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Abstract

Uncovering Interesting Attributed Anomalies

in Large Graphs

Nan Li

Graph is a fundamental model for capturing entities and their relations in

a wide range of applications. Examples of real-world graphs include the Web,

social networks, communication networks, intrusion networks, collaboration net-

works, and biological networks. In recent years, with the proliferation of rich

information available for real-world graphs, vertices and edges are often associ-

ated with attributes that describe their characteristics and properties. This gives

rise to a new type of graphs, namely attributed graphs. Anomaly detection has

been extensively studied in many research areas, and finds important applications

in real-world tasks such as financial fraud detection, spam detection and cyber

security. Anomaly detection in large graphs, especially graphs annotated with

attributes, is still under explored. Most of existing work in this aspect focuses

on the structural information of the graphs. In this thesis, we aim to address the

following questions: How do we define anomalies in large graphs annotated with

attributive information? How to mine such anomalies efficiently and effectively?

A succinct yet fundamental anomaly definition is introduced: given a graph

augmented with vertex attributes, an attributed anomaly refers to a constituent

xi



component of the graph, be it a vertex, an edge, or a subgraph, exhibiting ab-

normal features that deviate from the majority of constituent components of the

same nature, in a combined structural and attributive space. For example in a

social network, assume there exists a group of people, most of whom share similar

taste in movies, whereas the majority of social groups in this network tend to have

very diverse interests in movies; or in a collaboration network, there exists a group

of closely connected experts that possess a set of required expertise, and such a

group occurs scarcely in this network; we consider the groups in both scenar-

ios as “anomalous”. Applications of this research topic abound, including target

marketing, recommendation systems, and social influence analysis. The goal of

this work therefore is to create efficient solutions to effectively uncover interesting

anomalous patterns in large attributed graphs.

In service of this goal, we have developed several frameworks using two types

of approaches: (1) combinatorial methods based on graph indexing and querying;

(2) statistical methods based on probabilistic models and network regularization.

xii
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Chapter 1

Introduction

With the advent of a large number of real-world entities and their heteroge-

neous relations, graph has become a fundamental model to capture critical re-

lational information in a wide range of applications. Graphs and networks can

be derived by structure extraction from various types of relational data, ranging

from textual data, through social data, to scientific data. The ubiquitous pres-

ence of graphs includes: social networks [30], citation networks [40], computer

networks [33], biological networks [7], and the Web [18]. In recent years, rich

information started to proliferate in real-world graphs. As a result, vertices and

edges are often associated with attributes that describe their characteristics and

properties, giving rise to a new type of graphs, attributed graphs. The combi-

nation of a voluminous amount of attributive and structural information brings

forth an interesting yet under-explored research area: finding interesting attributed

1



Chapter 1. Introduction

anomalies, which can take different forms of constituent graph components, in

large real-world graphs.

In graph theory, a graph, G, represents a set of entities V , called vertices,

where some pairs of the entities are connected by a set of links E, called edges.

The edges can be either directed or undirected, and either weighted or unweighted.

Some authors refer to a weighted graph as a network [87] 1. Graphs are widely

used to model pairwise relations among entities, based on which more complicated

relations among a group of entities can be extracted. Various forms of relations

have been encoded using graphs, such as chemical bonds, social interactions, and

intrusion attacks [61]. The prevalence of graphs has motivated research in graph

mining and analysis, such as frequent graph pattern mining [100], graph sum-

marization [92], graph clustering [86], ranked keyword search in graphs [45], and

graph anomaly detection [5].

In recent years, with the proliferation of rich information on real-world enti-

ties, graphs are often associated with a number of attributes that describe the

characteristics and properties of the vertices. This gives rise to a new type of

graphs, attributed graphs. Examples of attributed graphs abound. In an academic

collaboration network, the vertex attributes can be the research interests of an

author. In a customer social network, the vertex attributes can be the products

1In this thesis, we focus on graphs where all edge weights are 1, therefore “graphs” and
“networks” are used interchangeably.

2



Chapter 1. Introduction

Figure 1.1: An Example of An Attributed Graph

a customer purchased. In a social network, a user can be annotated by their po-

litical views. In a computer network, a computer can be associated with a set of

intrusions it initiates. Figure 1.1 visualizes a subgraph of 417 vertices in the well-

known DBLP co-author network extracted from the DBLP bibliography 2, where

a vertex is black if the author is from the domain “data mining” (vertex labels

provided by [99]). Clearly, in addition to the structural collaborative information

among authors, each vertex is also annotated by textual attributes such as the

author’s affiliation and research interests. Various studies have been dedicated to

mining attributed graphs [25, 101, 71, 60, 99].

2http://www.informatik.uni-trier.de/~ley/db/

3
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Chapter 1. Introduction

The growth of graph data creates new opportunities for finding and extract-

ing useful information from graphs using data mining techniques. In traditional

unattributed graphs, interesting knowledge is usually uncovered based on edge

connectivity. For example, we can uncover graph communities with high edge

densities [73], or a subgraph that has a near-star or near-clique shape [5]. Chal-

lenges arise when the graph is enriched with vertex attributes, as an additional

dimension of information needs to be incorporated into the mining process. In

many real applications, both the topological structure and the vertex properties

play a critical role in knowledge discovery in graphs. Therefore this thesis aims to

serve the goal of mining useful and interesting knowledge from vertex-attributed

graphs. We summarize this into a succinct yet fundamental mining task as follows.

Definition 1 (Graph Attributed Anomaly). Given a graph augmented with vertex

attributes, an attributed anomaly refers to a constituent component of the graph,

be it a vertex, an edge, or a subgraph, exhibiting abnormal features that deviate

from the majority of constituent components of the same nature.

Anomaly detection has been extensively studied in many research areas, and

finds important applications in real-world tasks such as financial fraud detection

and cyber security. An emerging family of research in graph mining recently is

graph anomaly detection [5, 31, 20]. The majority of existing work in this aspect

focuses on utilizing only the structural information [31, 20]. Uncovering interest-

4



Chapter 1. Introduction

ing anomalies in graphs annotated with attributes is still under explored in the

current literature. We aim to address the following questions: How do we define

patterns and anomalies in large graphs associated with attributive information on

the vertices? How to mine such patterns and anomalies efficiently and effectively?

In this thesis, we present several frameworks we have developed for anomaly

mining in attributed graphs 3. Our approaches fall into two categories: (1) combi-

natorial methods based on graph indexing and querying algorithms; (2) statistical

methods based on probabilistic models and network regularization. More specif-

ically, the following topics will be discussed: attributed-based proximity search,

attribute aggregation for iceberg search, generative attribute distribution model-

ing, and attribute generation via vertex classification. Before presenting our own

work, we first give an overview of some related works in the current literature.

1.1 Literature Synopsis

In this section, we give an overview of the existing literature for the problems

under study in this thesis. First, we review previous works on graph mining using

mainly the graph structure. Secondly, mining algorithms that also incorporate

graph attributes will be examined. Thirdly, we discuss some of the representative

3For the ease of presentation, we focus our discussion on undirected and unweighted graphs.
However, with some modification, the proposed frameworks can be easily extended to directed
and weighted graphs.

5



Chapter 1. Introduction

works in vertex classification and labeling. Our literature synopsis is finished by

reviewing previous work related to the core methodologies presented in this thesis.

1.1.1 Structure-Focused Graph Mining

A prominent family of research in structure-based graph mining is densest sub-

graph finding [14, 24, 55]. The subgraph density is traditionally defined as the

average vertex degree of the subgraph [24, 55]. The densest k-subgraph (DkS)

problem finds the densest subgraph of k vertices that contains the largest number

of edges, which is NP-hard [14]. Many studies have focused on fast approxi-

mation algorithms for this family of problems [14, 24, 55]. Another important

branch of structure-based graph mining is graph clustering. Many techniques

proposed in structural graph clustering have been based on various criteria in-

cluding normalized cut [83], modularity [73], and structural density [98]. Local

clustering finds a cluster containing a given vertex without looking at the whole

graph [6, 86]. A core method called Nibble is proposed in [86]. By using the per-

sonalized PageRank [76] to define the nearness, [6] introduces an improved version,

PageRank-Nibble. Structural anomaly detection has been studied in graph data

as well [5, 75, 89, 70, 20, 31]. [70] transforms the graph adjacency matrix into

transition matrix, models the anomaly detection problem as a Markov chain pro-

cess and finds the dominant eigenvector of the transition matrix. [20] proposes
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a parameter-free graph clustering algorithm to find vertex groups, and further

finds anomalies by computing distances between groups. In both [70] and [20],

the outlierness of each vertex is only based on its connectivity.

Most of such previous studies only take into consideration the topological struc-

ture of a graph. In this thesis, we extend such works by further studying similar

tasks and problems in vertex-attributed graphs.

1.1.2 Attributed Graph Mining

Various studies have been dedicated to mining attributed graphs [61, 60, 71,

99, 107, 58]. [71] introduces cohesive pattern, a connected subgraph whose den-

sity exceeds a threshold and has homogeneous feature values. [58] discovers top-k

subgraphs with shortest diameters that cover the given query of attributes. [99]

proposes a model-based approach to discover graph clusters where vertices in

each cluster share common attribute and edge connection distributions. [107] ad-

dresses a similar problem using a novel graph clustering algorithm based on both

structural and attribute similarities through a unified distance measure. [5] finds

abnormal vertices in an edge-weighted graph by examining if their “ego-nets” com-

ply with the observed rules in density, weights, ranks and eigenvalues that govern

their ego-nets. In this section, we review some important related works in the

field of attribute-based graph mining.

7
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Graph Proximity Search. In an unattributed graphs, proximity search

typically refers to the study of proximity between two vertices, and can be applied

to problems such as link prediction [63, 81]. In an attributed graph, proximity

search studies problems such as expert team formation [9, 38, 58, 96, 109] and

graph motif finding [57, 28]. The former finds a team of experts with required

skills. Existing methods include generic algorithms [96], simulated annealing [9],

and so on. [58] adopts a 2-approximation algorithm to find a team of experts

with the smallest diameter, where all-pairs shortest distances need to be pre-

computed and no index structure is used to expedite the search. [38] presents

approximation algorithms to find teams with the highest edge density. The graph

motif problem introduced by [57] in the bioinformatics field, finds all connected

subgraphs that cover a motif of colors with certain approximation. However,

the uncovered subgraphs are not ranked, and the subgraph search process is still

inefficient and not optimized.

Proximity search is also studied in the Euclidean space [1, 43], such as finding

the smallest circle enclosing k points. Since the diameter of such a circle is not

equal to the maximum pairwise distance between the k points, even with mapping

methods such as ISOMAP [91], the techniques for the k-enclosing circle problem

can not be directly applied to proximity search in graphs. The points in the

Euclidean space also do not contain attributive information.

8
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Ranked Keyword Search in Graphs. Ranked keyword search in attributed

graphs returns ranked graph substructures that cover the query keywords [13, 45,

52]. Many studies in this area have been focused on tree-structured answers,

in which an answer is ranked by the aggregate distances from the leaves to the

root [45]. Additionally, finding subgraphs instead of trees is also studied in [53, 59].

Finding r-cliques that cover all the keywords is proposed in [53], which only finds

answers with 2-approximation. [59] finds r-radius Steiner graphs that cover all the

keywords. Since the algorithm in [59] indexes them regardless of the query, if some

of the highly ranked r-radius Steiner graphs are included in other larger graphs,

this approach might miss them [53]. [42] uses personalized PageRank vectors to

find answers in the vicinity of vertices matching the query keywords in entity-

relation graphs. [47] proposes XKeyword for efficient keyword proximity search

in large XML graph databases.

