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Abstract

Understanding the Semantics of Networked Text

Gengxin Miao

Social networks are a powerful means for information sharing. A large social

network typically has hundreds of millions of users. These users are interconnected

through social links to friends, colleagues, family members, etc. The frequent inter-

action and information exchange between users form a massive heterogeneous infor-

mation network. Understanding the semantic information inthe textual data and the

topological information in the social network poses a grantchallenge for data mining

researchers. This Ph.D. dissertation tackles the problem of understanding the unstruc-

tured or semi-structured data in social networks. First, wedescribe a parallel spectral

clustering algorithm that makes possible clustering analysis on large-scale social net-

works with hundreds of millions of users. Comprehensive analysis, extraction and inte-

gration of information from multiple sources are necessary. Next, we describe an infor-

mation extraction engine that extracts data items from Web pages without knowing the

data wrapping template. We also present an information integration approach to aggre-

gate data tables collected from the Web and hence better serve general Web search. To

make information routing in collaborative networks more efficient, we describe genera-

tive models to characterize expertise awareness relationships between agents in collab-

xii



orative networks and provide efficient task routing recommendations. We also describe,

in depth, the first quantitative analysis of the informationflow efficiency in collabora-

tive networks. To utilize the accumulated information, we developed a topic modeling

approach that allows document retrieval across multiple document sets with possible

semantic gaps and vocabulary gaps.

Professor L. E. Moser

Dissertation Committee Chair
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Chapter 1

Introduction

The Web and social networks are powerful means for information sharing. A large

social network typically has hundreds of millions of users.To date, Facebook has

achieved 630 million users. LinkedIn and Twitter are also experiencing a stunning user

growth rate. These users are interconnected through sociallinks to friends, colleagues,

family members, etc. Users with common interests form communities. Users interact

with each other by writing posts, asking questions, sharinginformation, etc. These

social activities create a tremendous amount of data.

Analyzing the data and information flow in social networks facilitates the recogni-

tion of major events with world-wide impact, the predictionof trends in public opinion,

and more, in a timely and scalable manner. Often, it is the case that social media re-

spond much more quickly than traditional public media. For example, Twitter had a
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large burst of twits about the earthquake in Virginia in 2011before the news media

released the first formal news. Detecting bursts of activityin social media can enable

public media to achieve faster responses and larger coverage. Social media also plays

an important role in politics and business. For example, theLibyan revolution received

tremendous support from social media. Online merchandisers gain ideas for their busi-

nesses from new hot topics discussed in social networks. Social networks also provide

an important source for fundamental sociological researchas traditional social interac-

tions become more technology-based. Thus, data found in social networks offers great

opportunities for researchers in many research domains.

However, analysis of data within social networks also presents great challenges.

First of all, data within social networks are typically created in a large-scale, distributed

manner. With the advance of technology, data storage capacity continues to increase.

On the other hand, data analysis tools do not scale well to satisfy big data analytic

needs, especially for dealing with incremental data. Existing data mining and machine

learning techniques that work well with small datasets needto be re-invented to fit big

data settings, where executions are typically performed inparallel or online.

Moreover, comprehensive data analysis needs to leverage data collected from multi-

ple sources. Each data source publishes its own data in its own specific way. These dis-

tributed, independent data sources lack a uniform standardfor data publication. Thus,

data extraction and data integration are huge challenges. Even more challenging, the

2
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Web postings in social networks are written by humans in natural languages. Different

people use different terminology to express the same idea, and they use the same ter-

minology with different meanings. Analyzing the semanticsof natural language texts

with proper consideration of the underlying network structures that connect the texts is

yet another modeling challenge.

This Ph.D. Dissertation addresses large-scale unstructured or semi-structured data

within social networks and contributes toward semantic understanding of the data with

emphasis on parallel and distributed computing, data extraction and integration, in-

formation flow analysis, and topic modeling. The specific contributions of this Ph.D.

Dissertation are highlighted below and are described in detail in subsequent chapters.

1.1 Parallel Spectral Clustering

Users of social networks connect with each other and form communities of interest.

As the scale of the network increases to hundreds of millionsof users, the edges that

join users become very sparse. It is reported that Facebook users have an average of

approximately 130 connections among the630 million Facebook users. For this large

user population size, it is almost impossible for a user to explore all of the other users

or communities of users with potential common interests.

3
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Clustering algorithms can be used to group together users into communities and,

hence, they facilitate the users’ exploration of the data inthe network. Although the

k-means algorithm can be parallelized to accommodate large-scale datasets on the

MapReduce platform, its assumption that the data samples follow a Gaussian distri-

bution inside each cluster does not hold for super-sparse datasets, not to mention the

algorithm’s sensitivity to the choice of the initial cluster centroid. Spectral clustering

has proven to be effective in finding clusters with non-linear boundaries. Unfortunately,

spectral clustering suffers from the scalability problem in both memory space and com-

puting time.

This Ph.D. Dissertation contains the first study of parallelization of spectral clus-

tering. The Parallel Spectral Clustering (PSC) algorithm is based on the MPICH2

platform, which provides distributed memory and distributed computation within a dis-

tributed computing system. The PSC algorithm finds clustersof communities in a large

social network of users with similar interests. Experiments performed for the Orkut so-

cial network, with more than 10,000,000 users and 150,000 communities, demonstrate

the effectiveness of the PSC algorithm. The PSC algorithm derives 100 clusters of

communities for this dataset and finishes within 20 minutes when using 90 computers.

The PSC algorithm makes possible online clustering of social networks with large user

populations, such as Orkut. Clustering greatly enables theusers in finding communities

of users with interests that match their particular interests.
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1.2 Extraction and Integration of Data from Distributed

Sources

For many social networks, the data are stored in a database and, at query time, the

contents are rendered in HTML code and are displayed on Web pages. The data scale

is large, and the data schema differ from site to site. Automatic methods that extract

lists of data items have been extensively studied. In existing data extraction algorithms,

typically a wrapper is used to compare contiguous segments of HTML code. These

methods suffice for simple search, but often fail to handle more complicated or noisy

Web page structures due to a limitation: their greedy mannerof identifying lists of

records through pairwise comparison of consecutive segments.

The novel DataExtractor system, presented in this Ph.D. Dissertation, mimics the

process of how a human finds data records on a Web page or screen. To the human eye,

the data items on a Web page are rendered in visually repeating patterns. The distinct

HTML tag paths, that correspond to these visual signals, areextracted and clustered,

and the data records are then extracted based on the visual signals. The DataExtractor

system yields higher extraction precision and recall than existing algorithms, especially

when the Web pages contain nested data items or loosely formatted data items.

The data tables extracted from the Web pages offer a corpus ofmore than 100

million tables, and are difficult for a computer to process, because the semantics of
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the data are typically not explicit in the tables. Table headers (record fields) exist in

few cases and even when they do, the attribute names are oftenuseless. Moreover, the

ranking methods for searching document corpora for generalWeb search do not work

well for table corpora.

The novel TableFinder system, presented in this Ph.D. Dissertation, attempts to

recover the semantics of the extracted data in the tables by enriching the tables with ad-

ditional annotations. The annotations facilitate operations such as searching for tables

and finding related tables. To recover the semantics of the extracted data in the tables,

the TableFinder system leverages a database of class labelsand relationships automati-

cally extracted from the Web pages. The database of classes and relationships has very

wide coverage, but is also very noisy. The TableFinder system attaches a class label to

a column if a sufficient number of values in the column are identified with that label in

the database of class labels, and similarly for binary relationships.

This Ph.D. Dissertation further introduces a formal model for reasoning about when

there exists sufficient evidence for a label. Experiments demonstrate the utility of the

recovered semantics for table search and shows that the method performs substantially

better than previous approaches, such as a simple majority scheme. In addition, this

Ph.D. Dissertation characterizes what fraction of the tables on the Web can be annotated

using this approach.
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1.3 Modeling Information Flow in Collaborative

Networks

In contrast to Web search engines that facilitate information retrieval in a library

paradigm, social networks follow a village paradigm in which information flows from

person to person. Unlike general Web search where an individual seeks to find a Web

document that contains the target information, in a social network individuals desire

to find an efficient social route that leads to a person who has the target information.

Thus, information flow within social networks needs to be analyzed. The posts, notes,

and comments conveyed in social networks contain valuable semantic information for

analyzing information flow. They are usually unstructured and difficult for a computer

to organize and analyze.

This Ph.D. Dissertation presents the ticket resolution process for expert networks,

collaborative research conducted with researchers at IBM T.J. Watson. Problems and

work requests are submitted to an expert network in the form of tickets. These tickets

sometimes bounce among many expert groups before they are transferred to the cor-

rect resolver, particularly when the network size is large.Finding a methodology that

reduces such bouncing and hence shortens the ticket resolution time is a long-standing

challenge.
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This Ph.D. Dissertation presents generative models that capture semantic-level in-

formation flow in expert networks. Based on these generativemodels, routing algo-

rithms are developed. These routing algorithms provide suggestions that quickly route

tickets to an appropriate expert within a large expert network. These models and al-

gorithms apply to posts, notes, and comments found in many different kinds of social

networks.

This Ph.D. Dissertation further studies the behavior of experts in expert networks.

The typical roles of experts in expert networks are as resolvers and transferrers. The

resolvers resolve many tickets by themselves. The transferrers have knowledge of what

other experts are capable of doing and are essential for routing tickets. For a ticket that

traverses extremely long paths before being resolved, there might exist experts who can

neither resolve the ticket, nor make good routing decisions. Identifying such experts can

help to provide targeted training and, hence, improve the efficiency of routing tickets

through the network.

1.4 Quantitative Analysis of Task-Driven Information

Flow

Collaborative networks are a special type of social networkformed by members

who collectively achieve particular goals, such as fixing software bugs and resolv-
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ing customers’ information technology problems. In such networks, information flow

among the members of the network is driven by the tasks assigned to the network, and

by the expertise of its members to complete those tasks.

This Ph.D. Dissertation analyzes real-life collaborativenetworks to understand their

common characteristics and how information is routed in these networks. It shows

that the topology of collaborative networks exhibits significantly different properties

compared to other common complex networks. Collaborative networks have truncated

power-law node degree distributions and other organizational constraints. Furthermore,

the number of steps along which information is routed follows a truncated power-law

distribution.

Based on these characterizations, this Ph.D. Dissertationpresents a novel network

model that can be used to generate synthetic collaborative networks subject to certain

structural constraints. Moreover, it presents a novel routing model that emulates task-

driven information routing conducted by human beings in collaborative networks. To-

gether, these two models are used to study the efficiency of information routing for

various topologies of a collaborative network - a problem that is important in practice

yet difficult to solve without the methods presented in this Ph.D. Dissertation.
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1.5 Modeling Networked Document Sets

Many social networks feature a question-answering processthat allows individuals

to ask questions or answer the questions of others. The collections of questions and an-

swers form a pairwise document set. Among the many questionsraised by individuals,

the same questions are likely to be asked many times and presented in different ways.

An individual who can answer a question is unlikely to have the energy to answer all of

the variations of the question posed by other individuals.

Given a new question, automatically ranking the potential answers using the exist-

ing question-answer pairs can help boost the coverage of answered questions. Such

ranking presents a challenge for information retrieval involving two or more document

sets that is different from traditional information retrieval in a single document set.

Relevance ranking based on keyword matching no longer fits the problem due to the

multiple document sets involved.

Questions are typically asked by individuals who think froman application perspec-

tive. The answers are typically written by professionals who think from a technical

perspective. For example, when a user asks a Microsoft Windows blue-screen question,

the solutions can be related to multiple software components in the Windows system

of which the customer might be unaware. Moreover, the pairs of documents can be

written in different languages, such as the English and Chinese versions of articles on
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the Wikipedia Website. Thus, there might be a vocabulary gapbetween the source doc-

uments (queries) and the target documents. This vocabularygap identifies the problem

settings for information retrieval with multiple documentsets that are different from

traditional information retrieval. There might also be a topic gap between the source

documents and the target documents, considering that the questions and the answers

might emphasize different topics.

This Ph.D. Dissertation describes a novel topic modeling approach – Latent Asso-

ciation Analysis (LAA) – that explicitly mines the correlation between a pair of doc-

uments. The generative process defined by the LAA model first draws a correlation

factor that holds together a pair of documents, just as an underlying disease explains

why a certain symptom leads to a specific treatment. Based on the correlation factor,

two separate topic proportion vectors are drawn for the corresponding source and target

documents. Given the topic proportion vector, the LAA method draws the topic assign-

ment and the word from the topic-to-word distribution, similar to other topic modeling

approaches.

Experiments demonstrate that the LAA method significantly outperforms other state-

of-the-art methods in identifying the correct target document, when a source document

is given. The LAA method roughly ranks the correct target document within the top10

out of 100 candidates. Thus, the LAA method reduces the search space byan order of

magnitude. If a user initially needs to search through100 documents to find the correct
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answer, with the help of the LAA model the user needs to searchthrough only10 doc-

uments to find the correct answer. The LAA method can greatly improve information

consumption efficiency, especially when the document corpus is large.

1.6 Summary

In summary, this Ph.D. Dissertation addresses the general problem of unstructured

or semi-structured data within social networks. It focusesmore specifically on the

following issues: (1) scalability for unstructured data within social networks that com-

prise millions of users, (2) unstructured data extraction and integration, (3) information

flow modeling over social networks and topic analysis, (4) quantitative analysis of task-

driven information flow on collaborative networks, and (5) topic modeling across multi-

ple large-scale document sets within social networks. ThisPh.D. Dissertation presents

novel models, methods, algorithms, and systems that address these issues and that con-

tribute toward the understanding of unstructured or semi-structured data within social

networks.
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Parallel Spectral Clustering

The Web and social networks allow users to engage each other through both infor-

mation and application sharing. For instance, users share data via Blog, Wiki, or BBS

services. Users share applications on social platforms such as Facebook and OpenSo-

cial. Communities are formed by users of similar interests.Being able to discover

communities of common interests is of the paramount importance for maintaining high

viral energy in social networks. Such discoveries can enable effective friend sugges-

tions, topic recommendations, and advertisement matchings, just to name a few.

One approach to discover communities of common interests isthrough clustering.

The biggest challenge that a clustering algorithm faces is scalability. An algorithm

must be able to handle millions of data instances in a relatively short period of time.

For example, Orkut [6] consists of more than20 million communities and more than
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50 million users1. Performing clustering on such a large dataset on a single computer

is prohibitive in both memory use and computational time.

In this chapter, we present a parallel spectral clustering algorithm that runs on

distributed computers. With the increasing popularity of distributed data centers and

clouds that contain millions of computers, this parallel approach can scale up to solve

large-scale clustering problems.

We select spectral clustering as our base algorithm becauseof its well-known ef-

fectiveness. The graph cut can be formulated as an eigenvalue decomposition prob-

lem of the graph Laplacian [33] by relaxing the labels to be real values. The graph

Laplacian can be seen as an approximation of the Laplace-Beltrami operator on the

manifold [15]. Representative spectral clustering methods include Min Cut [142], Nor-

malized Cut [118], Radio Cut [60], Min-Max Cut [47] and Co-Clustering [40, 151].

Moreover, in a general relaxation view, graph cut,k-means, Principle Component Anal-

ysis (PCA) and Nonnegative Matrix Factorization (NMF) [76](and their corresponding

kernel versions) can be seen as unified frameworks [41,45,46]. Many practical applica-

tions, such as image segmentation [118] and text categorization [40, 151], have proven

to be well-suited spectral clustering applications.

Unfortunately, eigenvalue decomposition andk-means calculations present bottle-

necks for spectral clustering. The memory use of eigenvaluedecomposition isO(n2),

1The claim was based on statistics in year 2007.
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wheren is the number of data instances. The time complexity for eigenvalue decom-

position isO(n3) at the worst case. Whenn is very large, say beyond a million, tradi-

tional single-computer speedup schemes [42,55,77,99] still suffer from either memory

or CPU limitations.

Our parallel algorithm employs a parallel ARPACK algorithm(PARPACK) [89] to

perform parallel eigenvalue decomposition. Although there exist other parallel eigen-

value or singular-value decomposition techniques [67,71,85], the PARPACK algorithm

has the following advantages: (1) It can be computed on distributed computers as well

as multi-core systems, and (2) it is fast when the matrix is sparse. Moreover, we imple-

ment a parallelk-means algorithm to cluster data in the eigenvector space. To reduce

the memory use, our algorithm loads onto each computer only the necessary rows of

data for conducting parallel computation. Empirical studies show that our parallel spec-

tral clustering algorithm is both accurate and efficient.

Chu et al. [32] employed map reduce on multi-core computers and parallelized a

variety of learning algorithms includingk-means to obtain speedups. However, these

solutions are implemented on a shared memory, multi-core system. The limit of mem-

ory space still exists. The closest work to our work is that of[43], which presents a

parallelk-means clustering algorithm that is also based on distributed memory. How-

ever, usingk-means alone, it is not possible to deal with non-linearly separable datasets.

Moreover, the time complexity of thek-means algorithm grows linearly with the dimen-
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sionality of the data, whereas spectral clustering does notsuffer from this problem. The

eigenvalue decomposition procedure has the virtue of reducing dimensionality for the

k-means algorithm.

2.1 Spectral Clustering

In this section, we briefly review the eigenvalue decomposition problem involved in

both spectral clustering and co-clustering. This review introduces notation that is used

in the rest of this chapter.

2.1.1 Spectral Analysis of Graph Cuts

ConsiderG = (V, E) as a weighted neighborhood graph that is constructed by the

point cloudX = (x1, ..., xn), wheren is the point number,V is the vertex set of graph,

andE is the edge set that contains the pairs of neighboring vertices(xi, xj). A typical

similarity matrixS of a neighborhood graph can be defined as:

Sij =





S(xi, xj) if (xi, xj) ∈ E

0 otherwise

(2.1)

whereS(xi, xj) is a similarity score given by,e.g., a Gaussian kernel function. The

graph Laplacian of a neighborhood graph isL = D − S, and the normalized graph
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Laplacian isL̄ = I −D− 1

2SD− 1

2 , where the diagonal matrixD satisfiesDii = di, and

di =
∑n

j=1 Sij is the degree of vertexxi [33].

Consider the normalized cut. We need to find subsetsA andB such that the nor-

malized cut criterionJNCut(A,B) = cut(A,B)
assoc(A,V)

+ cut(B,A)
assoc(B,V)

is minimized. It has been

shown [118] that the solution is given by optimizing the following criterion:

f ∗
L = argmin

fT f0=0

fTLf

fTDf
(2.2)

wheref = (f(x1), f(x2), ..., f(xn))
T ∈ Rn×1. The solution iis given by the sec-

ond smallest eigenvector of the generalized systemLf = λDf , wheref0 = ~1 is

the eigenvector corresponding to the smallest eigenvalueλ0 = 0. Note that, if we

use the normalized graph Laplacian instead of the unnormalized one, the solution is

f ∗
L̄
= argmin

fT f0=0

fT L̄f
fT f

. This solution is further related to (2.2) becausef ∗
L̄
= D

1

2f ∗
L.

Note the following fact:

argmin
fT L̄f

fTf
= argmin

fT (I −D− 1

2SD− 1

2 )f

fTf
= argmax

fT S̄f

fTf

whereS̄ = D− 1

2SD− 1

2 . The spectral clustering problem can be solved in the scaled

kernel PCA (KPCA) framework. The difference is that KPCA uses full connection

graphs, while spectral clustering methods can use neighborhood graphs. The advantage

of using neighborhood graphs is that their corresponding similarity matrices are sparse

and, therefore, fast algorithms can be introduced.
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2.1.2 Co-Clustering

For text categorization or community analysis problems, the word-by-document or

user-by-community co-occurrence matrices can be used to generate a bipartite graph.

Taking user-by-community co-occurrence as an example, thegraph is defined asG =

(U , C, E), whereU denotes the set of user vertices,C denotes the set of community

vertices andE denotes the edge set. We can make use of co-clustering techniques to

cluster users and communities simultaneously [40,151]. Unlike the edges of traditional

graphs, the edges of a bipartite graph are related only to theco-occurrences, such that

if a useri joins the communityj, we introduce an edge connecting them.

It is not difficult to verify that the similarity matrix can becalculated from the

adjacency matrix

S =




0 A

AT 0


 (2.3)

whereA ∈ Rn×n′

is the adjacency matrix that indicates the co-occurrence ofthe users

and communities, andn andn′ are the number of communities and users, respectively.

Then the normalized graph Laplacian is

L̄ =




I −D−1/2
1 AD

−1/2
2

−D−1/2
2 ATD

−1/2
1 I


 (2.4)

whereD1 andD2 are diagonal matrices, calculated as(D1)ii =
∑n′

j=1Aij and(D2)jj =

∑n
i=1Aij .
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By using eigenvalue decomposition of the normalized graph LaplacianL̄f = λf

wheref = (fT
1 , f

T
2 )

T ∈ R(n+n′)×1, we obtain

D
−1/2
1 AD

−1/2
2 f1 = (1− λ)f2,

D
−1/2
2 ATD

−1/2
1 f2 = (1− λ)f1.

(2.5)

Performing the SVD technique shows thatf1 and f2 are the left and right singular

vectors of the matrixD−1/2
1 AD

−1/2
2 .

The above analysis pertains to the2-way clustering problem. For thek-way (k is

the number of clusters) clustering problem, many approaches have been proposed. For

example, we can use the2-way clustering algorithm to partition the data recursively

k − 1 times [118]. Other clustering algorithms,e.g., k-means, can be used to cluster

the embedded points in the eigenvector space [98]. Moreover, eigenvectors can be

discretized into class indicators by means of matrix decomposition [150]. Becausek-

means is a fast way to cluster data and can be easily parallelized, we select this way to

obtain the finalk-way clustering results.

2.2 Parallel Spectral Clustering Algorithm

This section presents our parallel spectral clustering algorithm that can be used to

cluster large-scale datasets.
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Table 2.1: The traditional ARPACK algorithm.

1. Input: ann× n matrix S.

2. Start: Build a lengthm Arnoldi factorization

SVm = VmHm + fme
T
m (2.6)

with the starting vectorv1, whereVm is ann ×m matrix, with normalized orthogo-
nal columns derived from the Krylov subspace.Hm is the projection matrix (upper
Hessenberg).fmeTm is the residual vector with lengthn.

3. Iteration: Until convergence.

3.1. Compute the eigenvalues{λj : j = 1, 2, ...m} of Hm. Sort these eigenvalues
according to the user selection criterion into a wanted set{λj : j = 1, 2, ...k}, and an
unwanted set{λj : j = k + 1, k + 2, ..., m}.

3.2. Performm − k = l steps of theQR iteration with the unwanted eigenvalues
{λj : j = k+1, k+2, ..., m}, as shifts to obtainHmQm = QmH

+
m, whereH+

m is the
projection matrix in the next iteration.

3.3. Restart: Postmultiply the lengthm Arnoldi factorization with the matrixQk

consisting of the leadingk columns ofQm to obtain the lengthk Arnoldi factorization
SVmQk = VmQkH

+
k +f+

k e
T
k where isH+

k is the leading principal submatrix of order
k for H+

m. SetVk ← VmQk.

3.4. Extend the lengthK Arnoldi factorization to a lengthm factorization.

4. Calculate the eigenvalues and eigenvectors of the small matrix Hk: The eigen-
values ofHk, {λj : j = 1, 2, ..., k}, is the approximation ofS’s eigenvalues. The
eigenvectors ofHk is {ej : j = 1, 2, ..., k}, andEk is the matrix formed byej .

5. GivenSVk ≈ VkHk, we can derive the approximate eigenvectors ofS, {uj : j =
1, 2, ..., k}, whereuj is thejth column of matrixVk · Ek.
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2.2.1 Parallel Matrix Decomposition

Parallel matrix decomposition includes eigenvalue decomposition (EVD) and paral-

lel singular value decomposition (SVD). First, we present the EVD problem, and then

we show how the SVD problem can be converted into the EVD problem.

Parallel EigenValue Decomposition (EVD)

The traditional ARPACK algorithm (shown in Table 2.1) [77] calculates the approx-

imated topk eigenvalues and the corresponding eigenvectors of a large matrix2. Given

a matrixS ∈ Rn×n, we build a lengthm Arnoldi factorization [9] as

SVm = VmHm + fme
T
m (2.7)

whereVm ∈ Rn×m; Hm ∈ Rm×m; fmeTm is the residual orthogonal toVm andHm is the

projection ofS in the spaceRange(Vm). If fmeTm is small,Hm can be viewed as an

approximation ofS of dimensionm × m. Eigenvalues and eigenvectors ofS can be

calculated fromHm’s eigenvalue decomposition:

SVm ≈ VmHm

λj ≈ δj , j ∈ {1, 2, ..., m}

uj ≈ Vmej, j ∈ {1, 2, ..., m} (2.8)

2 The traditional ARPACK algorithm, as used on a single computer to determine approximate eigen-
vectors for a large matrixS.
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where theλj are the eigenvalues of matrixS, theδj are the eigenvalues of matrixHm;

theuj are the eigenvectors of matrixS, and theej are the eigenvector of matrixHm.

To parallelize the process, the data and work space are segmented and loaded onto

multiple computers tha operate in parallel:

• S is distributed across the computers in a row-based, round-robin fashion.

• Hm is replicated on every computer.

• Vm is distributed across computers in a row-based, round-robin fashion.

• fm and the workspace are distributed accordingly.

Distributed Matrix-Vector Multiplication

Compared to the single-computer algorithm, our parallel algorithm has the features

that the local block of the setV local
m is passed in place ofVm, and the dimension of the

local blocknlocal
m is passed instead ofn. Thus, we need to implement a matrix-vector

multiplication to calculate the Krylov vectors. In our case, we divide the similarity

matrixS into rows.

Figure 2.1 illustrates the matrix-vector multiplication on distributed computers. In

each step, first we reduce each column of the Arnoldi vectors to a replicated vector using

the standard message-passing interface. Although the rowsof the similarity matrix are

stored on different computers, the products of each local row by the replicate Arnoldi
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vector can be locally computed. Therefore, the updated Arnoldi vectors are actually

stored on different computers. The elements that correspond to the local rows of the

similarity matrix are non-zero, whereas the other elementsare still zero. By summing

the results from all computers, matrix-vector multiplication is achieved.

In addition to matrix-vector multiplication, our algorithm requires two communica-

tions: Computing theL2-norm of the distributed vectorfm, and orthogonalizingfm to

Vm. These can be performed by using the parallel computing summing interface.

⋅ =

0

0

⋅ =S V v

Figure 2.1: Illustration of the distributed matrix-vector multiplication.
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Figure 2.2: The parallelK-means clustering algorithm.

Parallel Singular Value Decomposition (SVD)

For each rectangular matrixA ∈ Rn×n′

, there exists a singular value decomposition:

A = USV T , (2.9)
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whereU (the left singular vectors) andV T (the right singular vectors) are matrices with

orthonormal columns and S is a diagonal matrix with singularvalues as the diagonal

elements.

Given the Parallel EVD algorithm described in Section 2.2.1, we can calculate the

SVD as follows:

ATA = V S2V T (2.10)

U = AV S−1 (2.11)

By calculating EVD on the matrixATA using Equation (2.10), we can obtain the

right singular vectors in the matrixV T and the singular values in the matrixS. Equa-

tion (2.11) gives a solution of the left singular vectorsU .

2.2.2 Parallel K-Means

The inputs to thek-means algorithm are the eigenvectors generated by the parallel

EVD/SVD algorithm described in Section 2.2.1. The outputs of thek-means algorithm

are the cluster labels of each data point in the original dataspace.

Here, thek-means algorithm aims to minimize the total intra-cluster variance,i.e.,

the squared error function in the spectral space:

V =

k∑

i=1

∑

xj∈Ci

||xj − µi||2 (2.12)
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where there arek clustersCi, {i = 1, 2, ..., k}, andµi is the centroid or mean point of

all the pointsxj ∈ Ci.

We implemented the parallelk-means algorithm in such a way to minimize commu-

nication and maximize parallel computation. The flowchart of the algorithm is shown

in Figure 2.2. In the parallel EVD algorithm, the output matrix U is formed by the

eigenvectors and is distributed across all computers basedon the rows. Each row of the

matrix U is regarded as one data point for thek-means algorithm. These data points

are naturally distributed on the computers, and don’t need to be moved them for the

k-means algorithm.

To initialize the process, the master computer chooses a setof initial cluster centers

and broadcasts the coordinates of the centers to all of the computers. Each computer

works on its local data independently. New labels are assigned and local sums of clus-

ters are calculated without any inter-computer communication. Again, we make use of

the message-passing interface to combine the local information after each local com-

puter has finished the computation. By gathering the statistical information (including

the sum of data points in each cluster, the cluster numbers and the local cost values),

each computer can update the cluster center coordinates andstart a new round of com-

putation until the computation converges. The output cluster labels for data points in

the spectral space are mapped to the original data space.
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Table 2.2: The parallel spectral clustering algorithm.

1. Each computer loads a set of rows of the similarity matrixS into memory.

2. Multiply the matrixS with vector~1 = [1, 1, ..., 1]T . The product vector is the
diagonal elements of the matrixD.

3. Calculate the scaled similarity matrix̄S.

4. Compute the approximated eigenvalue decomposition ofS̄ using parallel matrix
decomposition.

5. Use parallelk-means to cluster the rows of matrixU .

6. Map the cluster labels to original data points.

Table 2.3: Spectral clustering matrix comparison.

