + log k).

2. MQP is NP-complete.

3. MQP can be approximated within dmax in polynomial time.

We start with the definition of MQP.

Single-Server Minimum Query Type Packing (MQP). Given the set of

queries Q, the set of sources S, and a real number θ > 0, find a subset of query
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types T ′ ⊆ T with S ′ =
⋃

q∈Q∧Sq∈T ′ Sq that minimizes w(S ′), subject to the

constraint:
∑

t∈T ′ nt ≥ θ.

The multi-source QA can be approximated by sequentially solving MQP in k

rounds, with the following performed in round j:

1. Select an empty server as the target for query assignment from the pool of

remaining queries Q(j).

2. Suppose we find the optimal subset of query types T ′ ⊆ T for the MQP

problem with queries Q(j) and

θ = n− (1 + ν)
(k − 1)n

k
. (6.3)

Let Q̂ ⊆ Q(j) be the subset of queries of query types in T ′. Assign Q̂ to the

selected server.

3. If |Q̂| > (1+ν)n
k
, we arbitrarily select a query type t′ ∈ T ′, remove a number

of queries of type t′ to make the server ν-load balanced, and put the removed

queries back to the query pool. Note that since θ < (1 + ν)n/k, we only

need to select one query type for query removal. If we need to select more

than one query type, T ′ cannot be an optimal solution.

Since the constraints in the QA problem imply that |Qj| ≥ θ, for every server

j = 1, 2, . . . , k, the MQP problem with θ can be seen as a relaxation of the QA

problem.

Let Q̂∗
j ⊆ Q be the optimal solution for the single-server MQP problem on the

j-th server, f(Q̂∗
j) be the network traffic cost, and OPT be the optimal solution

for multi-source QA problem.

171



Chapter 6. Partitioning in Temporal Graphs

Lemma 4. Given a multi-source QA problem with k servers, successive solving

of k MQP problems yields a feasible solution for the QA problem. Moreover, if we

can solve each MQP problem optimally with Q̂∗
1, . . . , Q̂

∗
k, we can guarantee

k
∑

j=1

f(Q̂∗
j ) ≤ 2(log k + 1)OPT.

Proof. he proof follows by upper bounding the cost incurred in each round where

queries are assigned to a server by solving a single-server MQP problem. We first

show the upper bound for the traffic cost of assigning queries to the first server,

and then show how we bound the traffic cost for other servers.

Let OPTj(n
′) be the optimal solution for a multi-source QA problem with n′

queries, j servers, and the capacity constraint (1 + ν)n
k
. Note that OPTk(n) =

OPT. For the first single-server MQP problem, let Q̂∗
1 be an optimal subset of

queries assigned to server 1 with traffic cost f(Q̂∗
1). Since single-server MQP

problem is a relaxation of the QA problem, it holds f(Q̂∗
1) ≤ f(Q∗

j), where Q∗
j is

the subset of queries assigned to server j in OPT for every j = 1, 2, . . . , k. Since

OPTk(n) = OPT, we obtain

f(Q̂∗
1) ≤

1

k
OPTk(n) =

1

k
OPT. (6.4)

Consider now the j-th server. Let OPTk−j+1(n
′) be the optimal solution given

n′ remaining queries, k− j+1 servers, and the capacity constraint (1+ ν)n
k
(note

that this constraint remains the same throughout the execution of the algorithm).

We claim that

f(Q̂∗
j) ≤

2

k − j + 1
OPT, for j = 2, 3, . . . , k. (6.5)
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Suppose inequality (6.5) is true, then the proof of the lemma follows by sum-

ming up the upper bounds in (6.4) and (6.5) and using the fact that for the

harmonic series Hk it holds Hk ≤ log k + 1. We prove inequality (6.5) as follows.

First, given n queries and the same capacity constraint per server, if there

exist feasible solutions for a system of j and k servers, such that j ≤ k, then we

prove that OPTj(n) ≤ 2OPTk(n). For OPTk(n), let costi be the traffic cost for

server i. Without loss of generality, suppose that the servers are enumerated such

that cost1 ≥ cost2 ≥ . . . ≥ costk. Then, we have

OPTk(n) =

j
∑

i=1

costi +
k
∑

i=j+1

costi.

Using OPTk(n), we can construct a feasible solution that requires only j servers

by (1) arbitrarily selecting a server a ≤ j with available space, and (2) sequentially

assigning queries on server b > j to server a. If server a is full before all queries

from server b are assigned, then arbitrarily select another server a′ ≤ j with avail-

able space for the remaining queries from server b, and we repeat the procedure

until all queries from server b are assigned. If all queries from server b are assigned

but server a still has available space, we find another server b′ > j, and assign

queries from server b′ to server a. By the above procedure, we can construct a

feasible solution using only j servers. The resulting extra cost is no more than

j ∗ costj+1, since in the above procedure we break the sequential assignment at

most j times, and each time add in no more than the cost of costj+1. Therefore,

OPTj(n) ≤
j
∑

i=1

costi +
k
∑

i=j+1

costi + j ∗ costj+1

≤ 2

j
∑

i=1

costi +
k
∑

i=j+1

costi
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and, thus, it follows that

OPTj(n)

OPTk(n)
≤

2
∑j

i=1 costi +
∑k

i=j+1 costi
∑j

i=1 costi +
∑k

i=j+1 costi
≤ 2

Hence,

OPTj(n) ≤ 2OPTk(n), for all 1 ≤ j ≤ k. (6.6)

Second, for k servers and the same capacity constraint, if there exists feasible

solutions for assigning ni and nj with ni ≤ nj , then

OPTk(ni) ≤ OPTk(nj). (6.7)

Since f(Q̂∗
j) ≤ 1

k−j+1
OPTk−j+1(n

′), (6.6) and (6.7), it follows:

f(Q̂∗
j) ≤

2

k − j + 1
OPT, for 1 < j ≤ k.

In Lemma 4, we derived an approximate algorithm for the QA problem under

assumption of the existence of an oracle that provides optimal solutions to MQP

problems. We next show that MQP is NP-complete; therefore, it is hard to find a

polynomial-time algorithm that solves MQP optimally.