Aggregation Analysis in Graphs. Aggregation analysis in an attributed

graph refers to the study of the concentration or aggregation of an attribute in the

local vicinities of vertices [101, 60]. A local neighborhood aggregation framework

was proposed in [101], which finds the top-k vertices with the highest aggrega-

tion values over their neighbors. This resembles the concept of iceberg query in

a traditional relational database [34], which computes aggregate functions over

an attribute or a set of attributes to find aggregate values above some specified
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threshold. Such queries are called iceberg queries, because the number of results

is often small compared to the large amount of input data, like the tip of an ice-

berg. Traditional iceberg querying methods include top-down, bottom-up, and

integration methods [11, 97]. Iceberg analysis on graphs has been under studied

due to the lack of dimensionality in graphs. The first work to place graphs in a

multi-dimensional and multi-level framework is [25].

In this thesis, we extend the current literature by proposing new types of

interesting graph anomalies in vertex-attributed graphs. Efficient and robust al-

gorithms are further introduced for mining each type of anomaly. The funda-

mental goal is to enrich the attributed graph mining research community with

new anomaly definitions and mining techniques, while addressing the drawbacks

of existing mining frameworks.

1.1.3 Vertex Classification

An important topic covered in this thesis is vertex classification for vertex

attribute generation. This constitutes an essential pre-step for graphs that are

partially attributed or labeled. Through vertex classification, we are able to assign

class labels to unlabeled vertices using existing label information. Such class labels

are considered important attributive information for vertices, on which all of our

10
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proposed attributed graph mining algorithms can be applied. In this section, we

review related works on vertex classification in attributed graphs.

Classification using only local textual attributes has been extensively studied

in the information retrieval literature [51, 74, 82, 102]. In the context of the web

and social networks, such text-based classification poses a significant challenge,

because the attributes are often drawn from heterogeneous and noisy sources that

are hard to model with a standardized lexicon.

As an alternative, techniques based on linkage information are proposed. An

early work on using linkage to enhance classification is [22], which uses the text

content in adjacent web pages in order to model the classification behavior of a

web page. Propagation-based techniques such as label and belief propagation [90,

104, 105] are used as a tool for semi-supervised learning with both labeled and

unlabeled examples [108]. [65] uses link-based similarity for vertex classification,

which is further used in the context of blogs [12]. However, all of these techniques

only consider the linkage information of a graph.

Some studies have been dedicated to graph clustering using both content and

links [107]. Another work [15] discusses the problem of label acquisition in col-

lective classification, which is an important step to provide the base data neces-

sary for classification purposes. Applying collective classification on email speech

acts is examined in [27]. It shows that analyzing the relational aspects of emails

11



Chapter 1. Introduction

(such as emails in a particular thread) significantly improves the classification

accuracy. [22, 103] shows that the use of graph structures during categorization

improves the classification accuracy of web pages. In this thesis, we explore vertex

classification in large and dynamic graphs which gradually evolve over time.

1.1.4 Related Methodologies

The proposed graph mining algorithms in this thesis extend existing method-

ologies spanning from combinatorial to probabilistic methods. In this section, we

review previous works on some of the core methodologies discussed in this thesis.

Top-k query processing is originally studied for relational database [19, 42, 78]

and middleware [23, 48, 67]. Top-k query is usually abstracted as getting objects

with the top-k aggregate ranks from multiple data sources. Supporting top-k

queries in SQL is proposed in [19]. In our work, the goal is to extend top-k

queries to graph data. Existing techniques are no longer directly applicable.

Probabilistic models have been a popular choice in graph mining research [94,

69, 44, 106, 39, 93]. [69] proposes a novel solution to regularize a PLSA statistical

topic model with a harmonic regularizer based on the graph structure. [93] pro-

poses a unified generative model for both content and structure by extending a

probabilistic relational model to model interactions between the attributes and the

link structure. [106] studies the inner community property in social networks by
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analyzing the semantic information in the network, and approaches the problem

of community detection using a generative Bayesian network.

A particular probabilistic model used in our thesis is mixture model, which has

been attracting attention in finding interesting patterns in various data [32, 94,

84]. [94] addresses the problem of feature selection, via learning a Dirichlet process

mixture model in the high dimensional feature space of graph data. [32] applies

a mixture model to unsupervised intrusion detection, when the percentage of

anomalous elements is small. Meanwhile, various techniques have been explored to

regularize a mixture model to appeal to specific applications. [84] uses a regularizer

based on KL divergence, by discouraging the topic distribution of a document from

deviating the average topic distribution in the collection. [69] regularizes the PLSA

topic model with the network structure associated with the data.

1.2 Contribution of the Thesis

As aforementioned, we aim to extend the current literature in this thesis, by

proposing new types of interesting graph anomalies in vertex-attributed graphs

and respective mining frameworks. We summarize the contributions of this thesis

from the following perspectives.
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Chapter 2 - Proximity Search and Density Index. We explore the topic

of attribute-based proximity search in large graphs, by studying the problem of

finding the top-k query-covering vertex sets with the smallest diameters. Each set

is a minimal cover of the query. Existing greedy algorithms only return approxi-

mate answers, and do not scale well to large graphs. A framework using density

index and likelihood ranking is proposed to find answers efficiently and accurately.

The contribution of this chapter includes: (1) We introduce density index and the

workflow to answer graph proximity queries using such index. The proposed in-

dex and search techniques can be used to detect important graph anomalies, such

as attributed proximity patterns. (2) It is shown that if the neighborhoods are

sorted and examined according to the likelihood, the search time can be reduced.

(3) Partial indexing is proposed to significantly reduce index size and index con-

struction time, with negligible loss in query performance. (4) Empirical studies

on real-world graphs show that our framework is effective and scalable.

Chapter 3 - Iceberg Anomaly and Attribute Aggregation. Along this

topic, we introduce the concept of graph iceberg anomalies that refer to vertices

for which the aggregation of an attribute in their vicinities is abnormally high. We

further propose a framework that performs aggregation using random walk-based

proximity measure, rather than traditional SUM and AVG aggregate functions.

The contribution of this chapter includes: (1) A novel concept, graph iceberg, is
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introduced. (2) A framework to find iceberg vertices in a scalable manner, which

can be leveraged to further discover iceberg regions. (3) Two aggregation meth-

ods with respective optimization are designed to quickly identify iceberg vertices,

which hold their own stand-alone technical values. (4) Experiments on real-world

and synthetic graphs show the effectiveness and scalability of our framework.

Chapter 4 - Probabilistic Anomaly and Attribute Distribution. We

introduce a generative model to identify anomalous attribute distributions in a

graph. Our framework models the processes that generate vertex attributes and

partitions the graph into regions that are governed by such generative processes.

The contribution of this chapter includes: (1) A probabilistic model is proposed

that uses both structural and attributive information to identify anomalous graph

regions. (2) It finds anomalies in a principled and natural way, avoiding an artifi-

cially designed anomaly measure. (3) Two types of regularizations are employed

to materialize smoothness of anomaly regions and more intuitive partitioning of

vertices. (4) Experiments on synthetic and real data show our model outperforms

the state-of-art algorithm at uncovering non-random attributed anomalies.

Chapter 5 - Vertex classification for Attribute Generation. Attribute

generation is further studied to provide attributive information for unattributed

vertices in a partially attributed graph. We propose a random walk-based frame-

work to address the problem of vertex classification in temporal graphs with tex-
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tual vertex attributes. The contribution of this chapter includes: (1) We pro-

pose an intuitive framework that generates class labels for unknown vertices in a

partially-labeled graph, which takes into account both topological and attributive

information of the graph. (2) Inverted list structures are designed to perform

classification efficiently in a dynamic environment. (3) Experiments on real-world

graphs demonstrate that our framework outperforms popular statistical relational

learning methods at classification accuracy and runtime.
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Proximity Search and Density
Indexing

In this chapter, we explore an interesting search problem in attributed graphs.

The search and indexing techniques discussed in this chapter can be used to de-

tect important graph anomalies, such as subgraphs with high proximity among

vertices in an vertex-annotated graph. Given a large real-world graph where ver-

tices are annotated with attributes, how do we quickly find vertices within close

proximity among each other, with respect to a set of query attributes? We study

the topic of attribute-based proximity search in large graphs. Given a set of query

attributes, our algorithm finds the top-k query-covering vertex sets with the small-

est diameters. Existing greedy algorithms only return approximate answers, and

do not scale well to large graphs. We propose a novel framework using density

index and likelihood ranking to find vertex sets in an efficient and accurate man-

ner. Promising vertices are ordered and examined according to their likelihood to
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produce answers, and the likelihood calculation is greatly facilitated by density

indexing. Techniques such as progressive search and partial indexing are further

proposed. Experiments on real-world graphs show the efficiency and scalability of

our proposed approach. The work in this chapter is published in [61].

2.1 Background and Preliminary Material

Graphs can model various types of interactions [45, 52, 58]. They are used to

encode complex relationships such as chemical bonds, entity relations, social in-

teractions, and intrusion attacks. In contemporary graphs, vertices and edges are

often associated with attributes. While searching the graphs, what is interesting

is not only the topology, but also the attributes. Figure 2.1 shows a graph where

vertices contain numerical attributes. Consider a succinct yet fundamental graph

search problem: given a set of attributes, find vertex sets covering all of them,

rank the sets by their connectivity and return those with the highest connectiv-

ity. Viable connectivity measures include diameter, edge density, and minimum

spanning tree. In Figure 2.1, if we want to find vertex sets that cover attributes

{1, 2, 3}, and the diameter of a vertex set is its longest pairwise shortest path, we

can return S3, S1 and S2 in ascending order of diameters.
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Figure 2.1: Graph Proximity Search

Applications of such a setting abound. The vertex attributes can represent

movies recommended by a user, functions carried by a gene, skills owned by a

professional, intrusions initiated by a computer, and keywords in an XML docu-

ment. Such queries help solve various interesting problems in real-world graphs:

(1) in a protein network where vertices are proteins and attributes are their an-

notations, find a set of closely-connected proteins with certain annotations; (2) in

a collaboration network where vertices are experts and attributes are their skills,

find a well-connected expert team with required skills [58]; (3) in an intrusion net-

work where vertices are computers and attributes are intrusions they initiate, find

a set of intrusions that happen closely together. The list of applications continues:

find a group of close friends with certain hobbies, find a set of related movies cov-

ering certain genres, find a group of well-connected customers interested in certain

products, and many others.
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We study the attribute-based graph proximity search problem, to find the top-k

vertex sets with the smallest diameters, for a query containing distinct attributes.

Each set covers all the attributes in the query. The advantages of using diameter

as a measure are shown in [53]. Graph proximity search describes a general and

intuitive form of querying graphs. Lappas et al. [58] studies a similar problem

called Diameter-Tf for expert team formation and adopted a greedy algorithm,

RarestFirst, to return a 2-approximate answer (the returned set has a diame-

ter no greater than two times of the optimal diameter). Diameter-Tf is NP-

hard [58]. In this chapter, we propose a scalable solution to answer the top-k

proximity search query efficiently in large graphs, for queries with moderate sizes.

Our goals are: (1) finding the exact top-k answers, not approximate answers; (2)

designing a novel graph index for fast query processing.

Other similar studies include [53] and [38]. Kargar and An [53] study finding

the top-k r-cliques with smallest weights, where an r-clique is a set of vertices

covering all the input keywords and the distance between each two is constrained.

Two algorithms are proposed: branch and bound and polynomial delay. The

former is an exact algorithm, but it is slow and does not rank the answers; the

latter ranks the answers, but is a 2-approximation. Gajewar and Sarma [38] study

the team formation problem with subgraph density as the objective to maximize
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and focused on approximation algorithms. The problem definition is different in

our paper and we aim for exact and fast solutions.

A naive approach is to enumerate all query-covering vertex sets, linearly scan

them and return the top-k with the smallest diameters. This is costly for large

graphs. It is desirable to have a mechanism to identify the most promising graph

regions, or local neighborhoods, and examine them first. If a neighborhood covers

the query attributes, and meanwhile has high edge density, it tends to contain ver-

tex sets with small diameters that cover the query. We propose a novel framework,

to address the proximity search problem using this principle. Empirical studies

on real-world graphs show that our method improves the query performance.