Form ofS̄ Method

XTX Relaxedk-means

Gram matrixG Relaxed kernelk-means

Similarity matrix on graph Min-cut

D− 1

2SD− 1

2 Normalized cut

ĀĀT whereĀ = D
− 1

2

1 AD
− 1

2

2 Co-clustering

2.2.3 Complexity Comparison

Our algorithm is shown in Table 2.2. Steps 4 and 5 are the key parallelization steps.

For step 3, we do not constrain the form of the scaled similarity matrix S̄. If we use

the original similarityS̄ = XTX, we obtain the relaxed version ofk-means. If we use

S̄ = G whereG is the Gram matrix computed by the kernel function, we obtainthe

relaxed kernelk-means algorithm. If the matrix̄S is constructed by a graph similarity
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matrix, which can be either fully connected (can be the same as kernelk-means) or

a neighborhood graph, we obtain the min-cut algorithm. If weuse the normalized

similarity matrix S̄ = D− 1

2SD− 1

2 , we obtain the normalized cut algorithm. For the

co-clustering problem, we input the matrix̄A = D
− 1

2

1 AD
− 1

2

2 and then computēAĀT as

S̄. We summarize the above analysis in Table 2.3.

Now, we analyze the memory requirement and the computational complexity. We

usen to denote the number of data points,d to denote the dimensionality, andk to

denote the number of clusters. Here, we introduce a new variable z. Because we

assume that the data similarity matrix is sparsely stored, we let z denote the mean

number of rows in the similarity matrix. For the iterated algorithms, we letiiter denote

the iteration time. If we havep computers, the computational complexity of the key

steps is determined as follows:

k-means. For the traditionalk-means algorithm, the memory requirement isO(nd)

and the computational complexity isO(ndk · iiter), because we need to compute the

Euclidean distance between every point and every cluster center.

Parallel k-means. For parallelk-means, the memory requirement is reduced to

O(nd
p
) for each computer and the computational complexity is reduced toO(ndk

p
· iiter).

Because the parallel algorithm also involves communication among computers, we

need to estimate the communication time. Most of the calculation is done in paral-
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lel. Only the summation is performed repeatedly on each computer. Therefore, the

communication time isO(pkd · iiter).

Spectral Clustering. For spectral clustering based on the Arnoldi method, the

memory requirement of loading the similarity matrix and eigenvectors isO(n(z + k)).

The computational complexity of the eigenvalue decomposition of the similarity matrix

isO(nzk · iiter).

Parallel Spectral Clustering. For our parallel spectral clustering algorithm, the

memory requirement for each computer isO(n(z+k)
p

) and the computational complexity

is O(nzk·iiter
p

). Moreover, because we compute the Arnoldi vector using the message-

passing interface, the communication cost isO(pnk · iiter).

Those costs are summarized in Table 2.4.

Table 2.4: Computational cost comparison. P.k-means represents parallelk-means, S.
C. represents spectral clustering and P. S. C. represents parallel spectral clustering.

Method Memory Comp. Time Comm. Time

k-means O(nd) O(ndk · iiter) -

P.k-means O(nd
p
) O(ndk

p
· iiter) O(pdk · niter)

S. C. O(n(n + k)) O(nzk · iiter) -

P. S. C. O(n(z+k)
p

) O(nzk·iiter
p

) O(pnk · iiter)
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2.3 Experiments

First, we conducted experiments on artificial datasets to investigate the accuracy

and time cost of our parallel algorithm. Then, we performed scalability experiments on

a large real-world dataset. We ran all of our experiments on Google’s production data

centers.

2.3.1 Accuracy Experiments

For the accuracy experiments, we collected nine datasets with different sizes and

numbers of clusters. These nine datasets consist of1k, 10k, and100k data points dis-

tributed across4, 9 and16 non-overlapping circles, as shown in Table 2.5. We denote

these datasets as C1 to C9.

Table 2.5: Description of datasets.
4 clusters 9 clusters 16 clusters

1K data points C1 C4 C7
10K data points C2 C5 C8
100K data points C3 C6 C9
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(a) 4 classes. (b) 9 classes. (c) 16 classes.

Figure 2.3: Artificial test datasets.

Figure 2.3 shows three of the above nine datasets for the purposes of illustration.

Pairwise similarity between two data points is calculated using an RBF kernel function.

The width of the RBF kernel is tuned by the self-tuning technique of [149]. Then, the

RBF is modified as

Sij = exp

(
−||xi − xj ||2

2σiσj

)
(2.13)

whereσi = ||xi − xik ||, the distance betweenxi andk’s neighborhood ofxi. For the

neighborhood graphs, we setk equal to one-half of the neighborhood number.

The Speedup Factor

Ideally, withp computers, we have a linear speedup, compared to a single computer.

However, because of the communication overhead, the speedup is usually not linear.

The speedup factor is defined as follows:

speedup =
T1

Tp

(2.14)
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(a) Algorithm speedup of different scale of data.

(b) Ratio between computation time and communication time.

Figure 2.4: Time analysis of parallel spectral clustering.

whereT1 is the execution time using one computer, andTp is the execution time using

p computers.

Results

We applied parallel spectral clustering on all of the artificial datasets. The purpose

of this experiment is to evaluate the accuracy of the clustering results. (Using multiple
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computers on a small dataset does not yield much benefit, as wewill see shortly.) We

compared the clusters generated by the original spectral clustering algorithm and our

parallel version, and they yield identical results.

We document the running time of these nine datasets in Table 2.63. Each dataset

was run on1, 2, 5, 10, 20, and50 computers, respectively. As predicted, when the

dataset size is very small, the running time for the datasetsC1, C4, and C7 shows that

adding computers actually increases the total running time. The reason is that inter-

computer communication results in greater time than parallelization can save. When

the dataset size grows from1k to 10k, parallelization yields a benefit. When using up

to 10 computers, C8 enjoys a speedup of about2.2 times. When the dataset continues

to grow beyond what the main memory of one computer can store,we have to employ

enough computers to do the job. For the datasets C3, C6, and C9, we can complete the

clustering task only when20 or 50 computers are used.

3Because we conducted experiments on Google’s production data centers, we could not ensure that
all these computers are fully dedicated to our task. Therefore, the running time is partially dependent on
the slowest computer being allocated for the task.
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Table 2.6: Algorithm running time on different datasets using multiple computers.
Data Number of computers

1 2 5 10 20 50
C1 2.952s 7.709s 21.70s 465.0s 503.2s
C2 199.5s 139.8s 58.70s 62.13s 589.1s
C3 NA NA NA NA NA 343.4s
C4 1.936s 5.548s 21.89s 120.2s 232.1s
C5 140.96s 67.63s 51.71s 283.6s 91.72s
C6 NA NA NA NA 558.5s 348.8s
C7 1.570s 5.452s 20.43s 17.65s 52.36s
C8 281.22s 255.80s 185.92s 132.77s 491.9s
C9 NA NA NA NA 757.3s 820.4s

Given the total time spent on each task, we can calculate the speedup using Equa-

tion (2.14). The results are shown in Figure 2.4(a). As the problem scale grows, the

speedup can be more significant, which implies that our parallel spectral clustering al-

gorithm is more efficient for large-scale problems than for small ones. Figure 2.4(b)

shows the percentage of time spent on computation. The main factor that affects the

percentage of computation time is the problem scale. Using afixed number of comput-

ers, the percentage of computation time for10k datasets is larger than that of the three

1k datasets. Again, this substantiates that our algorithm is more efficient for large-scale

problems.
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2.3.2 Experiments Using Text Data

In this experiment, we used the pre-processed 20 newsgroupsdataset given in [160]

to investigate the accuracy of our parallel spectral clustering algorithm. The dataset

originally included20, 000 messages within20 different newsgroups. The data were

pre-processed by the Bow toolkit [90]. We chopped off the headers, removed stop

words and also words that occurred in fewer than three documents [160]. Thus, the

document is represented by a feature which is a43, 586 dimensional sparse vector. Sev-

eral empty documents were also removed [160]. Finally we obtained19, 949 examples.

For comparison of the results, we used the Normalized MutualInformation(NMI)

method to evaluate the algorithms.NMI between two random variablesY1 andY2

is defined asNMI(Y1; Y2) =
I(Y1;Y2)√
H(Y1)H(Y2)

, whereI(Y1; Y2) is the mutual information

betweenY1 andY2. The entropiesH(Y1) andH(Y2) are used for normalizing the

mutual information to be in the range[0, 1]. To estimate the NMI score, we used the

following formulation [125,160]:

NMI =

∑K
s=1

∑K
t=1 ns,t log

(
nns,t

ns·nt

)

√(∑
s ns log

ns

n

) (∑
t nt log

nt

n

) (2.15)

wheren denotes the number of data points,ns andnt denote the number of data points

in classs and clustert, ns,t denotes the number of data points in classs and clustert.

TheNMI score is1 if the clustering results perfectly match the category labels; it is
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0 if the clustering algorithm returns a random partition. Thus, the larger the score, the

better are the clustering results.

Table 2.7: Comparison result for text categorization.
Method NMI

E-k-means 0.10±7.0e-05
S-k-means 0.30±1.6e-06

Co-clustering 0.54±3.6e-06
Normalized cut 0.55±4.9e-05

We compared the following algorithms: relaxedk-means algorithm based on the

Euclidean distance (E-k-means), the relaxed sphericalk-means based on the cosine dis-

tance (S-k-means) [44], the co-clustering algorithm [40], and the normalized cut algo-

rithm using the 30 neighborhood adjacency graph (without weights on graph edges) [118].

The results are shown in Table 2.7. We see that the normalizedcut algorithm performs

the best. The parallel normalized cut on the20k documents using5 computers took

only about10 seconds to complete.

2.3.3 Experiments Using Orkut Data

Social networks have become increasingly popular. The development of those so-

cial networks has enabled people to find new friends with common interests. User can

create communities as well as join existing communities on the Web. Orkut is an In-

ternet social network service run by Google. Since October 2006, Orkut has permitted
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Table 2.8: Cluster examples.
Sample Cluster 1:Cars Sample Cluster 2:Food

Community
ID

Community title Community
ID

Community title

22527 Honda CBR 622109 Seafood Lovers
287892 Mercedes-Benz 20876960 Gol gappe
35054 Valentino Rossi 948798 I LOVE ICECREAM
5557228 Pulsar Lovers 1614793 Bounty
2562120 Top Speed Drivers 1063561 Old Monk Rum
19680305 The Art of DriftIng 970273 Fast Food Lovers
3348657 I Love Driving 14378632 Maggi Lovers
726519 Luxury & Sports Cars 973612 Kerala Sadya
2806166 Hero Honda Karizma 16537390 Baskin-Robbins

Ice Cream
1162256 Toyota Supra 1047220 Oreo Freax!!

Sample Cluster3:Education Sample Cluster4:Pets, animals, wildlife
Community
ID

Community title Community
ID

Community title

15284191 Bhatia Commerce
Classes

18341 Tigers

7349400 Inderprastha Engineering
Cllge

245877 German shepherd

1255346 CCS University Meerut 40739 Naughty dogs
13922619 Visions - SIES college

fest
11782689 We Love Street Dogs

2847251 Rizvi College of Engg.,
Bandra

29527 Animal welfare

6386593 Seedling public school,
jaipur

370617 Lion

4154 Pennsylvania State
University

11577 Arabian horses

15549415 N.M. College, Mumbai 2875608 Wildlife Conservation
1179183 Institute of

Hotel Management
12522409 I Care For Animals

18963916 I Love Sleeping In Class 1527302 I hate cockroaches
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users to create accounts without an invitation; now, Orkut has more than50 million

users and20 million communities.

In our experiments, we used Orkut’s user-by-community co-occurrence data. All

of the users are anonymized, and each community is associated with a name and an

optional description. To make the clustering results readable, first we filtered out the

non-English-language communities. We also removed inactive communities that con-

tain few users. We obtained151, 973 communities with more than 10 million users.

We ran our parallel spectral clustering algorithm on90 computers to group the com-

munities into 100 clusters. The program finished within20 minutes. Communities with

similar topics are clustered together. We choose four clusters among the clustering re-

sults. Popular communities are listed in Table 2.8 as representative examples of the

clusters.

2.4 Summary

This chapter presented a parallel approach for spectral graph analysis, including

spectral clustering and co-clustering. By using multiple computers in a distributed

system, we have increased the scalability of spectral methods in both computation time

and memory use. This approach makes it possible to analyze Web-scale data using

spectral methods. Experiments show that our parallel spectral clustering algorithm
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performs accurately on artificial datasets and real text data. We also applied our parallel

spectral clustering algorithm to a large Orkut dataset to demonstrate its scalability.
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Chapter 3

Extraction and Integration of Data

from Distributed Sources

Fully automatic methods that extract lists of objects from the Web have been studied

extensively. Record extraction, the first step of this object extraction process, identifies

a set of Web page segments, each of which represents an individual object (e.g., a

product). State-of-the-art methods suffice for simple search, but they often fail to handle

more complicated or noisy Web page structures due to a key limitation – their greedy

manner of identifying a list of records through pairwise comparison (i.e., similarity

match) of consecutive segments. This chapter introduces a novel method for record

extraction that captures a list of objects in a more robust way based on a holistic analysis

of a Web page. The method focuses on how a distincttag pathappears repeatedly in the
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DOM tree of the Web document. Instead of comparing a pair of individual segments, it

compares a pair of tag path occurrence patterns (calledvisual signals) to estimate how

likely these two tag paths represent the same list of objects. The chapter introduces a

similarity measure that captures how closely the visual signals appear and interleave.

Clustering of tag paths is then performed based on this similarity measure, and sets of

tag paths that form the structure of data records are extracted. Experiments show that

this method achieves higher accuracy than previous methods.

3.1 Motivation

The Web contains a large amount of structured data, and serves as a good user

interface for databases available over the Internet. A large amount of Web content

is generated from databases in response to user queries. Such content is sometimes

referred to as thedeep Web. A deep Web page typically displays search results as

a list of objects (e.g., products) in the form of structured data rendered in HTML. A

study in 2004 found 450,000 databases in the deep Web [31]. Structured data also

plays a significant role on thesurface Web. Google estimated that their crawled dataset

contains 154 millionWeb tables, i.e., relational data rendered as HTML tables [27].

In addition to relational tables, the Web contains a varietyof lists of objects, such as

conference programs and comment lists in blogs. It is an important and challenging
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task to identify such object lists embedded in Web pages in a scalable manner, which

enables not only better search engines but also various applications related to Web data

integration (i.e., data mashups) and Web data mining (e.g., blog analysis).

There have been extensive studies of fully automatic methods to extract lists of

objects from the Web [8, 35]. A typical process to extract objects from a Web page

consists of three steps: record extraction, attribute alignment, and attribute labeling.

Given a Web page, the first step is to identify aWeb record[81], i.e., a set of HTML

regions, each of which represents an individual object (e.g.,a product). The second

step is to extract object attributes (e.g., product names, prices, and images) from a set of

Web records. Corresponding attributes in different Web records are aligned, resulting

in spreadsheet-like data [152, 159]. The final step is the optional task (which is very

difficult in general) of interpreting aligned attributes and assigning appropriate labels

[136,163].

In this chapter we focus on Web record extraction. Our study is motivated by our

experience in developing an automatic data extraction component of a data mashup sys-

tem [130], where we scrape a set of objects from avarietyof Web pages automatically.

The extraction component, developed with existing state-of-the-art technologies, some-

times fails at the very first step,i.e., record extraction, which significantly affects the

entire mashup process.
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Most state-of-the-art technologies for Web record extraction employ a particular

similarity measure between Web page segments to identify a region in the page where

a similar data object or record appears repeatedly. A representative example of this

approach is MDR [81], which uses the edit distance between data segments (called

generalized nodes). By traversing the DOM tree of a Web document, MDR discovers

a set of consecutive sibling nodes that form a data region. More recent work [120,152]

extends this approach by introducing additional features such as the position of the

rendered data. In our experience, an approach based on MDR issufficient for simple

search, but it starts to fail as the Web page structure becomes more complicated.

We observe that, on many Web pages, objects are rendered in a highly decorated

manner, which affects the quality of extraction. For instance, an image that is inserted

between objects as a separator makes objects no longer consecutive. As a work around,

we employ a heuristic rule to exclude decorative images fromthe DOM tree. In fact,

such visual information can be helpful or harmful. A heuristic rule might utilize such

decorations to identify object boundaries. However, it is not easy to generalize such

a heuristic rule so that it applies to a variety of Web pages. Thus, in general, the

irregularity that decorative elements introduce is more harmful than helpful. Moreover,

as [159] notes, the same HTML tag can sometimes work as a template token (that

contributes to form an object structure) and can sometimes work as a decorative element
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(that is used in an unstructured manner). Such tags can be very noisy but, if the

algorithm ignores these tags, it can miss useful evidence ofstructured objects.

We also observe that objects are sometimes embedded in a complicated Web page

structure with various context information. In such cases,objects are not necessarily

rendered consecutively. Existing work tries to address such complex Web page struc-

tures [8,158]. However, that work typically assumes availability of multiple Web page

instances.

A key limitation that we have identified in the MDR approach isits greedy manner

of identifying adata region(a region containing records) through pairwise comparison

of consecutive segments. In many cases, one misjudgment dueto noise causes sepa-

ration of an object list into multiple lists. We can imagine an extended algorithm that

employs more sophisticated search for data regions insteadof the greedy approach, but

its computational cost is very high.

We have developed an alternative approach to the Web record extraction problem,

which captures a list of objects based on a holistic analysisof a Web page. Our method

focuses on how a distincttag path(i.e., a path from the root to a leaf in the DOM

tree) appears repeatedly in the document. Instead of comparing a pair of individual

subtrees in the data, we compare a pair of tag path occurrencepatterns (calledvisual

signals) to estimate how likely these two tag paths represent the same list of objects.

We introduce a similarity measure that captures how closelythe tag paths appear and
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how they interleave. We apply clustering of tag paths based on this similarity measure,

and extract sets of tag paths that form the structure of the data records.

Compared to existing approaches, our method has the following advantages:

• Data records do not have to be consecutive. Based on the discovery of non-

consecutive data records, our method can also detect nesteddata records.

• Template tags and decorative tags are distinguished naturally. When a tag (path)

appears randomly in unstructured content, the corresponding visual signal will

not be similar to other signals. A tag (path) is clustered based on the structure of

the data records only when it repeats similarly to other tags.

3.2 Related Work

Extracting structured data from HTML pages has been studiedextensively. Early

work on wrapper induction utilizes manually labeled data tolearn data extraction rules

[74]. Such semi-automatic methods are not scalable enough for extraction of data on

the scale of the Web. To address this limitation, more fully automatic methods have

been studied recently. Fully automatic methods address twotypes of problems: (1)

extraction of a set of objects (or data records) from a singlepage, and (2) extraction of

underlying templates (or schema) from multiple pages [8,35]. Our work focuses on the
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former, which does not assume the availability of multiple instance pages containing

similar data records.

Techniques that address record extraction from a single page can be categorized

into the following approaches, which evolved in this order:(a) early work based on

heuristics [23], (b) mining repetitive patterns [30,136],and (c) similarity-based extrac-

tion [81, 120, 159]. OMINI [23] applies a set of heuristics todiscover separator tags

between objects in a Web page, but is applicable to only simple cases. IEPAD [30]

identifies substrings that appear multiple times in a document encoded as a token string.

DeLa [136] extends that approach to support nested repetition, such as “(AB*C)*D”.

One limitation of such a pattern mining approach is that it isnot robust against optional

data inserted into records. The similarity-based approachtackles this limitation with

approximate matching to identify repeating objects. MDR [81] is one such technique,

which utilizes edit distance to assess whether two consecutive regions are a repetition

of the same data type. It is reported that MDR out-performs both OMINI and IEPAD.

As discussed previously, even similarity-based extraction has limitations when the

data are complex and noisy. MDR relies on a greedy approach based on a similarity

match between two segments, with a pre-determined threshold. A limitation of MDR

is that it does not handle nested data objects. The researchers who developed MDR

proposed an extended algorithm, NET, to address this issue [82]. NET handles nested

objects by traversing a DOM tree in post-order (bottom-up),whereas MDR traverses
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the tree in pre-order (top-down). When a list of objects is discovered during traversal,

the list is collapsed into a single object (pattern) so that the number of objects does not

affect detection of higher-layer objects. However, NET still employs a greedy approach

based on similarity match. Moreover, its bottom-up traversal with edit distance com-

parison is expensive. Whereas MDR’s top-down traversal canstop as soon as it finds

data records, NET’s bottom-up traversal requires a full scan from the bottom up to the

root. For each visit of a node in this traversal, NET executesall-pair tree comparisons

within its children.

Other work extends the similarity approach by incorporating a variety of additional

features such as visual layout information [157] and hyperlinks to detail pages [78].

However, without any assumptions about the target domain, it is difficult to identify

such additional features. Moreover, such features are not always available or generally

useful. In future work, we plan to extend our method to incorporate additional feature

information.

Our method focuses on record extraction and does not extractdetailed data in a

record. There exist other techniques that address extraction and alignment of attributes

in records [152,159]. Our method can be combined with those techniques to realize the

entire data extraction process.

Among existing approaches for template extraction from multiple pages, EXALG

[8] is related to our method in its key idea. EXALG identifies aset of tokens that forms
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a template based on the intuition that tokens that co-occur with the same frequency

within multiple pages are likely to form the same template. Whereas EXALG utilizes

occurrence patterns across multiple documents, our methodutilizes occurrence patterns

within a single document. Thus, the two algorithms are very different.

3.3 Methodology

Although automatically identifying and extracting data records from Web pages is

considered a hard problem in the computing community, it is fairly easy for human be-

ings to identify such records. The data records that constitute a Web page are typically

represented using an HTML code template. Thus, they often have a similar appearance

and are visually aligned. Such a visually repeating patterncan be easily captured by hu-

man eyes, and the data records in the visually repeating partcan be accurately located.

Inspired by this observation, our method comprises three steps: (1) detecting visually

repeating information, (2) data record extraction, and (3)semantic-level nesting detec-

tion. The first step addresses the problem of what appears repeatedly on the Web page.

The second step extracts the data records from the HTML blocks where the repeating

patterns occur. The third step extracts the high-level dataobjects when there is a nested

list. The method is fully automatic and does not involve human labeling or feedback.

The three steps are described in more detail below.
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3.3.1 Detecting Visually Repeating Information

A data regionis part of a Web page that contains multiple data records of the same

kind, which can be consecutive or non-consecutive. Insteadof viewing the Web page

as a DOM tree, we consider it as a string of HTML tags. A data region maps to one or

more segments of the string with a repeating texture composed of HTML tags, which

result in the visually repeating pattern rendered on a Web page. We aim to find the

HTML tags that are elements of the data regions.

Visual Signal Extraction

The visual information rendered on a Web page, such as fonts and layout, is con-

veyed by HTML tags. A given hyperlink tag can have different appearances when it

follows different paths in the DOM tree. For each tag occurrence, there is an HTML

tag path, containing an ordered sequence of ancestor nodes in the DOMtree. Figure

Figure 3.1: Hyperlinks following different tag paths.
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Table 3.1: Finding tag paths for HTML tags.
HTML code Pos Tag path
<html> 1 html
<body> 2 html/body
<h1>A Web
page</h1>

3 html/body/h1

<table> 4 html/body/table
<tr> 5 html/body/table/tr
<td> Cell #1</td> 6 html/body/table/tr/td
</tr> NA NA
<tr> 7 html/body/table/tr
<td> Cell #2</td> 8 html/body/table/tr/td
</tr></table></body>
</html>

NA NA

Table 3.2: Extracting visual signals from a Web page.
Unique tag path Pos Visual signal vector
html 1 [1, 0, 0, 0, 0, 0, 0, 0]
html/body 2 [0, 1, 0, 0, 0, 0, 0, 0]
html/body/h1 3 [0, 0, 1, 0, 0, 0, 0, 0]
html/body/table 4 [0, 0, 0, 1, 0, 0, 0, 0]
html/body/table/tr 5,7 [0, 0, 0, 0, 1, 0, 1, 0]
html/body/table/tr/td 6,8 [0, 0, 0, 0, 0, 1, 0, 1]

3.1 shows the different appearances of hyperlink tags defined by two different HTML

tag paths.

A Web page can be viewed as a string of HTML tags, where only theopening

position of each HTML tag is considered. Each HTML tag maps toan HTML tag path.

An example is shown in Table 3.1. Roughly speaking, each tag path defines a unique

visual pattern. Our goal is to mine the visually repeating information in the Web page

using this simplified representation.
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An inverted index characterizing the mappings from HTML tagpaths to their loca-

tions in the HTML document can be built for each Web page, as shown in Table 3.2.

Each indexed term in the inverted index,i.e., one of the unique tag paths, is defined to

be a visual signal.

Formally, avisual signalsi is a triple< pi, Si, Oi >, wherepi is a tag path,Si is a

visual signal vectorthat represents occurrence positions ofpi in the document, andOi

represents individual occurrences (i.e., DOM tree nodes).Si is a binary vector where

Si(j) = 1 if pi occurs in the HTML document at positionj andSi(j) = 0 otherwise.

Oi is an ordered list of occurrences(o1i , · · · , omi ), whereoki corresponds to thekth

occurrence of 1 inSi.

Examples of visual signal vectors are shown in the third column of Table 3.2. All

of the visual signal vectors extracted from a Web page have the same length, which is

the total number of HTML tag occurrences in the Web page.

The vector representation{Si} of a Web page is much simpler than the DOM tree

representation. It also captures how a Web page is organized. Figure 3.3(a) shows

a snapshot of a DBLP [3] Web page containing lists of publication records and other

data objects. The extracted visual signals and the visual signal vectors are shown in

Figures 3.3(b) and 3.3(d). Each row in Figure 3.3(d) is a visual signal vector. We show

here only the first part of each visual signal vector. The visual signal vectors represent

how each atomic-level visual pattern repeats in the Web page. The visually repeating
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patterns in a Web page involve multiple visual signals. These visual signals together

form a certain repeating texture as shown in Figure 3.3(d). Each texture corresponds to

a data region that contains multiple data records of the samekind.

Detecting the visually repeating information is equivalent to identifying the set of

visual signals with similar patterns that are elements of the same data region. In other

words, detecting visually repeating information is aclustering problem. The visual sig-

nals in the same data region are grouped together, while the visual signals not in the

same data region are split into different clusters. We use spectral clustering [98] to clus-

ter the visual signals, because of its superior experimental performance and theoretical

soundness.

Similarity Measurement

The spectral clustering algorithm produces clustering results based on the pairwise

similarity matrix calculated from the data samples. A similarity function captures the

likelihood that two data samples belong to the same cluster.A critical factor in deter-

mining clustering performance is the choice of similarity function.

In our case, the similarity function captures how likely twovisual signals belong

to the same data region. Figure 3.2(a) shows a pair of visual signals that are highly

likely to belong to the same data region. Their positions areclose to each other, and
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they interleave with each other. Every occurrence of visualsignal 1 is followed by two

occurrences of visual signal 2.

(a) A pair of similar visual signal vectors. (b) Segmented visual signal vectors.

Figure 3.2: Example pair of visual signals that appear regularly.

The distance between the centers of gravity of two visual signals characterizes how

close they appear. We call this measure theoffsetω and calculate it in Equation (3.1).

ω(Si, Sj) =

∣∣∣∣∣

∑
Si(k)=1 k∑
Si(k)

−
∑

Sj(k)=1 k∑
Sj(k)

∣∣∣∣∣ (3.1)

In Equation (3.1),Si andSj are two visual signal vectors andk ∈ {1, 2, ..., l}, wherel

is the length of the visual signal vectors, andSi(k) is thekth element ofSi.

To capture the interleaving characteristic, we estimate how evenlyone signal is

divided bythe other. We definea segment ofSi divided bySj as follows: a segment

is a (non-empty) set of occurrences of visual signalsi between any pair of which there

is no occurrence of visual signalsj . Figure 3.2(b) illustrates how two signals divide

each ohter. LetDSi/Sj
be the occurrence counts in the segments ofSi divided bySj .

In our example,DS1/S2
= {1, 1, 1} andDS2/S1

= {2, 2, 2}. We define theinterleaving

measureι in terms of the variances of counts inDSi/Sj
andDSj/Si

in Equation (3.2).

ι(Si, Sj) = max{V ar(DSi/Sj
), V ar(DSj/Si

)} (3.2)
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(a) Web page snapshot. (b) Unique HTML tag paths.

(c) Pairwise similarity matrix.

(d) Visual signal vectors. Each row is a visual signal vector. Bright pixels correspond to 1s

and dark pixels correspond to 0s.

Figure 3.3: Pairwise similarity matrix calculated from Equation (3.3).

54



Chapter 3. Extraction and Integration of Data from Distributed Sources

Both the offset measure and the interleaving measure yield non-negative real num-

bers. A smaller value of either measure indicates a high probability that the two visual

signals come from the same data region. Thesimilarity measureσ(si, sj) between two

visual signals is inversely proportional to the product of these two measures and is

defined by Equation (3.3).

σ(si, sj) =
ε

ω(Si, Sj)× ι(Si, Sj) + ε
(3.3)

In Equation (3.3),ε is a non-negative term that avoids dividing by0 and that normalizes

the similarity value so that it falls into the range(0, 1]. In our experiments, we chose

ε = 10.

Given Equation (3.3), we can calculate the similarity valueof any pair of visual

signals. Example results are shown in Figure 3.3(c). The pixel in theith row andjth

column shows the similarity value for visual signalsi and visual signalsj. A bright

pixel indicates a high similarity value, whereas a dark pixel indicates a low similarity

value. Thus, the visual signals in Figure 3.3(b) aligned with the large bright blocks

in Figure 3.3(c) are likely to be from the same data region. The visual signals actu-

ally involved in the data regions (i.e., theground truth) are highlighted in rectangles.