Lemma 5. MQP problem is NP-complete.

Proof. We sketch the proof as follows. (a) To prove NP-hardness, we can reduce

the NP-hard minimum k-union problem [181] to single-server MQP problem. (b)

It is easy to verify a solution in polynomial time.
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Due to the NP-hardness, we propose the following algorithm to approximate

MQP.

1. Order query types in decreasing order with respect to the number of queries;

2. Successively pick a query type with the largest number of queries until the

number of assigned queries is at least θ.

Lemma 6. Suppose sources have identical event rates. The above algorithm ap-

proximates MQP within dmax = maxq∈Q|Sq|.
For arbitrary source rates with ω = maxs∈S w(s)/mins∈S w(s), the above algo-

rithm approximates MQP within dmaxω.

Proof. In the above algorithm, we pick the query types with the largest number of

queries to saturate a server. Suppose we eventually select h query types, we then

conclude that the number of query types considered in an optimal solution is no

less than h. Let h +∆ be the number of query types obtained from the optimal

solution. For each query type, the above algorithm takes at most dmax times more

of the network traffic rate compared with the optimal solution, when the source

traffic rates are identical. In the case of arbitrary source traffic rates with the

ratio of the maximum source traffic rate to the minimum source traffic rate at

most ω, it takes at most dmaxω times more network traffic rate. This completes

the proof of the lemma.

In summary, Theorem 9 is proved using Lemma 4, 5, and 6.

Heuristics

In this section, we present two heuristics for the offline QA, including incre-

mental cost (referred to as IC) and min-max traffic cost per server (referred to
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as MMS). These heuristics are observed to exhibit competitive performance in

practice.

Incremental Cost Based Approach. IC assigns queries in successive rounds.

At each round, it assigns queries to a server in three steps. (a) Given a query

type t ∈ T with non-zero number of unassigned queries and a server j of spare

capacity to host more queries, we consider the incremental traffic cost resulting

from assigning at least one query of type t to server j. (b) We select a pair of a

query type and a server (t∗, j∗) that results in the least incremental cost. (c) We

assign queries of type t∗ to server j∗ as many as possible until server j∗ is full or

there are no unassigned queries of type t∗.

Min-max Traffic Cost per Server. MMS aims to minimize the maximum

traffic cost among servers in successive rounds. At each round, it assigns queries

to servers in three steps. (a) Given a query type t ∈ T with non-zero number of

unassigned queries and a server j with spare capacity to host queries, we consider

the traffic cost after assigning at least one query of type t to server j. (b) We

select a pair of a query type and a server (t∗, j∗) that results in the least traffic

cost. (c) We assign as many as possible queries of type t∗ to server j∗ until server

j∗ is full or there are no unassigned queries of type t∗.

6.4.2 Single-Source Query Assignment

In this section, we consider single-source QA, where each query subscribes to

exactly one source. In this case, there is a one-to-one correspondence between

query types and sources. Therefore, we use the term source and the term query

type interchangeably.
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We present an approximation algorithm for single-source QA that assigns

queries to servers over successive rounds as shown in Figure 6.2. For server j,

let dj to be the spare capacity of server j. At the beginning of round 0, we ini-

tialize dj = ⌊(1 + ν)n/k⌋, where ν ≥ 0 is the slackness parameter. Let ns be the

number of unassigned queries that subscribe to source s.

Input: A single-source QA instance;

Output: A query assignment.

1. while True

2. Select server j with the largest free capacity

3. Select query type (source) s of the largest event rate w(s)

4. b← min(dj , ns)

5. Assign b type-s queries to server j

6. dj ← dj − b

7. ns ← ns − b

8. if there is no more queries

9. return

Figure 6.2: 2-approximation for single-source QA.

Theorem 10. The approximation algorithm given in Figure 6.2 has the following

approximation guarantees:

1. The approximation ratio 1 + k/m ≤ 2, where m is the number of sources

and k is the number of servers, for sources with identical event rates;

2. The approximation ratio 2, for sources with arbitrary event rates.
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Proof. We consider only the cases where 0 < ns < dj (with dj = ⌊(1 + ν)n/k⌋)

for every s ∈ S and j = 1, 2, . . . , or k as the other cases can be reduced to these

cases. (If there exists s′ with ns′ ≥ dj, then we reserve a server for query type s′,

reduce ns′ by dj, remove the server, and repeat; this assignment is optimal.) We

also assume that k < m. (If m ≤ k and since 0 < ns < dj for every s and j, an

optimal assignment is to allocate each query type to a distinct server.)

Identical Source Event Rates. Without loss of generality, we assume w(s) = 1,

∀s ∈ S. We show the lower bound for the optimal solution and the upper bound

for the approximate solution.

The lower bound for the optimal solution is m, since every source is required

by at least one server in the system.

The upper bound for the above algorithm is k +m. In each round, we either

make a query type consume all the spare space of a server, or make a server host

all the remaining queries of a query type. In other words, either the number of

available servers or the number of available query types decreases by 1. It follows

that the number of rounds is at most k +m. Since each round increases network

traffic rate by at most 1, the total traffic rate cannot be larger than k +m.

Using the asserted lower bound and upper bound, we obtain the approximation

ratio of 1 + k/m.

Arbitrary Source Event Rates. Similarly, we demonstrate the lower bound

for the optimal solution and the upper bound for the approximate solution.

The lower bound for the optimal solution is w(S), since we have to send the

data stream of each source to a server at least once.
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The upper bound for the approximate solution is 2w(S). Let rs be the number

of rounds to assign queries of query type s, which in total introduces rs · w(s) of
network traffic cost into the system. By the same argument as for the case of

identical source event rates, the total number of rounds is at most m + k, i.e.,
∑

s∈S rs ≤ k+m. From this, it follows that:
∑

s∈S(rs−1) ≤ k. Since 0 < ns < dj,

we can guarantee that the top-k query types with respect to the traffic rate will

be assigned at most once. Therefore,

∑

s∈S

(rs − 1)w(s) ≤ kwk+1 ≤ w(S)

where wk+1 is the k+1-largest traffic rate among all query types. The total event

rate satisfies
∑

s∈S

rsw(s) ≤ w(S) +
∑

s∈S

(rs − 1)w(s) ≤ 2w(S).