2.1.1 Problem Statement

Let G = (V,E,A) be an undirected vertex-attributed graph. V is the vertex

set, E is the edge set, and A is a function that maps a vertex to a set of attributes,

A : V → P(A), where A is the total set of distinct attributes in G and P

represents power set. For the ease of presentation, we consider binary attributes,

meaning that for a particular attribute α ∈ A, a vertex either contains it or not. A

vertex can contain zero or multiple attributes. However with some modification,

our framework can be extended to graphs with numerical attribute values.
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Definition 2 (Cover). Given a vertex-attributed graph G = (V,E,A), a vertex

set S ⊆ V , and a query Q ⊆ A, S “covers”Q if Q ⊆
⋃
u∈S A(u). S is also called a

query-covering vertex set. S is a called minimal cover if S covers Q and no subset

of S covers Q.

Definition 3 (Diameter). Given a graph G = (V,E) and a vertex set S ⊆ V , the

diameter of S is the maximum of the pairwise shortest distances of all vertex pairs

in S, maxu,v∈S{dist(u, v)}, where dist(u, v) is the shortest-path distance between

u and v in G.

The diameter of a vertex set S, denoted by diameter(S), is different from the

diameter of a subgraph induced by S, since the shortest path between two vertices

in S might not completely lie in the subgraph induced by S.

Problem 1 (Attribute-Based Proximity Search). Given a vertex-attributed graph

G = (V,E,A) and a query Q that is a set of attributes, attribute-based graph

proximity search finds the top-k vertex sets {S1, S2, . . . , Sk} with the smallest di-

ameters. Each set Si is a minimal cover of Q.

In many applications, it might not be useful to generate sets with large diam-

eters, especially for graphs exhibiting the small-world property. One might apply

a constraint such that diameter(Si) does not exceed a threshold.

22



Chapter 2. Proximity Search and Density Indexing

2.1.2 RarestFirst Algorithm

RarestFirst is a greedy algorithm proposed by [58] that approximates the

top-1 answer. First, RarestFirst finds the rarest attribute in query Q that is

contained by the smallest number of vertices in G. Secondly, for each vertex v

with the rarest attribute, it finds its nearest neighbors that contain the remaining

attributes in Q. Let Rv denote the maximum distance between v and these neigh-

bors. Finally, it returns the vertex with the smallest Rv, and its nearest neighbors

containing the other attributes in Q, as an approximate top set. RarestFirst

yields a 2-approximation in terms of diameter, i.e., the diameter of the top set

found by RarestFirst is no greater than two times that of the real top set.

RarestFirst can be very fast if all pairwise shortest distances are pre-indexed.

This is costly for large graphs. Our framework does not have such prerequisite.

Besides, our goal is finding the real top-k answers (not approximate answers).Our

framework works well for queries with small-diameter answers, which are common

in practice. For small graphs where all pairwise shortest distances can be pre-

indexed, or for some difficult graphs where optimal solutions are hard to derive,

RarestFirst could be a better option. In Section 2.7, we implement a modified

top-k version of RarestFirst using the proposed progressive search technique,

whose query performance is compared against as a baseline.
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2.1.3 Cost Analysis and Observations

The naive solution in Section 2.1 scales poorly to large graphs because: (1)

It entails calculating all-pairs shortest distances. It takes O(|V |3) time using the

Floyd-Warshall algorithm and O(|V ||E|) using the Johnson’s algorithm. (2) It

examines all query-covering sets without knowing their likelihood to be a top-k

set. The time complexity is O(|V ||Q|), with |Q| being the size of the query.

An alternative approach is to examine the local neighborhoods of promising

vertices, and find high-quality top-k candidates quickly. The search cost is the

number of vertices examined times the average time to examine each vertex. It

is important to prune unpromising vertices. A possible pruning strategy is: let

d∗ be the maximum diameter of the current top-k candidates. d∗ decreases when

new query covers are found to update the top-k list. d∗ can be used to prune

vertices which do not locally contain covers with diameter < d∗. We instantiate

such idea using nearest attribute pruning and progressive search, to quickly prune

vertices which are unable to produce qualified covers. The key is to find vertices

whose neighborhoods are likely to produce covers with small diameters, so that

the diameter of the discovered top-k candidates can be quickly reduced.
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ud=1d=2d=3
Figure 2.2: d-Neighborhood Example

Definition 4 (d-Neighborhood). Given a graph G = (V,E) and a vertex u in G,

the d-neighborhood of u, Nd(u), denotes the set of vertices in G whose shortest

distance to u is no more than d, i.e., {v|dist(u, v) ≤ d}.

Intuitively, the d-neighborhood of u, Nd(u), can be regarded as a sphere of

radius d centered at u. Figure 2.2 illustrates the 1-hop, 2-hop and 3-hop neigh-

borhoods of an example vertex u. For each vertex u in G, we have to determine if

its d-neighborhood is likely to generate vertex sets with small diameters to cover

the query. The key question is: how do we estimate such likelihood in an efficient

and effective manner?

1 2 3 >3Pairwise Dist.Probability u’s 3-Hop Neighborhood 1 2 3 >30.5 0.3 0.1 0.1 0.50.20.20.1Probability v’s 3-Hop NeighborhoodPairwise Dist.
Figure 2.3: Pairwise Distance Distribution Example
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We propose density index to solve the likelihood estimation problem. Fig-

ure 2.3 shows the intuition behind density index. Assume there are two regions,

i.e., the 3-neighborhoods of vertices u and v. The distributions of pairwise short-

est distances in both regions are plotted in Figure 2.3. The horizontal axis is the

pairwise distance, which are 1, 2, 3 and greater than 3. The vertical axis shows

the percentage of vertex pairs with those distances. Given a query Q, if both

regions exhibit similar attribute distribution, which one has a higher chance to

contain a query cover with smaller diameter? Very likely u’s ! This is because

there is a much higher percentage of vertex pairs in u’s neighborhood that have

smaller pairwise distances. Density index is built on this intuition. For each ver-

tex, the pairwise distance distribution in its local neighborhood is indexed offline,

which will later be used to estimate its likelihood online. Section 2.3 describes our

indexing techniques in depth.

2.2 Proximity Search Framework

Density Index Construction: We create a probability mass function (PMF)

profile for each vertex depicting the distribution of the pairwise shortest distances

in its d-neighborhood, for 1 ≤ d ≤ dI . dI is a user-specified threshold.
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Seed Vertex Selection: Instead of examining the entire vertex set V , we only

examine the neighborhoods of the vertices containing the least frequent attribute

in the query Q. These vertices are called seed vertices. Since a qualified vertex

set must contain at least one seed vertex, we can solely focus on searching the

neighborhoods of seed vertices.

Likelihood Ranking: Seed vertices are examined according to their likeli-

hood to produce qualified vertex sets in their local neighborhoods. Vertices with

the highest likelihoods are examined first.

Progressive Search: We maintain a buffer, Bk, of the top minimal query

covers discovered so far. A sequential examination finds qualified vertex sets

with diameters 1, 2, . . ., until the top-k buffer is full (contains k answers). This

mechanism enables early termination of the search. Once the top-k buffer is full,

the algorithm stops, because all of undiscovered vertex sets will have diameter at

least as large as the maximum diameter in the top-k buffer.

Nearest Attribute Pruning: Let d be the current diameter used in progres-

sive search. Once d is determined, our algorithm traverses seed vertices to find

query covers with diameter exactly as d. d increases from 1 and is used to prune

seed vertices that are unable to generate qualified covers. Such seeds have their

nearest neighbor containing any query attribute further than d-hop away.
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Our framework. Algorithm 1 shows the overall work flow of the proposed frame-

work. In subsequent sections, we will discuss the above components in detail.

Algorithm 1: Our Framework
Input: Graph G, indexing radius dI , query Q, k

Output: The top-k vertex sets with the smallest diameters

1 Indexing G from 1 to dI ;

2 Top-k buffer Bk ← ∅, d← 1;

3 while true do

4 Rank the seed vertices decreasingly by likelihood;

5 for each seed vertex in the ranked list do

6 if it is not pruned by the nearest attribute rule then

7 Check its d-neighborhood for minimal query covers with diameter d;

8 Update Bk with discovered minimal covers;

9 If Bk is full, return Bk;

10 d++;
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2.3 Indexing and Likelihood Rank

In order to estimate the likelihood online fast, we propose density indexing to

pre-compute indices that reflect local edge connectivity. How to utilize the density

index to facilitate likelihood estimation is discussed in Section 2.3.2.

2.3.1 Density Index

Density index records the pairwise shortest distance distribution in a local

neighborhood, which is solely based on topology. For each vertex u, we first

grow its d-neighborhood, Nd(u), using BFS. The pairwise shortest distances for

all vertex pairs in Nd(u) are then calculated. Some pairwise distances might be

greater than d (at most 2d). Density index records the probability mass function

of the discrete distance distribution, namely the fraction of pairs whose distance

is h, for 1 ≤ h ≤ 2d, as in Figure 2.3. Density index only needs to record

the distribution, not all-pairs shortest distances. Section 2.5 will discuss how to

perform approximate density indexing.

Let I be an indicator function and P (h|Nd(u)) be the percentage of vertex

pairs with distance h. We have

P (h|Nd(u)) =

∑
vi,vj∈Nd(u) I(dist(vi, vj) = h)∑

vi,vj∈Nd(u) I(1)
. (2.1)
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Users can reduce the histogram size by combining the percentage of pairs whose

distance is greater than a certain threshold ĥ, as in Equation (2.2). Usually ĥ = d.

P (> ĥ|Nd(u)) =

∑
vi,vj∈Nd(u) I(dist(vi, vj) > ĥ)∑

vi,vj∈Nd(u) I(1)
. (2.2)

Since the distribution can change with respect to the radius of the neighbor-

hood, we build the histograms for varying d-neighborhoods of each vertex, with

1 ≤ d ≤ dI , where dI is a user-specified indexing locality threshold. Figure 2.2

shows the neighborhoods of vertex u with different radii. For each radius d, we

build a histogram similar to Figure 2.3. Intuitively, if Nd(u) contains a higher

percentage of vertex pairs with small pairwise distances and it also covers Q,

Nd(u) should be given a higher priority during search. This intuition leads to the

development of likelihood ranking.

Supplementary indices are also used to facilitate likelihood ranking and nearest

attribute pruning (Section 2.4.2). (1) For each attribute αi in G, global attribute

distribution index records the number of vertices in G that contain attribute αi.

(2) Inspired by the indexing scheme proposed by He et al. [45], we further index, for

each vertex in G, its closest distance to each attribute within its d-neighborhood.

Since density index has histogram structure as in Figure 2.3, the space cost

of density index is Σd=dI
d=1 O(|V |d) = O(|V |d2

I). For index time, suppose the av-

erage vertex degree in G is b, then for each vertex u, the expected size of its

d-neighborhood is O(bd). If we use all pairwise distances within d ∈ [1, dI ] to
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build the density index, the total time complexity will be O(|V |b2dI ). The index

time might be huge even for small dI . This motivates us to design partial index-

ing (Section 2.5), which greatly reduces index time and size, while maintaining

satisfying index quality.

2.3.2 Likelihood Ranking

Given a query Q = {α1, . . . , α|Q|}, let α1 ∈ Q be the attribute contained by

the smallest number of vertices in G. α1 is called the rarest attribute in Q. Let

Vα1 = {v1, . . . , vm} be the vertex set in G containing attribute α1. These vertices

are referred to as the seed vertices. Algorithm 1 shows that the d-neighborhoods of

all seed vertices will be examined according to their likelihood to produce minimal

query covers with diameter exactly as d, while d is gradually relaxed. For each

seed vertex vi(i = {1, . . . ,m}), its likelihood depends on the pairwise distance

distribution of its d-neighborhood, Nd(vi). The likelihood reflects how densely the

neighborhood is connected and can be computed from the density index.