Each box includes one data region. As expected, the similarity measure captures the

likelihood of two visual signals being from one data region.
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Visual Signal Clustering

The pairwise similarity matrix can be fed into a spectral clustering algorithm di-

rectly. We employ the normalized cut spectral clustering algorithm developed by Shi

et al. [118] to produce the groups of visual signals with similar patterns. A cluster

containingn visual signals indicates that thosen visual signals are from the same data

region with high probability.

A data region contains multiple data records that use the same HTML code template,

and a template typically has multiple HTML tags that differentiate the data attributes.

Thesize of a templateis defined to be the number of unique HTML tag paths involved

in the template. Thus, a template with size greater thann should correspond to a cluster

containing more thann visual signals. Given the fact that most HTML code templates

contain more than three HTML tags that differentiate different data attributes, we as-

sume that the smallest size of a template is three. Thus, we need to examine only the

clusters containing three or more visual signals. We call these clusters theessential

clustersof the document, and denote them byC = {C1, · · · , Cm}.

In the example shown in Figure 3.3, there are two clusters of size greater than three

produced by the spectral clustering algorithm. These clusters correspond to theground

truth, i.e., match the visual signals involved in the data regions exactly, as shown in

Figure 3.3(b), where each cluster corresponds to one data region and contains a set of

homogenous data records, as shown in Figure 3.3(a).
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3.3.2 Data Record Extraction

Visual signals that are grouped together in an essential clusterC ∈ C should repre-

sent the same data region. Each occurrenceoki of visual signalsi in C represents part

of a data record, an entire data record, or a set of data records. The goal of data record

extraction is to identify occurrences that represent individual data records.

To find such occurrences, we introduce ancestor and descendant relationships be-

tween visual signals. We say thatsi is anancestorof sj , denoted bysi//sj, iff pi is

a prefix ofpj. For example,/html/body/p is an ancestor of/html/body/p/a. We

also employ the standard relationships between occurrences oi andoj by viewing them

as DOM nodes:oi//oj (oi is an ancestor ofoj in a DOM tree), andoi < oj (oi is a

predecessor ofoj in the document order).

If si//sj then, for eachoj ∈ Oj, there existsoi ∈ Oi such thatoi//oj, meaning that

the HTML region represented bysi contains the region represented bysj. Recall that,

if si andsj are clustered together, they are in the same data region. Thus, an ancestor

visual signalsi is more likely to represent a set of entire data records whilea descendant

visual signalsj is more likely to represent a set of data attributes.

Among the visual signals in an essential clusterC, there is at least one visual signal

that has no ancestor inC. We call these visual signals themaximal ancestor visual

signals. The occurrences of maximal ancestor visual signals are considered first in data
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record extraction because they are more likely to be individual data records. We discuss

below how to find the exact data record boundaries in two different scenarios.

Single Maximal Ancestor Visual Signal

If there is only one maximal ancestor (saysm) in an essential clusterC, the occur-

rencesoim are likely to be individual data records. However, note that:

1. Not all of the occurrences are data records.Recall thatoim is one of the occur-

rences of tag pathpm (e.g., /html/body/p). This path may be used for represent-

ing not only data records but also different regions. Thus, we need to exclude

occurrences that are used for different purposes based on the following intuition:

A data record should consist of not only an occurrence ofsm but also occurrences

of other visual signals inC (that are descendants ofsm).

2. An occurrence can contain multiple data records.For example, product informa-

tion on an e-commerce Web page might be organized in multiplecolumns (e.g.,

Figure 3.5(a)). LetsR andsP be visual signals that represent rows of the product

list and individual product records, respectively. They are likely grouped together

into C. BecausesR//sP , sR is the maximal ancestor and, thus, we identify oc-

currences ofsP as data records.
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To address the above issues, we introduce the techniques of record candidate filtering

and record separation.

Record candidate filtering. Record candidate filtering selects occurrences from

Om that contain data records. The intuition is as follows: Ifoim has many descendants

that are occurrences of other visual signals inC, oim is likely to contain data records.

Let Di
m(⊂ C) be a set of visual signals that have occurrences in the descendants ofoim.

A greater value of|Di
m| indicates thatoim is a record candidate. We assume further that

not all of the visual signals inC are equally important. If a visual signal appears in

every data record, it has high similarity to other visual signals inC. Thus, we introduce

a weighting factor for each visual signalsj in Di
m based on its intra-cluster similarity

in C and define the record candidate scoreρ of an occurrenceoim by:

ρ(oim) =
∑

sj∈Di
m

∑

sk∈C

σ(sj, sk) (3.4)

whereσ(sj, sk) is be calculated using Equation (3.3).

We filter outoim iff ρ(oim) < ρmax × α, whereρmax is the maximumρ score of

occurrences of all the visual signals inC. In our experiments, we choseα = 0.5.

To identifyDi
m, we need to check if there is an occurrenceoj of a visual signalsj

such thatoim//oj for eachsj in C. Note thatsm//sj becausesm is the only maximal

ancestor inC. Thus, we only need to check ifoim < oj < o
(i+1)
m to writeoim//oj, which

is done efficiently using the visual signal vectorsSm andSj.
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(a) Recovered ancestor and descendant re-

lationships within one cluster.

(b) Data record extraction results after filtering out the occurrences of the common

ancestor visual signal.

Figure 3.4: Maximal ancestor visual signal containing one data record.
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(a) Web page snapshot.

(b) Recovered ancestor/descendant relationships within one

cluster.

(c) Data record extraction results.

Figure 3.5: Maximal ancestor visual signal containing multiple data records.
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(a) Nested objects.

(b) Atomic-level objects.

Figure 3.6: Data record extraction result for nested lists.
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Record separation. If the occurrences of the maximal ancestors contain multiple

data records, their direct descendant should be able to better separate the data records.

We examine the DOM subtrees of the occurrences to determine whether the child nodes

are more likely to be individual data records. First, they must be occurrences of the

same visual signal. Next, they must have a similar visual pattern so that together they

comprise a large visually repeating block. This idea is similar to one employed in MDR

[81] that checks if a single row contains multiple data records. Whereas MDR utilizes

edit distance of tag structures, our method takes a simpler approach that performs well

in experiments. From the rendered Web page, we retrieve the width and height of all

of the descendant visual signal occurrences. We calculate their variances to determine

whether the descendant node is a better data record separator.

The record filtering and separation are performed repeatedly until no better separa-

tor is found. The results are the atomic-level data records in a Web page.

Figure 3.4 shows an example where the maximal ancestor represents the data record

and no record separation is required. In the DBLP page, the publications of a researcher

are listed in a table and all of them are extracted correctly.An example that requires

record separation is shown in Figure 3.5. In this example, each row contains two prod-

uct records. Our algorithm extracts the visual signal corresponding to a row as the

maximal ancestor and then determines whether its direct descendant visual signal is a

better record separator.
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Multiple Maximal Ancestor Visual Signals

When there are multiple maximal ancestors, there is no single visual signal that cap-

tures the entire data record. Typically, occurrences of these different maximal ancestors

are consecutive siblings that together represent a data record.

Our problem now is to identify a repeating pattern from a sequence of occurrences

from different signals. Our current implementation uses a simple heuristic: The visual

signal, saysB, that occurs first is chosen as the record boundary. The intuition is that

the first component of a record is typically a mandatory part of the data (e.g., a title).

An occurrenceo of other maximal ancestor visual signals is a part of theith data record

if oiB < o < o
(i+1)
B . After forming the data record candidates, we filter them as in

Section 3.3.2.

3.3.3 Semantic-Level Nesting Detection

Nested lists are common on the Web. Usually, data records areorganized into se-

mantic categories with an arbitrary number of data records in each category. A descrip-

tion might be attached to each category.

Our approach can capture such nesting through discovery of non-consecutive lists

of atomic-level data records. The semantic categories are usually explicitly marked

by HTML tags, and data records inside one semantic category are consecutive in the

HTML document. Thus, if the data records are not consecutive, they might belong to
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different semantic categories. Based on this intuition, weextract the nesting structure

as follows: If a visual signal occurs at each point where the same set of data records is

partitioned, the visual signal corresponds to a visual pattern that separates two semantic

categories. The text lying between the sets of extracted data records is the description

of the semantic category. Using this rule, we extract both the “year” objects and the

“publication” objects in the DBLP page example, as shown in Figure 3.6.

3.4 Experiments

3.4.1 Experimental Setup

We evaluated both the effectiveness and the efficiency of ouralgorithm using two

datasets. We compare the performance of our algorithm with that of MDR, an imple-

mentation of which was available on the Web. Implementations of NET and EXALG

were not available, so we do not compare the performance of our algorithm with that

of those algorithms.

Dataset #1 was chosen from the testbed for information extraction from the deep

Web, collected by Yamadaet al. [144]. The testbed data has 253 Web pages from

51 Web sites randomly drawn from 114,540 Web pages with search forms. The data

records in these Web pages are manually labeled; the resultsare available online to-

gether with the testbed dataset. To provide a fair comparison between our algorithm
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and the MDR algorithm [81], which is designed for flat data records, we filtered out the

Web pages with nested structures in the testbed. The resulting dataset #1 contains 213

Web pages from 43 Web sites.

Dataset #2 was introduced mainly for the purpose of evaluating our algorithm on

nested list structures. Lacking an existing test data set, we collected the Web pages

ourselves. Dataset #2 contains 45 Web pages, each from one Web site, randomly chosen

from the domains of business, education, and government. Each Web page contains a

two-level nested list structure. Both the atomic-level data records and the nested data

records are manually labeled.

Our experiments were carried out on a Pentium 4 computer witha 3.2GHz CPU

and 2G of RAM. Our Java implementation of the algorithm utilizes the open source

Web renderer Cobra [2], which resolves ill-formed HTML and executes JavaScript for

dynamic HTML pages.

3.4.2 Accuracy Analysis

The experimental results for our algorithm compared with MDR [81] are shown in

Figure 3.7. We ran both algorithms for all of the Web pages in dataset #1. The results

are aggregated based on the Web sites. Theground truthis the set of data records in

all Web pages from one Web site.True positivesare the set of data records correctly

extracted by the algorithms from that Web site. The perfect case is that the true positives
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match the ground truth exactly.False positivesare the set of data records that the

algorithm incorrectly includes in the same list with the true positives. To distinguish the

false positives from the true positives, we flip the sign of the false positives and show

them in the same figure. Generally speaking, our algorithm has more true positives

and fewer false positives compared with the MDR algorithm. We also calculated the

precisionandrecall as given in Equations (3.5) and (3.6) for all of the Web sites.The

results are shown in Table 3.3.

Precision =
|true positives|

|true positives| + |false positives| (3.5)

Recall =
|true positives|
|ground truth| (3.6)

When none of the records is detected, both|true positives| and|false positives|

are zero, hence Equation (3.5) is ill-formed. We define the precision to be zero in such

a case.

Table 3.3: Accuracy comparison for dataset #1.
Algorithm Average Precision Average Recall

Our algorithm 90.4% 93.1%
MDR 59.8% 61.8%

The experimental results for dataset #2 show the performance of our algorithm for

nested list structures. We compare each atomic-level data record and nested data record

extracted by our algorithm with the manually labeled groundtruth. The results of the
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Figure 3.7: Accuracy comparison between our algorithm and MDR for dataset #1.

Table 3.4: Experimental results for dataset #2.

Domain Ground Truth Our Results
Nested Atomic Nested Atomic

Business 46 415 46 415(1)
Education 215 1672 208(2) 1672(17)
Government 104 955 104(1) 954(1)

Overall Accuracy Measure
Nested
Records

Precision 98.9% Recall 98.1%

Atomic
Records

Precision 99.4% Recall 99.9%

comparison are shown in Table 3.4. The ground truth numbers of data records for the

Web pages are listed in columns 2 and 3. The numbers of true positives are listed in

columns 4 and 5. The numbers of false positives are listed in parentheses if they are

greater than zero. There are 15 Web pages from the business domain, 15 Web pages

from the education domain, and 15 Web pages from the government domain.
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3.4.3 Time Complexity Analysis

The algorithm consists of three steps. We analyze the time complexity for each step

individually.

Detecting visually repeating information. In this step, first we scan the Web

page and extract the visual signals, which takesO(L) time, whereL is the total number

of HTML tag occurrences in the Web page. Calculating the pairwise visual signal

similarity matrix and performing spectral clustering on ittakesO(M × L) + O(M3),

whereM is the number of unique HTML tag paths in the Web page. Thus, the step of

visual repeating information detection takesO(M × L) +O(M3) time in total.

Data record extraction. In this step, first we retrieve all of the occurrences of

the common ancestors in the Web page for each essential cluster. When filtering these

occurrences, the algorithm visits all of the descendants. The total number of HTML

nodes visited is less than L. Thus, the time complexity of this step isO(L).

Semantic-level nesting detection.In this step, we examine the visual signals that

appear at each point where the data records are not consecutive. The number of HTML

tags visited is still less thanL. Thus, the time complexity of this step isO(L).

In total, the time complexity of the algorithm isO(M × L) + O(M3), whereL is

the total number of tag occurrences andM is the number of unique tag paths in the

Web page.
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Figure 3.8: Number of unique tag paths vs. number of HTML tags. The numberof
unique tag paths does not increase as the number of HTML tags increases.

Figure 3.9: Step 1 is linear in the document length.
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For comparison purposes, we also analyze the time complexity of existing similarity-

based approaches, MDR [81] and NET [82]. These algorithms traverse a DOM tree

and apply edit distance computation between sibling subtrees. LetN be the number

of children of each node. At the root, the algorithms computethe edit distance be-

tween its children with sizeL/N , takingO((L/N)2) time. MDR computes the edit

distanceN times, and NET computes itN2 times in the worst case. At depthd,

there areNd trees, each of which hasN children of sizeL/Nd+1. The total cost is

∑
d(L/N

d+1)2NkNd = L2Nk−2
∑

d(1/N)d < L2Nk−2×N/(N − 1) wherek = 1 for

MDR andk = 2 for NET. Thus, the time complexity of MDR and NET areO(L2/N)

andO(L2), respectively. From this analysis, we conclude that MDR is efficient (O(L))

when the document structure is simple (andN is as large asL). However, if the docu-

ment structure is complex, MDR is not as scalable.

The key question then is how the numberM of unique tag paths, grows asL be-

comes large. IfM does not scale up, our algorithm is more scalable than NET, and even

MDR when the document is complex. Recall that our algorithm and NET can detect

nested structures whereas MDR cannot. For the experimentaldataset,M stays small

asL grows, as shown in Figure 3.8. Thus, the complexity of our algorithm isO(L)

for practical datasets,i.e., it is linear in the document length. Figure 3.9 shows that the

completion time of Step 1 is linear inL.
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Table 3.5: Execution time analysis.
Function Average Time (ms) Percentage

Rendering 208.90 NA
Total execution time 328.73 100%

Step 1 157.63 47.95%
Step 2 72.99 22.20%
Step 3 98.11 29.84%

On average, the total execution time of our algorithm for oneWeb page is similar

to the rendering time. We divide the execution time into three parts based on the three

steps as presented in Table 3.5. Step 1 takes 47.95% of the total time, and Steps 2 and

3 together take 52.05% of the total time. Because Steps 2 and 3are conducted for each

essential cluster, and there is no interaction between clusters, this part of the algorithm

can be parallelized.

3.5 Summary

This chapter presented a novel approach to data record extraction from Web pages.

A data record list corresponds to a set of visual signals thatappear regularly on the

Web page. The method first detects visual signals that repeatin a similar pattern. Page

segmentation is performed based on clusters of similar visual signals. Experimental

results on flat data record lists are compared with a state-of-the-art algorithm. Our

algorithm shows significantly higher accuracy than existing algorithms. For data record

lists with a nested structure, we collected Web pages from the domains of business,
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education, and government. Our algorithm demonstrates high accuracy in extracting

both atomic-level and nested-level data records. The execution time of the algorithm is

linear in the document length for practical datasets.
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Chapter 4

Recovering the Semantics of Tables to

Enable Table Search

The Web offers a corpus of more than 100 million high-qualitytables [25], but the

meaning of each table is rarely explicit in the table itself.Header rows exist in few cases

and even when they do, the attribute names are typically useless. In this chapter, we

describe a system that attempts to recover the semantics of tables by enriching the table

with additional annotations. Our annotations facilitate operations such as searching for

tables and finding related tables.

To recover the semantics of tables, we leverage a database ofclass labels and re-

lationships automatically extracted from the Web. The database of classes and rela-

tionships has a very wide coverage, but also is very noisy. Weattach a class label
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to a column if a sufficiently many values in the column are identified with that label

in the database of class labels, and analogously for binary relationships. We describe a

method for reasoning about when we have seen sufficient evidence for a label, and show

that the method performs substantially better than a simplemajority scheme. We de-

scribe a set of experiments that illustrate the utility of the recovered semantics for table

search and show that the method performs substantially better than previous approaches.

In addition, we characterize what fraction of tables on the Web can be annotated using

our method.

4.1 Overview

The corpus of more than 100 million tables on the Web cover a wide variety of

topics [25]. These tables are embedded in HTML and, therefore, their meaning is

described only bin the text surrounding them. Header rows exist in few cases, and even

when they do, the attribute names in the headers are typically useless.

Without knowledge of the semantics of the tables, it is very difficult to leverage their

content, either in isolation or in combination with other tables. The challenge arises in

particular fortable search(for queries such ascountries population, or dog breeds life

span), which is the first step in exploring a large collection of tables. Search engines

typically treat tables like any other text fragment, but signals that work well for text
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do not apply as well to table corpora. In particular, document search often considers

the proximity of search terms on the Web page to be an important signal, but in tables

the column headers apply to every row in the table even if theyare textually far away.

Furthermore, unlike text documents, where small changes inthe document structure or

wording do not correspond to vastly different content, variations in table layout or termi-

nology can change the semantics significantly. In addition to table search, knowledge

of the semantics of the tables is necessary for higher-leveloperations such as combining

tables via join or union.

In principle, we would like to associate semantics with eachtable in the corpus, and

use the semantics to guide retrieval, ranking and combiningtables. However, given the

scale, breadth and heterogeneity of the tables on the Web, wecannot rely on hand-coded

domain knowledge. Thus, this chapter presents techniques for automatically recover-

ing the semantics of tables on the Web. Specifically, we add annotations to a table that

describe the sets of entities represented in the table, and the binary relationships repre-

sented by the columns in the table. For example, in the table of Figure 4.1, we would

add the annotationstree species, tree, andplant to the first column, and the

annotationis known as to describe the binary relation represented by the table1.

The key insight underlying our approach is that we can use facts extracted from

text on the Web to interpret the tables. Specifically, we leverage two databases that are

1The complete table can be found athttp://www.hcforest.sailorsite.net/Elkhorn.html.
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Figure 4.1: An example table on the Web, associating common names of trees with
their scientific names.

extracted from the Web: (1) an isA database that contains a set of pairs of the form (in-

stance, class), and (2) a relations database of triples of the form (argument1, predicate,

argument2). Because they are extracted from the Web, both ofthese databases have

very broad coverage of topics and instances, but they are very noisy. We use them to

annotate the columns in the table as follows. We label a column A with classC in the

isA database if a substantial fraction of the cells in a column A are labeled with class

C in the isA database. We label the relationship between columnsA andB with R if

a substantial number of pairs of values fromA andB occur in extractions of the form

(a, R, b) in the relations database. We describe a method that lets us determine how

much evidence we need to find in the extracted databases to deem a label appropriate

for a column or a pair of columns. In particular, the method addresses the challenge

that the extracted databases are not a precise description of the real world or even of the

Web, because some entities occur more frequently on the Web than others.
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We show experimentally that the labels we generate describethe contents of the

table well and are rarely explicit in the table itself. We show that the labels are even

more accurate when we consider only the labels that are associated with a column in

the table that is thesubjectof the table. Based on this, we build a table search engine

with much higher precision than previous approaches.

4.2 Related Work

Similar to our work, the work of Limayeet al. [79] annotates tables on the Web

with column and relationship labels. However, unlike our work, their work aims to

choose asinglelabel from an ontology (YAGO [127]). They propose a graphical model

for labeling table columns with types, pair of columns with binary relations, and table

cells with entity IDs, and use YAGO as a source for their labels. The key idea of their

work is to use joint inference about each of the individual components to boost the

overall quality of the labels. As we show in our experiments,YAGO includes only a

small fraction of the labels we find. In particular, YAGO includes fewer than 100 binary

relationships. Our work is the first that tries to detect binary relationships at any serious

scale. In principle, we can also apply joint inferences withour approach, but we leave

that for future work.
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Cafarellaet al. [25] considered the problem of table search, but approachedit as a

modification to document search. They added new signals to ranking documents, such

as hits on the schema elements and subject columns. The weights of the new signals

were determined by machine learning techniques. As we show subsequently, table

search aided by our annotations offers significantly higherprecision than that of [25].

Several works have considered how to extract and manage datatables found on the

Web (e.g., [24, 50, 64]), but they do not consider annotation or searchproblems. Gupta

and Sarawagi considered how to answer fact queries from lists on the Web [59]. In

addition, there is a significant body of work that considers how to rank tuples within a

single database in response to a keyword query [63]. The distinguishing challenge in

our context is the vast breadth of the data and the fact that itis formatted on Web pages

in very different ways.

Downeyet al. [49] proposed a theoretical model for measuring the confidence of

extractions from the Web. They proposed a combinatorial “urns” model that computes

the probability thata single extractionis correct based on sample size, redundancy, and

corroboration from multiple extraction patterns. In contrast, we compute the proba-

bilistic distribution of semantic labels for columns in Webtables based ona set of cell

values/pairs. Hence, one of the challenges in our model is to provide smaller weights

for missing extractions when the entities involved do not appear frequently on the Web.
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The output of the “urns” model can be used as one of the inputs to our method to infer

label distributions.

Existing methods for extracting classes of instances from the Web require sets of

instances that are each either unlabeled [80, 103, 137], or associated with a class la-

bel [12,61,101,102,138]. When associated with a class label, the sets of instances can

be organized as flat sets or hierarchically, relative to existing hierarchies such as Word-

Net [121,127] or the category network within Wikipedia [106,140]. To the best of our

knowledge, the isA database described in this chapter is larger than similar databases

extracted from unstructured text. In particular, the number of useful extracted class

labels (e.g., class labels associated with 10 instances or more) is at least one order of

magnitude larger than that for the isA databases described in [128], although those

databases are extracted from document collections of similar size, and using the same

initial sets of extraction patterns as in our experiments.

Previous work on automatically generating relevant labels, given sets of items, fo-

cuses on scenarios where the items within the sets to be labeled are descriptions, or

full-length documents within document collections [29, 36, 133]. Relying on semi-

structured content assembled and organized manually as part of the structure of Wikipedia

articles, such as article titles or categories, the method introduced in [29] derives labels

for clusters each containing 100 full-length documents. Incontrast, our method re-

lies on isA relations and binary relations automatically extracted from unstructured text
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within arbitrary Web documents, and computes labels given textual input that are orders

of magnitude smaller,i.e., table columns.

4.3 Problem Description

We begin by describing the Web table corpus and the problems of annotating tables

and table search.

Table corpus: Each table in our corpus is a set of rows, and each row is a sequence of

cells with data values (see Figure 4.1 for an example). Tables may be semi-structured

and might have very little metadata. Specifically:

• We do not have a name for the table (i.e., the relationship or entities that it is

representing).

• The attributes might not have names, and we might not know whether the first

row(s) of the table are attribute names or data values (as in Figure 4.1).

• The values in a particular row of a column will typically be ofa single data

type, but there might be exceptions. Values might be taken from different domains and

different data types. Often, we see sub-header rows of the type one would see in a

spreadsheet.
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• The quality of tables in the corpus varies significantly, andit is hard to determine

whether HTML table tags are used for high-quality tabular content or as a formatting

convenience.

Annotating tables: Our goal is to add annotations to tables to expose their semantics

more explicitly. Specifically, we add two kinds of annotations. The first,column labels

are annotations that represent the set of entities in a particular column. For example, in

the table of Figure 4.1 possible column labels aretree, tree species andplant.

The second,relationship labelsrepresent the binary relationship that is expressed by a

pair of columns in the table. For example, a possible relationship label in the table of

Figure 4.1 isis known as. We note that our goal is to produceany relevant label

that appears on the Web and, therefore, to match more keywordqueries that users might

pose. In contrast, previous work [79] focused on finding asinglelabel from an ontology

(YAGO [127]).

Typically, tables on the Web have a column that is the subjectof the table. The sub-

ject column contains the set of entities that the table represents, and the other columns

represent binary relationships or properties of those entities. We have observed that

more than 75% of the tables in our corpus exhibit this structure. Furthermore, the sub-

ject column need not be a key — it may contain duplicate values.

Identifying a subject column is important in our context because the column label

we associate with it offers an accurate description of what the table represents, and the
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binary relationships between the subject column and other columns reflect the proper-

ties that the table is representing. Hence, although our techniques do not require the

presence of a subject column, we show that the accuracy of ourannotations and result-

ing table search are higher when a subject column is identified.

Table search:We investigate the quality of our annotations by their ability to improve

table search, the most important application that the annotations enable. We assume

that queries to table search can be posed using any keyword because it is unreasonable

to expect users to know the schemata of such large collections of heterogeneous tables

in such vast arrays of topics.

In this work, we consider returning a ranked list of tables inresponse to a table

search query. However, the ability to retrieve tables basedon their semantics lays the

foundation for more sophisticated query answering. In particular, we might want to

answer queries that require combining data from multiple tables through join or union.

For example, consider a query that asks for the relationshipbetween the incidence of

malaria and the availability of fresh water. There might be atable on the Web for

describing the incidence of malaria, and another for accessto fresh water, but the rela-

tionship can only be gleaned by joining the two tables.

We analyzed Google’s query stream and found that there are two kindes of queries

that can be answered by table search: (1) find a property of a set of instances or entities

(e.g., wheat production of African countries), and (2) find a property of an individual
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instance (e.g., birth date of Albert Einstein). This chapter focuses on queries of the first

kind. We assume that they are of the form(C, P ), whereC is a string denoting a class

of instances andP denotes some property associated with those instances. BothC and

P can beanystring rather than being drawn from a particular ontology, but we do not

consider the problem of transforming an arbitrary keyword query into a pair(C, P ) in

this chapter. Also, we note that there are millions of queries of both kinds being posed

every day.

Our techniques can be used to help answering the second kind of queries, but there

are many other techniques that come into play [12,59]. In particular, answers to queries

about an instance and a property can often be extracted from free text and corroborated

against multiple occurrences on the Web.

Finally, we note that we do not consider the problem of blending results of table

search with other Web results.

4.4 Annotating Tables

Given the size and breadth of the table corpus we are considering, manually anno-

tating the semantics of tables does not scale. The key idea underlying our approach is to

annotate tables automatically by leveraging resources that are already on the Web and,

hence, have similar breadth to the table corpus. In particular, we use two different data
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resources: (1) an isA database consisting of pairs (instance, class) that are extracted by

examining specific linguistic patterns on the Web, and (2) a relations database consist-

ing of triplets of the form (argument1, predicate, argument2) extracted without super-

vision from the Web. In both databases, each extraction has ascore associated with it

describing our confidence in the extraction. The isA database is used to produce column

labels, and the relations database is used to annotate relationships expressed by pairs

of columns. Importantly, our goal is not necessarily to recover a single most precise

semantic description (i.e., we cannot compete with manual labeling), but just enough

to provide useful signals for search and other higher-leveloperations.

The isA database and relations database are described in Section 4.4.1 and Sec-

tion 4.4.2, respectively. In Section 4.4.3, we consider theproblem of how evidence

from the extracted databases should be used to choose labelsfor tables. Because the

Web is not a precise representation of the real world and the algorithms used to extract

the databases from the Web are not perfect, the model weightssome evidence more

heavily than other evidence in determining possible labels. As described earlier, when

labels are associated with a subject column, they are even more indicative of the table’s

semantics.
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4.4.1 The isA Database

The goal of column labels is to describe the class of entitiesthat appear in that

column. In Figure 4.1, the labelstree, tree species andplant describe the

entities in the first column and might correspond to terms used in searches that should

retrieve this table. Recall that the isA database is a set of pairs of the form (instance,

class). We refer to the second part of the pair as aclass label. We assign column labels

to tables from the class labels in the isA database. Intuitively, if the pairs(I, C) occur

in the isA database for a substantial number of values in a columnA, then we attachC

as a column label toA. We now describe how the isA database is constructed.

We begin with techniques such as those presented in [101] to create the isA database.

We extract pairs from the Web by mining for patterns of the form:

〈[..] C [such as|including] I [and|,|.]〉,

whereI is a potential instance andC is a potential class label for the instance (e.g.,

cities such as Berlin, Paris and London).

To apply such patterns, special attention needs to be paid todetermining the bound-

aries ofC andI. Boundaries of potential class labelsC in the text are approximated

from the part-of-speech tags (obtained using the TnT tagger[22]) of the sentence words.

We consider noun phrases whose last component is a plural-form noun and that are not

contained in and do not contain another noun phrase. For example, the class label

86



Chapter 4. Recovering the Semantics of Tables to Enable Table Search

michigan counties is identified in the sentence[..] michigan counties such as

van buren, cass and kalamazoo [..]. The boundaries of instancesI are identified

by checking thatI occurs as an entire query in query logs. Because users type many

queries in lower case, the collected data is converted to lower case. These types of rules

have also been widely used in the literature on extracting conceptual hierarchies from

text [61,121].