Hence, the algorithm provides a 2-approximation.

Remark. For single-source QA, there exists a constant factor approximation al-

gorithm, and this guarantee holds for any number of sources m, number of queries

n, and number of servers k. Moreover, if the source event rates are identical, then

the approximation ratio of 1+ k/m can be guaranteed. Thus, this approximation

ratio guarantee can be arbitrarily near to the optimal one whenever the number

of sources relative to the number of servers is sufficiently large. In a practical

system with single-source queries and many sources of approximately identical

event rates, the proposed algorithm can guarantee nearly optimal performance.

179



Chapter 6. Partitioning in Temporal Graphs

6.5 Online Query Assignment

In this section, we consider online QA, where each query is irrevocably assigned

to a server at its arrival time. We focus on the class of online algorithms that

decide which server to host an incoming query based on (a) the set of sources

required by an incoming query and (b) the queries that were previously assigned

to servers and are still in the system.

The key to design such an online algorithm is to choose a metric for assigning

queries to servers. Such a metric should consider both load balancing and network

traffic cost. We introduce and discuss several greedy metrics for online query

assignment in Section 6.5.1. Moreover, in Section 6.5.2, we discuss how to make

use of the extra information (Section 6.5.2) or resources (Section 6.5.2) to improve

the performance of online algorithms.

6.5.1 Greedy Online Algorithms

In this section, we present three greedy online algorithms, and describe the

intuition behind the design of these online algorithms.

The three algorithms use different metrics to decide which server to host an

incoming query; however, they share the common pipeline as shown in Figure 6.3.

Given an incoming query q, k servers along with the corresponding set of queries

a server is hosting, the relative relaxation ratio ν, and a predefined metric M , the

server to host q is decided as follows. (a) From all k servers, we find the candidate

servers C each of which will not violate the balance constraint if we add q into

the server. (b) From C, we find the servers C∗ each of which with the lowest cost

in terms of M if we add q into the server. (c) If there is only one server in C∗,
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Input: (a) an incoming query q requiring a set of sources Sq;

(b) k servers and the queries they are hosting Q1, . . . , Qk;

(c) relative relaxation ratio ν;

(d) a predefined metric M ;

Output: the server that will host q.

1. Find candidate servers C =
{

i | |Qi|+ 1 < (1 + ν)
∑k

j=1
|Qj|

k

}

2. Find C∗ ⊆ C such that ∀i ∈ C∗,

3. M(Qi, q) ≤M(Qj , q),∀j ∈ C

4. if |C∗| == 1

5. return the only server in C∗

6. else

7. return the server p = argmini∈C∗{|Qi|}

Figure 6.3: Greedy algorithms for online QA

we assign q to the server; otherwise, we select the least loaded server from C∗ and

then assign q to the server.

In this work, we propose three metrics to support online assignment decision:

(a) least incremental cost first (referred to as LeastCost), (b) least source cost per

server first (referred to as LeastSource), and (c) least number of query types first

(referred to as LeastQT). Given a query q and a set of queries Qj hosted by server

j, the three metrics behave as follows.
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LeastCost. If f(Qj ∪ {q}) − f(Qj) results in a smaller incremental traffic cost,

server j will host q with a lower cost defined as

MLeastCost(Qj, q) = f(Qj ∪ {q})− f(Qj).

LeastCost is a natural metric for QA: since the ultimate goal of QA is to mini-

mize traffic cost in a system, LeastCost attempts to achieve this goal by locally

minimizing traffic cost at each query arrival.

LeastSource. If f(Qj ∪ {q}) results in a smaller traffic cost, the cost of placing q

into server j is lower defined as

MLeastSource(Qj , q) = f(Qj ∪ {q}).

LeastCost has a potential issue: one server might subscribe to many sources be-

cause of locally optimal decisions such that many incoming queries are assigned

to the server, the server gets full quickly, and eventually the server becomes un-

available for hosting incoming queries. If this effect propagates among servers,

the overall traffic cost in the system can be very high. To mitigate this effect, we

come up with LeastSource that aims to balance the traffic cost among servers such

that no server will subscribe too many sources and result in too high traffic.

LeastQT. Let T (Qj) be the set of query types such that ∀t ∈ T (Qj), there exists

at least one query of type t hosted by server j. If |T (Qj ∪{q})| is smaller, placing

q into server j results in lower cost defined as

MLeastQT(Qj , q) = |T (Qj ∪ {q})|.

LeastCost and LeastSource have a common issue: a few servers might subscribe

too many popular sources. If one server subscribes too many popular sources, it
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is able to host queries of various query types, and will be crowded quickly. If this

effect propagates in the system, we have to make many servers subscribe those

popular sources. One way to mitigate this effect is to limit the number of query

types in a server such that no server can host too many query types and get

crowded soon.

6.5.2 Discussion

In this section, we discuss how we develop online algorithms when we have more

knowledge or more resources. The above metrics provide heuristic algorithms to

solve online QA. Indeed, given the limited knowledge of only information about the

incoming query and assigned queries in a system, we might not have much space

to develop sophisticated algorithms. In practice, we might know some statistical

information about queries, and may relax the load balancing constraint at specific

conditions.

Known Query Type Distribution

When we deal with online QA, we might know the information about query

type statistics. In particular, such statistics consist of the rate at which specific

query types will arrive in the system, and may well be available in production

systems that have been in operation for some time, which allows us to collect and

maintain statistics about the query workload.

Concretely, with such statistical knowledge, we can develop an online algorithm

as follows. Assume that popularity of query types is known: the probability that

an incoming query is of type t follows a multinomial distribution with parameters
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(λt, t ∈ T ), where T ⊆ 2S is the universe of query types. Knowing this distribution

allows us to develop an online algorithm that makes reservations for query types

in advance, and then assigns queries at their arrival times based on their query

types. This allows one to emulate what an offline algorithm would do. Given

(λt, t ∈ T ), we reduce an online QA to an offline QA as follows.