Likelihood Computation

Definition 5 (Distance Probability). Randomly selecting a pair of vertices in

Nd(vi), let p(vi, d) denote the probability for this pair’s distance to be no greater
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than d. p(vi, d) can be obtained from the density index, P (h|Nd(vi)),

p(vi, d) =
d∑

h=1

P (h|Nd(vi)). (2.3)

Definition 6 (Likelihood). Randomly selecting a vertex set with |Q| vertices in

Nd(vi), let `(vi, d) denote the probability for this set’s diameter to be no greater

than d. With density index (Equation (2.1)), `(vi, d) can be estimated as

`(vi, d) ∼ p(vi, d)|Q|(|Q|−1)/2

∼
( d∑
h=1

P (h|Nd(vi))
)|Q|(|Q|−1)/2

(2.4)

If the diameter of a vertex set is no greater than d, all the vertex pairs within

this set must be at most d distance away from each other. If we assume indepen-

dency of pairwise distances among vertex pairs, Equation (2.4) can be obtained,

given that the vertex set has size |Q|. Certainly, it is an estimation, since pair-

wise distances should follow some constraints, such as triangle inequality in metric

graphs. For a given query Q, `(vi, d) is used as the likelihood to rank all the seed

vertices. Apparently, seed vertices whose local neighborhoods exhibit dense edge

connectivity tend to be ranked with higher priority. With the presence of density

index, likelihood can be easily computed as in Equation (2.4).

For all the seed vertices in Vα1 , we sort them in descending order of `(vi, d)

and find minimal query covers with diameter d individually. For each seed vertex

under examination, we first perform (unordered) cartesian product across query
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attribute support lists to get candidate query covers, and then select minimal

covers from those covers. Such approach assures that all possible minimal query

covers will be found from each seed vertex’s d-neighborhood.

Cartesian Product and Query Covers

For each seed vertex vi with attribute α1, we generate a support vertex list

for each attribute in the query Q = {α1, α2, . . . , α|Q|} in vi’s d-neighborhood. Let

nj be the size of the support list for αj. Let πd(vi) denote the total number

of possible query covers generated by performing a cartesian product across all

attribute support lists, where each cover is an unordered vertex set consisting of

one vertex from each support list.

πd(vi) =

|Q|∏
j=1

nj. (2.5)

Not all such covers are minimal. In Figure 2.4, if Q = {1, 2, 3}, three support

lists are generated in a’s 1-neighorhood. For example, attribute 1 has two vertices

in its list, a and b. One of the covers across the lists is {a, b, c}, which is not

minimal. From {a, b, c}, we shall generate 3 minimal covers, {a, b}, {b, c} and

{a, c}. For each seed vertex, all candidate covers are scanned and those minimal

ones are found to update the top-k list. Note that generating minimal covers from

the supporting lists is an NP-hard problem itself. Here we find the minimal covers
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in a brute-force manner. It is a relatively a time-consuming process. However, with

progressive search, which will be described later, we only need to do this locally in

a confined neighborhood. Experiment results will show that our framework still

achieves good empirical performance on large graphs.ba c1,3 1,22,3 ba cb ca1:2:3:
Figure 2.4: Minimal Cover Example

2.4 Progressive Search and Pruning

Progressive search enables search to terminate once k answers are found. Near-

est attribute pruning is further used to prune unpromising seed vertices.

2.4.1 Progressive Search

The search cost increases exponentially when d increases. Instead of test-

ing a large value of d first, we propose to check neighborhoods with gradually

relaxed radii. A top-k buffer, Bk, is maintained to store the top vertex sets

with the smallest diameters found so far. We progressively examine the neigh-
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borhoods with d = 1, d = 2, and so on, until Bk is full. Such mechanism al-

lows the search to terminate early. For example, if k answers are found while

checking the 1-hop neighborhoods of all seed vertices, the process can be termi-

nated without checking neighborhoods with d ≥ 2. In Figure 2.5, suppose the

query is Q = {1, 2, 3}, and we have three seed vertices {u, v, w}. Starting with

d = 1, we explore the 1-hop neighborhoods of all three, looking for covers with

diameter 1, which gives us 〈{w, i}, 1〉. Here, 〈{w, i}, 1〉 means the diameter of

{w, i} is 1. Moving onto d = 2, we explore the 2-hop neighborhoods of all the

three vertices (in dashed lines), seeking covers with diameter 2, which gives us

{〈{u, c, d}, 2〉, 〈{u, c, g}, 2〉, 〈{u, b, g}, 2〉}. If k = 4, the search process terminates.

2.4.2 Nearest Attribute Pruning

We further propose a pruning strategy called nearest attribute pruning. Used

together with progressive search, it is able to prune unfavorable seeds from check-

ing. Suppose the current diameter used in progressive search is d. For each

seed vertex vi, we calculate its shortest distance to each attribute in Q within

its d-neighborhood, Nd(vi). If there is an attribute α ∈ Q such that the short-

est distance between a vertex with α and vi is greater than d, we skip checking

vi and its neighborhood, since Nd(vi) is not able to generate a query cover with

diameter ≤ d. Furthermore, vi and the edges emanating from it can be removed.
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For example in Figure 2.5, if Q = {1, 2, 3} and at certain point d = 2. Four

query covers have been inserted into Bk together with their diameters, which are

{〈{w, i}, 1〉, 〈{u, c, d}, 2〉, 〈{u, c, g}, 2〉, 〈{u, b, g}, 2〉}. We no longer need to check

the neighborhood of vertex v. This is because the shortest distance between v and

attribute 2 is 3, which is greater than the current diameter constraint d = 2.u dc g ea fb wh i jlm kvr s tx y z1 112 2 33 2,33 3
32

Figure 2.5: Pruning and Progressive Search Example

2.5 Partial Indexing

Building the complete density index for large graphs is expensive. We therefore

propose a partial indexing mechanism that builds an approximate index using

partial neighborhood information.

2.5.1 Partial Materialization

Using random sampling, partial materialization allows density index to be

built approximately by accessing only a portion of the local neighborhoods. For

36



Chapter 2. Proximity Search and Density Indexing

each vertex u to index: (1) only a subset of vertices in u’s d-neighborhood are

used to form an approximate neighborhood; (2) only a percentage of vertex pairs

are sampled from such approximate neighborhood to construct the partial density

index. More specifically, the following steps are performed.

(a) Given a vertex u and an indexing distance d, a subset of vertices are

randomly sampled from Nd(u). An approximate d-neighborhood, Ñd(u), consists

of those sampled vertices and their distances to u.

(b) Randomly pick a vertex v from Ñd(u).

(c) Get the intersection of Ñd(u) and Ñd(v), χd(u, v). For a random vertex x

in χd(u, v), sample the pair (x, v) and record their distance as in Ñd(v).

(d) For a random vertex x in Ñd(u) but not in χd(u, v), sample the pair (x, v)

and record their distance as > d.

(e) Repeat Steps (b) to (d) until a certain percentage, p, of vertex pairs are

sampled from Nd(u).

(f) Draw the pairwise distance distribution using sampled pairs to approximate

the real density distribution in Nd(u).

Figure 2.6 (better viewed in color) shows an example. The solid circles centered

at vertices u and v are their actual 2-neighborhoods. The white free-shaped region

surrounding u is its approximate 2-neighborhood, Ñ2(u); similarly, the gray free-

shaped region surrounding v is Ñ2(v). The region with grid pattern circumscribed
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by a solid red line is the intersection of both approximate neighborhoods, χ2(u, v).

Each sampled vertex x from u’s approximate 2-neighborhood forms a pair with

v, (x, v). If x is in the intersection, χ2(u, v), the pair (x, v) is sampled with a

pairwise distance recorded as in Ñd(v); otherwise it is sampled with a pairwise

distance recorded as > d. u v
Figure 2.6: Partial Materialization Example

A localized version of Metropolis-Hastings random walk (MHRW) sampling [26,

41] is used to sample vertices from Nd(u) (Step (a)).

2.5.2 Representative Vertices

Partial materialization reduces the indexing cost for an individual vertex. To

further reduce the indexing cost, we can reduce the number of vertices to be

indexed. The intuition is: if two vertices u and v have similar local topological

structure, there is no need to build the density index for u and v separately, given

that the distance distributions in the neighborhoods of u and v are similar. For

example, in Figure 2.7, the 1-hop neighborhoods of vertices u and v overlap each

38



Chapter 2. Proximity Search and Density Indexing

other to a great extent. The common adjacent neighbors of u and v in Figure 2.7

are {a, b, c, d}, which is 66.7% of u and v’s 1-neighborhoods. Can we build the

density index of v with the aid of the density index of u?

A simple strategy employed in our framework is to use the density of u to

represent that of v (or vice versa), if the percentage of common 1-hop neighbors

of u and v exceeds a certain threshold in both u and v’s neighborhoods. Let σ

denote such threshold. In this case, vertex u is considered as the representative

vertex of v. We only index those vertices which are representatives of some others,

and use their density index to represent others’. Such strategy quickly cuts down

the number of vertices to index, thus reduces the index time and index size. As

experimented in Section 2.7, σ ≥ 30% would suffice to produce effective partial

index, which still yields good online query processing performance.v ud cbe ga
Figure 2.7: Representative Vertex Example
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2.6 Optimality of Our Framework

Theorem 1 (Optimality of Our Framework). For a query, our framework finds

the optimal top-k answers. Partial indexing and likelihood ranking affect the speed

of query processing, but not the optimality of the results.

Proof Sketch. Since seed vertices contain the least frequent attribute in

the query, all query covers contain at least one seed vertex. Confining the search

to the neighborhoods of seed vertices does not leave out any answers. Progressive

search assures that the diameters of unexamined vertex sets will be no less than

the maximum diameter in the top-k buffer. Therefore the final top-k answers

returned will have the smallest diameters. Indexing and likelihood ranking identify

“promising” seed vertices and guide the algorithm to discover the top-k answers

faster. If more promising seeds are ranked higher, the top-k buffer will be filled

up faster. It is possible for a seed vertex, whose neighborhood contains good

answers, to be ranked lower than other less promising seeds. However, this would

only affect the speed of filling up the top-k buffer. It would not change the fact that

the top-k buffer contains the top-k smallest diameters. Partial indexing further

reduces the indexing cost by indexing only partial information. It approximates

the indexing phase, and will not affect the optimality of the query phase. Therefore

our framework always returns the optimal answers.
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The likelihood in Equation (2.4) for ranking seeds assumes independence among

pairwise distances in their neighborhood, which might not be valid for some seeds.

However, as long as it is valid for some seed vertices, the top-k buffer can be quickly

updated with answers discovered surrounding those seeds, thus speeding up the

search. The goal of likelihood ranking is to identify promising regions containing

many potential answers and fill up the top-k buffer quickly. Section 9 empirically

validates the effectiveness of likelihood ranking.

We reiterate that partial indexing only affects the estimated density and like-

lihood ranking. Only the speed of the top-k search will be affected by partial

indexing. Partial indexing will not impair the optimality of our framework in

terms of returning the top-k answers with the smallest diameters.

2.7 Experimental Evaluation

In this section, we empirically evaluate our framework, which we refer to as

gDensity, considering that it is a density indexing-based solution. This section

contains: (1) comparison between gDensity and the modified RarestFirst; (2)

evaluation of partial indexing; (3) scalability test of gDensity. All experiments are

run on a machine that has a 2.5GHz Intel Xeon processor (only one core is used),

32G RAM, and runs 64-bit Fedora 8 with LEDA 6.0 [68].
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2.7.1 Data Description

DBLP Network. This is a collaboration network extracted from the DBLP

computer science bibliography, that contains 387,547 vertices and 1,443,873 edges.