To construct the isA database, we applied patterns to 100 million documents in En-

glish using 50 million anonymized queries. The extractor found around 60,000 classes

that were associated with 10 or more instances. The class labels often cover closely-

related concepts within various domains. For example,asian countries, east

asian countries,south asian countries, andsoutheastasian countries

are all present in the extracted data. Thus, the extracted class labels correspond to a

broad and relatively deep conceptualization of the potential classes of interest to Web

search users, on the one hand, and to human creators of Web tables, on the other hand.

The reported accuracy for class labels in [101] is greater than 90% and the accuracy for

class instances is almost 80%.

To improve the coverage of the database beyond the techniques described in [101],

we use the extracted instances of a particular class as seedsfor expansion by consid-

ering additional matches in Web documents. We look for otherpatterns on the Web

that match more than one instance of a particular class, effectively inducing document-
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specific extraction wrappers [73]. For example, we might findthe pattern〈headquartered

in I〉 and, thus, be able to mine more instancesI of the class labelcities. The can-

didate instances are scored across all documents, and addedto the list of instances

extracted for the class label [137]. Doing so increases the coverage with respect to

instances, although not with respect to class labels.

Given the candidate matches, we then compute a score for every pair (I, C) using

the following formula [100]:

Score(I, C) = Size({Pattern(I, C)})2 × Freq(I, C). (4.1)

In the formula,Pattern(I, C) is the set of different patterns in which(I, C) was found

andFreq(I, C) is the frequency count of the pair. However, because high frequency

counts are often indicative of near-duplicate sentences appearing on many Web pages,

we perform the following computation. We compute a sentencefingerprint for each

source sentence, by applying a hash function to at most 250 characters from the sen-

tence. Occurrences of(I, C) with the same sentence fingerprint are counted only once

in Freq(I, C).

4.4.2 The Relations Database

We also want to annotate a table with the set of relationshipsthat the table represents

between pairs of entities. For example, the table in Figure 4.1 represents the relation-
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shipis known as between trees and their scientific names. In general, two types

of relationships are common in tables on the Web: symbolic (e.g., capital of) and

numeric (e.g., population). In what follows, we use the relations database to obtain

labels for the symbolic relationships.

Intuitively, given two columns,A andB, we look at corresponding pairs of values

in the columns. If we find that the relation(a, R, b) is extracted for many rows of the

table, thenR is a likely label for the relationship represented byA andB.

We use the Open Information Extraction (OIE) [52] method to extract triples for the

relations database. Unlike traditional information extraction that outputs instances of

a givenrelation, OIE extracts any relation using a set of relations-independent heuris-

tics. In our implementation, we use the TextRunner open extraction system, which has

precision around 73.9% and recall around 58.4%, according to [13].

4.4.3 Evaluating Candidate Annotations

The databases described above provide evidence from the Webthat a particular

label applies to a column, or that a particular binary relationship is represented by a

pair of columns. However, the immediate question that arises is how much evidence is

enough to assign a label to a column or pair of columns, or alternatively, how to rank

the candidate labels.
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If the isA and relations databases were a precise description of the real world, then

we would require a label to apply toall rows of a table before it is assigned. However,

the databases have two kinds of imprecision: (1) the Web isnot an accurate represen-

tation of the real world, and (2) no matter how good the extractors are, they will miss

some facts that are mentioned on the Web. Consider the effectof the first kind of im-

precision. Paris and France are mentioned very frequently on the Web and, thus, we

expect to find sentences on the Web that state that Paris is thecapital of France. How-

ever, Lilongwe and Malawi are not mentioned as often, and therefore there is a smaller

likelihood of finding sentences that say that Lilongwe is thecapital of Malawi. Hence,

if we have a table that includes a row for Paris, France and onefor Lilongwe, Malawi,

but we do not find (Lilongwe, capital of, Malawi) in the relations database, that should

not be taken as strong evidence against assigning the labelcapital of to that pair

of columns.

The second kind of imprecision stems from the fact that, ultimately, the extractors

are based on rules that might not extract everything that is said on the Web. For example,

to extract cities, we look for patterns of the form〈cities such as I〉, which might not

be found for rare entities such as Lilongwe. In addition, some entities are simply not

mentioned in such patterns at all. For example, there are many tables on the Web that

describes the meaning of common acronyms, but there are veryfew sentences of the

form 〈acronyms such as I〉.
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The method we describe below lets us reason about how to interpret the different

kind of positive and negative evidence we find in our extracted database. We use a

maximum-likelihood method based on the following intuition. A person constructing

a table in a Web page has a particular intent (“schema”) in mind. The intent is to

describe properties of instances of an entity class. The maximum-likelihood method

attempts to assign class labels to a column given the contents the person has used to

populate the column. The best label is therefore the one that, if chosen as part of the

underlying intent, is most likely to have resulted in the observed values in the column.

Consequently, we try to infer the intent of the table designer based on the evidence they

have given us.

We begin by considering the problem of assigning class labels to a column. Let

V = {v1, . . . , vn} be the set of values in a column A. Letl1, . . . , lm be all possible class

labels.

To find the best class label, we use the maximum likelihood hypothesis [95],i.e.,

the best class labell(A) is the one that maximizes the probability of the values, given

the class label for the column:

l(A) = argmax
li

{Pr [v1, . . . , vn | li]} .

We assume that each row in the table is generated independently, given the class

label for the column and, thus,Pr [v1, . . . , vn | li] =
∏

j Pr [vj | li]. This is a reasonable

assumption in our context, because tables that are relational in nature are likely to
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have dependencies between column values in the same row, rather than across rows.

Furthermore, from Bayes rule, we havePr [vj | li] = Pr[li|vj ]×Pr[vj ]

Pr[li]
. It follows that:

Pr [v1, . . . , vn | li] =
∏

j

Pr [li | vj ]× Pr [vj ]

Pr [li]
∝

∏

j

Pr [li | vj ]
Pr [li]

.

The product term
∏

j Pr [vj] applies identically to each of the labels. Hence, it follows

thatl(A) = argmaxli
∏

j
Pr[li|vj ]

Pr[li]
.

We assign a scoreU(li, V ) to each class that is proportional to the expression in the

above equation and normalize them so that they sum up to 1,i.e.,

U(li, V ) = Ks

∏

j

Pr [li | vj ]
Pr [li]

, (4.2)

where the normalization constantKs is such that
∑

i U(li, V ) = 1.

The probabilityPr [li] can be estimated from the scores in the isA database (see

Equation (4.1)). However, estimating the conditional probability Pr [li | vj] is more

challenging. A simple estimator such asScore(vj ,li)∑
k Score(vj ,lk)

has two problems. First, when

computing the maximum likelihood hypothesis, because we are multiplying thePr [li | vj ],

none of these probabilities can be0. Second, because information extracted from the

Web is inherently incomplete, it is likely that there are values for which there is an

incomplete set of labels in the isA database.

To address the incompleteness, wesmooththe estimates of the conditional proba-

bilities:

Pr [li | vj] =
Kp × Pr [li] + Score(vj, li)

Kp +
∑

k Score(vj , lk)
,
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whereKp is a smoothing parameter.

The above formula ensures that in the absence of any isA extractions forvj , the

probability distributions of the labels tends to be the sameas the priorPr [li]. As a result,

values with no known labels are not taken as negative evidence and do not contribute

to changing the ordering among best hypotheses. On the otherhand, if there are many

known class-label extractions forvj , the conditional probabilities tend towards their

true values and hence suchvj contribute significantly (positively or negatively) toward

selecting the best class labels. As the score in the isA database increases (with increased

extractions from the Web), the conditional probability estimator depends more on the

scores. The parameterKp controls how sensitive the probabilities are to low extraction

scores. If we assume that extractions from the Web are mostlytrue (but incomplete),

then we can setKp to be very low (say0.01).

Finally, we need to account for the fact that certain expressions are inherently more

popular on the Web and can skew the scores in the isA database.For example, for a

valuev with two labelsScore(v, l1) = 100 andScore(v, l2) = 10,000, a fraction will

result inPr [l1 | v] ≪ Pr [l2 | v]. We refine our estimator further to instead use the

logarithm of the scores,i.e.,

Pr [li | vj ] =
Kp × Pr [li] + ln(Score(vj, li) + 1)

Kp +
∑

k ln(Score(vj, lk) + 1)
. (4.3)

The+1 in the logarithm preventsln 0. As before, the probabilities are normalized to

sum to1.
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To determine the prior probabilities of the class labelsPr [li], we add the scores

across all values for that label,i.e.,

Pr [li] ∝
∑

j

ln(Score(vj, li) + 1 + δ). (4.4)

We use1 + δ to ensure thatPr [li] 6= 0. The probabilities are normalized such that

∑
i Pr [li] = 1.

Given the set of values in a column, we estimate the likelihood scoreU for each

possible label (Equation 4.2). We consider only the labels that have a normalized like-

lihood score greater than a thresholdtl and rank the labels in decreasing order of their

scores.

4.5 Experiments

We evaluate the quality of the table annotations and their impact on table search in

Section 4.5.1 and Section 4.5.2, respectively.

Table corpus: Following [25], we constructed a corpus of HTML tables extracted from

a subset of the crawl of the Web. We considered pages in English with high page rank.

From these, we extracted tables that were clearly not HTML layout tables, and then

filtered out empty tables, form tables, calendar tables, tiny tables (with only 1 column

or with less than 5 rows). We were left with about 12.3 milliontables. We estimate
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that this corpus represents about a tenth of the high-quality tables on the Web as of late

2010.

4.5.1 Column and Relation Labels

We discuss the quality of the labels assigned with the isA andrelations databases.

We show that our method labels an order of magnitude more tables than is possible with

Wikipedia labels and many more tables than Freebase. We showthat the vast majority

of the remaining tables can either be labeled using a few domain specific rules or do

not contain useful content.

Label quality

We compare three methods for assigning labels. The first, denotedModel, is the

maximum likelihood method described in Section 4.4.3. The second, denotedMajority,

requires that at leastt% of the cells of the column have a particular label. Of these, the

algorithm ranks the labels according to aMergedScore(C) =
∑

L
1

Rank(C,L)
(if C has

not been assigned to cell contentL, thenRank(C,L) =∞). After experimenting with

different values, we observed that the Majority algorithm performs best whent = 50.

We also examined aHybrid method that uses the ranked list of the Majority method

concatenated with the ranked list of the Model method (afterremoving labels output by
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the Majority method. TheHybrid method performs better than both theModel method

and theMajority method, as explained below.

Gold standard: To create a gold standard, we considered a random sample of ta-

bles and removed those that did not have any class or relations labels assigned by

run R10, the Majority algorithm witht = 10% (i.e., a very permissive labeling). We

then manually removed tables whose subject columns were incorrectly identified or

do not correspond to any meaningful concept. For each of the remaining 168 tables,

we presented to human annotators the result of R10. The annotators mark each label

as vital, okay, or incorrect. For example, given a table column containing the cells

{Allegan, Barry, Berrien, Calhoun, Cass, Eaton, Kalamazoo,Kent, Muskegon, Saint

Joseph, Van Buren}, the assigned class labelssouthwest michigan counties

andmichigan counties are marked asvital; labelscounties andcommunities

asokay; andillinois counties andmichigan cities as incorrect. In ad-

dition, the annotators can manually enter any additional labels that apply to the table

column, but are missing from those returned by any of the experimental runs. The re-

sulting gold standard associates the 168 tables with an average of 2.6vital and 3.6okay

class labels, with 1.3 added manually by the annotators. Forthe relations labels, we had

an average of 2.1vital and 1.4okay labels. Because there were many options for our

relations database, we did not add any new (manual) annotations to the binary relations

labels.
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Evaluation methodology: For a given table, the evaluation consists of automatically

comparing the ranked lists of labels produced by an experimental run to the labels

available in the gold standard. To compute precision, a retrieved label is assigned a

score of 1 if it was marked asvital or manually added to the gold standard; 0.5 if it was

marked asokay, and 0 otherwise [101]. Similarly, recall is computed by considering a

label as relevant (score 1) if it was marked asvital or okayor was manually added to

the gold standard, and irrelevant (score 0) otherwise.

Results: Figure 4.2 summarizes the performance results for the three algorithms. We

varied the precision and recall by considering the topk labels for values ofk between

1 and 10;k increases from left to right in the graph.

We observed that Majority (witht = 50) has a relatively high precision but low

recall (it labeled only30% of the 168 tables). The reason is the requirement that a label

must be given to 50% of the rows. In addition, Majority tends to output general labels

(e.g., compound chemical vs.antibiotic), because they are more common on

the Web and more rows are likely to agree on them. Nonetheless, its labels are generally

of high quality. On the other hand, Model tends to do well in the cases where there are

good labels, but they do not appear for a majority of rows in the table, in a sense, where

more subtle reasoning is required. Consequently, Hybrid isthe best of both methods.

We obtained similar results for binary relationships except that Majority did not

perform well. The reason is that our extractions are more sparse than in the unary case;
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Figure 4.2: Precision/recall for class labels for various algorithms and topk values.

thus, it is harder to find labels that occur for 50% of the rows.Even so, we obtained a

precision of 0.45 and a recall of 0.7.

One may wonder if the class labels are not redundant with information that is al-

ready on the Web page of the table. In fact, there are only about 60,000 tables in our

corpus (4%) where all class labels already appear in the table header, and only about

120,000 tables (8%) where a label appears anywhere in the body of the Web page.

Hence, assigning class labels adds important new information to the table.

Labels from ontologies

Next, we compare the coverage of our labeling to what can be obtained by us-

ing a manually created ontology. Currently, the state-of-the-art, precision-oriented isA

database is YAGO [127], which is based on Wikipedia. Table 4.1 compares the labeling

of tables using YAGO vs. the isA database extracted from the Web. Our Web-extracted

isA database is able to assign labels to the subject columns of almost 1.5 million tables
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(out of 12.3 million tables at hand), while YAGO assigns labels to∼185 thousand ta-

bles (an order of magnitude difference). This is explained by the very large coverage

that our Web-extracted repository has in terms of instances(two orders of magnitude

larger than YAGO).

Table 4.1: Comparing the isA database and YAGO.

Web-extracted YAGO Freebase
Labeled subject columns 1,496,550 185,013 577,811
Instances in ontology 155,831,855 1,940,797 16,252,633

For the binary relations, we were able to assign about three times as many labels

for pairs of columns than Freebase (2.1M compared to 800K). We also examined the

quality of the binary labels on our gold standard that included 128 binary relations

involving a subject column. Our method found 83 of them (64.8%) correctly (assigning

vital or averagebinary labels), whereas Freebase only managed to find 37 of them

(28.9%) correctly.

We also compared our labeling on the same datasets (wiki manual and Web manual

datasets) used in [79], where the authors proposed using YAGO to label columns in

tables. These datasets have tables from Wikipedia and tables that are very related to

Wikipedia tables; hence, we expected YAGO to do relatively well. Nonetheless, we

achieved an F1 measure of 0.67 (compared to the 0.56 reportedin [79]) on the wiki

manual dataset, and 0.65 for the Web manual dataset (compared to 0.43), both for the

top 10 class labels returned by the majority-based algorithm. We note that using YAGO
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will result in higher precision. For the goal of table searchthough, coverage (and hence

recall) is key.

The unlabeled tables

Our methods assigned class labels to approximately 1.5 million tables out of the

12.3 in our corpus when only subject columns are considered,and 4.3 million tables

otherwise. We investigated why the other tables were not labeled, and most importantly,

whether we are missing good tables in the unlabeled set. We discovered that the vast

majority of these tables were either not useful for answering (C, P ) queries, or can be

labeled using a handful of domain-specific methods. Table 4.2 summarizes the main

categories of the unlabeled tables.

Table 4.2: Class label assignment to various categories of tables.
Category Sub-category # tables (M) % of corpus

Labeled
Subject column 1.5 12.20
All columns 4.3 34.96

Vertical 1.6 13.01

Extractable
Scientific Publications 1.6 13.01
Acronyms 0.043 0.35

Not useful 4 32.52

First, we found that many of the unlabeled tables arevertical tables. These tables

contain (attribute name, value) pairs in a long two-column table. We developed an al-

gorithm for identifying such tables by considering tables that had at least two known

attribute names in the subject columns (the known attributenames were mined from

Wikipedia and Freebase). This process identified around 1.6million tables. After look-
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ing at a random sample of more than 500 of these tables, we found that less than 1% of

them would be useful for table-search queries.

Next, we found a few categories where the entities are too specific to be in the isA

database. In particular, the most voluminous category comprises tables about publica-

tions or patents (1.45 million tables). It turns out that these tables can be identified

using simple heuristics from very few sites. Another, much smaller category comprises

43,000 tables of acronyms on a single site. Thus, extending our work to build a few

domain-specific extractors for these tables could significantly increase the recall of our

class assignment.

Among the remaining 4 million tables, we found that (based ona random sample of

1,000) very few of them are useful for(C, P ) queries. In particular, we found that many

of these tables have enough text in them to be retrieved by traditional search techniques.

Examples of such categories include course description tables (with the course number

and university on the page) and comments on social networks,bug reports and job

postings.

Thus, although we have annotated about a sixth of our tables,our results indicate

that these are theusefulcontents for table-search queries.
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4.5.2 Table Search

We now describe the impact of our annotations on table search. We built a table

search engine which we refer to as TABLE, that leverages the annotations on tables.

Given a query of the form(C, P ), whereC is a class name andP is a property, TABLE

proceeds as follows:

Step 1:Consider tables in the corpus that have the class labelC in the topk class labels

according to Section 4.4.3.2 Note that tables that are labeled withC might also contain

only a subset ofC or a named subclass ofC.

Step 2: We rank the tables found in Step 1 based on a weighted sum of thefollowing

signals: occurrences ofP on the tokens of the schema row, occurrences ofP on the

assigned binary relations of the table, page rank, incominganchor text, and number

of rows and tokens found in the body of table and the surrounding text. The weights

were determined by training on a set of examples. In our current implementation we

require that there be an occurrence ofP in the schema row (which exist in 71% of the

tables [26]) or in the assigned binary relations of the table.

Table 4.3 shows the results of our study. The columns under All Ratings present

the number of results (totalled over the 3 users) that were rated to be (a)right on, (b)

right onor relevant, and (c)right onor relevantandin a table. The Ratings by Queries

2As an extension, whenC is not in the isA database, TABLE could search for other class
names that are either the correct spelling ofC or could be considered related — these extensions
are currently not supported in TABLE.
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Table 4.3: Results of our user study
Method All Ratings Ratings by Queries Query Precision Query Recall

Total (a) (b) (c) Some Result (a) (b) (c) (a) (b) (c) (a) (b) (c)
TABLE 175 69 98 93 49 24 41 40 0.63 0.77 0.79 0.52 0.51 0.62
DOCUMENT 399 24 58 47 93 13 36 32 0.20 0.37 0.34 0.31 0.44 0.50
GOOG 493 63 116 52 100 32 52 35 0.42 0.58 0.37 0.71 0.75 0.59
GOOGR 156 43 67 59 65 17 32 29 0.35 0.50 0.46 0.39 0.42 0.48

columns aggregate ratings by queries: the sub-columns indicate the number of queries

for which at least two users rated a result similarly (with (a), (b) and (c) as before). The

Precision and Recall are as defined in Section 4.5.2.

In principle, it would be possible to estimate the size of theclassC (from our isA

database) and to try to find a table in the result whose size is close toC. However,

this heuristic has several disadvantages. First, the isA database might have only partial

knowledge of the class, and therefore the size estimate may be off. Second, it is very

common that the answer is not in a table that is precisely about C. For example, the

answer to (african countries, GDP) is likely to be in a table that includes all of the

countries in the world, not only the African countries. Hence, we find that, in general,

longer tables tend to provide better answers.

We compare TABLE with three other methods: (1) GOOG: the results returned by

www.google.com, (2) GOOGR: the intersection of the table corpus with the top

1,000 results returned by GOOG, and (3) DOCUMENT: the document-based approach

proposed in [25]. The document-based approach considers several signals extracted

from the document in the ranking, including hits on the first two columns, hits anywhere

in the table (with a different weight), and hits on the headerof the subject column.
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Query set: To construct a realistic set of user queries of the form(C, P ), we analyzed

the query logs from Google Squared, a service in which users search for structured data.

We compiled a list of 100 queries (i.e., class names) submitted by users to the Web site.

For each class name, each of the authors identified potentialrelevant property names.

Then, we randomly selected two properties for each class name to create a test set of

200 class-property queries. We chose a random subset of 100 out of the 200 queries.

Evaluation methodology: We performed a user study to compare the results of each

algorithm. For the purpose of this experiment, each algorithm returns Web pages (if

an algorithm originally returned Web tables, we now modifiedit to return the Web

pages containing those Web tables). For each of the 100 queries, we retrieved the top

five results using each of TABLE, DOCUMENT, GOOG, and GOOGR. We combine and

randomly shuffle these results, and present to the user this list of at most 20 search

results (only GOOG is always guaranteed to return five results). For each result, the

user had to rate whether it wasright on (has all information about a large number of

instances of the class and values for the property),relevant(has information about only

some of the instances, or of properties that were closely related to the queried property),

or irrelevant. In addition, the user marked if the result, whenright on or relevant, was

containedin a table. The results for each query were rated independently by three

separate users.
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Note that, by presenting a combined shuffled list of search results, and asking the

user to rate the resulting Web documents, we can determine which algorithm produced

each result. We cannot present the extracted tables directly to the users, because GOOG

does not always retrieve results with tables. Furthermore,we do not ask users to com-

pare directly the ranked lists of results listed separatelyby each algorithm, because it

might be possible for a rater to work out which algorithm produced each list. Thus,

we are able to achieve a fair comparison to determine which algorithm can retrieve

information (not just tables) that is relevant to a user query.

Precision and recall: The results of our user evaluation are summarized in Table 4.3.

We compare the different methods using measures similar to the traditional notions of

precision and recall. LetNq(m) denote the number of queries for which the method

m retrieved some result,Na
q (m) denote the number of queries for whichm retrieved

some result that was ratedright on by at least two users, andNa
q (∗) denote the number

of queries for which some method retrieved a result that was ratedright on. We define

P a(m) andRa(m) to be:

P a(m) =
Na

q (m)

Nq(m)
, Ra(m) =

Na
q (m)

Na
q (∗)

.

Note that we can likewise defineP b(m) andRb(m) by considering results that were

ratedright on or relevantandP c(m) andRc(m) by considering results that were rated
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in a table(right onor relevant). Note that eachP (m) andR(m) roughly correspond to

the traditional notions of precision and recall.

In our experiments, we foundNa
q (∗) = 45 (right on), N b

q (∗) = 75 (right on or

relevant), andN c
q (∗) = 63 (in a table). The resulting values for precision and recall are

listed in Table 4.3. Note that we could likewise define these measures in terms of the

number of results (the patterns are similar).

Results: As shown in Table 4.3, TABLE has the highest precision (0.79 when consid-

ering right on andrelevantresults). These results show that even modest recovery of

table semantics leads to very high precision. GOOG on the other hand, has a much

higher recall, but a lower precision.

We note that the recall performance of GOOG is based on retrieving Web pages that

are relevant Web pages (not necessarily tables that areright on). In fact, the precision

of GOOG is lower, if we consider only theright on ratings (0.42). If we consider only

the queries for which the relevant information was eventually found in a table, TABLE

has both the highest precision (0.79) and highest recall (0.62) and clearly outperforms

GOOG. These results show that not only does TABLE have high precision, but it does

not miss many tables that are in the corpus. Hence, we can use TABLE to build a search

service for tables, and when it returns too few answers, we can fall back on general

Web search.
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Observe that DOCUMENT does not perform well in comparison to either TABLE or

GOOG. The probable reason is that DOCUMENT (as described in [25]) was designed to

perform well for instance queries. DOCUMENT does not have the benefit of class labels,

which are no doubt important for class-property queries. DOCUMENT is like GOOG, but

with a far smaller corpus (only our∼4.3 million extracted tables), and hence has poor

performance.

GOOGR in general has a higher precision and lower recall than GOOG. GOOGR

filters the results from GOOG to include only Web pages that have tables with class

labels. Thus, GOOGR will retrieve information present in the tables (higher precision

and excellent at answering class-property queries), but omits relevant Web pages with-

out tables.

Our results clearly demonstrate that, whenever there is a table that satisfies a class-

property query, our table search algorithm is likely to retrieve it. At the same time, it

rarely retrieves irrelevant tables.

The importance of subject columns:In our experiments we considered labels on any

columns in the tables, but we observe the importance of subject columns in two ways.

First, in 80.16% of the results returned by TABLE, the class label was found in the

subject column. For the other approximately 20%, we typically observed tables that

had more than one possible subject column. Second, in our collection of 168 tables for

which we know the subject column and the binary relations, weobserved the following.
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Of the pairs of columns that involved a subject, our algorithms found labels in 43.3%

of the cases, compared to only 19.1% for pairs of arbitrary columns.

4.6 Summary

In this chapter, we have described algorithms for partiallyrecovering the semantics

of tables on the Web. We explored an intriguing interplay between structured and un-

structured data on the Web, where we used text on the Web to recover the semantics

of structured data on the Web. Because the breadth of the Web matches the breadth of

structured data on the Web, we are able to recover the semantics effectively. In addi-

tion, we have provided a detailed analysis of when our techniques will not work and

how these limitations can be addressed.
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Chapter 5

Modeling Information Flow in

Collaborative Networks

Ticket resolution is a crucial aspect of the delivery of Information Technology (IT)

services. A large service provider needs to handle, on a daily basis, thousands of tickets

that report various types of problems. Many of those ticketsbounce among multiple

expert groups before being transferred to the group with theright expertise to solve the

problem. Finding a methodology that reduces such bouncing and hence shortens ticket

resolution time is a long-standing challenge. In this chapter, we present a unified gen-

erative model, the Optimized Network Model (ONM), that characterizes the lifecycle

of a ticket, using both the content and the routing sequence of the ticket. ONM uses

maximum likelihood estimation, to represent how the information contained in a ticket
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is used by human experts to make ticket routing decisions. Based on ONM, we de-

velop a probabilistic algorithm that generates ticket routing recommendations for new

tickets in a network of expert groups. Our algorithm calculates all possible routes to po-

tential resolvers and makes globally optimal recommendations, in contrast to existing

classification methods that make static and locally optimalrecommendations.

5.1 Motivation

Problem ticket resolution is critical to the IT services business. A service provider

might need to handle, on a daily basis, thousands of tickets that report various types

of problems from its customers. The service provider’s ability to resolve the tickets in

a timely manner determines, to a large extent, its competitive advantage. To manage

ticket resolution effectively, human experts are often organized into expert groups, each

of which has the expertise to solve certain types of problems. As IT systems become

more complex, the types of reported problems become more diverse. Finding an expert

group to solve the problem specified in a ticket is a long-standing challenge for IT

service providers.

In practice, a typical ticket processing system works as follows. A ticket is initiated

by a customer or by internal staff, and is subsequently routed through a network of

expert groups for resolution. The ticket is closed when it reaches aresolver group

110



Chapter 5. Modeling Information Flow in Collaborative Networks

that provides the solution to the problem reported in the ticket. Figure 5.1 shows an

interaction network between groups with ticket routing examples. Tickett1 starts at

groupA and ends at groupD, and tickett2 starts at groupG and ends at groupC

(note that we omit the dispatching step in which a ticket is first assigned to the initial

group). The sequencesA→ B → C → D andG → E → C are calledticket routing

sequences.

In a large network of expert groups, being able to quickly route a new ticket to its

resolver is essential to reduce labor cost and to improve customer satisfaction. Today,

ticket routing decisions are often made manually and, thus,can be quite subjective

and error-prone. Misinterpretation of the problem, inexperience of human individuals,

and lack of communication between groups can lead to routinginefficiency. These

difficulties call for models that can accurately represent the collaborative relationship

between groups in solving different kinds of problems. Suchmodels ought to provide

fine-grain information not only to help experts reduce ticket routing errors, but also

D

G
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t1
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Figure 5.1: Ticket routing.
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to help service enterprises better understand group interactions and identify potential

performance bottlenecks.

In [117] Shaoet al. proposed a Markov model-based approach to predict the re-

solver of a ticket, based on the expert groups that processedthe ticket previously. In

essence, their approach is a rule-based method,i.e., if groupA processed a ticket and

did not have a solution, it calculates the likelihood that groupB can resolve it. A draw-

back of that approach is that it is locally optimized and, thus, might not be able to

find the best ticket routing sequences. Moreover, it does notconsider the contents of

the tickets. That is, it uses a “black-box” approach that canneither explain, nor fully

leverage, the information related to why groupA transfers a ticket to groupB, when it

cannot solve the problem itself.

In this work, we aim to address these issues by deriving a morecomprehensive

model that incorporates ticket content. Rather than simplycalculating the transfer prob-

ability P (B|A) between two groupsA andB, we build a generative model that captures

why tickets are transferred between two groupsA andB, i.e., P (w|A → B) wherew

is a word in the ticket. In addition, we build a model that captures why a certain ticket

can be resolved by a groupB, i.e., P (w|B). Finally, we combine the local generative

models into a global model, the Optimized Network Model (ONM), which represents

the entire ticket resolution process in a network of expert groups.
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The Optimized Network Model has three major applications. First, it can be trained

using historical ticket data and then used as a recommendation engine to guide the

routing of new tickets. Second, it provides a mechanism to analyze the role of expert

groups, to assess their expertise level, and to study the expertise awareness among

them. Third, it can be used to simulate the ticket routing process, and help analyze the

performance of an expert network under various ticket workloads. We focus on the first

application and demonstrate the superior performance of ONM compared to previous

models. We briefly discuss the other two applications, but leave the detailed studies of

those applications for future work.