1. λt (the probability that a type-t query arrives) is reduced to nt (number of

type-t queries);

2. δj , the probability that server j receives a query, is reduced to the balance

constraint, the number of queries a server could host at most, and in par-

ticular, we set δj =
1
k
in the algorithm;

3. πt,j , the probability that a type-t query is assigned to server j, is reduced to

the number of type-t queries in server j.

Therefore, with the statistical information on query type distribution, we can

reuse the offline algorithms discussed in Section 6.4 to solve online QA.

Relaxed Load Balancing Constraints

QA problem is defined as a bi-criteria optimization problem where one of the

criteria is balancing the load of servers. Specifically, the problem corresponds to

finding a query assignment such that the maximum load is at most (1 + ν) of the

mean load across different servers, for given input parameter ν ≥ 0. For an online

QA, requiring to obey this condition at each query assignment instance may be

too restrictive and result in sub-optimal query assignments with respect to the

long-term network traffic cost.
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Example 8. Consider a system of 10 servers, and a fixed slackness parameter of

0.05. The first 10 queries will be distributed to 10 different servers, and that may

result in 10 different copies of the same data stream, if those queries subscribe to

the same source. This is because the average load times the slackness parameter

is strictly less than 1 until the 10-th query. In general, during the initialization,

the allocation of queries to servers will be grossly sub-optimal.

To resolve the above problem, we relax the load balancing constraints as fol-

lows. (a) We define another balance constraint for a system in its initial phase,

and use absolute slackness parameter to control the balance constraint. (b) In

the initial phase, a system uses a balance constraint decided by absolute slackness

parameter. When the system hosts more than n queries, we switch back to the

balance constraint decided by relative slackness parameter. Let n be the number

of queries in the system. The system is said to be α-absolutely balanced, if the

number of queries in any server is no more than n
k
+α, where α ≥ 0 is the absolute

slackness parameter. The system is said to be (1 + ν)-relatively balanced, if the

number of queries in any server is no more than (1 + ν) · n/k, where ν ≥ 0 is the

relative slackness parameter.

In an online system, when the number of input queries is small, we apply

absolute slackness parameter to balance the workload of servers; when the number

of queries becomes sufficiently large, we switch to relative slackness parameter.

In other words, given the values of parameters α and ν and the number of input

queries n, the load balancing constraint for each server j is defined to be dj(n) ≤
d(n), where dj(n) is the number of queries already assigned to server j and

d(n) = max
{n

k
+ α, (1 + ν) · n

k

}

. (6.8)
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The system switches to the relative load balancing as soon as the number of input

queries satisfies n ≥ (α/ν)k.

Configuring Relaxed Load Balancing

We provide guidelines on how to set the values of parameters α provided ν

based on a probabilistic model. Assume that the probability of assigning a query

to a server is according to a uniform random distribution across servers. Then,

(d1(n), d2(n), . . . , dk(n)) is a random variable with multinomial distribution with

parameters n and (1/k, 1/k, . . . , 1/k) where
∑k

j=1 dj(n) = n. By the union bound,

we have

Pr
(

∪kj=1{dj(n) > d(n)}
)

≤
k
∑

j=1

Pr(dj(n) > d(n)). (6.9)

Using Hoeffding’s inequality, we obtain

Pr(dj(n) > d(n)) ≤ exp

(

−2(d(n) + 1− n
k
)2

n

)

. (6.10)

Combining with (6.8), we get: Pr(dj(n) > d(n)) ≤ exp
(

−2ν2

k2
n
)

. Therefore,

Pr
(

∪kj=1{dj(n) > d(n)}
)

≤ ke−
2ν2

k2
n. From this, it follows that dj(n) ≤ d(n) for

every j = 1, . . . , k with high probability provided that the following condition

holds k = O

(

ν
√

n
logn

)

. Note that for given ǫ > 0, dj(n) ≤ d(n) for j = 1, . . . , k

to hold with probability at least 1− ǫ, it suffices that

n ≥ k2

2ν2
log

1

ǫ
. (6.11)

Suppose that given ν > 0, we want the algorithm to switch to relative load

balancing as soon as the probability of violation of the relative imbalance is guar-

anteed to be smaller or equal than given ǫ > 0. By (6.8), the switch from the

absolute to relative balancing constraints happens at the smallest integer n such

186



Chapter 6. Partitioning in Temporal Graphs

that n ≥ αk/ν. Combined with (6.11), we observe that it suffices to switch over

when the number of queries n satisfies (6.11) and it suffices that the absolute

relaxation parameter α is chosen such that: α ≤ k
2ν

log 1
ǫ
. An important insight

from this is that the absolute relaxation ratio α should not be taken too large, and

it should be at most a quantity that scales linearly with the number of servers k.

6.6 Experiment

In this section we present performance evaluation of the offline and online

algorithms in Section 6.4 and Section 6.5 by an extensive set of simulations and

using data from production system. Overall, our experimental evaluations provide

support to the following claims:

1. Optimizing query assignment provides significant reduction of network traf-

fic compared to random query assignment.

2. Specific online query assignment heuristic, namely LeastCost, consistently

outperforms other online (and sometimes even offline) heuristics for a wide

range of configurations.

3. LeastCost scales with respect to the number of queries, sources, and servers,

and it is robust to dynamic arrival and departure of queries and servers.

6.6.1 Synthetic Workloads

We generated subscription of queries to sources according to a random bipartite

graph model [85]. The subscriptions of queries to sources are represented by a

bipartite graph G = (S,Q,E), where S is the set of sources, Q is the set of
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queries, and there is an edge (s, q) ∈ E if and only if query q receives input

from source s. G is assumed to be a random bipartite graph with given degree

distribution for the vertices that represent sources and the vertices that represent

queries. Specifically, we consider (a) the degrees of source vertices according to

Zipf distribution with power-law exponent β > 0 , and (b) the degree of query

vertices fixed to parameter d > 0. The popularity of sources typically follow a

power-law distribution [85, 86], which is modeled by a Zipf distribution. In our

experiments, we consider queries of unit processing costs.