Each vertex is an author and each edge is a collaborative relation. We use the

keywords in the paper titles of an author as vertex attributes.

Intrusion Networks. An intrusion network is a computer network, where

each vertex is a computer and each edge is an attack. A vertex has a set of at-

tributes, which are intrusion alerts initiated by this computer. There are 1035

distinct alerts. Intrusion alerts are logged periodically. We use one daily net-

work (IntruDaily) with 5,689 vertices and 6,505 edges, and one annual network

(IntruAnn) with 486,415 vertices and 1,666,184 edges.

WebGraph Networks. WebGraph 1 is a collection of UK web sites. Each

vertex is a web page and each edge is a link. A routine is provided to attach

the graph with random integer attributes following Zipf distribution [62]. Five

subgraphs are used, whose vertex numbers are 2M, 4M, 6M, 8M and 10M, and

whose edge numbers are 9M, 16M, 23M, 29M and 34M. A smaller graph is a

subgraph of a larger graph.

50 queries are generated for each graph used. Query time is averaged over all

the queries. Table 2.1 shows some query examples. Indexing is conducted up to 3

1http://webgraph.dsi.unimi.it/
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hops for all the graphs. If not otherwise specified, partial indexing is the default

indexing. The vertex pair sampling percentage is 40% and the 1-hop neighborhood

similarity threshold in representative vertex selection is σ = 30%.

Table 2.1: gDensity Query Examples

DBLP Network
ID Query
1 "Ranking", "Databases", "Storage"

2 "Intelligence", "TCP/IP", "Protocols"

3 "Bayesian", "Web-graphs", "Information"

4 "Complexity", "Ranking", "Router", "Generics"

5 "Mining", "Graph", "Stream"

Intrusion Network
ID Query
1 "HTTP_Fields_With_Binary", "HTTP_IIS_Unicode_Encoding",

"MSRPC_RemoteActivate_Bo"

2 "FTP_Mget_DotDot", "HTTP_OracleApp_demo_info",
"HTTP_WebLogic_FileSourceRead"

3 "Content_Compound_File_Bad_Extension",
"HTTP_URL_Name_Very_Long", "HTTP_URL_Repeated_Dot"

4 "SMB_Startup_File_Access", "pcAnywhere_Probe",
"HTTP_Viewsrc_fileread", "Failed_login-unknown_error"

5 "HTTP_Passwd_Txt", "DNS_Windows_SMTP_Overflow",
"OSPF_Link_State_Update_Multicast", "POP_User"

2.7.2 gDensity vs. Baselines

Baselines

We discovered in our experiments that the original RarestFirst method does

not scale well to large graphs. Thus we add a constraint D on the diameters

of the top-k vertex sets in RarestFirst, limiting the search to each seed’s D-
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neighborhood. We further use progressive search to speed up RarestFirst. Al-

gorithm 2 outlines the customized top-k RarestFirst. Another baseline method

is a variant of gDensity, called “gDensity w/o LR”, which removes likelihood rank-

ing from gDensity. All of the other components are still kept in gDensity w/o

LR. gDensity w/o LR examines the seed vertices in a random order. The goal

is to inspect the actual effect of likelihood ranking. Both methods are used for

comparative study against gDensity.

Algorithm 2: RarestFirst With Progressive Search
Input: Graph G, Query Q, diameter constraint D, k

Output: Top-k vertex sets with smallest diameters

1 α1 ← the least frequent attribute in Q;

2 while the top-k buffer is not full do

3 for d from 1 to D do

4 for each vertex v with α1 do

5 S ← {v and v’s nearest neighbors in Nd(v) that contain other attributes in Q};

6 Extract minimal covers from S;

7 for each minimal cover do

8 If it is not yet in the top-k buffer, and its diameter ≤ D, insert it into the buffer

according to its diameter;

9 If the top-k buffer is full,return top-k buffer;
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Evaluation Methods

The comparison is done on two measures, query time (in seconds) and answer

miss ratio (in percentage). RarestFirst could miss some real top-k answers since

it is an approximate solution. Miss ratio is the percentage of real top-k answers

RarestFirst fails to discover. For example, if the real top-5 all have diameter

2 and if 2 of the top-5 answers returned by RarestFirst have diameter greater

than 2, the miss ratio is 2/5 = 40%. gDensity and gDensity w/o LR are able to

find all real top-k answers.

We also examine the impact of attribute distribution. If attributes are densely

distributed (the average number of vertices containing each attribute is high), it

might help the search because each neighborhood might potentially contain many

answers and the algorithm stops early; if the attributes are sparsely distributed, it

might also help the search because the seed vertex list is shorter and the candidate

set for each seed is smaller. We thus design a group of experiments where we

synthetically regenerate attributes for networks DBLP, IntruAnn and WebGraph

10M, under certain attribute ratios. The ratio is measured as |L|/|V |, where |L|

is the total number of distinct attributes in G. Each vertex is randomly assigned

one of those synthetic attributes.
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Query Time Comparison

Figure 2.8 shows the query time comparison of gDensity, gDensity w/o LR and

the modified RarestFirst. The leftmost column shows how the average query

time changes with k. The advantage of gDensity over the modified RarestFirst

is apparent. The effectiveness of likelihood ranking is evident on DBLP and In-

truAnn, where gDensity greatly outperforms gDensity w/o LR. Likelihood ranking

does not work as well on WebGraph 10M. It is possible that WebGraph 10M does

not contain many patterns or dense regions, rendering it difficult to rank seed

vertices effectively.

The remaining columns depict how the average query time changes with the

synthetic attribute ratio, |L|/|V |. The tradeoff between dense (small attribute

ratio) and sparse (large attribute ratio) attribute distribution clearly shows on

DBLP, where the gDensity query time first goes up and then goes down. It goes

up because as attribute distribution becomes sparse, more seeds and larger values

of d need to be examined to find the top-k, since each region contains less answers.

It then goes down because the seed vertex list gets shorter and the set of candidate

covers to check for each seed gets smaller. RarestFirst sometimes outperforms

gDensity because the diameter constraint lets RarestFirst finish without finding

all the optimal top-k sets. In the next section, we will show the percentage of

answers missed by RarestFirst.
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Figure 2.8: gDensity vs. Baseline Methods, Query Time

Query Optimality Comparison

Query optimality is measured by the answer miss ratio. gDensity discovers

the real top-k answers, thus the miss ratio of gDensity and gDensity w/o LR is 0.

Figure 2.9 shows how the miss ratio of RarestFirst changes with k. Miss ratio
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gradually increases with k. In the worst case, RarestFirst misses 52.8% of the

real top-k answers. On average, the miss ratio is around 30%. Clearly, compared

to gDensity, RarestFirst might fail to uncover all the optimal answers.
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Figure 2.9: RarestFirst Miss Ratios vs. k

We also observe how miss ratio changes with the synthetic attribute ratio,

|L|/|V |, in Figure 2.10. RarestFirst again is disadvantageous in terms of top-k

optimality. The average miss ratios are 46.6%, 23.6% and 35.1% for synthetically

attributed DBLP, IntruAnn and WebGraph 10M, respectively.

2.7.3 Partial Indexing Evaluation

Partial indexing reduces cost by indexing a subset of vertices using their ap-

proximate neighborhoods. We refer to the alternative, indexing all vertices using

their exact neighborhoods, as “all indexing”. The query performances of both
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Figure 2.10: RarestFirst Miss Ratios vs. Synthetic Attribute Ratio

indexing techniques are compared. Three thresholds of representative vertex se-

lection are used for partial indexing: σ = {10%, 30%, 50%}. Since all indexing is

very time-consuming for large graphs, we can only afford to conduct the compar-

ison on a small graph, IntruDaily.
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Figure 2.11: gDensity Partial vs. All Index: Query Time

As shown in Figure 2.11, the additional online query time partial indexing

induces over all indexing is almost negligible, especially when σ ≥ 30%. The
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moderate performance margin between σ = 10% and σ ≥ 30% might be attributed

to the fact that there are not that many vertex pairs whose neighborhood similarity

falls between 10% and 30%.

Table 2.2: gDensity Partial vs. All Index: Time & Size

Indexing Scheme Time (Seconds) Size (MB)

Partial Indexing, σ = 10% 6.959 0.013
Partial Indexing, σ = 30% 7.337 0.016
Partial Indexing, σ = 50% 7.452 0.019
All Indexing 533.243 0.312

Table 2.2 shows the indexing time (seconds) and index size (MB) comparison.

Partial indexing effectively reduces indexing cost. The indexing cost increases with

the representative vertex threshold, because a higher threshold means a larger

number of representative vertices to index.

2.7.4 gDensity Scalability Test

We conduct experiments on web graphs of increasing size to show the scala-

bility of gDensity. Table 2.3 shows how the index time and size change when the

graph increases from 2M to 10M vertices. Overall, the index time is satisfying and

reasonable. The largest graph only takes 3.9 hours to index. The index size is no

more than 30% of the graph size. Most importantly, the index time and size are

approximately linear to the size of the graph. Therefore, partial indexing exhibits

satisfying scalability over large graphs.
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Table 2.3: gDensity Scalability Test: Index Time & Size

Vertex # 2M 4M 6M 8M 10M

Index Time (Hours) 0.92 1.65 2.53 3.23 3.85
Graph Size (MB) 234 390 528 678 786
Index Size (MB) 72 123 174 222 259

Figure 2.12 shows how query time changes when the graph increases from 2M

to 10M vertices. The query time gradually increases and is still satisfying even for

very large graphs. A number of factors affect the query time, such as the graph

structure, the graph size, the attribute distribution, the query, and k. Since the

queries are randomly generated on each of the web graphs, it is possible for a

smaller graph to encounter a more difficult query that entails longer processing

time. Even for the same query, it is possible for it to be processed faster in a

larger graph, since more answers might be found at an early stage. If we compare

the runtime of top-5 for WebGraph 2M, top-10 for WebGraph 4M, top-15 for

WebGraph 6M, and top-20 for WebGraph 8M (i.e., the value of k increases with

the graph size), the runtime increases approximately linearly. Overall, gDensity

exhibits satisfying scalability.
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Chapter 3

Iceberg Anomalies and Attribute
Aggregation

In this chapter, we examine the second type of attributed anomalies, which is

inspired by iceberg queries in traditional relational database. Iceberg queries are

used to identify data records from a relational database whose aggregate values

with respect to one or multiple attributes are above a threshold [34]. The number

of above-threshold results is usually small, which renders such records “abnormal”

compared to the rest. Traditional techniques like this cannot be directly applied to

graphs for finding anomalous vertices due to the lack of dimensionality in graphs.

In this chapter, we introduce the concept of graph icebergs that refer to vertices

for which the concentration, or aggregation, of an attribute in their vicinities is

abnormally high. Intuitively, these vertices are “close” to the attribute of interest

in the graph space. Based on this intuition, we propose a novel framework, which

performs aggregation using random walks, rather than traditional SUM and AVG
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aggregate functions. This proposed framework scores vertices by their different

levels of interestingness and finds abnormal vertices that meet a user-specified

threshold. Two aggregation strategies, forward and backward aggregation, are

proposed with corresponding optimization techniques and bounds. Experiments

on both real-world and synthetic large graphs demonstrate that our framework is

effective and scalable. The work in this chapter is published in [60].

3.1 Background and Preliminary Material

Given a large vertex-attributed graph, how do we find abnormal vertices that

are within close proximity to a certain attribute of interest? In this chapter, we

introduce a generic concept called graph iceberg anomalies to refer to vertices

for which the concentration, or aggregation, of an attribute in their vicinities is

abnormally high. The name, “iceberg”, is borrowed from the concept of iceberg

queries proposed in [34]. When querying traditional relational databases, many

applications entail computing aggregate functions over an attribute (or a set of

attributes) to find aggregate values above some specified threshold. Such queries

are called iceberg queries, because the number of above-threshold results is often

small (the tip of an iceberg), compared to the large amount of input data [34].