5.2 Related Work

Ticket routing can be considered an extension of the text classification problem,

which has been extensively studied in the literature [16, 28, 68, 84, 114, 145, 146, 162].

For instance, Yang and Liu [145] studied the robustness of different text categorization

methods. Caladoet al.[28], Lu and Getoor [84], and Senet al.[114] proposed methods

to combine content and link information for document classification.

Ticket routing is also related to the multi-class classification problem [105]. Com-

pared to multi-class classification, ticket routing has distinct properties. First, ticket

routing involves multiple predictions if the current prediction is not correct, which leads
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to different evaluation criteria. Second, ticket routing takes place in a network, which

is also different from the traditional classification problem. Third, instead of relying on

a single classifier, ticket routing requires leveraging theinteractions between multiple

local classifiers to find a globally optimized solution.

Belkin et al. [16] and Zhouet al. [162] introduced text classification using graph-

based methods. Collective classification, such as loopy belief propagation [148], mean

field relaxation labeling [147], interactive classification [97] and stacked models [72],

are popular techniques for classifying nodes in a partiallylabeled graph. The problems

studied in those papers are quite different from our problem, as we assume one resolver

in the network for a given ticket, and the classification needs to be repeatedly applied

until the resolver is found.

Generative models and maximum likelihood estimation are standard approaches.

Generative models seek the joint probability distributionover the observed data. Clas-

sification decisions are typically made based on conditional probabilities formed using

Bayesian rules. One example is the Naive Bayes classifier [66, 154], which assumes

conditional independence between variables. Another example is the Gaussian Mix-

ture Model [104], which estimates the probability distribution using a convex combi-

nation of several Gaussian distributions. These models aregood for analyzing sparse

data. We chose the generative model because the transition probabilities in the ticket

resolution sequences can be seamlessly embedded in the probabilistic framework. Our
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contribution is the combination of multiple local generative models to yield a globally

optimized solution.

Besides the generative models, discriminative models, such as the Support Vector

Machine (SVM), have been shown to be effective for text classification [68]. One

can potentially build a support vector classifier for each resolver and each transfer re-

lationship. However, they are locally optimized for individual resolvers and transfer

relationships; once trained, the SVM classifiers remain stationary. In our approach, the

resolver predictions can be dynamically adjusted if previous predictions are incorrect.

The ticket routing problem is also related to the expert finding problem,i.e., given a

keyword query, find the most knowledgeable persons regarding that query. The expert

finding algorithms proposed by Baloget al.[11] and Fang and Zhai [53] use a language

model to calculate the probability of an expert candidate togenerate the query terms.

Serdyukovet al. [115] enhanced those models by allowing the candidates’ expertise to

be propagated within a network,e.g., via email. Denget al. [39] explored the links in

documents such as those listed in DBLP [3]. Expert recommendation systems also use

text categorization techniques to characterize bugs [7] and documents [122]. Because

most expert finding algorithms are content-based, they share the same weakness of the

Resolver Model (RM) given in Section 5.4.1.

Our study demonstrates that better routing performance canbe achieved by combin-

ing together ticket contents and routing sequences. Nevertheless, considering existing
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sophisticated text classification methods and language models, it is an open research

problem to investigate how to embed these models in a collaborative network and learn

their parameters in a holistic way for ticket processing, a challenging problem in the IT

service industry.

5.3 Preliminaries

We use the following notation:G = {g1, g2, ..., gL} is a set of expert groups in a col-

laborative network;T = {t1, t2, ..., tm} is a set of tickets; andW = {w1, w2, ..., wn}

is a set of words that describe the problems in the tickets. A ticket consists of three

components: (1) a problem category to which the ticket belongs, e.g., a WINDOWS

problem or a DB2 problem, that is identified when the ticket isgenerated, (2) the ticket

content,i.e., a textual description of the problem symptoms, and (3) a routing sequence

from the initial group to the final resolver group of the ticket. Although some complex

tickets can be associated with multiple problem categoriesor can involve multiple re-

solvers, most tickets are associated with one problem category and can be resolved by

one expert group. Our model focuses on ticket routing in these common cases.

In the first step of routing, each tickett is assigned to an initial expert groupginit(t).

If the initial group cannot solve the problem, it transfers the ticket to another group that

it considers the right candidate to solve the problem. Afterone or more transfer steps,
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the ticket eventually reaches the resolver groupgres(t). The route that the ticket takes

in the expert network is denotedR(t). Table 5.1 shows a ticket example, which is first

assigned to group HDBTOIGA, and is finally resolved by group NUS N DSCTS.

Table 5.1: A WINDOWS ticket example.

ID Description Initial Group
8805 User received an error R=12

when installing Hyperion.
When tried to install again,
got success msg, but unable to
open the application in Excel

HDBTOIGA

ID Time Entry
8805 9/29/2006 ... (multi transfer steps) ...
8805 10/2/2006 Ticket 8805 transferred to Group

NUS N DSCTS
8805 10/2/2006 Resolution: Enabled Essbase in Ex-

cel

To model the interactions between groups in an expert network, we need to under-

stand how and why the tickets are transferred and resolved. Specifically, we aim to

develop a modeling framework that consists of (1) a Resolution ModelMg(t) that cap-

tures the probability that groupg resolves tickett, and (2) a Transfer ModelMgi→gj(t)

that captures the probability that groupgi transfers tickett to groupgj, if gi cannot re-

solvet. Our goal is to develop these two models, and then combine them into a unified

network model, that represents the ticket lifecycle in the expert network, as shown in

Figure 5.2.
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Figure 5.2: Unified network model.

5.4 Generative Models

The ticket contents and routing sequences of the historicaltickets provide clues as

to how tickets are routed by expert groups. In our expert network, each group has

its own special expertise. Thus, if an expert group is capable of resolving one ticket,

chances are it can also resolve other tickets with similar problem descriptions. Likewise,

similar tickets typically have similar routing paths through the network. In this section,

we characterize these properties using generative models.

5.4.1 Resolution Model (RM)

First, we build a generative model for each expert group using the textual descrip-

tions of the problems the group has solved previously. Givena setTi of tickets resolved

by groupgi andW the set of words in the tickets inTi we build a resolver profilePgi

defined as the following column vector:

Pgi = [P (w1|gi), P (w2|gi), ..., P (wn|gi)]T (5.1)
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Equation (5.1) represents the word distribution among the tickets resolved bygi.

Here,P (wk|gi) is the probability of choosingwk if we randomly draw a word from the

descriptions of all tickets resolved bygi. Thus,
∑n

k=1 P (wk|gi) = 1.

Assuming that different words appear independently in the ticket content, the prob-

ability that gi can resolve a tickett ∈ Ti can be calculated from the resolver profile

vectorPgi as follows:

P (t|gi) ∝
∏

wk∈t

P (wk|gi)f(wk,t) (5.2)

wherewk is a word contained in the content of tickett andf(wk, t) is the frequency of

wk in the content oft.

To find a set of most probable parametersP (wk|gi), we use the maximum likelihood

method. The likelihood that groupgi resolves all of the tickets inTi is:

L(Ti, gi) =
∏

t∈Ti

P (t|gi) (5.3)

We maximize the log likelihood:

Pgi = arg max
P (W|gi)

(log(L(Ti, gi)))

= arg max
P (W|gi)

(
∑

wk

n(wk, Ti) log(P (wk|gi)))

s.t.
∑

wk∈W

P (wk|gi) = 1
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wheren(wk, Ti) =
∑

t∈Ti
f(wk, t) is the total frequency of the wordwk in the ticket set

Ti. Hence, the maximum likelihood solution for the resolver profile vectorPgi is:

P (wk|gi) =
n(wk, Ti)∑

wj∈W
n(wj, Ti)

(5.4)

The Resolution Model is a standard multi-class text classifier, which considers only

ticket content. Embedded in the ticket routing sequences are the transfer relations be-

tween groups, which can be used to improve the accuracy of ourmodel, as described

below.

5.4.2 Transfer Model (TM)

As Shaoet al.[117] pointed out, not only the resolver group, but also the intermedi-

ate groups in the ticket routing sequences, contribute to the resolution of a ticket. The

reason is that, even if an expert group cannot solve a problemdirectly, it might have

knowledge of which other group is capable of solving it. To capture this effect, we use

both the ticket content and the routing sequence to model thetransfer behavior between

expert groups.

Considering an edgeeij = gi → gj in the expert network, we letTij denote the set

of tickets that are transferred along the edgeeij and letW denote the set of words in

the tickets inTij. Using the same technique as described in Section 5.4.1, we build the
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transfer profile of an edge between two expert groups as the column vector:

Peij = [P (w1|eij), P (w2|eij), ..., P (wn|eij)]T (5.5)

wherePeij characterizes the word distribution among the tickets routed along edgeeij

andP (wk|eij) is the probability of choosing wordwk if we randomly draw a word from

the tickets transferred along edgeeij . Similarly, we derive the maximum likelihood

solution for the transfer profile ofeij as follows:

P (wk|eij) =
n(wk, Tij)∑

wℓ∈W
n(wℓ, Tij)

(5.6)

The Transfer Model for the edges can be combined with the Resolution Model for

the nodes to form the network model shown in Figure 5.2. However, the parameters of

these models are learned independently and, thus, might notachieve the best modeling

accuracy. To address this problem, we study how to optimize the network model by

learning these parameters globally.

5.4.3 Optimized Network Model (ONM)

Both the Resolution Model and the Transfer Model are local models. They are not

optimized for end-to-end ticket routing in the expert network. In this section, we present

an optimized model that accounts for the profiles of the nodesand edges together in a

global setting. Instead of considering only the tickets resolved by a certain expert group

or transferred along a certain edge, the model learns its parameters based on the entire
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set of tickets, using both their contents and their routing sequences. As we will see, this

global model outperforms the local models.

Routing Likelihood

When a setTi of tickets is routed to a groupgi, some of the tickets will be resolved

if gi has the right expertise, while the rest of the tickets will betransferred to other

groups. Ifgi resolves a ticket, we assume thatgi transfers the ticket to itself. We letTij

be the set of tickets that are transferred from groupgi to groupgj. Thus,Ti =
⋃L

j=1 Tij ,

whereTii is the set of tickets resolved by groupgi itself, andL is the number of expert

groups.

Given a tickett and the expert groupgi that currently holds the tickett, the proba-

bility that t is transferred from groupgi to groupgj is:

P (gj|t, gi) =
P (t|eij)P (gj|gi)

Z(t, gi)

=
(
∏

wk∈t
P (wk|eij)f(wk,t))P (gj|gi)

Z(t, gi)
(5.7)

whereZ(t, gi) =
∑

gj∈G
P (t|eij)P (gj|gi) andP (gj|gi) is the prior probability thatgi

transfers a ticket togj . P (gj|gi) can be estimated by|Tij|/|Ti|. To simplify the notation,

we letP (gi|t, gi) represent the probability that groupgi is able to resolve tickett if t is

routed togi. Hence,P (w|eii) is the resolution model ofgi. Because a ticket description

is often succinct with few redundant words, we assumef(wk, t) = 1 if wk occurs int
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andf(wk, t) = 0 otherwise. This assumption significantly simplifies the derivation of

the model.

Each historical tickett has a routing sequenceR(t). For example,R(t) = g1 →

g2 → g3, with initial groupginit(t) = g1 and resolver groupgres(t) = g3. We assume

that an initial groupg1 is given for each tickett, i.e., P (g1|t) = 1 and that each expert

group makes its transfer decisions independently. In this case, the probability that the

routing sequenceg1 → g2 → g3 occurs is:

P (R(t)|t) = P (g1|t)P (g2|t, g1)P (g3|t, g2)P (g3|t, g3)

= P (g2|g1)P (g3|g2)P (g3|g3)

×P (t|e1,2)P (t|e2,3)P (t|e3,3)
Z(t, g1)Z(t, g2)Z(t, g3)

We assume further that the tickets are independent of each other. Thus, the likeli-

hood of observing the routing sequences in a ticket setT is:

L =
∏

t∈T

P (R(t)|t) (5.8)
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Parameter Optimization

To find a set of globally optimal parametersP (wk|eij), we use maximum likelihood

estimation to maximize the log likelihood:

logL =
∑

t∈T

logP (R(t)|t) (5.9)

=
∑

t∈T

∑

eij∈R(t)

log
P (t|eij)× P (gj|gi)

Z(t, gi)

=
∑

eij∈E

∑

t∈Tij

(log(P (t|eij)) + log(P (gj|gi)))

−
∑

gi∈G

∑

t′∈Ti

log(Z(t′, gi))

whereE = {eij |1 ≤ i, j ≤ L} andP (t|eij) =
∏

wk∈t
P (wk|eij). The optimal transfer

profile is given by the following constrained optimization problem:

P (W|E)∗ = arg max
P (W|E)

(logL) (5.10)

s.t.
∑

wk∈W

P (wk|eij) = 1;

P (wk|eij) ≥ 0

whereW is the set of words andE is the set of edges.

This optimization problem is not convex, and it involves many free dimensions (the

degree of freedom is(|W| − 1) × |G|2). It cannot be solved efficiently with existing

tools.

Thus, we seek solutions that are near-optimal but easier to calculate. Our approach

is to update the parametersP (wk|eij) iteratively to improve the likelihood. Specifically,
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we use the steepest descent method to maximize the lower bound of the log likelihood.

By Jensen’s inequality, we have

Z(t, gi) ≤
∏

wk∈t

∑

gℓ∈G

P (gℓ|gi)P (wk|eiℓ) (5.11)

Combining Equation (5.9) and Equation (5.11), we have:

logL ≥ ⌊logL⌋ =
∑

eij

∑

t∈Tij

(log(P (t|eij)) + log(P (gj|gi)))

−
∑

gi∈G

∑

t′∈Ti

∑

wk∈t′

log(
∑

gℓ∈G

(P (gℓ|gi)× P (wk|eiℓ)))

The gradient is given by:

∇⌊log(L)⌋ =
∂⌊logL⌋
∂P (wk|eij)

=

∑
t∈Tij

n(wk, t)

P (wk|eij)

−
P (gj|gi)×

∑
t′∈Ti

n(wk, t
′)∑

gℓ∈G
P (gℓ|gi)× P (wk|eiℓ)

Using the values ofP (wk|eij) calculated in Equation (5.6) as the starting point, we

iteratively improve the solution along the gradient. To satisfy the constraints, we calcu-

late the projection of the gradient in the hyperplane definedby
∑

wk∈W
P (wk|eij) = 1

to ensure that the solution stays in the feasible region. Theprofiles of the edges in the

network are updated one at a time, until they converge. Although the gradient-based

method might produce a local optimum solution, it estimatesthe model parameters all

together from a global perspective and provides a better estimation than the TM locally-

optimized solution.

125



Chapter 5. Modeling Information Flow in Collaborative Networks

5.5 Ticket Routing

We now study the application of the generative models presented in Section 5.4 to

ticket routing.

Given a new tickett and its initial groupginit(t), a routing algorithm uses a model

M to predict the resolver groupgres(t). If the predicted group is not the right resolver,

the algorithm keeps on predicting, until the resolver groupis found. The performance

of a routing algorithm can be evaluated in terms of the numberof expert groups it tried

until reaching the resolver. Specifically, we let the predicted routing sequence for ticket

ti beR(ti) and let|R(ti)| be the number of groups tried for ticketti. For a set of testing

ticketsT = {t1, t2, . . . , tm}, we evaluate the performance of a routing algorithm using

the Mean Number of Steps To Resolve (MSTR) [117] given by:

S =

∑m
i=1 |R(ti)|

m
(5.12)

The ticket routing problem is related to the multi-class classification problem in that

we are seeking a resolver (class label) for each ticket. Different from a classification

problem, our goal here is not to maximize the classification precision, but to minimize

the expected number of steps before the algorithm reaches the right resolver.

Nevertheless, we can adapt a multi-class classifier to fit ourproblem. We assume

that a classifierC predicts groupg as the resolver of tickett, with probabilityP (g|t). A

simple approach is to rank the potential resolver groups in descending order ofP (g|t)
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and then transfer the tickett to them one by one, until the right resolver is found. In

this approach, the ranking of groups does not change, even ifthe current prediction is

incorrect. We take the Resolution Model as an example, and asthe baseline method,

for building a classifier. Then, we develop two dynamic ranking methods, using the

Transfer Model and the Optimized Network Model, to achieve better performance.

5.5.1 Ranked Resolver

The Ranked Resolver algorithm is designed exclusively for the Resolution Model

(RM). Expert groups are ranked based on the probability thatthey can resolve the ticket

according to the ticket content.

Given a new tickett, the probability that expert groupgi can resolve the ticket is:

P (gi|t) =
P (gi)P (t|gi)

P (t)
(5.13)

∝ P (gi)
∏

wk∈t

P (wk|gi)f(wk ,t)

Here,P (gi) is the prior probability of groupgi being a resolver group, which is es-

timated by|Ti|/|T |, whereTi is the set of tickets resolved bygi andT is the ticket

training set.

A routing algorithm for this model is to try different candidate resolver groups in

descending order ofP (gi|t). The algorithm works fine unless the new tickett contains

a word that has not appeared in the training ticket setT . In that case,P (gi|t) is zero
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for all i. To avoid this problem, we introduce a smoothing factorλ to calculate the

probability,i.e.,

P (w|gi)∗ = λ× P (w|gi) + (1− λ)/|W| (5.14)

Using the smoothed valueP (w|gi)∗ guarantees a positive value ofP (gi|t) for all i.

5.5.2 Greedy Transfer

The Greedy Transfer algorithm makes one step transfer predictions and selects the

most probable resolver as the next step.

When a new tickett first enters the expert network, it is assigned to an initial group

ginit. Instead of calculating which group is likely to solve the problem, we determine the

group to which the ticket should be transferred, because tickets should be transferred to

the group that can solve the problem or the group that knows which group can solve the

problem. The probability that a tickett is routed through the edgeeinit,j = ginit → gj ,

wheregj ∈ G \ {ginit}, is:

P (gj|t, ginit) =
P (gj|ginit)P (t|einit,j)∑
gl∈G

P (gl|ginit)P (t|einit,l)
(5.15)

=
P (gj|ginit)

∏
wk∈t

P (wk|einit,j)f(wk ,t)

∑
gl∈G

P (gl|ginit)
∏

wk∈t
P (wk|einit,l)f(wk,t)

Note that smoothing is applied as in Equation (5.14).

The expert groupg∗ = argmaxgj∈G P (gj|t, ginit) is selected to be the next expert

group to handle tickett. If g∗ is the resolver, the algorithm terminates. If not, the
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algorithm gathers the information of all previously visited expert groups to make the

next step routing decision. If a tickett has gone through the expert groups inR(t) and

has not yet been solved, the rank of the remaining expert groups inG \R(t) is:

Rank(gj) ∝ max
gi∈R(t)

P (gj|t, gi) (5.16)

and the ticket is routed to the group with the highest rank. The rank ofgj is determined

by the maximum probability ofP (gj|t, gi) for all the groupsgi that have been tried in

the route. The ranked order of the candidate resolvers mightchange during routing.

5.5.3 Holistic Routing

Th Holistic Routing algorithm recognizes the most probableresolver that can be

reached withinK transfer steps, and selects the next group from a global perspective.

Based on our experiments, we setK equal to 3. Instead of predicting only one step as do

the Ranked Resolver and Greedy Transfer algorithms, the Holistic Routing algorithm

calculates the probability that a candidate group can be reached and can solve the ticket

in multiple steps.

For a new tickett, the one step transition probabilityP (gj|t, gi) between two expert

groupsgi andgj is calculated using Equation (5.15). Thus, we perform a breadth-first

search to calculate the probability that a tickett is transferred bygi to gj in exactlyK
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steps. This probability can be estimated iteratively, using the following equations:

P (gj, 1|t, gi) =





P (gj|t, gi) if i 6= j

0 otherwise

P (gj, K|t, gi) =
∑

gk∈G;k 6=j

P (gk, K − 1|t, gi)P (gj|t, gk)

if K > 1.

If gl = ginit the initial group for tickett, the above equation can be written as:

P (gj, K|t, gl) = vMK (5.17)

wherev is the unit vector whoselth component is 1 and other components are 0. The

one step transfer probability matrixM is a|G|× |G|matrix, where an entry ofM is the

one step transition probability between the expert groupsgi andgj given by:

M(i, j) =





P (gj|t, gi) if i 6= j

0 otherwise

The probability thatgj can resolve the tickett in K or fewer steps starting from the

initial groupginit (which is used to rank the candidate resolver groups) is:

Rank(gj |ginit) ≡
K∑

k=1

P (gj, k|t, ginit)× P (gj|t, gj) (5.18)

whereP (gj|t, gj) is the probability thatgj resolvest if t reachesgj (see Equation (5.7)).

Starting withginit, we routet to the groupg∗ = argmaxgj∈G;j 6=initRank(gj|ginit).
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Theoretically, we can derive the rank in closed form for an infinite number of trans-

fer steps. In practice,MK decays quickly asK increases, due to the probability of

solving the ticket at each step. A small value ofK suffices to rank the expert groups.

Given the predicted expert groupgk, if ticket t remains unresolved and needs to be

transferred, the posterior probability ofgk being the resolver fort is zero and the one

step transfer matrixM needs to be updated accordingly. Thus, ifgk is not the resolver,

the elements in thekth row ofM are updated by:

M(k, j) =
P (gj|t, gk)∑

i,i 6=k P (gi|t, gk)
for j 6= k

OnceM is updated, the algorithm reranks the groups according to Equation (5.18)

for each visited group inR(t). That is,Rank(gj) ∝maxgi∈R(t)Rank(gj |gi). The group

with the highest rank is selected as the next possible resolver.

For a given new ticket, the Holistic Routing algorithm is equivalent to enumerating

all of the possible routes from the initial group to any candidate group. For each route

r = {g1, g2, . . . , gm} for a tickett, we calculate the probability of the route as:

P (r|t) = P (gm|t, gm)
∏

1≤j≤m−1

P (gj+1|t, gj)

The probability that groupgj resolves tickett is:

Rank(gj) ≡
∑

r

P (r|t) for all r ending atgj

Figure 5.3 shows an example where a tickett enters the expert network at group

A. We enumerate all of the routes that start atA and end atD to calculate how likely
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D resolves the ticket. Note that loops in the routes are allowed in the calculation in

Equation (5.17). It is also possible to calculate the resolution probability without loops.

However, because the intermediate groups for each route must be remembered, the

calculation might take a long time.

D

G

A

B

E

C

F

H

r1

r2

r3

Figure 5.3: Holistic routing.

5.6 Experimental Results

To validate the effectiveness of our models and the corresponding routing algo-

rithms,1 we use real-world ticket data. The evaluation is based on problem tickets

collected from IBM’s problem ticketing system throughout 2006. When a ticket enters

the system, the help desk assigns a category indicating a problem category for the ticket.

For each problem category, a number of expert groups (ranging from 50 to 1,000) are

involved in resolving the tickets.

1The source code is available at http://www.uweb.ucsb.edu/∼miao/resources.html.
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For each problem category, we partition the dataset into thetraining dataset and the

testing dataset. Using the training dataset, first we build the generative models intro-

duced in Section 5.4. Then, we evaluate the effectiveness ofthe routing algorithms by

calculating the number of routing steps (i.e., MSTR) for the testing tickets. In particu-

lar, we compare our generative models with the Variable-Order Markov Model (VMS)

proposed in [117]. Our experiments demonstrate:

• Model Effectiveness:TheOptimized Network Modelsignificantly outperforms

the other models.

• Routing Effectiveness:Among the Ranked Resolver, Greedy Transfer and Holis-

tic Routing algorithms, Holistic Routing achieves the bestperformance.

• Robustness:With respect to the size of the training dataset, the time variability

of the tickets, and the different problem categories, our solution that combines

ONM andHolistic Routingconsistently achieves good performance.

We obtained our experimental results using an Intel Core2 Duo 2.4GHz CPU with

4GB memory.

5.6.1 Datasets

We present the results obtained from tickets in three major problem categories: AIX

(operating system), WINDOWS (operating system), and ADSM (storage management),

133



Chapter 5. Modeling Information Flow in Collaborative Networks

as shown in Table 5.2. Tickets in these three categories havequite different character-

istics. The problem descriptions for WINDOWS and ADSM tickets tend to be more

diverse and, hence, more challenging for our models.

Table 5.2: Ticket resolution datasets.

Category # of tickets # of words # of groups
AIX 18,426 16,065 847

WINDOWS 16,441 8,521 638
ADSM 3,563 1,815 301

These three datasets involve approximately 300 to 850 expert groups. For a new

ticket, finding a resolver group among so many candidates canbe challenging.

Table 5.3: Resolution steps distribution.

Steps Percentage
2 68%
3 25%
4 6%
≥5 1%

Table 5.3 shows the distribution of resolution steps for tickets in the WINDOWS

category. We are more interested in solving tickets with long resolution sequences,

because these tickets received most of the complaints.
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5.6.2 Model Effectiveness

In this section, we compare the effectiveness of the three generative models, Res-

olution Model (RM), Transfer Model (TM), and Optimized Network Model (ONM)

developed in Section 5.4, against the Variable-Order Markov Model (VMS) introduced

in [117]. VMS considers only ticket routing sequences in thetraining data.

Each of the above models has its corresponding routing algorithm. VMS uses the

conditional transfer probability learned from routing sequences to predict the resolver

group. For RM, we use the Ranked Resolver algorithm. For TM and ONM, we can use

either the Greedy Transfer algorithm or the Holistic Routing algorithm. In these experi-

ments, we use the Holistic Routing algorithm to evaluate both models. For comparison,

we also include the result of ONM using the Greedy Transfer algorithm. More details

for the comparison between the Greedy Transfer algorithm and the Holistic Routing

algorithm are shown in Section 5.6.3.

Because a routing algorithm might generate an extremely long routing sequence

to resolve one ticket (considering that we have more than 300expert groups in each

problem category), we apply a cut-off value of10. That is, if an algorithm cannot

resolve a ticket within10 transfer steps, it is regarded as unresolvable. Using this cut-

off value, we define theresolution rateof a ticket routing algorithm to be the proportion

of tickets that are resolvable within 10 steps.
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Figure 5.4: Prediction accuracy of different models.

We randomly divide the tickets in each problem category intotwo subsets: the

training dataset and the testing dataset, where the former contains75% of the tickets,

and the latter contains25% of the tickets. The four models are trained based on the

training set, and the performance of the algorithms is compared.

Figure 7.5 compares the prediction accuracy of the four models. The x-axis rep-

resents the number of expert groups involved in the testing dataset, where the routing

decisions are made by a human. The y-axis represents the resulting MSTR when the

testing tickets are routed automatically using a model. Obviously, smaller MSTR means

better prediction accuracy. As shown in the figure, TM and ONM(which combine the

ticket contents and the routing sequences) result in betterprediction accuracy than ei-
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ther the sequence-only VMS model or the content-only RM. Moreover, ONM achieves

better performance than TM, which indicates that the globally optimized model is more

accurate in predicting a ticket resolver than the locally optimized model.

Figure 5.5: Resolution rate.

Combining together the ticket contents and the routing sequences not only boosts

prediction accuracy, but also increases the resolution rate of the routing algorithm. Fig-

ure 5.5 shows that TM and ONM can resolve more tickets than either VMS or RM.

For RM and TM, the training time is mainly spent on counting word frequencies on

transfer edges and at resolvers. For all three data sets, thetime is less than 5 minutes.

For ONM, the transfer profiles are updated one at a time and theoptimization process

repeats for multiple rounds until the transfer profiles converge. The training process

takes less than 3 hours for all three datasets.

5.6.3 Routing Effectiveness

Using the same experimental setup as in Section 5.6.2, we compare the effectiveness

of the Greedy Transfer and Holistic Routing algorithms.
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Figure 5.6: Routing efficiency: Greedy transfer vs. holistic routing.

Both of these algorithms can be executed on the TM and ONM generative models.

We consider all four combinations: TM+Greedy, TM+Holistic, ONM+Greedy, and

ONM+Holistic.

Figure 5.6 shows that, for each generative model, the Holistic Routing algorithm

consistently outperforms the Greedy Transfer algorithm. These results validate our

hypothesis that, even if an expert group is not the resolver for a problem ticket, it might

have appropriate knowledge of which group can resolve the ticket. Therefore, besides

the information about which groups resolve which tickets, the intermediate transfer

groups can be instrumental in routing tickets to the right resolver, which is why the

Holistic Routing algorithm has better performance.
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The computational time for both routing algorithms to make arouting decision is

less than 1 second, which is negligible compared to the time spent by the selected expert

group to read and handle the ticket.

5.6.4 Robustness

For our generative models and routing algorithms to be useful in practice, they must

apply to different problem categories and training samples. To confirm this, we divided

the data in different ways with respect to the size of the training dataset, the time vari-

ability of the tickets, and the different problem categories, as presented in Table 5.4. For

each training set, we rebuilt the models and applied the routing algorithms to measure

the resulting MSTR for the corresponding testing set. Giventhe previous analysis, we

focus on ONM and Holistic Routing.

Table 5.4: Datasets for robustness.

Training Set Testing Set

Jan 1 - Mar 31, 2006 Apr 1 - Apr 30, 2006
Jan 1 - Apr 30, 2006 May 1 - May 31, 2006
Jan 1 - May 31, 2006 Jun 1 - Jun 30, 2006

As shown in Figure 5.7, with larger training data sets, the resulting MSTR tends

to become smaller. Despite the variations in the size of the training set, our approach

yields consistent performance. The problem descriptions in these ticket data sets are
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Figure 5.7: Robustness of ONM and holistic routing with variable training data.

typically short and sparse. The results demonstrate that generative modeling is particu-

larly effective for this type of data.