Offline Algorithms. We evaluate performance of incremental cost based ap-

proach IC, minimum query packing based approach MQP, and min-max traffic

cost per server MMS, which are defined in Section 6.4. As a baseline for compar-

ison, we consider the following random offline assignment heuristic OffRand: (a)

randomly select all queries of the same query type; (b) randomly select a server

with available space to host queries; (c) assign queries to the selected server until

either the server is saturated or all queries (of query type) have been assigned; (d)

remove server or query type from further consideration; and (e) repeat from step

(a) until all queries are assigned.

Online Algorithms. We evaluate the following online heuristics: (a) Least

incremental traffic first LeastCost, (b) Least number of sources first LeastSource,

and (c) Least query types first LeastQT. As a baseline for comparison, we consider

the following random online query assignment OnRand: given an input query, we

find a set of candidate servers that can accept the new query without violating

the load balancing constraints, and then randomly select one of servers from this

for assignment.
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Parameters. In our experiments, we consider four parameters: (a) the power-

law exponent β for the source degree distribution in the range 1.0 to 3.0 with a

default value 2.0, (b) the number of sources per query in the range from 1 to 10

with a default value 2, (c) the number of servers in the range from 10 to 1000

with a default value 100; and (d) the number of queries in the range from 10, 000

to 1, 000, 000 with a default value of 100, 000.

When considering query or server dynamics, we also have the following two

parameters: (a) mean query life-time (Section 6.6.1), and (b) server departure

rate (Section 6.6.1).

For all the offline algorithms considered, we fix the relative relaxation param-

eter ν to value 0.05. For all the online algorithms considered, we fix the relative

relaxation parameter ν to value 0.05, and the absolute relaxation parameter α to

value 10 (Section 6.5.2).

Performance metrics. We consider replication factor as the metric to evaluate

the performance of algorithms. Let C be the resulting traffic cost of an algorithm,

S be the set of sources with traffic cost w, and f(S) =
∑

s∈S w(s). The replication

factor of the algorithm is defined as C/f(S). Intuitively, the replication factor

represents normalized traffic cost under the given algorithm.

We run each configuration 10 times, and average the results.

Offline Algorithms

We examine the replication factor of the offline algorithms in Figure 6.4. These

results are for sources with unit publishing rates; we examine heterogeneous source

traffic rates in Section 6.6.1.
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Figure 6.4: Performance of offline query assignment.
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Figure 6.5: Performance of online query assignment without query departures.

In the top graph in Figure 6.4, we show the network traffic replication factor

versus the power-law exponent of the Zipf distribution of the number of queries

subscribed to a source (source popularity). The number of sources per query is

fixed to 2, the number of queries is set to 100, 000, and the number of servers

is fixed to 100. We observe that the larger the power-law exponent, the better

the performance. In other words, the heavier the power-law distribution of the

number of queries subscribed to a source, the larger the replication factor. This is

intuitive as a heavier tail implies the existence of a few sources with many query

subscribed to those sources, which would intuitively make the query assignment

problem harder. The query assignment heuristics IC andMMS consistently exhibit

the best performance, up to four times better than OffRand.
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In the bottom graph in Figure 6.4, we show the network traffic replication fac-

tor versus the number of sources per query. In particular, the power-law exponent

is fixed to value 2.0, the number of queries is set to value 100, 000, and the number

of servers is set to value 100. We observe that the replication factor increases with

the number of sources per query. For single-source queries, the replication factor

is smaller than or equal to 2, which provides experimental confirmation of the

theoretical guarantee in Theorem 10. The replication factor exhibits a diminish-

ing returns increase with the number of sources per query. MMS exhibits the best

performance, and this is matched by IC for sufficiently small number of sources

per query.

We also examined the network traffic replication factor versus the number

of servers, which is not presented for space reasons. The results suggest that

the replication factor increases with the number of servers logarithmically. We

also observed that the network traffic replication factor is largely invariant to the

number of queries, which we also omit to show due to space reasons.

In summary, we observed that MMS consistently outperforms other offline

algorithms, and results in a performance gain of up to factor 4 compared with

random offline query assignment OffRand.

Online Algorithms

In this section, we examine the performance of online algorithms in the fol-

lowing settings: (a) online arrival of queries without query departure and a fixed

number of servers, (b) online arrival of queries with query departure and a fixed

number of servers, and (c) dynamic arrival and departure for both queries and

servers.
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Query Arrivals, No Departures In Figure 6.5, show the network traffic repli-

cation factor for online algorithms, in the same settings as in Figure 6.5. The

two sets of graphs are overall qualitatively very similar, hence, we only discuss

differences.

We observe that LeastCost exhibits the best performance, and sometimes even

outperforms the best offline algorithm MMS. The performance of LeastSource is

close to LeastCost. LeastCost performs up to four times better than OnRand, and

the performance gain is close to what we observed between MMS and OffRand

in the offline case. The performance of LeastQT is virtually identical to that of

OnRand. Typically, LeastQT provides no benefits.

Query Arrivals and Departures A streaming query service hosts queries

posted by users, and many such queries would be hosted only for a limited time,

e.g., the user may be interested in travel updates only while on the road. Hence,

it is important to examine query assignment strategies in a system with query

arrivals and departures. We consider query dynamics according to the following

model: (a) at each time step, the number of query arrivals is a random variable

with Poisson distribution; and (b) each arriving query has a lifetime, drawn in-

dependently from a given distribution. In particular, we consider two parametric

families of distributions: (a) exponential distribution that models the cases of

light-tailed query lifetimes, and (b) Pareto distribution that models the case of

heavy-tailed query lifetimes. We found similar results for these two different fami-

lies of distributions, so we only present the results for the exponential distribution.

Figure 6.6 shows the performance of online algorithms under dynamic query

arrival and departure. The mean query lifetime ranges from 10 to 1, 000, 000 time
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Figure 6.6: Performance of online algorithms with dynamic query arrivals and
departures.

steps with the default value 100, 000, the average number of query arrivals per time

step is 1, and the total number of discrete time steps τ is set to be 1, 000, 000 in all

cases. Overall, we observe that LeastCost consistently yields the best performance.