Analogously, an aggregate function, such as the percentage of neighboring vertices
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containing the attribute, can be applied to each vertex in the graph, to assess the

concentration of a certain attribute within the vertex’s vicinity. An aggregate score

is computed for each vertex’s vicinity. Graph iceberg anomalies are retrieved as

those vertices whose aggregate score is above a given threshold.

Applications of graph iceberg anomaly detection abound, including target mar-

keting, recommendation systems, social influence analysis, and intrusion detection.

In a social network, if many of John Doe’s friends bought an iPhone but he has

not, he would be a good target for iPhone promotion, since he could be influenced

by his friends. In a geographic network, we can find sub-networks where crimes

occur more often than the rest of the network. The detection of such sub-networks

could help law enforcement officers better allocate their resources. In addition,

if the detected iceberg anomaly vertices form sparse subgraphs, social influence

analysis can be applied, since sparse edge connections among iceberg anomalies

often indicate social influence, rather than homophily [36].
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Figure 3.1: Graph Iceberg Anomaly
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Figure 3.1(a) shows a vertex-attributed graph, where black vertices are those

containing the attribute of interest, such as a product purchase or a disease infec-

tion. An aggregate score is computed for each vertex, indicating the concentration

level of the attribute in its vicinity. Figure 3.1(b) shows that the vertices can be

rearranged according to their aggregate scores. Vertices with higher scores are

positioned higher. By inserting cutting thresholds with different values, we can

retrieve different sets of iceberg anomalies. These retrieved icebergs can be further

processed to form connected subgraphs. Those subgraphs contain only vertices

whose local neighborhoods exhibit high concentration of an attribute of interest.

Such analysis will be very convenient for users to explore large graphs since they

can focus on just a few, important vertices. By varying the attribute of interest

and the threshold, they can adjust their focus and level of granularity. Note that

this differs from dense subgraph mining and clustering, since connected subgraphs

formed by iceberg anomalies do not necessarily have high edge connectivity.

Now the question is what type of aggregate functions one can use to find iceberg

anomalies? There are many possible measures to describe a vertex’s local vicinity.

Yan et al. proposed two aggregate functions over a vertex’s h-hop neighborhood,

SUM and AVG [101]. In our scenario, for a vertex v, SUM and AVG compute the

number and percentage of black vertices in v’s h-hop neighborhood, respectively.

However, we argue that SUM and AVG fail to effectively evaluate how close a
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Figure 3.2: PPV Aggregation vs. Other Aggregation Measures

vertex is to an attribute. Figure 3.2 shows the 2-hop neighborhoods of vertices x

and y. Both x and y have 18 neighbors that are within 2-hop distance away. For

both x and y, 8 out of the 18 2-hop neighbors are black; namely, 8 out of 18 2-hop

neighbors contain the attribute of interest. Therefore, both SUM and AVG will

return the same value on x and y. However, x is clearly “closer” to the attribute

than y, because all of x’s adjacent neighbors are black, whereas most of y’s black

2-hop neighbors are located on the second hop. Thus we need a different aggregate

function to better evaluate the proximity between a vertex and an attribute.

In this chapter, we use the random walk with restart model [76] to weigh the

vertices in one vertex’s vicinity. A random walk is started from a vertex v; at each

step the walker has a chance to be reset to v. This results in a stationary probabil-

ity distribution over all the vertices, denoted by the personalized PageRank vector

(PPV) of v [76]. The probability of reaching another vertex u reflects how close

v is to u with respect to the graph structure. The concentration of an attribute

q in v’s local neighborhood is then defined as the aggregation of the entries in v’s
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PPV corresponding to those vertices containing the attribute q, namely the total

probability to reach a node containing q from v. This definition reflects the affin-

ity, or proximity, between vertex v and attribute q in the graph. In Figure 3.2, by

aggregating over x and y’s PPVs, we can capture the fact that x is in a position

more abnormal than y, since x has a higher aggregate score than y.

As an alternative, we can use the shortest distance from vertex v to attribute

q to measure v’s affinity to q. However, shortest distance does not reflect the

overall distribution of q in v’s local neighborhood. It is possible that the shortest

distance is small, but there are only few occurrences of q in v’s local neighborhood.

In the customer network example, if John has a close friend who purchased an

iPhone, and this friend is the only person John knows that did, John might not

be a promising candidate for iPhone promotion.

With such PPV-based definition of graph icebergs, we design a scalable frame-

work, to compute the proposed aggregate measure. Vertices whose measure is

above a threshold are retrieved as graph iceberg anomalies. These iceberg anoma-

lies can be further processed (for example, graph clustering) to discover graph

iceberg regions. Section 3.5 discusses an interesting clustering property of ice-

berg anomaly vertices. We will also show in our experiments that our framework

discovers interesting author groups from the DBLP network.
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3.1.1 PageRank Overview and Problem Statement

Previous studies [6] showed that personalized PageRank (PPR) measures the

proximity of two vertices. If the aggregation is done on a PPV with respect to an

attribute, the aggregate score naturally reflects the concentration of that attribute

within a vertex’s close local vicinity.

Let G = (V,E,A) be an undirected vertex-attributed graph. V is the vertex

set, E is the edge set, and A is a function that maps a vertex to a set of attributes,

A : V → P(A), where A is the total set of distinct attributes in G and P

represents power set. For the ease of presentation, we consider binary attributes,

meaning that for a particular attribute q ∈ A, a vertex either contains it or not. A

vertex can contain zero or multiple attributes. However with some modification,

our framework can be extended to graphs with numerical attribute values.

Let M be the transition matrix of G. M ij = 1/dvj if there is an edge between

vertices vi and vj; and 0 otherwise. dvj is the vertex degree of vj. c is the restart

probability in the random walk model. A preference vector s, where |s|1 = 1,

encodes the amount of preference for each vertex. PageRank vector p is defined

as the solution of Equation (3.1) [76]:

p = (1− c)Mp + cs. (3.1)
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If s is uniform over all vertices, p is the global PageRank vector. For non-

uniform s, p is the personalized PageRank vector of s. In the special case when

s = 1v, where 1v is the unit vector with value 1 at entry v and 0 elsewhere, p is

the personalized PageRank vector of vertex v, also denoted as pv. The x-th entry

in pv, pv(x), reflects the importance of x in the view of v. 1

Definition 7 (Black Vertex). For an attribute q ∈ A, a vertex that contains the

attribute q is called a black vertex.

Definition 8 (q-Score). For an attribute q ∈ A, the q-score of v is defined as the

aggregation over v’s PPV:

Pq(v) = Σx|x∈V,q∈L(x)pv(x), (3.2)

where pv is the PPV of v.

The q-score is the sum of the black vertices’ entries in a vertex’s PPV. Cal-

culating q-scores for a query is called personalized aggregation. A vertex with a

high q-score has a large number of black vertices within its local neighborhood.

Intuitively, q-score measures the probability for a vertex v to reach a black vertex,

in a random walk starting from v after the walk converges.

1In this chapter, we typeset vectors in boldface (for example, pv) and use parentheses to
denote an entry in the vector (for example, pv(x)).
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Definition 9 (Iceberg Anomaly Vertex). For a vertex v, if its q-score is above a

certain threshold, v is called an iceberg anomaly vertex or simply an iceberg vertex;

otherwise it is called a non-iceberg vertex.

Problem 2 (Iceberg Anomaly Search). For an undirected vertex-attributed graph

G = (V,E,A) and a query attribute q, the graph iceberg problem finds all the

iceberg anomaly vertices given a user-specified threshold θ.

The power method computes the PageRank vectors iteratively as in Equa-

tion (3.1) until convergence [37], which is expensive for large graphs. Random

walks were used to approximate both global and personalized PageRank [8, 10, 35].

The PPV of vertex v, pv, can be approximated using a series of random walks

starting from v, each of which continues until its first restart. The length of

each walk follows a geometric distribution. [35] discovered the following theory:

Consider a random walk starting from v and taking L steps, where L follows a

geometric distribution Pr[L = i] = c(1− c)i, i = {0, 1, 2, . . .} with c as the restart

probability, then the PPR of vertex x in the view of v is the probability that the

random walk ends at x. Combining this with the Hoeffding Inequality [46], we

establish probabilistic bounds on approximating PPRs using random walks.

Theorem 2 (PPV Approximation). Suppose R random walks are used starting

from vertex v to approximate v’s PPV, pv. Let p̃v(x) be the percentage of those

61



Chapter 3. Iceberg Anomalies and Attribute Aggregation

R walks ending at x, then we have Pr[p̃v(x) − pv(x) ≥ ε] ≤ exp{−2Rε2} and

Pr[|p̃v(x)− pv(x)| ≥ ε] ≤ 2 exp{−2Rε2}, for any ε > 0.

The proof is in the appendix. Therefore if enough random walks are used,

the error between approximate and actual PPR is bounded probabilistically. For

example, if ε = 0.05 and R = 500, Pr[pv(x) − ε ≤ p̃v(x) ≤ pv(x) + ε] ≥ 83.58%.

We thus use random walks to approximate PPVs in large graphs.

3.2 Framework Overview

Algorithm 3: Our Framework
Input: G, query q, threshold θ, approximate error ε

Output: Graph iceberg vertices

1 Apply random walks to get approximate PPVs;

2 Perform aggregation over approximate PPVs to compute approximate q-scores;

3 Return vertices whose approximate q-score is above θ − ε;

The proposed iceberg vertex detection framework takes two steps: (1) user

specifies a query attribute q and a q-score cut-off threshold θ; and (2) our frame-

work identifies vertices whose q-score is above θ. Vertices whose q-score is below

θ are pruned. For better efficiency, random walks are used to approximate PPVs

and the aggregation is done on approximate PPVs. Algorithm 3 gives an overview
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Figure 3.3: Forward & Backward Aggregation

of our framework. Due to the error introduced by approximation, it returns ver-

tices whose approximate q-score is above the threshold minus an error tolerance,

θ − ε. The accuracy of such process will be analyzed later.

One way to properly set the threshold θ is to consider θ as the significance

level of q-scores. Namely, θ can be chosen via assessing the distribution of vertex

q-scores in random cases. We can randomly permute the attribute q among the

vertices in the graph and calculate the empirical distribution of vertex q-scores;

then we choose a point in the distribution to be θ so that only a small percentage

(e.g., 5%) of vertices in the distribution have q-scores higher than θ.

The core of our framework is the aggregation over PPVs. Two efficient ag-

gregation schemes, forward aggregation (FA) and backward aggregation (BA), are

proposed with respective optimization techniques. FA computes the q-score by

adding the PPR scores of all the black vertices for the current vertex; BA starts

from the black vertices and back-propagates their PPR scores to other vertices.

In Figure 3.3(a), v’s q-score is the sum of the PPR scores of x and y in v’s PPV:
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pv(x) + pv(y). In Figure 3.3(b), the bold black arrows indicate the direction of

PageRank aggregation, which starts from black vertices, and propagates backward

to other vertices. For black vertex x, its contribution to v’s q-score can be written

as a function of v’s PPR with respect to x: fx,v(px(v)). v’s q-score is the sum of

the contributions of all the black vertices.

3.3 Forward Aggregation

Basic FA uses random walks to approximate the PPVs. Aggregation is sub-

sequently conducted over the approximate PPVs. We then propose optimization

techniques for FA, including Pivot vertex-based FA (PFA) that is designed to

avoid a linear scan of all vertices. PFA incorporates various q-score bounds for

efficient vertex pruning.

3.3.1 Forward Aggregation Approximation

Applying FA on approximate PPVs generated by random walks is called FA

approximation, as shown in Figure 3.4. For each vertex v, R random walks,

{W1, . . . ,WR}, are conducted starting from v, to approximate v’s PPV. Each

walk continues until its first restart. Once the approximate PPV, p̃v, is derived,

the approximate q-score of v is the sum of the entries in p̃v corresponding to the
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Figure 3.4: Forward Aggregation Approximation

black vertices. We analyze the accuracy of such approximate aggregation by using

the Hoeffding Inequality as in Theorem 3.