5.7 Discussion

We have focused on using the model to make effective ticket routing decisions.

However, the model has other significant applications, namely, expertise assessment

in an expert network and ticket routing simulation for performance analysis and work-

force/resource optimization. We briefly discuss these applications below.
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5.7.1 Expertise Assessment

In essence, our model represents the interactions between experts in an enterprise

collaborative network. By analyzing ticket transfer activities at the edges of the net-

work, we can identify different roles of individual expert groups,i.e., whether a group

is more effective as a ticket resolver or a ticket transferrer. We can also analyze the

expertise awareness between groups.

For instance, Figure 5.8 shows the most prominent words derived from ONM in

the context of tickets transferred from groupA to groupB (List 1), as well as those

resolved by groupB itself (List 2). List 1 is related to system boot failures (bluescreen,

freeze), while List 2 is related to data loading issues in hard drives. The mismatch

between the two lists, indicates that eitherA is not well aware ofB’s expertise, orA

thinks thatB can better identify the resolvers for tickets described by words in List 1.

Further analysis is needed to understand these interactions and implications. Our model

can facilitate such analysis.

Figure 5.8: Expertise awareness example.
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5.7.2 Ticket Routing Simulation

Our model can be used to simulate the routing of a given set of tickets. The simula-

tion can help an enterprise analyze its existing ticket routing process to identify perfor-

mance bottlenecks and optimize workforce/resources. Moreover, the simulation can be

used to assess the “criticality” of expert groups,e.g., whether the routing performance

is improved or degraded, if a group is removed from the network. Such a knockout

experiment is infeasible in practice, but can be conducted by simulation.

5.8 Summary

In this chapter, we have presented generative models that characterize ticket routing

in a network of expert groups, using both ticket content and routing sequences. These

models capture the capability of expert groups either in resolving the tickets or in trans-

ferring the tickets along a path to a resolver. The Resolution Model, introduced in this

chapter, considers only ticket resolvers and builds a resolution profile for each expert

group. The Transfer Model considers ticket routing sequences and establishes a locally

optimized profile for each edge that represents possible ticket transfers between two

groups. The Optimized Network Model (ONM) considers the end-to-end ticket routing

sequence, and provides a globally optimized solution in thecollaborative network. For
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ONM, we presented a numerical method to approximate the optimal solution which, in

general, is difficult to compute.

Our generative models can be used to make routing predictions for a new ticket and

minimize the number of transfer steps before it reaches a resolver. For the generative

models, we presented three routing algorithms to predict the next expert group to which

to route a ticket, given its content and routing history. Experimental results show that

the proposed algorithms can achieve better performance than existing ticket resolution

methods.
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Chapter 6

Quantitative Analysis of Task-Driven

Information Flow

Collaborative networks are a special type of social networkformed by members

who collectively achieve specific goals, such as fixing software bugs and resolving cus-

tomers’ problems. In such networks, information flow among members is driven by the

tasks assigned to the network, and by the expertise of its members to complete those

tasks. In this chapter, we analyze real-life collaborativenetworks to understand their

common characteristics and how information is routed in these networks. Our work

shows that the topology of collaborative networks exhibitssignificantly different prop-

erties compared with other common complex networks. Collaborative networks have

truncated power-law node degree distributions and other organizational constraints.
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Furthermore, the number of steps along which information isrouted follows a trun-

cated power-law distribution. Based on these observations, we developed a network

model that can generate synthetic collaborative networks subject to certain structure

constraints. Moreover, we developed a routing model that emulates task-driven infor-

mation routing conducted by human beings in a collaborativenetwork. Together, these

two models can be used to investigate the efficiency of information routing for differ-

ent topologies of a collaborative network – a problem that isimportant in practice yet

difficult to solve without the method proposed in this chapter.

6.1 Motivation

Social networks as a means of communication have attracted much attention from

both industry and academia. The studies so far have focused predominantly on pub-

lic social networks, such as Facebook, Twitter,etc., which support social interactions

and information exchange among users. In this chapter, we address another type of so-

cial network,collaborative networks, that are formed by members who collaborate with

each other to achieve specific goals. Such collaborative networks often exist on the Web,

such as open source software development sites,e.g., Eclipse [4] and Mozilla [5] sup-

ported by Bugzilla [1], and in the private sector such as customer service centers [92].
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Figure 6.1: Task-driven information flow.

Information flow in collaborative networks is drastically different from that in pub-

lic social networks [135]. In public social networks, information generated at a source

spreads through the network with its members’ forwarding activities [48, 69, 110, 113,

141]. The forwarding activities fade away as the information loses its value. In collabo-

rative networks, information flow is driven by certain tasks. As illustrated in Figure 6.1,

a task is initiated by or assigned to a source, and then routedthrough the network by

its members until it reaches the person who can handle it. Thepurpose of routing is

to find the right person(s) for the task, not to influence others. The routing conducted

by a member is based on (1) understanding of the expertise required to complete the

task, and (2) awareness of other members’ expertise. For example, in fixing software

bugs, the bug report is the information routed in a developernetwork. If a developer

cannot fix the bug, he/she will attempt to forward the bug report to another developer
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Table 6.1: Eclipse bug activity record.

Bug Description:
NullPointerException referencing non-existing plugins.

Who When Description

dean
2001-11-01 Added component Core.
07:17:38 EST Reassigned.

rodrigo
2001-11-20 Added component UI.
18:53:40 EST Reassigned.

dejan
2002-01-09 Converted the unresolved
20:46:27 EST plugin to a link. Fixed.

https://bugs.eclipse.org/bugs/show_activity.cgi?id=325

who he/she thinks is capable of fixing it. Table 6.1 shows one of the bug activity records

extracted from the Eclipse development Web site.

The structure of collaborative networks usually evolves tofacilitate the execution of

tasks. It is desirable to determine whether the efficiency ofthe process can be improved.

Efficiency can be measured by the number of steps it takes to navigate a task through a

network to reach its resolver. For instance, a service provider might want to optimize

the staffing structure of a call center, based on the expertise of its agents and the inter-

actions between different agents. Such optimization mightshorten the response time;

however, it presents a unique challenge — one has to come up with recommendations

without actually altering the network, an experiment that is not affordable in practice.

To address this challenge, we provide in this chapter an understanding of how col-

laborative networks are structured, and how their structures affect the efficiency of task

execution. More importantly, we present a simulation-based approach with which vari-
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ous hypotheses can be tested with low cost. In general, a collaborative network can be

characterized in terms of two aspects: (1) structure of the network, and (2) information

routing driven by the tasks. Correspondingly, we develop the following models in this

study.

• Network Model:A model that captures the key topological characteristics of a

collaborative network and that can be used to simulate networks, given specific

structural constraints.

• Routing Model:A model that simulates human behavior in routing task-related

information in a collaborative network.

Models to generate social networks have been studied extensively with consistent

improvement in recent years,e.g., [14, 51, 116, 132, 139]. In our problem setting, the

model must be consistent with the routing algorithm so that the routing length satisfies

the distribution observed in real networks. This two-body modeling requirement is new

and not easy to satisfy.

To develop these two models, we investigate three real-world collaborative net-

works collected from different sources. The first two were extracted from the Eclipse

and Netbeans software development communities. The third one comes from an IT

service management system, in which service agents collaborate to solve problems re-

ported by customers. For all three networks, we analyze their structure, as well as infor-

mation flows, using the routing history (i.e., bug reports or problem tickets). We observe
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that the topology of collaborative networks exhibits not only the scale-free property in

the node degree distribution, but also other organizational constraints. Furthermore,

information routing in collaborative networks is different from routing tasks in conven-

tional complex networks such as IP packet routing in computer networks and itinerary

planning in airline networks. The number of routing steps for each task follows a

heavy-tail distribution, indicating that a considerable number of tasks travel along long

routes before reaching the resolvers. The three collaborative networks, collected inde-

pendently from different sources, exhibit astonishingly similar characteristics, which

validates the need to study them together. These observations contribute toward under-

standing the complicated behavior of human collaboration in these networks.

Based on our observations from real-world data, we develop agraph model to gener-

ate networks similar to real collaborative networks and a stochastic routing algorithm to

simulate the human dynamics of collaboration. The models are independently validated

using real-world data and simulation-based studies. We demonstrate that the proposed

models can be used to answer real-world questions, such as“How can one alter a col-

laborative network to achieve higher efficiency?”To the best of our knowledge, our

work is the first attempt to understand human dynamics in collaborative networks and

to evaluate analytically the efficiency of real collaborative networks.
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6.2 Related Work

Previous studies related to our work mainly belong to two categories: (1) Those that

focus on network generation models, and (2) Those that analyze information flows in

networks.

Network generation models. Generating synthetic networks that reflect statis-

tics similar to real social networks has been of great interest to researchers in various

fields. The Erdös-Rényi random network [51] is a classic random network, where any

two nodes are connected according to a fixed probability. A regular lattice network is

created with nodes placed on one or more dimensional lattices, i.e., circle or grid, and

each node is connected to itsn nearest neighbors. Watts and Strogatz [139] added ran-

dom rewiring to the regular lattice network such that the generated network has a small

diameter as observed in a sample of the real social network [132]. Barabasiet al. [14]

focused on the fact that many complex networks have degrees that follow a heavy-tail

distribution and captured this phenomena by incrementallycreating a random network,

with new edges preferentially attached to already well-connected nodes.

To comply with both the small-world effect and the power-lawdegree distribution,

Makowiec [86] and Ree [109] proposed rewiring processes in aconstant-size network

based on the preferential attachment principle. Serranoet al.[116] developed a network

generation model to reproduce self-similarity and scale invariance properties observed
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in real complex networks, by utilizing a hidden metric spacewith distance measure-

ments. Salaet al. [112] studied how well the generated graphs match real social

graphs extracted from Facebook.

Different from existing graph generation models, our method contributes toward

understanding how links are established and how members with different expertise in-

teract with each other in real collaborative networks. Boththe expertise awareness and

expertise exposure of each member are taken into consideration in our model. It not

only generates a network topology with statistical characteristics similar to real-world

collaborative networks, but also can be seamlessly combined with our routing model to

simulate human dynamics in these networks.

Information flow analysis. The spreading of information has been extensively

studied under different network settings,e.g., social networks, the World Wide Web,

the e-mail network, biological networks,etc. Examples include the spread of innova-

tions [58, 110, 124, 134], opinions, rumors and gossip [56, 57, 87], computer/biological

viruses [83,113] and marketing [48,69]. More recently, Wang et al. [135] have studied

how information propagates from person to person using e-mail forwarding, and Wuet

al. [141] analyzed the information spreading pattern on Twitter. This type of informa-

tion flow aims to reach and influence more people and, hence, toachieve a large impact.

Most of the work has focused on analyzing patterns of the information spreading pro-
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cess. Kempeet al. [69] have addressed the question of how to choose a subset of nodes

to initiate information spreading to maximize influence in anetwork.

In our work, we focus on another type of information flow: task-driven information

flow, where the goal is to reach a user who can accomplish a taskwith a minimal number

of transfer steps. Related to our problem, Milgram [93] demonstrated that short paths

exist between any pair of nodes in a social network (a.k.a., the small world phenomena).

Kleinberg [70] investigated why decentralized navigationis efficient using a synthetic

network lattice. Bogunaet al.[20] studied the navigability of complex networks by run-

ning a greedy routing algorithm on synthetic networks generated by a model described

in [116]. In the collaborative networks we studied, we observe that these networks

exhibit degree distributions quite different from commonly-studied complex networks.

Furthermore, the simple greedy algorithm does not provide agood approximation of

information flow dynamics in collaborative networks. Thus,we developed the Stochas-

tic Greedy Routing (SGR) model to evaluate the efficiency of task-driven information

flow in such networks.

6.3 Observations

Frist, we illustrate the key characteristics of real-worldcollaborative networks and

the information routing behavior in these networks. Our study is based on three datasets
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collected from two different domains: software development (public) and IT service

center (private).

The Eclipse and Netbeans1 networks are extracted from the MSR 2011 Challenge2,

where each node represents a program developer. Both datasets contain a history of

bug reports, user online interactions, and final resolutions. The Eclipse network has

approximately7, 800 developers who worked together on272, 000 bugs. The Netbeans

network contains around156, 000 bug reports that involved7, 400 developers. The

third network, labeled “Enterprise network,” is obtained from an IT service department,

where each node represents a service agent. It contains around 2, 000, 000 problem

tickets submitted by customers. Similar to bug resolution in a programmer network, a

ticket is transferred in a service agent network for resolution. The service agent network

has around19, 000 service agents. When one member in a collaboration network routes

a bug report or a service ticket to another member, we construct a directed edge. Thus,

the three collaborative networks are represented by directed graphs.

Although developer networks and service agent networks appear to be quite differ-

ent, we were amazed by the similarity exhibited in their topologies and dynamic routing

structures, indicating that commonality exists in human collaboration behaviors.
1Eclipse and Netbeans are Java development environments.
2http://2011.msrconf.org/msr-challenge.html

153

http://2011.msrconf.org/msr-challenge.html


Chapter 6. Quantitative Analysis of Task-Driven Information Flow

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

P
r(

K
 ≥

 k
)

Degree (k)

Eclipse network

 

 

Outgoing degree distribution
Incoming degree distribution
Truncated power−law
approximation:
 α=1.73, k∈ (1,400)

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

P
r(

K
 ≥

 k
)

Degree (k)

Netbeans network

 

 

Outgoing degree distribution
Incoming degree distribution
Truncated power−law
approximation:
α=1.84, k∈ (1,800)

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

P
r(

K
 ≥

 k
)

Degree (k)

Enterprise network

 

 

Outgoing degree distribution
Incoming degree distribution
Truncated power−law
approximation:
α=1.5, k∈ (2,400)

Figure 6.2: Degree distributions of collaborative networks.
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Figure 6.3: Routing steps distribution of problem solving in collaborative networks.
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6.3.1 Degree Distribution

Figure 6.2 shows the incoming and outgoing degree distributions of the three col-

laborative networks. Different from common observations in other complex networks

like the Internet, the Web, and social networks, which exhibit the scale-free property,

these collaborative networks have truncated power-law node degree distributions.

We tested the power-law hypothesis on the degree distributions of the collaborative

networks using a principled statistical framework proposed by Clausetet al. [34]. The

power-law model was not accurate enough to characterize thenode degree distribution

in collaborative networks using thep test [34]. However, we observed that the node

degree of these networks follow a truncated power-law distribution (Equation (6.1))

when the node degreek lies within a finite range. We applied a maximum likelihood

approach, similar to [34], to fit the truncated power-law distributions. Inspired by [34],

we further evaluated the goodness of fit using thep test based on the Kolmogorov-

Smirnov statistic [107]. The truncated power-law model is aplausible fit to the node

degrees because the statistical tests generate a value ofp that is large enough (p > 0.1).

P (k) ∝ k−α wherek ∈ (kmin, kmax) (6.1)

The distributions in Figure 6.2 further differ from other complex networks in two

aspects: (1) The power-law scaling parameter of the distribution falls in the rangeα ∈
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(1, 2), in contrast to the commonly reported rangeα ∈ (2, 4), and (2) The incoming

degree and the outgoing degree follow roughly the same power-law distribution.

The smaller value of the power-law scaling parameter indicates that, in a collabo-

rative network, the probabilityP (k) decreases more slowly ask increases. This dis-

tinctive property leads to the consequent effect that the node degrees are bounded.

The distributionP (k) ∝ k−α, whereα ∈ (1, 2), does not have a converged mean

E(k) =
∑∞

k=1 kP (k). However, in reality, the degrees of the nodes do have a mean

value. This mismatch implies that the degree distribution is bounded:P (k) ∝ k−α,

wherek ∈ [kmin, kmax]. The reason for this distinctive property is that human interac-

tions in a collaborative network have more realistic constraints than those in an ordinary

social network or the Web or other complex networks. In a collaborative problem solv-

ing environment, it takes a significant amount of time for a person to establish close

interactions with other persons.

6.3.2 Routing Steps

The number of routing steps to complete a task is a critical measure of efficiency

in collaborative networks. Figure 6.3 depicts the routing steps distribution for the three

collaborative networks that we studied. The routing steps follow a truncated power-law

distribution with a very similar scaling parameterα ∈ (3.5, 4.5) in all three collabora-

tive networks. Unlike [132], which discovered that short paths exist between any pair
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of members in a collaborative network and that individual members are very adept at

finding those short paths, the heavy-tail distribution for routing steps indicates that a

considerable proportion of tasks travel along long sequences before reaching a resolver.

We conjecture that the heavy tails in these distributions are largely due to the varying

complexities of the tasks assigned to the network. Namely, when a task is fairly com-

plex and the expertise required to complete the task is concealed in the task description,

the members in a collaborative network have to try differentdirections before the task

is routed to the correct destination.

6.3.3 Clustering Coefficient

The clustering coefficient measures how closely the neighbors of a node are con-

nected, by calculating the number of connected triplets in anetwork that are closed

triplets. In an undirected graph, thelocal clustering coefficient of nodei is defined as

follows:

ci = 2ti/(ki(ki − 1)), (6.2)

whereki is the degree of nodei andti is the number of edges betweeni’s neighbors.

Theglobal clustering coefficientis the average of the local clustering coefficients over

all nodes in the network. To calculate the clustering coefficients in collaborative net-

works, we ignore the directions of edges. The clustering coefficients of the three net-

works studied are shown in Table 6.2. Note that the members inthe enterprise network
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interact more closely in local teams than those in the publicdeveloper networks. This

observation is not surprising, because enterprise networks typically have more rigid

hierarchical structures.

Table 6.2: Clustering coefficients.

Eclipse network Netbeans network Enterprise network
0.19 0.21 0.35

6.4 Network Model

As it is expensive, if not impossible, to alter real-world collaborative networks for

hypothesis testing,e.g., changing their structure for better performance, it is important

to develop a network model for which various hypotheses can be examined with low

cost. The network model must take into account the structural constraints discussed

in Section 6.3,i.e., the degree distribution and the clustering coefficient. The network

model must be consistent with the routing algorithm so that the routing steps satisfy

the power-law distribution. This coupled modeling requirement is new and not easy to

satisfy, especially when there is no way to generate simulated bugs or problem tickets.

In this section, we present a network model for collaborative networks. In Section 6.5,

we discuss the corresponding routing model.
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In the network model, first we determine the location of each node in the network,

which corresponds to a member’s expertise. Next, we add edges between pairs of

nodes, representing the interactions among members. Then,we tune the network model

to capture the interactions among nodes with similar expertise, using the clustering

coefficient.

6.4.1 Node Generation

To model a collaborative network withN nodes, first we randomly assign coordi-

nates(xi, yi), wherexi, yi ∈ [0, L], to each nodei ∈ {1, 2, ..., N} in a two-dimensional

rectangular area, simulating theexpertise space.

The coordinates of a node represent the specific expertise ofa network member.

Thus, two members with similar expertise tend to be close to each other. Different

collaborative networks can have different expertise distributions. To make the model

general, we take a simplified representation of the expertise space and the node distri-

bution. We assume that the nodes are uniformly distributed in the rectangular expertise

space. That is, different expertise areas have the same representation in the generated

nodes. However, this simplified representation in the general model can be substituted

with specific network configurations of real collaborative networks. The routing algo-

rithm that we introduce in Section 6.5 applies to these specific network configurations,
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as demonstrated by a direct embedding of real-world collaborative networks in two-

dimensional space in Section 6.6.2.

Because the expertise space is limited to a rectangular area, nodes located at the

center of the area are likely to have more neighbors than those located close to the

boundary. To model the relationship between different expertise areas, we apply a pe-

riodic boundary condition that replicates the expertise area around the areas of interest,

as shown in Figure 6.4. The distancedi,j between any pair of nodesi andj is defined

as the minimum Euclidean distance between copies ofi andj. In this way, each node

is given a roughly equal-sized neighborhood.

Figure 6.4: Periodic boundary condition in an expertise space.
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6.4.2 Edge Generation

In a collaborative network, an edge from memberi to memberj exists when mem-

ber i can transfer a task to memberj. The establishment of an edge requires member

j to expose his/her expertise sufficiently to the others, and memberi to be aware ofj’s

exposed expertise. Only with these conditions will memberi transfer a task to member

j, wheni believesj has the right expertise to complete the task. Based on this intuition,

we define two metrics for each node that guide edge generationin our network model:

an expertise awareness coefficient and an expertise exposure coefficient.

For each nodei in the network, itsexpertise awareness coefficientai and itsexper-

tise exposure coefficientei are random variables that follow probability distributions

ai ∼ P (a) andei ∼ P (e), respectively. An edge from nodei to nodej exists if and

only if their awareness and exposure coefficients are large enough to cover the distance

betweeni andj, i.e., ai × ej > di,j.

To simulate a network with certain incoming and outgoing node degree distribu-

tions, we need to tune the probabilitiesP (a) andP (e). Given that the incoming and

outgoing degree distributions are identical in all collaborative networks studied in Sec-

tion 6.3, we assume that the awareness and exposure coefficients have the same distri-

bution. Therefore, if we know the form of one distribution, we can solve for the other

symmetrically.
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First, we assume that the distribution of the exposure coefficient isP (e) = β× e−γ ,

wheree ∈ [emin, emax]. For any nodei, when the awareness coefficient is chosen to be

ai, we calculate the probability thatedgei,j exists, given the distance between nodei

and nodej, as follows:

P (edgei,j) =





1 di,j ≤ ai × emin

P (ej > di,j/ai) emin < di,j/ai ≤ emax

0 otherwise.

(6.3)

Note that, when the nodes are uniformly distributed over therectangular area, the node

densityρ is a constant. Therefore, given the awareness coefficientai, we can estimate

the outgoing degreêki
out of nodei as follows:

k̂i
out =

∫ inf

d0=0

ρ× 2πd0P (edgei,j)d(d0)

= ρ× π(aiemin)
2 (6.4)

+

∫ emax

e0=emin

ρ× 2πa2i e0P (ej > e0)d(e0)

Thus,k̂i
out can be expressed asba2i , whereb is a constant. To guarantee that the outgoing

degrees of the nodes follow the desired power-law distributionP (kout) = c× (kout)
−α,

wherekout ∈ [kmin, kmax], the awareness coefficient must have the following probabil-
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ity distribution:

P (a) = lim
∆a→0

P (a ≤ ai ≤ a+∆a)

∆a

= lim
∆a→0

P (ba2 ≤ kout ≤ b(a +∆a)2)

∆a

= lim
∆a→0

cb−α+1((a+∆a)−2α+2 − a−2α+2)

(−α + 1)∆a

= 2cb−α+1a−2α+1 (6.5)

That is, the awareness coefficient also follows a power-law distribution with coef-

ficient−2α + 1. According to the symmetric assumption between the exposure and

awareness coefficients, we conclude that the exposure coefficient follows the same

power-law distribution with coefficient−2α + 1.

The range of the two coefficients should be set such that the degrees are restricted to

the desired range. In Equation (6.5), a node with minimum awareness coefficientamin

is expected to have the minimum outgoing degreekmin; a node with the maximum

awareness coefficientamax is expected to have the maximum outgoing degreekmax.

Thus,

amin = emin =

√
kmin

ρ× π〈e2〉 (6.6)

amax = emax =

√
kmax

ρ× 2π〈e2〉 (6.7)

where〈e2〉 is the expected value of the squared exposure coefficient.

Given the power-law coefficient and the range of the awareness and exposure co-

efficients, their distributions are properly normalized. Using the normalized distribu-
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tions, we then generate edges in the network model with the probability given in Equa-

tion (6.3), so that the incoming and outgoing degrees of the nodes follow the desired

power-law distribution.

6.4.3 Modeling Expertise Domains

In a real collaborative network, the clustering coefficientindicates how closely its

members work together in expertise domains. A higher clustering coefficient means

that there are more collaborations between members within local expertise domains.

To model collaborative networks with different expertise domains, the network model

needs to form local teams that represent specific expertise domains required for certain

tasks. Intuitively, members with expertise in similar domains tend to interact more with

each other when working on these tasks. Consequently, the network should have more

links between nodes inside the same expertise domain, and fewer links between nodes

in different or unrelated expertise domains. Even though itis less likely for members

from unrelated expertise domains to interact with each other, such connections still exist

in real collaborative networks and a member who reaches beyond his/her own expertise

domain is usually one with high connectivity.

To model this behavior, first we associate nodes in the network with different do-

mains. Then, for any two different domains, as illustrated in Figure 6.5, we break

inter-domain links and replace them with intra-domain links, using anedge swapping
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process inspired by [131]. At each step of the edge swapping process, we choose a pair

of inter-domain edges, pointing in opposite directions, and assign a swapping proba-

bility according to the degrees of the nodes to which they connect. If the connected

nodes have high incoming or outgoing degrees, we swap the edges with low probabil-

ities; otherwise, we swap the edges with high probabilities. Specifically, we deal with

two inter-domain edgesu1 → v2 andu2 → v1, with usersu1 andv1 from one domain,

and usersu2 andv2 from the other domain. We assign the edge swapping probability

p = 1−max(ku1

out, k
v2
in , k

u2

out, k
v1
in)/kmax, wherekmax is the maximum outgoing/incoming

degree among all of the nodes in the network. With probability p, we break the edges

u1 → v2 andu2 → v1, and connect the edgesu1 → v1 andu2 → v2. We repeat

the edge swapping process until a certain fraction of the inter-domain edges have been

swapped to intra-domain edges. The edge swapping process prefers to break inter-

domain connections from nodes with low degree and to maintain the edges connecting

well-connected nodes. Thus, we avoid isolated subgraphs during the edge swapping

process, and the resulting network matches real collaborative networks.

With these adjustments, the node degree distribution stillfits the desired power-law

distribution achieved in Section 6.4.2. The more edge swapping one performs, the

higher the local connectivity the network has within each domain. The result is higher

clustering coefficients.
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Figure 6.5: Inter-domains edge swapping.

For a network with a fixed number of nodes, when we increase thenumber of do-

mains, the average size of a domain decreases. Consequently, the edge density inside

each domain increases, and the clustering coefficient increases. After forming local

domains, the generated network has the desired incoming/outgoing degree distribution,

and approximates the clustering coefficients of real collaborative networks.

6.5 Routing Model

The task-driven routing model must capture the behavior of humans in routing tasks

to appropriate experts. Although the small-world phenomena [70,132] is also observed

in collaborative networks,i.e., a relatively short path typically exists between any pair

of nodes in the three studied networks, there is no guaranteethat the members in a
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collaborative network are able to route tasks through theseshort paths. In fact, our

analysis in Section 6.3 has shown that the number of routing steps for a task typically

follows a truncated power-law or heavy-tail distribution.Thus, many tasks are routed

along a long sequence of steps before they reach the resolvers. A commonly used

routing algorithm in the Internet [20] and in social networks [70] is greedy routing. The

greedy routing algorithm assumes that there exists a distance between any pair of nodes.

A node has access to the distance from itself and its neighbors to the destination node.

If there exists one or more neighbors closer to the destination than the current node, it

routes the task (packet) to the neighbor node closest to the destination. Otherwise, the

node does not have a better routing choice than itself. In this case, the task (packet)

fails to reach the destination.

Unfortunately the greedy algorithm is not adequate for simulating human task rout-

ing behavior. First of all, the greedy algorithm is deterministic, and often fails to navi-

gate a task if the current task holder does not have a better choice. In the three networks

we studied, the greedy algorithm fails to route approximately 14% of the tasks. In

contrast, most of these tasks were successfully routed by humans. Secondly, the rout-

ing steps generated by the greedy algorithm follow an exponential distribution. As

the number of routing steps increases, the probability drops much more quickly than

the power-law distribution. In real decision-making scenarios, a human tends to make

different routing decisions when the situations (e.g., availability of neighbors, priority
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of tasks,etc.) are changing, even given similar tasks. Therefore, a different model

is needed to incorporate the stochastic process of task routing, which is essential for

modeling human behavior.

In a collaborative network, people make their task routing decisions based on many

factors, including the availability of neighbors, priority of tasks,etc. A member of

the network often makes a decision based on available local information, rather than

on global information that can be used to optimize the end-to-end routing efficiency.

Thus, the same task can be transferred by a member along various sub-optimal paths

in different situations. Therefore, information routing in collaborative networks is a

stochastic process, rather than a deterministic process.

We construct a Stochastic Greedy Routing (SGR) model based on the following

intuition. When a member in a collaborative network cannot finish a task, he/she tends

to transfer the task to a neighbor who has expertise closer tothat of the resolver, similar

to a greedy approach. The member also evaluates the connectivity of his/her neighbors,

and tends to select a neighbor who has more outgoing connections, assuming that a

better-connected neighbor is more likely to route the task along a shorter path to the

resolver.

The SGR model assumes that each node relies on only local information to route

tasks to one of its neighbors, following a stochastic process. Considering a task that is

initially assigned to nodeu and has a resolverv, the SGR model guides each node to
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navigate the task through the network, from the initiatoru to the resolverv. At each

step, when a non-resolver node holds a task, it evaluates thecandidate setC, consisting

of its neighbors that have not yet been visited, and transfers the task to one of them. In

some rare cases, the candidate set becomes empty and all the neighbors are marked as

unvisited. As mentioned above, the task should be transferred to a node with expertise

similar to that of the resolver and with a higher outgoing degree. Therefore, for each

candidatei, we define the following utility function:

F (i) = d(i, v)−1 × ki
out (6.8)

Note that this utility function is inversely proportional to d(i, v), the geometric dis-

tance between a candidate and the resolver in our network model, which represents the

similarity in their expertise. The holder of a task transfers the task to one of the candi-

datesi ∈ C with a probability proportional toi’s utility, i.e., P (i) = F (i)/
∑

j∈C F (j).