By Little’s law, the mean number of queries in the system is the product of the
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query arrival rate and the mean query lifetime, thus, the given range covers the

mean number of queries in the system from 10 to 1, 000, 000 queries. Given that

the number of servers is 100, we cover the system operating points of 0.1 to 10, 000

queries per server, which covers the range of lightly to highly loaded servers. The

result indicate that the network traffic replication factor tends to increase with

the load of the servers for all online algorithms. However, this increase is rather

slow for LeastCost, which is sub-linear in the mean query lifetime.

100

101

102

 1  1.5  2  2.5  3

R
ep

lic
at

io
n 

fa
ct

or

Exponent β

OnRand
LeastQT

LeastSource
LeastCost

 0

 1

 2

 3

 4

 5

 6

 7

 0  2  4  6  8  10

R
ep

lic
at

io
n 

fa
ct

or

Number of sources per query

OnRand
LeastQT

LeastSource
LeastCost

Figure 6.7: Performance of online algorithms with dynamic query and server
arrivals/departures.

Server Arrivals and Departures In practice, we also expect some level of server

churn; servers may fail, and hence queries need to be re-assigned, and new servers

may be added to cope with increased demand, or after recycling failed servers. It is

thus important to examine the robustness of different query assignment strategies

with respect to arrivals and departures of servers.

We modeled server dynamics similarly to query dynamics: we start with k

servers, and queries arrive in τ time steps. At each time step, the number of

query arrivals is a random variable with Poisson distribution, and each query is

associated with a lifetime that is a random variable with exponential distribution.

Starting at time step 1, after every γ time steps (where γ is referred to as server
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departure rate), we make a Bernoulli trial: with probability 0.5, we add a new

server; otherwise, we randomly delete a server, and re-assign its queries using the

online algorithm (i.e., assuming that they are new queries).

The results in Figure 6.7 demonstrate the performance of online query assign-

ment under both query and server dynamics. By default, we consider 100 servers,

the power-law exponent β for source popularity distribution of value 2.0, the num-

ber of sources per query of value 2, the total number of time steps is 1, 000, 000, the

mean number of query arrivals per time step of value 1, the mean query lifetime

of value 100, 000, and the server departure rate γ is 10, 000. Consistent with the

results presented earlier, we observe that LeastCost exhibits the best performance,

and is robust with respect to the dynamics of the server arrival and departure.

Heterogeneous Source Traffic Rates Thus far, we have examined the per-

formance of query assignment algorithms for the case of sources with identical

traffic rates. We now examine the case of heterogeneous source traffic rates. Since

many phenomena in nature follow a power-law distribution [86], we assume that

the source traffic rates follow a power-law distribution. We consider the range

of values of the power-law parameter that span the case of a fast decaying tail

(exponent value of 3) and a slow decaying tail (exponent value of 1). To define the

source traffic rates, we also need to decide the assignment of source traffic rates

to sources, and how this assignment correlates with other factors such as the pop-

ularity of sources (measured by the number of query subscriptions to a source).

To cover different possible scenarios, we consider the following three cases: (a)

random: source traffic rates are assigned to sources independently of their popu-

larity, (b) positively correlated : the traffic rate of a source is proportional to its
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Figure 6.8: Performance of query assignment algorithms on heterogeneous source
traffic rates: (left) random, (middle) positively correlated, and (right) negatively
correlated.

popularity, and (c) negatively correlated : the traffic rate of a source is inversely

proportional to its popularity.

The results are presented in Figure 6.8. In particular, we discuss the best

offline algorithm MMS, all three online algorithms, and the online random algo-

rithm OnRand, and note the following observations: (a) The more positive the

correlation between the source traffic rates and the popularity of sources is, the

larger the network traffic replication. (b) Typically, the best performing query
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assignment strategy is LeastCost. In the case when the source traffic rates are

negatively correlated with popularity of sources, LeastCost is substantially better

than MMS.

Figure 6.9: Performance of three different online query assignment strategies for
a real-world workload.

6.6.2 Real-World Workloads

We compare the performance of LeastCost query assignment strategy using

traces from a production environment with two alternative query assignment

strategies: the “worst-case” that amounts to supplying each stream of a source

to every server, and round-robin that assigns each query according to the round-

robin policy (whose performance is expected to be essentially that of random

query assignment, which we studied in Section 6.3.2). The trace contains infor-

mation about query arrivals over a week long interval collected in April 2014 from

a production deployment of a stream processing query platform with 100’s of

servers. The results in Figure 6.9 show that round-robin query assignment strat-

egy performs nearly as badly as the worst-case, and that a significant reduction of
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the network traffic cost can be achieved by LeastCost query assignment strategy.

Specifically, the network traffic cost under LeastCost query assignment is observed

to be approximately only 11% of that under the round-robin query assignment.

6.7 Related Work

The query assignment problem studied in this paper aims at clustering similar

queries together so as to minimize the network traffic and balance the load of

servers. A variety of formulations of co-clustering of similar vertices of a graph was

studied in previous work under various assumptions, e.g. see [71] for a survey. In

particular, it was studied in the context of publish/subscribe systems, e.g. [147],

[204], and [75]. However, to the best of knowledge, none of the previous work

addressed the query assignment problem as formulated in this paper.

The problem of assigning tasks to machines to balance the load is a well-

known problem, see [28] for a survey of online algorithms. Specifically, it is known

that online greedy assignment provides a 2− 1/k approximation. The problem of

assigning balls into bins was also studied by various authors, e.g., see [29, 36, 148]

and the references therein. A standard objective here is to minimize the maximum

load (aka minimize congestion), e.g., [30], and packing under knapsack constraints,

e.g., [61, 161]. The uniform random assignment load balancing strategy is known

to have the maximum load of n/k + O(
√

(n log k)/k) with probability o(1), for

n ≫ k log3 k [148]. Other load balancing strategies have also been studied, e.g.

power of two choices, where each ball is assigned to the least loaded out of two

bins picked uniformly at random for each assignment of a ball: the maximum load

is known to be n/k+O(log log k), with high probability, for n≫ k [36]. A related
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work is online bin packing where the bounds on the competitive ratio with respect

to the offline solution were derived for input arrival order according to random

permutation or independent and identically distributed sequence, e.g., see [61]

and the references therein. Our main difference is that we consider a bi-criteria

optimization, where the server load balancing is only one of the two criteria.