Theorem 3 (FA Approximation). Suppose we perform R random walks from

vertex v to compute v’s approximate PPV, p̃v. Let P̃q(v) be the approximated q-

score of v. We have Pr[P̃q(v)−Pq(v) ≥ ε] ≤ exp{−2Rε2} and Pr[|P̃q(v)−Pq(v)| ≥

ε] ≤ 2 exp{−2Rε2}, for any ε > 0.

The proof is in the appendix. Now we analyze how well FA retrieves real

iceberg vertices. As in Algorithm 3, FA retrieves all vertices whose approximate

q-score is above θ−ε. We use recall to measure the accuracy of such retrieval. For

certain θ and ε, recall is computed as
∣∣{v|Pq(v) ≥ θ, P̃q(v) ≥ θ − ε}

∣∣/∣∣{v|Pq(v) ≥

θ}
∣∣. Recall is the percentage of real iceberg vertices that are retrieved by the

approximate aggregation.

Corollary 1 (FA Recall). Given a q-score cut-off threshold θ, for vertex v such

that Pq(v) ≥ θ, we have Pr[P̃q(v) ≥ θ − ε] ≥ 1− 2 exp{−2Rε2}, where ε > 0 and

P̃q(v) is v’s q-score using FA approximation.
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Proof. The proof follows from Theorem 3.

Therefore, if we use θ− ε as the threshold on approximate q-scores to retrieve

iceberg vertices, Corollary 1 says that we can derive a theoretical lower bound for

the expected recall, i.e., Pr[P̃q(v) ≥ θ − ε], where v is an iceberg vertex.

3.3.2 Improving Forward Aggregation

Although FA simulates random walks to estimate PPVs, it still calculates the

PPV for each vertex. In this section, we propose pruning techniques to avoid

computing all the approximate PPVs. We first adapt the decomposition property

of PPVs to the case of q-scores (Theorem 4). This property means that we can

bound the q-scores of v’s neighbors if we know v’s (Corollary 2). We then further

develop a better bound for the 2-hop neighbors by exploiting the common neigh-

bors of two vertices (Theorem 5). Finally, we establish “pivot-client” relations

between vertices and use q-scores of the pivot vertices to prune client vertices.

Aggregation Decomposition

We first introduce the q-score decomposition property. Previous studies pro-

posed PPV Decomposition Theorem [50], which expresses the PPV of a vertex in

terms of those of its adjacent neighbors.
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pv =
1− c
|N1(v)|

Σx∈N1(v)px + c1v, (3.3)

where N1(v) is the set of 1-hop neighbors of v, c is the restart probability, and 1v

is the unit vector with value 1 at entry v and 0 elsewhere. Let dv = |N1(v)|. We

find that similar decomposition can be applied on q-scores.

Theorem 4 (q-Score Decomposition). Given a query attribute q, the q-score of a

vertex v ∈ V , Pq(v), can be expressed via those of its neighbors as follows,

Pq(v) =
1− c
dv

Σx∈N1(v)Pq(x) + c1q∈L(v), (3.4)

where 1q∈L(v) is an indicator function: 1q∈L(v) = 1 if q is an attribute of vertex v,

and 1q∈L(v) = 0 otherwise.

Proof. According to Definition 8 and Equation (3.3):

Pq(v) =Σy|y∈V,q∈L(y)pv(y)

=Σy|y∈V,q∈L(y)

( 1− c
|N1(v)|

Σx∈N1(v)px(y) + c1v(y)
)

=
1− c
dv

Σx∈N1(v)Σy|y∈V,q∈L(y)px(y)

+ cΣy|y∈V,q∈L(y)1v(y)

=
1− c
dv

Σx∈N1(v)Pq(x) + c1q∈L(v).

Therefore, Theorem 4 is proven.
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q-Score Bounds

Theorem 4 expresses the q-score of a vertex in terms of those of its adjacent

neighbors. If the q-score of a vertex is known, we can derive an upper bound on

the q-scores of its neighbors. If such an upper bound is smaller than the threshold

θ, we can prune those neighbors without actually computing their q-scores.

Corollary 2 (Neighbor q-Score Bound). Given a query attribute q, for any vertex

v ∈ V , its q-score, Pq(v), and the q-score of any of v’s neighbor x, Pq(x), satisfy

Pq(x) ≤ dv
1−c(Pq(v)− c1q∈L(v)).

Proof. The proof follows from Theorem 4.

The bound in Corollary 2 could be loose since dv
1−c is always greater than 1. For

vertices with moderate degrees, the bound can easily exceed 1, making it a trivial

bound. Next we propose a better bound for the 2-hop neighborhoods. We define

the pivot-client (PC) relation between two vertices having similar neighborhoods.

If two vertices u and v have similar 1-hop neighborhoods, namely N1(u) and N1(v)

overlap, we can use the q-score of u to bound that of v, and vice versa (Theorem 5).

Theorem 5 (PC q-Score Bound). Suppose we have two vertices u and v. N1(u)∩

N1(v) is not empty. Let σu = |N1(u) ∩ N1(v)|/|N1(u)| and σv = |N1(u) ∩

N1(v)|/|N1(v)|. Then the q-scores of u and v satisfy: Pq(v) ≤ Pq(u)du/dv +

c(1q∈L(v) − 1q∈L(u)du/dv) + (1− c)(1− σv).
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Proof. Let C = N1(u)∩N1(v) denote the set of common neighbors shared between

u and v. Therefore, we have σu = |C|/|N1(u)| and σv = |C|/|N1(v)|. According

to Theorem 4:

Pq(u) =
1− c
du

(
Σx∈CPq(x) + Σx∈N1(u)\CPq(x)

)
+ c1q∈L(u),

Likewise, we have

Pq(v) =
1− c
dv

(
Σx∈CPq(x) + Σx∈N1(v)\CPq(x)

)
+ c1q∈L(v).

Combining the above two equations, we have:

Pq(v) =
1− c
dv

( du
1− c

(Pq(u)− c1q∈L(u))

− Σx∈N1(u)\CPq(x) + Σx∈N1(v)\CPq(x)
)

+ c1q∈L(v)

=
du
dv
Pq(u) + c

(
1q∈L(v) −

du
dv

1q∈L(u)

)
+

1− c
dv

(
Σx∈N1(v)\CPq(x)− Σx∈N1(u)\CPq(x)

)
≤du
dv
Pq(u) + c

(
1q∈L(v) −

du
dv

1q∈L(u)

)
+

1− c
dv

Σx∈N1(v)\CPq(x). (3.5)

Since all entries of a PPV add up to 1, the aggregate value for any vertex v,

Pq(v) ≤ 1. Therefore, we have:
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Figure 3.5: Pivot-Client Relation

1− c
dv

Σx∈N1(v)\CPq(x) ≤1− c
dv

(|N1(v)| − |C|)

=(1− c)(1− σv). (3.6)

Applying Equation (3.6) to Equation (3.5), we have: Pq(v) ≤ du
dv
Pq(u)+c(1q∈L(v)−

du
dv

1q∈L(u)) + (1− c)(1− σv).

If we choose u as the pivot and v as one of its clients, we can use u’s q-score

to bound v’s. If a pivot has a low q-score, likely some of its clients can be quickly

pruned. Theorem 5 shows that larger σv and σu lead to better bounds. Pivot-

client relations are established as follows: for vertices u and v, if the common 1-hop

neighbors take at least σ fraction of each vertex’s neighborhood, i.e., σu ≥ σ and

σv ≥ σ, we designate either of them as the pivot and the other as the client.

Clearly, u and v are within 2-hop of each other. Theorem 5 bounds the q-scores

for some of a pivot’s 2-hop neighbors. Figure 3.5 shows that vertices u and v share

four 1-hop neighbors in common: {a, b, c, d}. If σ = 0.5, either of them can be the

pivot of the other. Algorithm 4 shows how to find pivots and their clients.
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Algorithm 4: Pivot Vertex Selection

Input: G, neighborhood similarity threshold σ

Output: Pivot vertices VP and their clients

1 for each unchecked v in V do

2 Grow v’s 2-hop neighborhood N2(v) using BFS;

3 For each unchecked u in N2(v), check if N1(u) and N1(v) satisfy similarity

threshold σ; if so, insert u into v’s client set, insert v to VP and mark both v

and u as checked;

4 Return all pivot vertices VP and their clients;

Approximate q-Score Bounding and Pruning

The proposed q-score bounds express the relation between the real q-scores of

vertices. However, computing real q-scores is costly for large graphs. Since random

walks are used in our framework to approximate PPVs and approximate q-scores

are subsequently computed, will those bounds still be effective for pruning? In

this section, we analyze the effectiveness of using approximate q-scores to derive

approximate q-score bounds. Our findings are: given a q-score cut-off threshold

θ, if approximate q-scores are used to derive approximate q-score bounds as in

Corollary 2 and Theorem 5, with some adjustment to θ, the bounds can still

be leveraged to prune vertices with a certain accuracy. Specifically, those vertices
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pruned by those bounds are very likely to be real non-iceberg vertices. The details

are in Theorems 6 and 7 and the proofs are in the appendix.

Theorem 6 (Approximate Neighbor Bound). Let x be an adjacent vertex of vertex

v. For a given pruning cut-off threshold θ, let θ1 = θ − dvε/(1 − c) + ε. If

dv
1−c(P̃q(v)−c1q∈L(v)) < θ1−ε, where P̃q(v) is the approximate q-score of v using FA

approximation with R random walks, then x can be pruned and we have Pr[Pq(x) <

θ] ≥ 1− 2 exp{−2Rε2}.

Theorem 7 (Approximate PC Bound). Suppose we have vertices u and v and

N1(u)∩N1(v) is not empty. Let σu = |N1(u)∩N1(v)|/|N1(u)| and σv = |N1(u)∩

N1(v)|/|N1(v)|. For a given pruning cut-off threshold θ, let θ2 = θ − duε/dv + ε.

If P̃q(u)du/dv + c(1q∈L(v)− 1q∈L(u)du/dv) + (1− c)(1−σv) < θ2− ε, where P̃q(u) is

the approximate q-score of u using FA approximation with R random walks, then

v can be pruned and we have Pr[Pq(v) < θ] ≥ 1− 2 exp{−2Rε2}.

To summarize, this section shows: (1) Two types of q-score bounds can be used

to prune non-iceberg verticess. (2) When random walks are used to approximate

q-scores, the bounds become approximate too. However, with certain adjustment

to the thresholds and pruning rules, the likelihood for a pruned vertex to be a real

non-iceberg vertex can be bounded. We will show later in our experiments that

PFA yields good recall in practice. Algorithm 5 shows the workflow of PFA.
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Algorithm 5: Pivot Vertex-Based Forward Aggregation

Input: G, query q, threshold θ, neighborhood similarity threshold σ,

approximation error ε

Output: Graph iceberg vertices

1 Index all the pivot vertices VP using σ as in Alg. 4;

2 for each v in VP do

3 Use random walks to get v’s approximate PPV, p̃v;

4 Get v’s approximate q-score using p̃v;

5 Use approximate q-score bounds to prune vertices using adjusted thresholds

based on θ;

6 for each v that is not pruned do

7 Use random walks to get v’s approximate PPV, p̃v;

8 Get v’s approximate q-score using p̃v;

9 Return vertices with approximate q-score above θ − ε;

3.4 Backward Aggregation

In this section, we introduce a different aggregation scheme called backward

aggregation (BA). Instead of aggregating PageRank in a forward manner (adding

up the entries of black vertices in a PPV), BA starts from black vertices, and prop-

agates values in their PPVs to other vertices in a backward manner. Specifically,

based on the reversibility of random walks, the symmetric property of degree-
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Figure 3.6: Backward Aggregation Approximation

normalized PPV [80] states that: in an undirected graph G, for any two vertices

u and v, the PPVs of u and v satisfy:

pu(v) =
dv
du

pv(u), (3.7)

where du and dv are the degrees of u and v, respectively. If we know v’s PageRank

with respect to u, pu(v), we can quickly compute the value for its reverse, pv(u),

without actually computing v’s PPV. For a given query attribute q, the PageR-

ank values of black vertices in any vertex v’s PPV are the key to computing v’s

q-score. In Figure 3.3(b), BA starts from black vertices, computes their PPVs,

and propagates their contributions to the other vertices’ q-scores backward (black

arrow) according to Equation (3.7). BA provides a possibility to quickly com-

pute q-scores for the entire vertex set, by starting from only those black vertices.