This process is repeated until the task reaches the resolver. To perform routing, the SGR

method does not rely on the nature of the tasks; thus, it avoids the issue of generating

synthetic tasks. Instead, it needs only a pair of initiatorsand resolvers to simulate a

task, which significantly simplifies the model.

The SGR model assumes that each node can evaluate the geometric distance be-

tween its neighbors and the resolver, without knowing the topology of the network.

This assumption is very close to real-life situations. In our network model, geometric

distances between nodes represent similarity in the expertise of the nodes. Although
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the current holder of a task does not know the shortest path tothe resolver, he/she has

knowledge of what expertise is required to complete the task, as well as the expertise of

the neighbors. Hence, he/she can make a judgement as to whichone of the neighbors

is a better fit toward completing the task.

6.6 Evaluations

In this section, we evaluate the network model and the routing model presented

earlier. First, we evaluate the network model by comparing the key characteristics

of the synthetic networks generated from this model and those of real collaborative

networks. Then, we evaluate the effectiveness of the routing model by applying it to

synthetic networks, as well as to real collaborative networks. Finally, we present a case

study that demonstrates how to combine the two models to optimize the structure of

collaborative networks.

6.6.1 Evaluating the Network Model

To evaluate the network model, first we use it to generate synthetic networks that

have similar incoming and outgoing degree distributions asobserved in real collabo-

rative networks. For example, the Eclipse network has a power-law degree distribu-

tion P (k) ∼ k−1.73, wherek ∈ [1, 400]. For each node in the synthetic network, we
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Figure 6.6: Degree distribution of simulated networks.

randomly select its awareness coefficient and exposure coefficient following the same

power-law distributionP (a) ∼ a−2.92, P (e) ∼ e−2.92, wherea, e ∈ [0.047, 0.94], calcu-

lated from Eqs.(6.5)-(6.7). Similarly, for simulating theNetbeans network, we calculate

the probability distribution for the awareness coefficientand the exposure coefficient as

P (a) ∼ a−3.36, P (e) ∼ e−3.36, wherea, e ∈ [0.05, 1.6]. For the Enterprise network, the

awareness coefficient and the exposure coefficient follow the probability distribution

P (a) ∼ a−2, P (e) ∼ e−2, wherea, e ∈ [0.036, 0.72]. Figure 6.6 shows that the degree

distributions in synthetic networks are very close to thoseobserved in the three real

collaborative networks (i.e., Eclipse, Netbeans, and Enterprise), shown in Figure 6.2.

Besides degree distributions, we need to evaluate the capability of our network

model in generating networks with various clustering coefficients. Recall that the clus-

tering coefficient of a collaborative network reflects the existence of expertise domains
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and the difference between inter- and intra-domain links. Here, we study the same three

synthetic networks as shown in Figure 6.6. In each network, we divide the nodes into

K expertise domains and then vary the clustering coefficient through edge swapping.

As we vary the value ofK, we expect different clustering coefficients. We select the

clustering coefficient closest to that of the real network asan approximation.
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Figure 6.7: Tuning the clustering coefficient.

Figure 6.7 shows the variations of clustering coefficients of the synthetic networks

for different values ofK. By increasing the value ofK, we observe that the clustering

coefficient increases. Hence, by choosing a proper value ofK, our network model can

approximate a real collaborative network in both the degreedistribution and the cluster-

ing coefficient. In our study, the Eclipse network is best approximated with9 domains.

The Netbeans network is best approximated with10 domains. The Enterprise network

is best approximated with about60 expertise domains. We do not have information
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regarding the number of expertise domains in the Eclipse network or the Netbeans net-

work. However, we were able to confirm that, indeed, the Enterprise network had about

60 expertise domains.

It can also be observed in Figure 6.7 that, when the network has a power-law degree

distribution with a large scaling parameter (e.g., the Netbeans network), the clustering

coefficient curve tends to be flatter than for the other networks. The reason is that, in

such a network, most nodes have very few connections. Correspondingly, in our net-

work model, most nodes have small awareness and exposure coefficients. Hence, the

network is not very heavily connected. After dividing the nodes into different domains,

the edge swapping process can affect only a small number of cross-domain edges; oth-

erwise, the network will become disconnected. As a result, increasing the value ofK

has a small effect on changing the network clustering coefficient.

6.6.2 Evaluating the Routing Model

To evaluate the routing model, first we ran task routing simulations guided by the

SGR model on a synthetic network generated by the network model and we demon-

strated that the result is consistent with real observations.

We generated a collaborative network with5, 000 nodes to simulate the Enterprise

network. The incoming/outgoing degree of the generated network follows a power-

law distributionP (k) ∼ k−1.5, wherek ∈ [1, 400]. We divided the network into60
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Figure 6.8: Routing steps distribution in a simulated Enterprise network.

expertise domains, which leads to a clustering coefficient of 0.37. We generated a set

of 100, 000 tasks by choosing the initiators and the resolvers. For eachtask we choose

an initiator node with probability proportional to its outgoing degree, and a resolver

node with probability proportional to its incoming degree.As shown in Figure 6.8, the

resulting routing steps distribution again follows a power-law distribution. Its power

law factorα = 3.5 is very close to the real valueα = 3.53, which indicates that we can

seamlessly combine the two models without inconsistency.

We further ran task routing directly on a two-dimensional representation of real

collaborative networks to illustrate that it can stand alone for routing simulations. To

map a real collaborative network into a two-dimensional space, while preserving the

local neighborhood relationships, we adopt the spectral embedding method [111]. The

embedding process guarantees that, if two nodes are close toeach other in the original

space, they are likely to be close to each other in the embedding space. The closeness
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Figure 6.9: Two-dimensional spectral embedding of the Netbeans network.

between two nodes can be defined by the number of task transfers between them: the

more frequent the task transfer, the closer are the two nodes.

Figure 6.9 shows the two-dimensional embedding of the Netbeans network, using

the spectral embedding method. The embedding can be regarded as a non-uniform

distribution of nodes in an expertise space. Given the embedding, we assign a two-

dimensional coordinate to each node in the network, which enables distance measure-

ment between pairs of nodes, a required input to the SGR model. Because we know

the initiator and the resolver of each task, we then apply theSGR model to simulate the

full path of each task routing. The routing steps distributions of the simulation for all

three networks are shown in Figure 6.10. The simulated results match the observations

well, as is evident in Figure 6.3.
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Figure 6.10: Simulated routing steps distributions.
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6.6.3 Combining the Two Models: A Case Study

Our network model simulates the static connectivity of a collaborative network,

whereas our SGR model simulates the dynamic user behavior ininformation routing

in a collaborative network. Combined together, these two models provide an unprece-

dented means of studying real collaborative networks. It isparticularly important to

study how the structure changes of a collaborative network can affect the efficiency

of task execution, without changing the real-world networkstructure. This case study

demonstrates the simulation method for our network and information routing models.

The environment studied is the problem management organization of a large IT ser-

vice provider. To accommodate the evolving workload and human resources, the IT

service provider needs to restructure the service agent network to deliver the optimal

performance in resolving the problems reported by its clients. Currently, these restruc-

turing decisions are made manually by experienced managersor consultants, without

quantitative analysis as to how the resulting network will perform after the restructuring

of the service agent network.

Our models can be used to provide analytical insights to the decision makers. First,

one can use our network model to generate new network topologies with different struc-

tural constraints that need to be imposed in practice. Then,given a set of tasks, the

efficiency of different networks can be evaluated through the task routing simulation

guided by the SGR model. Here, we assume that a collaborativenetwork of5, 000
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service agents needs to be restructured. These service agents are divided intoK pools

(expertise domains) based on their expertise. A simple question to ask is: “How does

one select the optimal numberK of pools, to provide the best efficiency in task exe-

cution?” Intuitively, a smaller value ofK indicates that the service agents are more

generalized in their domain expertise, whereas a larger value ofK suggests that the

service agents are more specialized in their domain expertise. Furthermore, with more

domains, a task is less likely to be assigned initially to thecorrect agent pool, which

might lead to longer routing paths, because intra-domain routing is more likely to occur

than inter-domain routing.
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Figure 6.11: Evaluating the network structures.

For our analysis, we generate10 collaborative networks, with10 to 100 domains.

In each network configuration, we simulate the routing of thesame set of100, 000

tasks. The probabilityp of correctly assigning a task to the correct domain is also taken

into account in the simulation. For each task, first we selectthe resolver node with
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probability proportional to its incoming degree. Then, with probabilityp, the initiator

of the task is selected from within the same domain as the resolver; otherwise, the

initiator is selected from outside the resolver’s domain. We vary the “correct assignment

probability” p from 0.7 to 0.99. For each value ofp, we route the entire set of tasks in

the10 networks. The results of all simulations are shown in Figure6.11. They-axis

shows the average number of transfer steps to the resolver for the entire set of tasks.

Each curve shows the routing simulation results for a particular choice ofp. Obviously,

a lower average number of steps indicates a higher routing efficiency, because it usually

takes less time when the tasks are routed to the resolver in fewer steps. As shown in

the figure, when more tasks are initially assigned to the correct domain, increasing the

number of domains leads to better performance. When fewer tasks are initially assigned

to the correct domain, a smaller number of domains is more favorable.

Achieving a certain value ofp, given various numbers of agent pools, has differ-

ent implications in terms of training the initial assigner of the task. For the samep, the

training cost typically increases as the number of service agent pools increases, because

the assigner must have stronger knowledge in matching the task with the correct exper-

tise domain. Configuring the collaborative network into different numbers of expertise

domains also has implications on the training cost for the service agents. Given these

implications, the decision maker can use our simulations toselect the optimal number

of service agent pools that suits the enterprise’s budget orother constraints.
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6.7 Summary

This chapter examined a special type of social networks – collaborative networks.

Detailed observations of three real-world collaborative networks were presented along

with the static network topology and dynamic information routing for each network.

The collaborative networks exhibit not only the truncated power-law node degree dis-

tributions but also organizational constraints. Information routing in collaborative net-

works is different from routing in conventional complex networks, such as computer

networks and airline networks, because of the random factors in human decision mak-

ing. The routing steps also follow a truncated power-law distribution, which implies

that a considerable number of tasks travel along long sequences of steps before they are

completed. Our results and observations for several independent sources are mutually

consistent, and can be generalized to other real-world collaborative networks. They

help in understanding the complicated behavior in human collaboration.

Based on real-world data, we developed a graph model to generate networks sim-

ilar to real collaborative networks, and a stochastic routing algorithm to simulate the

human dynamics of collaboration. The models are independently validated using real-

world data. We demonstrated that the two models can be used toanswer real-world

questions, such as:“How can one design a collaborative network to achieve higher

efficiency?” To the best of our knowledge, our work is the first attempt to understand
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human dynamics in collaborative networks and to estimate analytically the efficiency

of real collaborative networks.
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Chapter 7

Modeling Networked Document Sets

This chapter presents the novel Latent Association Analysis (LAA) framework, a

generative model that analyzes the topics within two document sets simultaneously, as

well as the correlations between the two topic structures, by considering the semantic

associations among document pairs. LAA defines a correlation factor that represents

the connection between two documents, and considers the topic proportion of paired

documents based on this correlation factor. Words in the documents are assumed to

be randomly generated by particular topic assignments and topic-to-word probability

distributions.

The chapter also presents a nove ranking algorithm, based onLAA, that can be

used to retrieve target documents that are potentially associated with a given source

document. The ranking algorithm uses the latent correlation factor in LAA to rank
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target documents by the strength of their semantic associations with the source doc-

ument. We evaluate the algorithm with real datasets, specifically, the change-problem

and the problem-solution paired document sets collected from an operational IT service

environment.

7.1 Motivation

The vast number of documents generated in business and society presents both chal-

lenges and opportunities for data mining research. One of the common, yet relatively

unexplored, types of documents are documents that appear inpairs. Examples of such

document pairs include questions and answers, changes to ITsystems and consequent

problems, disease symptoms and diagnoses,etc. Such document pairs can be used to

build valuable knowledge bases that help improve business decisions or generate more

effective recommendations.

Table 7.1: Sample change and problem pairs.

Change (Source) Problem (Target)
Set the schedule of weekly out of re-
gion backup on CARS: 3am on Sun-
days.

The backup is running for a long time,
which is impacting the start of daytime
BMP processing.

Replication of new data is loaded for
all customer centers.

Server outage: User can ping the server
but failed to access the database.

Back up authentication server. User reported can access E-Pricer with-
out inputting password.
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Table 7.1 shows an example of document pairs that contain changes to IT systems

(source documents) and the resulting problems (target documents). Given such docu-

ment pairs, we seek to address two fundamental problems:

1. What is the underlying principle that makes the connection between a pair of

documents? (Modeling)

2. Given a source document, how do we use this principle to rank the target docu-

ments based on how strongly they are related to the source document? (Ranking)

The solutions to theModelingandRankingproblems can help us understand the

semantic connection (i.e., latent association) between paired documents and provide

tremendous value in real-world applications. For instance, in the IT service industry,

changes are frequently made to an operational IT environment. It is extremely valuable

to enable service consultants to evaluate the potential problems caused by a proposed

change, so that they can make plans accordingly. Another example is in IT problem

management, where the service agents often need to search through a repository of

solution documents to find the one that solves a reported problem. Both applications

call for a model that captures not only the individual semantic information of two doc-

uments, but also the connections between the documents.

The modeling and the ranking problems present great challenges that cannot be

readily addressed using existing approaches. For instance, topic models, such as CTM [18],
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LDA [19] and PLSI [62], are designed to model only single document sets. In our

problem, we need not only to model individual documents correctly, but also to cap-

ture the connection between the documents accurately. Furthermore, the existence of

one-to-many or many-to-one mappings in a bipartite graph suggests possibly different

interpretations of the topics of a document. For example, a question might refer to

different topics if the answers emphasize different aspects of the question. What we

need is a model that puts a document in the context of a document pair and allows its

topic proportion to be interpreted differently in different contexts. None of the existing

topic models supports flexible topic proportions in the samedocument. The ranking

problem is also non-trivial. Given a source document, the number of potentially related

target documents can be huge. The model needs to be able to identify the correct target

document from a large number of candidate documents accurately.

In this chapter, we introduce the Latent Association Analysis (LAA) framework to

address these challenges. The LAA framework models the topic structures and their cor-

relations together. In the LAA model, each document pair is considered as a randomly

drawn correlation factor that initiates the connection between the two documents. The

topic proportions of the two documents are drawn conditionally depending on the corre-

lation factor. Each word in the documents is assumed to be generated based on a topic

assignment and the topic-to-word probability distribution.
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For LAA, we adopt concepts from two well-known models, the Correlated Topic

Model (CTM) [18] and Canonical Correlation Analysis (CCA) [10]. We then develop

a novel ranking method to retrieve target documents based ontheir latent associations

with the given source document. We evaluate this method using the change-problem

and the problem-solution paired document sets collected from a real IT service envi-

ronment. Experimental results show that the LAA-based algorithm significantly outper-

forms existing algorithms, which confirms that LAA successfully captures the semantic-

level connections among document pairs.

7.2 Related Work

Topic models have been extensively studied and have become apowerful tool to

explore the semantic content of large-scale document corpora. Most topic models deal

with a single document corpus. LSI [38] uses SVD to approximate high-dimensional

document-to-word co-occurrence matrix using a lower-dimensional document-to-topic

co-occurrence matrix and a topic-to-word co-occurrence matrix. PLSI [62] introduces

a probabilistic explanation of LSI. Both LSI and PLSI are notnaturally generalizable to

new documents. To overcome this problem, Bleiet al. proposed LDA [19], in which the

topic proportions of documents are randomly drawn from a Dirichlet distribution. The

Dirichlet prior is used to guide the generation of topic proportions for new documents.
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The CTM method [18] introduces a covariance matrix over the topic proportions and

allows the topics to be correlated with each other. IFTM [108] combines CTM with

PCA [119] to allow the exploration of a very large number of topics.

Besides the text information in a document corpus, a number of topic models con-

sider additional structural information. Steyverset al. [123] use the authorship graph

between authors and articles to explore the author-to-topic relationships. Nallapatiet

al. [96] consider the citation graph for a document set to perform link predictions. Zhou

et al. [161] study Web pages and tag graphs to explore user interests. Mei et al. [91]

propose topic models with network regularization. Different from these models, our

LAA model focuses on document-to-document associations, and explores topics of the

two document sets simultaneously; therefore, it is better suited for ranking document

pairs.

Researchers have studied topic structures of cross-lingual corpora. Zhaoet al.

[155, 156] explored probabilistic word alignments across languages using an aligned

bilingual document pairs,i.e., the same set of articles written in two different languages.

Mimno et al. [94] studied the shared topic structure of an aligned document corpora

over possibly many languages. Jagaralamudiet al. [65], assuming a dictionary exists

between words in two languages, analyzed a single topic structure over a bilingual un-

aligned document sets. MuTo [21] also utilizes the word matchings in a dictionary to

analyze the topics as distributions over the word pairs.
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PTM [153] analyzes the topic structures of two linked document sets simultane-

ously. However, the topic structure of the target document set is assumed to be condi-

tionally dependent on that of the source document set. In contrast, in LAA, both topic

structures are drawn based on the same correlation factor simultaneously.

Other than topic models, our work is also related to link prediction and question

answering [37,54]. Several researchers [126,129] have studied the citation graph or the

hyperlink graph to predict links between documents within asingle document set. Xue

et al. [143] modeled the probabilistic mappings at the word level to facilitate question

answering tasks. Although we evaluated LAA using a task similar to document re-

trieval, LAA can also be used for question answering, in which question understanding

plays a key role for performance improvement.

7.3 Problem Formulation

The problem we address involves a source document setDs and a target document

setDt. Each source documentds ∈ Ds is paired with at least one target document

dt ∈ Dt, and vice versa. The pairing between the source document setand the target

document set can be represented by a bipartite graphG, with its two sets of vertices

being the source document set and the target document set, and its set of edges corre-

sponding to the source and target document pairs. Specifically,
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• G = {Ds

⋃Dt, E} is a bipartite graph with its vertices defined by a setDs of

source documents, a setDt of target documents, and a setE of edges between

documents inDs and documents inDt.

• Each edgeei = (dis, dit) represents a document pair, wheredis ∈ Ds, dit ∈ Dt

andei ∈ E .

• The vocabulary set ofDs isWs = {ws1, ..., wsNs
}, and the vocabulary set ofDt

isWt = {wt1, ..., wtNt
}.

In the example in Table 7.1, there is a one-to-one mapping between the source

documents and the target documents. However, one-to-many or many-to-one mappings

are not uncommon in other paired document sets. In this study, we consider the other

mappings as special cases of one-to-one mappings and convert them to multiple one-to-

one document pairs.

Given the above data as the training dataset, we aim to solve two problems: (1)

Modeling: Model the associations between the source documents inDs and the target

documents inDt, and (2)Ranking: For a new source documentds, rank and retrieve

the target documentdt, that is most likely to be associated withds, from a repository of

target documents.
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7.4 Latent Association Analysis

The objective of our modeling problem is different from thatof existing works [18,

19, 62]. Our main concern is to model the association betweena pair of documents.

The document retrieval task that we address is also different from traditional informa-

tion retrieval tasks in two aspects: (1) Our query involves adocument, which is much

noisier than a keyword query in traditional information retrieval tasks, and (2) The

source document (query document) and the target documents to be retrieved arise from

two separate document sets, between which we do not assume any vocabulary overlap.

Therefore, similarity-based relevance scores do not applyto this problem. These dif-

ferences motivated us to develop a new model to capture the latent association existing

among document pairs.

Conceptually, the association between the source and target documents can be con-

sidered at three different levels of granularity, yieldingthree possible solutions:

Word-level correlation (Figure 7.1(a)): Given individual words in the source doc-

uments, we can directly model whether and how they are correlated with the words in

the target documents using a training dataset. Unfortunately, synonyms and polysemy

in free text make the correlation at the word level noisy. It is better to first consider top-

ics built from word co-occurrence patterns and then analyzetopic-level correlations.
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(a) Word-level correlation. (b) Topic-level correlation.

(c) Document-level correlation.

Figure 7.1: Analyzing the associations at different levels of granularity.

Topic-level correlation (Figure 7.1(b)): Topics, usually considered a probabilis-

tic distribution over words, are understood as a reduced-dimension representation of

the semantic elements exposed in a document set. Topics are more stable than words.

Topic-level correlation can be analyzed by first learning two topic structures from the

two document sets separately and then discovering their correlations. A problem with

this approach is that topics learned separately might not reflect the associations in doc-

ument pairs. For instance, in question-answer document pairs, the topics of a question
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(source) can be understood differently when the answers (target) emphasize different

aspects of the question.

Document-level correlation (Figure 7.1(c)): Instead of generating topics sepa-

rately, we can learn the topics for the source and target documents simultaneously. We

define a correlation factor for a document pair. The topic proportions of the two docu-

ments are drawn based on this correlation factor. In this approach, the topic distribution

of each (source or target) document is studied in the contextof a document pair. This

approach allows flexible topic assignment if the same sourcedocument is paired up

with different target documents, and vice versa. That is, the same source document can

have different topic assignments in different contexts.

y

sx

tx

sd

td

D

Figure 7.2: Basic structure of the LAA framework.

The Latent Association Analysis (LAA) framework describedin this chapter takes

the document-level correlation approach. As shown in Figure 7.2, LAA consists of two

components, the correlation factory between two latent variablesxs andxt, and the

document-generation processes fords anddt. We can instantiate LAA with different

correlation models and topic models. The models of generating source and target docu-
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ments can even be different. Once LAA is learned based on training document pairs, it

can be directly applied to solve our ranking problem. For a given queryds, we can rank

pairs(ds, dt) based on not only the topics ofds anddt, but also the correlation factor

between them.

7.5 Modeling Document Pairs

In this section, we introduce an instantiation of the LAA framework with Canonical

Correlation Analysis (CCA) [10] and the Correlated Topic Model (CTM) [18], and

derive a variational method [17] to estimate the parametersfor the model.

7.5.1 Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) [88] works on two setsof random variables

and their covariance matrix. Two linear transformations are found for the two sets of

random variables such that the two sets of projected variables have maximum correla-

tion with each other. Bachet al. [10] gave a probabilistic interpretation of CCA and

considered CCA as a model-based method that could be integrated with other proba-

bilistic methods.

In CCA, the observed random variablesx1 ∈ R
m1 andx2 ∈ R

m2 depend on a latent

correlation factory ∈ R
d. The generative process can be described as follows.
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• For a pair of variables, draw the correlation factory ∼ N (0, Id) where

min{m1, m2} ≥ d ≥ 1.

• For each set of random variables, draw

x1|y ∼ N (T1y + µ1,Ψ1), T1 ∈ R
m1×d, Ψ1 � 0

x2|y ∼ N (T2y + µ2,Ψ2), T2 ∈ R
m2×d, Ψ2 � 0.

In LAA, we can use CCA to capture the semantic association between the source

document and the target document. The two random variablesxs andxt are lower-

dimensional representations of the source and target documents, respectively. The cor-

relation factory represents why these two documents are associated on a semantic level.

7.5.2 Latent Association Analysis

Whereas CCA can capture the semantic association in a document pair, many ex-

isting topic models can capture the topics of the two documents. Choices include

CTM [18], LDA [19], PLSI [62], etc. If PLSI is used, the random variablesxs and

xt are the topic proportions of documentsds anddt. If LDA is used, the random vari-

ablesxs andxt are the Dirichlet priors of the topic proportions inds anddt. If CTM

is used, the topic proportion of a document is modeled as a Gaussian variable, which

naturally fits in withxs or xt in CCA. In this chapter, we choose CTM to instantiate

LAA.
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The instantiated LAA model is depicted in Figure 7.3. The LAAmodel comprises

the model parameters in the setM = {Ψs, Ts, µs,Ψt, Tt, µt, βs, βt}. The words in

the source and target documents,ws,1:ls andwt,1:lt, wherels and lt are the document

length ofds anddt, are the observable variables. The latent variables (i.e., variables

that are neither directly observable nor explicitly specified in the learned model) form

the parameter setVl = {y, xs, xt, zs,1:ls, zt,1:lt}.
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Figure 7.3: Graphical representation of the LAA model.

The generative process can be described as follows:

1. For each edge in the bipartite graphG (i.e., a document pair), draw an L-dimensional

Gaussian correlation factor:y ∈ N (0, IL). The dimension L< min {Ks, Kt},

whereKs is the number of topics in the source document setDs andKt is the

number of topics in the target document setDt.

2. For each document pair connected by an edge, draw topic proportions as follows:

For the source document, draw
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xs|y ∼ N (Tsy + µs,Ψs); Ts ∈ R
Ks×L, Ψs � 0.

For the target document, draw

xt|y ∼ N (Tty + µt,Ψt); Tt ∈ R
Kt×L, Ψt � 0.

3. For each word in the source document, choose:

(a) a topiczsn|xs ∼Mult(θs), where

θsi = exp(xsi)/
∑

j exp(xsj) for i ∈ {1, 2, ...Ks}.

(b) a wordwsn|zsn, βs ∼Mult(βszsn).

The topics and words in the target document are chosen in a similar manner.

Although the topic modeling portion of LAA stems from the idea of CTM, LAA

is more complicated than the existing topic models. It is built on a set of document

pairs, instead of a single document set as in existing topic models. As a result, the

latent topic structures in the source document set and the target document set, as well

as their correlation, need to be analyzed simultaneously. LAA considers each edge

in the bipartite graph as a correlation factor that initiates the connection between two

documents. The generation process of the topic proportionsdepends on the correlation

factor, which means that LAA first decides what makes the connection between the

source documents and the target documents at the document level. LAA models the

pair consisting of the source document and the target document as a co-occurrence in-
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terpreted by the correlation factor, instead of assuming a causality relationship between

the two documents, which is difficult to validate.

It is worth noting that the topic proportion of a document is context-dependent. The

same piece of text, in the eyes of interpreters with different emphases, can belong to

different topics. In LAA, each source or target document is put in the context of a

pair, allowing the topic proportion of each document to be mutually enhanced and to be

context-dependent. Doing so provides the flexibility of notdeciding the topic of a doc-

ument until we have learned what is emphasized in the other document paired with it.

7.5.3 Variational Inference and Parameter Estimation

Given the LAA model described above, we need to solve the following two prob-

lems: (1) Model fitting: Given a set of document pairs, how do we find model parame-

ters that best fit the data? (2) Inference: For a new document pair, how do we decide the

correlation factory and the topic proportionsxs, xt and the topic assignmentz for each

word? Because the best-fit model parameters are computationally intractable, similar

to CTM, our LAA model employs a variational method to solve these two problems.

Variational Inference

Consider a pair(ds, dt) of documents, represented as sets of words{wsn} and

{wtn′}, wherewsn is thenth word inds andwtn′ is then′th word indt, Equation (7.1)
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evaluates the probability that the document pair arises from an LAA model represented

by parameter setM .

P (ds, dt|M) =

∫

y

∫

xs

∫

xt

P (y)P (xs|y,M)P (xt|y,M)

×
Kt∏

k′=1

lt∏

n′=1

(P (ztn′ = k′|xt)P (wtn′|ztn′, βt))d(xt)

×
Ks∏

k=1

ls∏

n=1

(P (zsn = k|xs)P (wsn|zsn, βs))d(xs)d(y) (7.1)

Ideally, the latent variables in the setVl should be chosen to maximize the proba-

bility P (ds, dt|M) to best fit the pair of documents. Unfortunately, it is computation-

ally intractable to determine the true posterior distribution overVl, because the latent

variables are coupled together. Thus, we introduce a variational distributionQ(Vl), in

which the latent variables are independent of each other, toapproximate the true poste-

rior distributionP (Vl|ds, dt). The graphical representation ofQ is shown in Figure 7.4.

According to the variational distribution,Q(y) ∼ N (ȳ,Σ), Q(xsi) ∼ N (x̄si, σ
2
si),

Q(xti) ∼ N (x̄ti, σ
2
ti), Q(zsn) ∼Multi(φsn) andQ(ztn) ∼Multi(φtn). Note that each

component in the topic proportionsxs andxt are drawn independently. The variational

parameters introduced in the variational distribution arefit such that the KL-divergence

betweenQ(Vl) andP (Vl|ds, dt) is minimized.

Using the variational distribution and Jensen’s inequality, we take the logarithm of

the probability in Equation (7.1) and rewrite the objectivefunction in Equation (7.2).

Instead of maximizing the log likelihood directly, which isintractable, we maximize
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Figure 7.4: Variational distribution.

the lower bound of the log likelihood to obtain an approximation of the optimal value

of the latent variables.

log(P (ds, dt|M)) ≥ EQ log(P (ds, dt|M)) +H(Q) = ⌊L⌋ (7.2)

The above maximization problem is a convex optimization problem and, thus, the

optimal values of the variational parameters occur when thederivatives are zero. Ac-

cording to the decomposition of the marginal probability inEquation (7.1), we expand

the lower bound of the log likelihood as follows:

⌊L⌋ =
∑

n

EQ logP (wsn|ztn, βs) +
∑

n′

EQ logP (wtn′|ztn′, βt)

+
∑

n

EQ logP (zsn|xs) +
∑

n′

EQ logP (ztn′|xt)

+ EQ logP (xs|y,Ψs, Ts, µs) + EQ logP (xt|y,Ψt, Tt, µt)

+ EQ logP (y) +H(Q(Vl)) (7.3)

where each term on the right-hand side is a function over the variational parameters as

shown in Equation (7.4) - (7.8):
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∑

n

EQ log(P (wan|zan, βa)) =

la∑

n=1

Ka∑

k=1

φank log(βank) (7.4)

Here,a represents the source documents or the target documentt in a pair. Be-

cause a document pair is symmetric, we use the same set of equations with different

subscripts.