The query assignment problem studied in this paper is an instance of a non-

standard balanced graph partitioning problem. Standard balanced graph parti-

tioning problem is defined as follows: given a graph with n vertices, a positive

integer k and a parameter ν ≥ 0, the goal is to partition the set of vertices into

k partitions such that each contains at most (1 + ν)n/k vertices and the number

of edges cut is minimized. The best known approximation ratio for this problem

is O(
√
logn log k) [112]. The query assignment problem has the same form of

constraints. However, the objective function is a different submodular function.

The unconstrained problem of minimizing a submodular function in the context of

graph partitioning was considered, e.g.,, by [46], who derived a 2-approximation

algorithm. A notable difference with our work is that the query assignment prob-

lem minimizes a specific type of a submodular objective function subject to car-

dinality constraints. The problem of minimizing a submodular function subject

to cardinality constraints was studied by [174]: they established a Θ(
√

n/ logn)

approximation ratio for this problem. The approximation algorithms in this pa-

per provide much better approximation ratios whenever the maximum number of

sources to which a query is subscribed is sufficiently small, e.g. much smaller than

O(
√
n).
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6.8 Summary

In this chapter, we propose and study the assignment of streaming queries to

servers. This is important in the design of platforms that execute small streaming

queries as a service. For such scenarios, where many streams need to be delivered

to servers and the density of queries to servers is high, we need to minimize network

traffic while balancing load among servers. We model this problem as a partition

problem on temporal graphs, demonstrate this problem is NP complete, and derive

approximation guarantees. We study, analytically and with simulations, offline

and online heuristics for this multi-objective problem. In particular, we propose a

heuristic that performs well under a wide range of scenarios, including query and

server churn.
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Conclusion

In this section, we first summarize our works on mining and managing large-

scale temporal graphs, then share the lessons and wisdom learned from our re-

search, and finally discuss the directions we will pursue in future.

7.1 Summary

Temporal graphs are everywhere in our daily life. Unlike traditional graphs,

temporal graphs are dynamic. While the dynamic properties have inspired new

applications that rely on mining and managing temporal graphs, the dynamics

also raise new challenges: (1) It is difficult to extract and retrieve knowledge from

complex temporal graphs; and (2) existing algorithms on static graphs cannot

scale with the extra temporal dimension. In this dissertation, we focus on multiple

problems on mining and managing large-scale temporal graphs, and investigate

the principles to tackle these challenges.
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On mining temporal graphs, we have studied critical mining alert mining and

information cascade inference. By leveraging the unique properties in temporal

graphs, we develop effective and scalable algorithms to solve the problems.

• In critical alert mining, we aim to identify critical alerts that have high

probability to trigger a large number of other alerts in system management

applications. We first build temporal graphs over alerts to represent their

dependencies. Because of temporal dependencies among alerts, the resulting

temporal graphs are directed acyclic. Based on this fact, we develop fast

approximation algorithm that can obtain near-optimal solutions as well as

efficient sampling algorithms that empirically work well.

• In information cascade inference, our goal is to recover the structures of

cascades given their partial observations. We propose consistent trees as

the model to infer complete cascade structures, and the use temporal and

structural constraints in partial observations to prune the search space. Our

algorithms obtain improved inference accuracy and are able to scale with

large graphs with millions of nodes and billions of edges.

On managing temporal graphs, our works include dynamic subgraph matching,

temporal reachability, and stream query assignment. In these works, we identify

relatively stable components, and build data management techniques on the com-

ponents so that we can handle both query processing and dynamic updates in

temporal graphs.

• In dynamic subgraph matching, we formulate the service placement prob-

lem in datacenter applications as subgraph matching queries on temporal
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graphs. In this problem, node/edge attributes evolve over time, but topolo-

gies of temporal graphs are relatively stable. Inspired by this observation, we

develop a flexible graph index that enables fast query processing as well as

efficient index updates. Compared with existing algorithms, our technique

obtains 10 times speed up in terms of query processing and index updates.

• A large number of temporal reachability queries are generated from informa-

tion routing tasks in mobile networks. In this case, topologies of temporal

graphs change over time, and the topology evolution usually follows periodic

patterns in many applications. Driven by this property, we develop a graph

index that is able to process temporal reachability queries in a batch instead

of processing them one by one. In terms of response time, our index brings

up to 100 times of improvement compared with a naive approach.

• In stream processing system, the subscription relationships between data

sources and queries form a temporal graph where queries can dynamically

join and leave. In this work, our goal is to place queries into multiple servers

so that workload is balanced and the resulting network traffic is minimized.

Although topologies of temporal graphs in this problem can change over

time, degree/popularity distribution on data sources is usually stable. Based

on this observation, we develop a probabilistic model that randomly assign

queries with performance guarantee.
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7.2 Lessons

We have learned valuable lessons from our research work, and we summarize

them as follows.

Mining temporal graphs. Mining graphs with temporal dimension may not

necessarily increase computation complexity; on the contrary, we may reduce

computation complexity if temporal information is wisely leveraged.

In the problem of critical alert mining, we use temporal information to infer

dependencies between alerts, and the temporal dependencies determine the result-

ing alert graphs are directed acyclic. It is the unique topology in alert graphs that

leads us to the fast approximation algorithms that are able to find near-optimal

solutions and the highly efficiently sampling algorithms.

In information cascade inference, temporal and structural constraints together

effectively limits the number of possible information flows among users, resulting

in fewer ways to connect cascade pieces. The algorithm inspired by this intuition

significantly prunes search space and enables fast inference over large graphs with

million of nodes and billions of edges.