According to LAA, the topic assignmentz is drawn based on the Gaussian prior

x, P (zn = k|x) = exp(xk)∑
j exp(xj)

. Let ι =
∑

j exp(xj). If we take the first-order Tay-

lor expansion with respect toι at pointζ to approximatelogP (zn = k|x), we have

logP (zn = k|x) = xk − log(ζ)− 1
ζ
(
∑

j exp(xj)− ζ) +O((ι− ζ)2). Thus,

∑

n

EQ log(P (zan|xa)) ≥
la∑

n=1

Ka∑

k=1

φankx̄ak

− la log(ζa)−
la
ζa

Ka∑

k=1

exp(x̄ak +
σ2
ak

2
) + la (7.5)

whereζ is an additional variational parameter.

EQ log(P (xa)) =
1

2
log(|Ψ−1

a |)−
1

2
tr(diag(σ2

a)Ψ
−1
a )

− 1

2
tr((Taȳ + µa − x̄a)(ȳ

TT T
a + µT

a − x̄T
a )Ψ

−1
a )

− 1

2
tr(TaΣT

T
a Ψ

−1
a ) + const (7.6)

EQ log(P (y)) = −1
2
log(2π)− 1

2
tr(Σ)− 1

2
ȳT ȳ (7.7)
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H(Q) = −
∑

a=s,t

la∑

n=1

Ka∑

k=1

φank log(φank) +
1

2
log(det(Σ))

+
∑

a=s,t

Ka∑

k=1

log(σak) + const (7.8)

We substitute Equation (7.4)-(7.8) into Equation (7.3), and then maximize the lower

bound of the log likelihood by taking the partial derivatives with respect to each of the

variational parameters and setting them to zero.

For the variational parametersζ , φ, Σ andy, the optimal values that maximize the

objective function are achieved by:

ζa =
∑

k

exp(x̄ak +
σ2
ak

2
) (7.9)

φank ∝ βakvexp(x̄ak), s.t.wv
an = 1. (7.10)

Σ =
∑

a=s,t

T T
a Ψ

−1
a Ta + IL (7.11)

ȳ = Σ
∑

a=s,t

T T
a Ψ

−1
a (x̄a − µa) (7.12)

For the variational parameters̄x andσ, there are no analytical solutions. The opti-

mal values of these variables are the solutions to Equation (7.13) and (7.14), which are

solved iteratively using Newton’s method.
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∑

n

φan −
la
ζa

exp(x̄a +
σ2
a

2
)−Ψ−1

a (Taȳ + µa − x̄a) = 0 (7.13)

la
ζa

exp(x̄a +
σ2
a

2
) + diag(Ψ−1

a )− 1

σ2
a

= 0 (7.14)

For each edge in the bipartite graph, we calculate the variational parameters using

Equation (7.9) - (7.14) iteratively until the log likelihood lower bound in Equation (7.3)

no longer increases. The resulting variational parameter values are an approximation

of the optimal values of the latent variables. Specifically,y∗ = ȳ, x∗
ak = x̄ak, z∗an =

argk max(φank), wherea ∈ {s, t}, k ∈ {1, 2, ..., Ka}, n ∈ {1, 2, ...la}.

Parameter Estimation

We estimate the model parameters using the variational expectation-maximization

algorithm. In the E-Step, we update the variational parameters for each edge in the

bipartite graph. In the M-Step, we update the model parameters, so that the sum of the

log likelihood lower bound on each edge is maximized.

The process used in the M-Step is similar to that of variational inference. The goal

here is to maximize the aggregated log likelihood of all the edges in the bipartite graph,

rather than maximizing the log likelihood of a single edge. We sum up the lower bounds

of the log likelihood in Equation (7.2) for each edge and takethe partial derivative over

the setM of model parameters. We then calculate the optimal values ofthe model

parameters by setting these derivatives to zero.
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βakv ∝
∑

e∈E

∑

n

φadnk1(w
v
ean = 1) (7.15)

s.t.
∑

v βakv = 1.

Ta = (
∑

e∈E

(x̄eaȳ
T
e − µaȳ

T
e ))(

∑

e∈E

(ȳeȳ
T
e + Σe))

−1 (7.16)

µa =
1

|E|(
∑

e∈E

x̄ea − Ta

∑

e∈E

ȳe) (7.17)

Ψa =
1

|E|
∑

e∈E

(diag(σ2
ea) + TaΣeT

T
a

+ (Taȳe + µa − x̄ea)(Taȳe + µa − x̄ea)
T ) (7.18)

The E-Step and the M-Step are performed iteratively until the model parameters

converge, indicating that the model parameters are fit to thetraining dataset.

7.6 Ranking Document Pairs

Given an LAA modelM learned from a training dataset, for a new source document

ds, we aim to rank the target documents in a test dataset according to their potential

associations with the source document, In this section, we introduce three different

methods to this problem. We evaluate these methods, together with the PTM method

proposed by Zhanget al. [153], in Section 7.7.
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7.6.1 Two-Step Method

First, we discuss a Two-Step method that mines the topics in the target and source

document sets independently and then determines the correlation between their topic

structures. This method is used as the baseline to compare with LAA.

The training process consists of two steps: (1) Find the topics in the source and

target document sets, respectively, and (2) Find the correlation between the source and

target topic structures. In the first step, CTM is independently applied to the two docu-

ment setsDs andDt. The topic proportion priorsxs andxt are obtained forDs andDt,

respectively, using the variational inference method proposed in [18]. For each docu-

ment pair(ds, dt), the corresponding topic proportion priors(xs, xt) form a pair. In the

second step, these topic proportion priors, which follow Gaussian distributions, are fed

into CCA. The CCA parametersT1, T2, µ1, µ2, Ψ1, Ψ2 are fit to the topic proportion

pairs(xs, xt).

In the document retrieval task, given a new source documentds, our goal is to

evaluate the target documents in a test set. The candidatesdt are ranked based on

the probabilityP (dt|ds) that a target documentdt can be observed in a document pair

containing the source documentds.

We assume that the topic proportion priorsx are a lower dimensional representation

of the documentd. Thus,P (dt|ds) ∝ P (xt|xs). In CCA, givenx1, the latent correlation

factory follows a normal distribution:y|x1 ∼ N (MT
1 U

T
1d(x1 − µ1), I −M1M

T
1 ) [10],
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whereas giveny, x2 follows a normal distribution:x2|y ∼ N (T2y + µ2,Ψ2). Thus,

given the topic proportion priorxs of a source documentds, its corresponding document

dt has a topic proportion priorxt following the normal distribution:

xt|xs ∼ N (T1M
T (xs − µ1) + µ2,Ψ2 + T1(I −MMT )T T

1 ) (7.19)

whereM = (Pl)
1/2 andPl is the diagonal matrix of the topl canonical correlations.

Given a source documentds and a candidate target documentdt, their topic propor-

tion priorsxs andxt can be inferred using CTM. Thus, the target documents can be

ranked usingP (xt|xs) calculated from Equation (7.19).

7.6.2 LAA Direct Method

The LAA model derived in Section 7.5 allows us to predict, fora new source doc-

umentds, which target documentdt is more likely to be associated withds. An direct

way of ranking target documents is to evaluate how likely a hypothetical document pair

(ds, dt) arises from the underlying LAA model. The lower bound oflog(P (ds, dt|M))

can be estimated by Equation (7.3) using the variational inference method discussed in

Section 7.5.3. Thus, we can use functionR(ds, dt) = ⌊log(P (ds, dt|M)⌋ to rank the

target documents. Because both the source and target documents are considered as a

bag of interchangeable words in the LAA model, the generation probability of a long

document is smaller than the generation probability of a short document. Note that in
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this prediction method, the ranking score of a document pairis inversely proportional

to the document length. To avoid unfairly penalizing long documents, we normalized

all of the documents to unit length.

7.6.3 LAA Latent Method

Although the LAA direct method is intuitive, it has potential drawbacks. In ranking

document pairs, the most important factor should be the semantic association between

the source and target documents; the exact wording of a document in expressing its

semantic meanings should not be overemphasized. However, when evaluating a docu-

ment pair using the probability that this document pair arises from the LAA model, the

LAA direct method considers all of the words in the source andtarget documents as

equally important. Consequently, if a target document contains rare words, it will be

ranked low. The reason is that, even if the rare words in the target document might as-

sociate perfectly with the source document semantically, the probability of generating

such words is still very low, which brings down the rank of thetarget document. More-

over, in our ranking, the popularity of the correlation factor should not matter, as long

as it interprets the semantic association in a document pair. The LAA direct method

cannot accommodate this feature either.

To address the aforementioned problems, we developed the LAA latent method

based on the semantic association between source and targetdocuments. In this method,
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only the topic association information is used to rank the document pairs. For any given

source documentds and target document candidatedt, first we use variational inference

to calculate the most probable correlation factory∗ = ȳ, and the topic proportionx∗
s =

x̄s andx∗
t = x̄t, according to the variational distribution. Then, we evaluate how likely

there exists an association between the two documents basedon the topic proportion,

and use the following ranking function to rank the target documents.

R(ds, dt) = P (x∗
s, x

∗
t |y∗) = P (x∗

s|y∗)P (x∗
t |y∗) (7.20)

In Equation (20),P (xs|y∗) ∼ N (Tsy
∗ + µs,Ψs), andP (xt|y∗) ∼ N (Tty

∗ + µt,Ψt).

7.7 Experiments

We trained the LAA model based on real-world datasets and evaluated its perfor-

mance on the document retrieval task. Two IT service datasets collected from IBM,

IT-ChangeandIT-Solution, are used to evaluate the effectiveness of the LAA model.

7.7.1 Datasets

The IT-Changedataset was obtained in the context of IT change management.In

IT-change management, when a change to the current IT environment is requested,

the service provider needs to identify the possible problems caused by this change

and, hence, assess its impact and cost. In this dataset, eachdocument pair consists
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of a change document, which describes the planned change, and a problem document,

which describes the problem resulting from this change. Both the change and problem

documents are in text, and the associations between them arecurrently established by

human experts. Given a historical change-problem dataset,we built an LAA model and

used it to retrieve the potential problem documents (from a set of problems reported)

resulting from a new change request. This dataset contained24,317 pairs of documents.

We randomly sampled 20,000 document pairs for training and used the rest to evaluate

the performance of our ranking method.

The IT-Solutiondataset was obtained in the context of IT problem management. In

IT-problem management, each solved problem needs to be documented with a solution.

In practice, it is extremely challenging for a service agentto identify the correct solution

for a new problem, from a solution repository that contains alarge number of solution

documents accumulated in the past. In this dataset, each document pair consists of a

problem document and its corresponding solution document identified by human expert.

LAA is used to predict possible solutions for new problems. This dataset contains

19,696 pairs of documents. We randomly selected 15,000 document pairs for training

and the rest for testing.
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7.7.2 Accuracy Analysis

We compare our two LAA-based methods,i.e., LAA Direct (LAA-D) and LAA La-

tent (LAA-L), against the Two-Step method and the PTM methoddeveloped by Zhang

et al. [153], in terms of their accuracy in retrieving target documents for a given source

document. For a source document, PTM predicts a word distribution of its potential tar-

get document and compares it with the word distributions of the candidate documents.

The word distribution in PTM has two components: one from themodel, and the other

from the similarity between the source and target documents. In LAA, we do not as-

sume any overlap between the vocabularies of the source and target documents, which

provides a key advantage over PTM. For comparison purposes,we use only the model

component in PTM,

PPTM(wt|ds) =
Ks∑

i=1

P (wt|θi)P (θi|ds) (7.21)

and adopt the KL-divergence distance [75] to evaluate candidate target documents, as

proposed in [153].

From each of the two datasets, we randomly select a batch of 100 document pairs,

with only one-to-one mappings between the source and targetdocuments for evaluation.

Given a source document randomly selected within these 100 document pairs, we then

rank the 100 target documents based on the four different methods. We use the average

rank of the correct target document (the one actually pairedwith the selected source
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document) to measure the performance. This process is repeated for five batches (i.e.,

500 queries in total) for both datasets.
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Figure 7.5: Comparison of retrieval accuracy of four methods on two datasets.

We set the number of topics to be 20 for both the source document set and the

target document set to train the three models. In the Two-Step method and the LAA

method, we set the dimension of the correlation factor to be 10. Figure 7.5 compares the

performance of these four methods on the two datasets. They axis shows the average

rank of the correct target document out of the 100 target document candidates. Each bar

in the figure shows the performance range of one method over the five batches of test

cases. The average over the five batches is marked in red on each bar. For both datasets,

LAA-L significantly outperforms all other methods, and the Two-Step method performs

the closest to LAA-L. The key difference between the LAA-L method and the Two-Step

method is that the topic structures of the source and target documents in the Two-Step

method are learned independently without considering the correlations between them.
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As a result, the performance of the Two-Step method is not as good as that of LAA-L.

On the other hand, LAA-D suffers from the problems discussedin Section 7.6.2 and

does not perform well in our document retrieval task. Due to the noisy nature of word-

level correlation (as highlighted in Section 7.4), the PTM method does not show good

performance either. We also experimented a modified versionof PTM that compares

the topic distributions, rather than the word distributions, between the source and target

documents. The performance of this modified method is similar to that of the Two-Step

method, but significantly worse than LAA-L.

7.7.3 Robustness Analysis

In this section, we address the robustness of the LAA-L method in capturing the

semantic associations in document pairs, We trained the model with different numbers

of topics and compared the results of the document retrievaltask in an experimental

setting similar to that in Section 7.7.2.

Figure 7.6 shows the experimental results on theIT-Changedataset. We do not show

the results on theIT-Solutiondataset, but our observations are quite similar. We chose

the same number of topics for the source document set and the target document set, and

the dimension of the correlation factorL = 1
2
Ks = 1

2
Kt. With different numbers of

topics, the performance of the LAA-L method remains stable,and is consistently better

than that of the other methods.
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7.7.4 A Case Study

The LAA framework assumes a correlation factor. The topic portion priors of a pair

of documents are drawn centered around a point in their corresponding topic simplex.

Because each point in the topic simplex implies a mixture of the topics and each topic

is represented by a probability distribution of words, the point in the topic simplex can

also be mapped to a distribution over words. We now give examples of correlation

factors and the corresponding top-ranked words in the source documents and the target

documents. In these examples, the dimension of the correlation factor was set to 10.

The numbers of topics in both the source and target document sets were set to 20. Note

that the topic numbers in the source and target documents do not have to be the same.
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Figure 7.7: Sample top ranked words linked to the same correlation factor.

As shown in Figure 7.7, the LAA model successfully captures the semantic-level

connections between the source documents and the target documents. Cases 1 and

2 were extracted from theIT-Changedataset, whereas Cases 3 and 4 were extracted

from the IT-Solutiondataset. For Cases 1 through 4, the top-ranked words indicate

the correlations between source and target documents are around Database, Network,

Business and Scheduling, respectively1.

1The notations to these correlation factors were added by theauthors.
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7.8 Summary

This chapter presented a topic modeling approach that analyzes the topic structures

of two document sets linked by a bipartite graph. The Latent Association Analysis

(LAA) method draws the topic proportion priors of a pair of documents based on a

latent correlation factor. Unlike other topic models, the goal of LAA is not only to

provide a semantic-level explanation of the topics contained in document pairs, but

also to retrieve the associated target document, when a new source document is given.

Based on LAA, we introduced a document-level ranking methodthat can help retrieve

target documents associated with a source document. Experiments on real datasets

confirm the effectiveness of our method in extracting semantic concepts of associated

document pairs, and substantiates that LAA outperforms state-of-the-art algorithms for

ranking document pairs.
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Conclusions and Future Work

This Ph.D. Dissertation addresses large-scale unstructured or semi-structured data

on the Web and in social networks and contributes toward semantic understanding of

the data with emphasis on parallel and distributed computing, data extraction and inte-

gration, information flow analysis, and topic modeling. In this chapter, we summarize

the specific contributions and propose possible future work.

8.1 Parallel Spectral Clustering Algorithm

This Ph.D. Dissertation presented a parallel approach for spectral graph analysis,

including spectral clustering and co-clustering. The scalability of spectral methods has

been increased in both computation time and memory use by using multiple computers
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in a distributed system. This approach makes it possible to analyze Web-scale data us-

ing spectral methods. Experiments show that our parallel spectral clustering algorithm

performs accurately on artificial datasets and real text data. We also applied our parallel

spectral clustering algorithm to a large Orkut dataset to demonstrate its scalability.

In future work, we plan to reduce the inter-computer communication cost to im-

prove scalability further. We also plan to investigate incremental methods for commu-

nity mining and discovery to achieve even greater performance speed up.

8.2 Information Extraction and Integration

To extract information from heterogeneous sources, this Ph.D. Dissertation pre-

sented a novel approach to data record extraction from Web pages. The method first

detects the visually repeating patterns on a Web page and then extracts the data records.

The novel idea of visual signal is introduced to simplify theWeb page representation

as a set of binary vectors instead of the traditional DOM tree. A data record list corre-

sponds to a set of visual signals that appear regularly on theWeb page. The normalized

cut spectral clustering algorithm is employed to find the visual signal clusters. For each

visual signal cluster, data record extraction and nested structure detection are conducted

to extract both atomic-level and nested-level data records.
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Experimental results on flat data record lists are compared with state-of-the-art algo-

rithms. Our novel visual signal algorithm shows significantly higher accuracy than ex-

isting algorithms. For data record lists with a nested structure, we collected Web pages

from the domains of business, education, and government. Our extraction algorithm

demonstrates high accuracy for both atomic-level and nested-level data records. The

execution time of the algorithm is linear in the document length for practical datasets.

Our algorithm depends only on the Web page structure withoutexamining the Web

page content, which makes it a domain-independent approach. The algorithm is suit-

able for handling Web-scale data because it is completely automatic and does not need

any information other than the Web page.

In the future, we plan to extend this work to support data attribute alignment. Each

data record typically contains multiple data attributes. Unfortunately, there is no one-to-

one mapping from the HTML code structure to the data record structure. Identification

of the data attributes offers the potential of better use of data on the Web.

The work presented here extracts data records from single Web pages. However,

the Web is composed of billions of Web pages each with their own data records. Future

work will include integration of heterogeneous data records across different Web pages.

In this Ph.D. Dissertation, we also described algorithms for partially recovering the

semantics of tables on the Web that aims to integrate the hundreds of millions data

tables on the Web. We explored an intriguing interplay between structured and un-

217



Chapter 8. Conclusions and Future Work

structured data on the Web, where we used text on the Web to recover the semantics

of structured data on the Web. Because the breadth of the Web matches the breadth of

structured data on the Web, we are able to recover the semantics effectively. In addition,

we provided a detailed analysis of when our techniques will not work and how these

limitations can be addressed.

In future research, we will investigate better techniques for information extraction to

recover a larger fraction of binary relationships and techniques for recovering numerical

relationships (e.g., population, GDP,etc.). The other major direction of future research

is increasing our table corpus by extracting tables from lists [50], structured Web sites,

and PDF files.

8.3 Modeling Information Flow in Collaborative

Networks

To address information flow in collaborative networks, thisPh.D. Dissertation pre-

sented generative models that characterize ticket routingin a network of expert groups,

using both ticket content and routing sequences. These models capture the capability of

expert groups either in resolving the tickets or in transferring the tickets along a path to

a resolver. The Resolution Model considers only ticket resolvers and builds a resolution

profile for each expert group. The Transfer Model considers ticket routing sequences
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and establishes a locally optimized profile for each edge that represents possible ticket

transfers between two groups. The Optimized Network Model (ONM) considers the

end-to-end ticket routing sequence and provides a globallyoptimized solution in the

collaborative network. For ONM, we present a numerical method to approximate the

optimal solution which, in general, is difficult to compute.

Our generative models can be used to make routing predictions for a new ticket and

minimize the number of transfer steps before it reaches a resolver. For the generative

models, we presented three routing algorithms to predict the next expert group to which

to route a ticket, given its content and routing history. Experimental results show that

the proposed algorithms can achieve better performance than existing ticket resolution

methods.

8.4 Collaborative Network Routing Efficiency Analysis

This Ph.D. Dissertation examined a special type of social network – collaborative

networks. Detailed observations of three real-world collaborative networks were pre-

sented along with the static network topology and dynamic information routing for each

network. Collaborative networks exhibit not only the truncated power-law node degree

distribution but also organizational constraints. Information routing in collaborative

networks is different from routing in conventional complexnetworks, such as computer
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networks and airline networks, because of random factors inhuman decision making.

The routing steps also follow a truncated power-law distribution, which implies that

a considerable number of tasks travel along long sequences of steps before they are

completed. Our results and observations for several different kinds of collaborative

networks are consistent with each other, and can be generalized to other real-world col-

laborative networks. They help in understanding the complicated behavior exhibited in

human collaboration.

Based on real-world data, we developed a graph model to generate networks sim-

ilar to real collaborative networks, and a stochastic routing algorithm to simulate the

human dynamics of collaboration. The models are independently validated using real-

world data. We demonstrated that the two models can be used toanswer real-world

questions, such as:“How can one design a collaborative network to achieve higher

efficiency?” To the best of our knowledge, our work is the first attempt to understand

and quantify the complex human dynamics exhibited in collaborative networks and to

estimate analytically the efficiency of real collaborativenetworks.

8.5 Latent Association Analysis

To analyze the semantic association between multiple document sets,e.g., problems

and solutions, symptoms and treatments,etc., this Ph.D. Dissertation tackled the prob-
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lem of analyzing the topic structures of two document sets linked by a bipartite graph.

The Latent Association Analysis (LAA) model draws the topicproportion priors of

a pair of documents based on a latent correlation factor. Unlike other topic models,

the goal of LAA is not only to provide a semantic-level explanation of the topics con-

tained in document pairs, but also to retrieve the associated target document, when a

new source document is given. Based on LAA, we introduced a document-level rank-

ing method that can help retrieve target documents associated with a source document.

Experiments on real datasets confirm the effectiveness of our model in extracting se-

mantic concepts of associated document pairs, and substantiates that LAA outperforms

the state-of-the-art algorithms in ranking document pairs.

In future work, we plan to extend the LAA model to more complexassociation

structures over multiple document sets. The symmetric structure of the source and

target documents can be replaced by an asymmetric structure, when it is appropriate to

do so for other applications.
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Gonçalves. Combining link-based and content-based methods for Web docu-
ment classification. InProceedings of the ACM Conference on Information and
Knowledge Management, pages 394–401, New Orleans, LA, 2003.

[29] D. Carmel, H. Roitman, and N. Zwerding. Enhancing cluster labeling using
Wikipedia. InProceedings of the Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, pages 139–146, Boston,
MA, 2009.

[30] C. Chang and S. Lui. IEPAD: Information extraction based on pattern discovery.
In Proceedings of the 10th International Conference on the World Wide Web,
pages 681–688, Hong Kong, China, 2001.

[31] K. C. Chang, B. He, C. Li, M. Patel, and Z. Zhang. Structured databases on
the Web: Observations and implications.ACM SIGMOD Record, 33(3):61–70,
2004.

[32] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, A. Y. Ng, and K. Olukotun.
Map-reduce for machine learning on multicore. InProceedings of the Neural
Information Processing Systems Conference, pages 281–288, Vancouver, British
Columbia, Canada, 2007.

[33] F. Chung. Spectral graph theory. Number 92 in CBMS Regional Conference
Series in Mathematics. American Mathematical Society, 1997.

[34] A. Clauset, C. R. Shalizi, and M. E. J. Newman. Power-lawdistributions in
empirical data.SIAM Review, 51:661–703, 2009.

[35] V. Crescenzi, G. Mecca, and P. Merialdo. RoadRunner: Towards automatic
data extraction from large Web sites. InProceedings of the 27th International
Conference on Very Large Data Bases, pages 109–118, San Francisco, CA, 2001.

224



Bibliography

[36] D. Cutting, D. Karger, and J. Pedersen. Constant interaction-time scatter/gather
browsing of very large document collections. InProceedings of the Annual Inter-
national ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 126–134, Pittsburgh, PA, 1993.

[37] H. T. Dang, D. Kelly, and J. J. Lin. Overview of the trec 2007 question answering
track. InProceedings of the Sixteenth Text REtrieval Conference, Gaithersburg,
MD, 2007.

[38] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman.
Indexing by latent semantic analysis.Journal of the American Society for Infor-
mation Science, 41(6):391–407, 1990.

[39] H. Deng, I. King, and M. R. Lyu. Formal models for expert finding on DBLP
bibliography data. InProceedings of the IEEE International Conference on Data
Mining, pages 163–172, Pisa, Italy, 2008.

[40] I. S. Dhillon. Co-clustering documents and words usingbipartite spectral graph
partitioning. InProceedings of the 7th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 269–274, 2001.

[41] I. S. Dhillon, Y. Guan, and B. Kulis. Kernel k-means: Spectral clustering and nor-
malized cuts. InProceedings of the 10th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining, pages 551–556, Seattle, WA, 2004.

[42] I. S. Dhillon, Y. Guan, and B. Kulis. Weighted graph cutswithout eigenvectors:
A multilevel approach. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 29(11):1944–1957, 2007.

[43] I. S. Dhillon and D. S. Modha. A data-clustering algorithm on distributed mem-
ory multiprocessors. InLarge-Scale Parallel Data Mining, pages 245–260, 1999.

[44] I. S. Dhillon and D. S. Modha. Concept decompositions for large sparse text data
using clustering.Machine Learning, 42(1–2):143–175, 2001.

[45] C. H. Q. Ding and X. He. K-means clustering via principalcomponent analysis.
In Proceedings of the 21st International Conference on Machine Learning, pages
225–232, Banff, Alberta, Canada, 2004.

[46] C. H. Q. Ding and X. He. On the equivalence of nonnegativematrix factorization
and spectral clustering. InProceedings of the SIAM International Conference on
Data Mining, pages 606–610, Newport Beach, CA, 2005.

225



Bibliography

[47] C. H. Q. Ding, X. He, H. Zha, M. Gu, and H. D. Simon. A min-max cut al-
gorithm for graph partitioning and data clustering. InProceedings of the IEEE
International Conference on Data Mining, pages 107–114, San Jose, California,
2001.

[48] P. Domingos and M. Richardson. Mining the network valueof customers. InPro-
ceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, pages 57–66, San Francisco, CA, 2001.

[49] D. Downey, O. Etzioni, and S. Soderland. A Probabilistic Model of Redundancy
in Information Extraction. InProceedings of the International Joint Conference
on Artificial Intelligence, pages 1034–1041, Edinburgh, Scotland, UK, 2005.

[50] H. Elmeleegy, J. Madhavan, and A. Halevy. Harvesting relational tables from
lists on the Web. volume 2, pages 1078–1089, Lyon, France, 2009.

[51] P. Erdös and A. Rényi. On random graphs I.Publicationes Mathematicae, 6:290–
297, 1959.

[52] O. Etzioni, A. Fader, J. Christensen, S. Soderland, andMausam. Open Infor-
mation Extraction: The second generation. InProceedings of the International
Joint Conference on Artificial Intelligence, pages 3–10, Barcelona, Spain, 2011.

[53] H. Fang and C. Zhai. Probabilistic models for expert finding. In Proceedings of
the 29th European Conference on Information Retrieval, pages 418–430, Rome,
Italy, 2007.

[54] P. Forner, A. Penas, E. Agirre, I. Alegria, C. Forascu, N. Moreau, P. Osenova,
P. Prokopidis, P. Rocha, B. Sacaleanu, R. Sutcliffe, and E. Tjong Kim Sang.
Overview of the CLEF 2008 multilingual question answering track. InEvaluat-
ing Systems for Multilingual and Multimodal Information Access, Lecture Notes
in Computer Science 5706, pages 262–295. Springer, Berlin/Heidelberg, 2009.

[55] C. Fowlkes, S. Belongie, F. Chung, and J. Malik. Spectral grouping using the
Nyström method.IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 26(2):214–225, 2004.

[56] S. Galam. Minority opinion spreading in random geometry. The European Phys-
ical Journal B - Condensed Matter and Complex Systems, 25(4):403–406, 2002.

[57] S. Galam. Modelling rumors: The no plane pentagon French hoax case.Physica
A: Statistical Mechanics and Its Applications, 320:571–580, 2003.

226



Bibliography

[58] X. Guardiola, A. Diaz-Guilera, C. J. Perez, A. Arenas, and M. Llas. Modeling
diffusion of innovations in a social network.Physical Review E, 66:026121,
2002.

[59] R. Gupta and S. Sarawagi. Answering table augmentationqueries from unstruc-
tured lists on the Web. volume 2, pages 289–300, Lyon, France, 2009.

[60] L. Hagen and A. Kahng. New spectral methods for ratio cutpartitioning and
clustering.IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 11(9):1074–1085, 1992.

[61] M. Hearst. Automatic Acquisition of Hyponyms from Large Text Corpora. In
Proceedings of the 14th International Conference on Computational Linguistics,
pages 539–545, Nantes, France, 1992.

[62] T. Hofmann. Probabilistic latent semantic indexing. In Proceedings of the 22nd
Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 50–57, Berkeley, CA, 1999.

[63] P. Ipeirotis and A. Marian, editors.Proceedings of the Fourth International Work-
shop on Ranking in Databases, 2010.

[64] Z. G. Ives, C. A. Knoblock, S. Minton, M. Jacob, P. P. Talukdar, R. Tuchinda,
J. L. Ambite, M. Muslea, and C. Gazen. Interactive data integration through
smart copy & paste. InProceedings of the 4th Biennial Conference on Innovative
Data Systems Research, Asilomar, CA, 2009.
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