Managing temporal graphs. In real applications, temporal graphs may include

relatively stable components. We can make use of the stable components to

build backbone data structures that enable fast query processing; on top of the

backbone data structure, we can further build flexible indexes that efficiently

process dynamics in temporal graphs.

In dynamic subgraph matching, we model dynamic cloud as temporal graphs,

and use subgraph matching query to guide service placement. In this case, the

structures of cloud datacenters are relatively stable. Base on this property, we
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build a graph index that enables fast query processing. Moreover, we build grid

indexes upon the graph index that efficiently process node/edge attribute updates

as vector updates in multi-dimensional space.

In temporal reachability, we deal with millions of reachability queries generated

from one single information routing task. If we process the reachability queries

one by one, the whole routing process will be very slow. In our study, we find

the movement of entities follow periodic patterns so that we can compress the

periodically repeated graphs and build a graph index that can process reachability

queries in a batch instead of one by one.

In stream query assignment, we develop partitioning algorithms to optimize

query placement. In this case, data source popularity distributions are relatively

stable. Based on the stable popularity distributions, we build a probabilistic model

that randomly assign queries into servers with proved approximation guarantee.

7.3 Future Work

In this dissertation, we have introduced our effort towards mining and man-

aging large-scale temporal graphs. Our next step is to uncover the true value

of temporal graphs in critical real-life applications and explore novel solutions to

multiple fundamental problems on temporal graph mining and management.

7.3.1 Data Analytics for Enterprise System Security

Enterprise computer system is one of the most important assets in companies,

governments, and military organizations. Computers in the system collect data

from outside sources, store business intelligence, and share with members inside of
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the organizations. As they host valuable and confidential information, the interest

of their owners or even public safety heavily depends on secure computer systems.

Current enterprise computer systems usually employ security tools for protec-

tion, such as firewall [57], intrusion detection systems [126], and anti-virus soft-

ware [143], but recent hacking events in renowned organizations (e.g., Apple [1]

and SONY [13]) suggest existing tools could not fully protect our systems and the

loss is unaffordable. Indeed, attackers exploit various vulnerabilities in security

tools to break into our systems [8, 16]. For example, faked source information will

make firewall fail, manipulated network traffic and encrypted packets are hard

to be detected by intrusion detection techniques, and zero-day malware is a big

headache for anti-virus software.

One thing we may have to admit is advanced attacks always have a chance to

break into our system. Now the question is how to fight against these break-in

attacks. Currently, what we can do is really limited, because enterprise systems

are so complex and they are almost like black boxes to us. If we have the visibility

to check what is going on in these systems, we may have the hope to control the

damage from break-in attacks.

How to obtain such visibility? We rely on system monitoring techniques.

Among all possibilities, system call log [109] is a cost-effective way to get a com-

prehensive view of systems, as any software needs to make system calls to perform

their tasks and the overhead to collect system calls is quite small. Each system

call simply records what kind of interaction happened between system entities

(e.g., processes, files, and so on) at which time, so system call logs are essentially

temporal graphs indicating how system entities interact over time. However, sys-

tem call logs are not perfect: they cannot directly tell us control flow or causality
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between system entities, which are critical for cybersecurity applications. There-

fore, mining and management systems on temporal graphs are desired to extract

such knowledge for cybersecurity applications.

In our vision, the system that can automatically discovers cybersecurity intelli-

gence includes three layers: syscall collection, data storage and management, and

data analytics. We summarize the expected function of each layer by a bottom-up

manner.

Syscall collection. Syscall collection is at the bottom layer of the whole system.

The key challenge on this layer is to develop tools that crawl a complete set of

system calls with minimized overhead.

Data storage and management. The middle layer is to store and manage

syscall data (i.e., temporal graphs). When monitoring data are collected, we

need to store the temporal graph data into uniformly accessible database systems.

The key question is how to build such a system that clean, fuse, and manage

dynamically arriving temporal graph data and also provide fast data access for

various upper-layer data analytics.

Data analytics. In the upper layer, we need to develop data analytics to detect

break-in attacks. In general, there are four tasks.

• The first task is to employ temporal graph queries to detect break-in attacks.

The question is how to formulate useful queries. Our idea is to extract

temporal graph patterns as signatures for break-in attacks, and use the

patterns as skeletons to formulate graph queries against syscall logs. The

query results suggest the existence of known attacks that have broken into

our systems.
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• The second task is to perform reasoning and inference over temporal graphs.

Once something malicious is found, we have to reason the source of the at-

tack, identify the vulnerabilities in our systems, and infer other compromised

system components.

• The third one targets on unknown attacks. Even if an attack is new, our sys-

tem will behave abnormally when it is under attack. By anomaly detection,

we grab the chance to discover unknown attacks.

• The fourth task is about attack modeling. Our system will fight against

sophisticated attacks. To evaluate the effectiveness of our approaches, we

need to understand and model the attacks so that we can generate synthetic

attacks and test the robustness of our techniques.

7.3.2 Data Decay in the Age of Internet of Things

In the age of Internet of Things, we can collect data from a wider range of

areas [18], including medical healthcare, city infrastructures, home devices, and

many others. It is not far away from us. Samsung claimed that their products

will be all connected by 2020 [5], and IDC estimated we will have more than 30

billion connected devices by 2020 [6], which is five years later.

When the time comes, we have to face new challenges caused by data deluge.

Every day, we will collect a huge amount of data (e.g., IDC estimates we can

collect 108 TB data per day by 2020 [6]), and quickly, the collected data will

become history. Now the question is how to deal with these historical data?
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There are two extreme strategies. One extreme is to keep all the data, which

is impractical because we have limited resources. The other is to drop all the

historical data resulting in the risk of losing business opportunities.

To this end, something in the middle may be more reasonable: for some data,

we keep them intact for future study; for some data, we drop them completely;

and for the rest, we might build a sketch to summarize the data for future usage.

Now the question is how to make right decisions in different scenarios? Our angle

is to develop data driven methods to measure and model how data value decays in

applications. Then, we can adopt suitable strategies for data at a specific decay

phase.
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