Given that black vertices usually occupy a small portion of V , BA reduces the

aggregation time significantly.
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3.4.1 Backward Aggregation Approximation

Applying BA on approximate PPVs generated by random walks is called BA

approximation. In Figure 3.6, for each black vertex x we perform R random walks,

{W1, . . . ,WR}, from x to approximate x’s PPV. Each walk continues until its first

restart. Once such process is done on all the black vertices, for any vertex v in

G, v’s approximate q-score is the sum of the reverse PageRank scores of the vth

entries in the approximate PPVs of the black vertices, computed according to

Equation (3.7). We now analyze the accuracy of such approximate aggregation.

Theorem 8 (BA Approximation). Let Vq ⊆ V be the set of black vertices. Suppose

we perform R random walks from each black vertex, x, to approximate its PPV,

p̃x. For any vertex v ∈ V , let P̃q(v) = Σx∈Vq
dx
dv
p̃x(v) be the approximate q-score

of v using BA. We have Pr[P̃q(v) − Pq(v) ≥ ε] ≤ exp{−2Rd2
vε

2/Σx∈Vqd
2
x} and

Pr[|P̃q(v)− Pq(v)]| ≥ ε] ≤ 2 exp{−2Rd2
vε

2/Σx∈Vqd
2
x}, where ε > 0.

The proof is in the appendix. Now we analyze how well BA retrieves iceberg

vertices. As in Algorithm 6, BA retrieves all the vertices whose approximate

q-score is above θ − ε as iceberg vertices. Again we use recall as the measure,

which evaluates the percentage of real iceberg vertices that are captured by the

BA approximation.
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Algorithm 6: Backward Aggregation
Input: G, query q, threshold θ, approximation error ε

Output: Graph iceberg vertices

1 for each black vertex x do

2 Use random walks to get x’s approximate PPV, p̃x;

3 for each entry p̃x(v) do

4 Compute the reverse entry p̃v(x) = dx
dv
p̃x(v);

5 Add p̃v(x) to v’s q-score: P̃q(v);

6 Return vertices with approximate q-score above θ − ε;

Corollary 3 (BA Recall). Given a q-score cut-off threshold θ, for vertex v such

that Pq(v) ≥ θ, we have Pr[P̃q(v) ≥ θ − ε] ≥ 1− 2 exp{−2Rd2
vε

2/Σx∈Vqd
2
x}, where

ε > 0 and P̃q(v) is v’s q-score using BA approximation.

Proof. The proof follows from Theorem 8.

Therefore the likelihood for a real iceberg vertex v to be retrieved by BA can

be bounded. This bound is not as tight as the one for FA. We later show in our

experiments that BA achieves good recall in practice, given a reasonable number

of random walks. Algorithm 6 describes the BA workflow.
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3.5 Clustering Property of Iceberg Vertices

Graph iceberg vertices can further be used to discover graph iceberg regions.

We achieve this by methods ranging from graph clustering to simple connected

component finding. In this section, we describe some interesting properties of how

iceberg vertices are distributed in the graph. We discovered that iceberg vertices

naturally form connected components surrounding the black vertices in the graph.

3.5.1 Active Boundary

Let a region R = {VR, ER} be a connected subgraph of G, and the boundary

of R, N(R), be the set of vertices such that N(R) ∩ VR = ∅ and each vertex in

N(R) is directly connected to at least one vertex in VR. In Figure 3.7(a), the dark

area surrounding region R forms R’s boundary.

Theorem 9 (Boundary). Given a region R in G which does not contain any black

vertex, if the q-scores of all vertices in N(R) are below the q-score threshold θ,

then no vertex in VR has q-score above θ.

Proof. Equation (3.4) shows that the q-score of a non-black vertex is lower than

the maximum q-score of its neighbors. Suppose there is a vertex v0 ∈ VR such

that Pq(v0) > θ. Since R does not contain black vertices, v0 is non-black, thus

at least one of v0’s neighbors has q-score higher than Pq(v0). Let it be v1. The
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Figure 3.7: Boundary and Active Boundary

same argument holds for v1. A path is therefore formed with a strictly increasing

sequence of q-scores, and all the q-scores in this sequence are > θ. Since |VR| is

finite, eventually the path goes through R’s boundary, N(R). Since all vertices

in N(R) have a q-score below θ, a contradiction is reached. Therefore no such

vertex v0 exists and all vertices in VR have q-scores below θ.

Corollary 4 (Active Path). If vertex v is an iceberg vertex, there exists a path,

called an “active path”, from v to a black vertex, that all vertices on that path are

iceberg vertices.

Proof. Assume there is an iceberg vertex v0 (non-black) that can not be linked

to a black vertex via such a path. Again we can follow a path starting from v0

to one of its neighbors, v1, an iceberg vertex, then to another such neighbor of

v1, and so on. Such a path contains only iceberg vertices. A set of such paths

form a region surrounding v0, containing only iceberg vertices. The boundary of

this region only contains vertices with q-scores below θ. The assumption dictates
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there is no black vertex in this region. This contradicts Theorem 9. So no such

vertex v0 exists.

Corollary 5 (Active Region & Active Boundary). Given a query attribute q and

q-score threshold θ, all iceberg vertices in G concentrate surrounding black vertices.

Each black vertex is surrounded by a region containing only iceberg vertices, which

is called “active region”. The boundary of such a region is called “active boundary”.

The q-scores of the vertices in the active boundary are all below θ.

Proof. The proof follows from Corollary 4.

Corollary 5 suggests that in order to retrieve all iceberg vertices, we only need

to start from black vertices and grow their active regions. The key to grow an

active region is to find the active boundary of this region. It is possible that

several active regions merge into one if the black vertices are close to each other.

Figure 3.7(b) shows examples of active regions and boundaries. Black vertices

contain the query attribute and gray vertices are iceberg vertices. Each black

vertex is in an active region containing only iceberg vertices, encompassed by a

solid black line. All the white vertices between the solid black line and the red

dashed line form the active boundaries of those regions. All vertices with grid

pattern which are not in any active region have a q-score below the threshold.
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Therefore, we have discovered this interesting “clustering” property of iceberg

vertices. All iceberg vertices tend to cluster around the black vertices in the graph,

which automatically form several interesting iceberg regions in the graph. The

size of an iceberg region can be controlled by varying the q-score threshold.

3.6 Experimental Evaluation

In this section, we empirically evaluate our framework, which we refer to as

gIceberg, considering that it performs iceberg query-like aggregation analysis on

graphs. gIceberg is evaluated using both real-world and synthetic data. We first

conduct motivational case studies on the DBLP network to show that gIceberg

is able to find interesting author groups. The remaining experiments focus on:

(i) aggregation accuracy; (ii) forward aggregation (FA) and backward aggregation

(BA) comparison; (iii) impact of attribute distributions; and (iv) scalability. We

observe that: (1) Random walk approximation achieves good accuracy. (2) FA is

slightly better than BA in recall and precision, while BA is generally much faster.

(3) Pivot vertex selection and q-score bounding effectively reduce runtime. (4)

gIceberg is robust to various attribute distributions, and BA is efficient even for

dense attribute distribution; (5) BA scales well on large graphs. All the experi-
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ments are conducted on a machine that has a 2.5GHz Intel Xeon processor, 32G

RAM, and runs 64-bit Fedora 8 with LEDA 6.0 [68]..

3.6.1 Data Description

Customer Network. This is a proprietary data set provided by an e-

commerce corporation offering online auction and shopping services. The vertices

are customers and the edges are their social interactions. The attributes of a ver-

tex are the products that the customer has purchased. This network has 794,001

vertices, 1,370,284 edges, and 85 product names.

DBLP Network. This is built from the DBLP repository. Each vertex is an

author and each edge represents a co-authorship. The keywords in paper titles

are used as vertex attributes. We use a subset of DBLP containing 130 important

keywords extracted by Khan et al. [54]. This network contains 387,547 vertices

and 1,443,873 edges.

R-MAT Synthetic Networks. A set of synthetic graphs with power-law

degree distributions and small-world characteristics are generated by the GTgraph

toolkit 2 using the Recursive Matrix (R-MAT) graph model [21]. The vertex

number spans across {500K, 2M, 4M, 6M, 8M, 10M}. The edge number spans

across {3M, 8M, 16M, 24M, 32M, 40M}.
2http://www.cse.psu.edu/~madduri/software/GTgraph/
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Table 3.1: gIceberg Query Attribute Examples

Data Sets Query Attribute Examples

Customer
“Estée Lauder Eye Cream”, “Ray-Ban Sunglasses”

“Gucci Glasses”, “A&F Women Sweatshirts”

DBLP
“Database”, “Mining”, “Computation”

“Graph”, “Classification”, “Geometry”

50 queries are used for each graph. Table 3.1 shows some query examples for

Customer and DBLP. The attribute generator for R-MAT will be introduced in

Section 3.6.5. The q-score threshold is θ = 0.5, if not otherwise specified.

3.6.2 Case Study

To show that gIceberg finds interesting vertices in a real graph, we conduct

a case study on DBLP: (1) given a user specified research topic and an iceberg

threshold, we find the iceberg vertices and remove the rest; (2) these vertices form

several connected components in the remaining graph. The iceberg vertices have

many neighbors have published in the specific topic. Therefore, the components

shall represent collaboration groups in that area. We will show that gIceberg can

indeed discover interesting and important author groups.

Figure 3.8 shows the top author groups found by gIceberg for two query key-

words: “XML” and “Stream”. The number next to each author’s name is the

number of his/her publications in that keyword field. All the vertices who have

7+ papers containing the query keyword are retained. There is an edge between
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Figure 3.8: Case Studies on DBLP

two authors if they have collaborated at least 7 times. In gIceberg, we set the

threshold at a small value and increase it until the author groups become small

enough. Take “Stream” for example: the author group size decreases from 9 to

6, as threshold increases from 0.24 to 0.27. For 0.27, the current author group

contains 6 authors (in blue). It seems the author groups that gIceberg discovers

are of high-quality. They are specialized and well-known in the field of “XML”

and “Stream”. In addition, by varying the q-score threshold, users can easily zoom

in and out the author groups and exploit the hierarchical structure with multiple
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granularities. Such zoom in/out effect is not available if we simply use the number

of papers as a filter, which will generate many small disconnected components.

3.6.3 Aggregation Accuracy

We now evaluate the accuracy of random walk approximation. We compare

random walk-based FA and BA, with the power method-based aggregation, which

aggregates over PPVs generated by the power method. We conduct the power it-

eration until the maximum difference between any entries of two successive vectors

is within 10−6. Since the power method is time consuming, this test is done on

three small graphs: “Customer Subgraph” is a subgraph of Customer with 5,000

vertices and 14,735 edges; “DBLP 2010” is the DBLP network that spans from

January 2010 to March 2010, with 12,506 vertices and 19,935 edges; “RMAT 3K”

is a synthetic graph generated by the GTgraph toolkit, with 3,697 vertices and

7,965 edges. All three small graphs are treated as independent graphs. Accu-

racy is defined as the number of vertices, whose FA (or BA) approximate q-score

falls in between [−ε,+ε] of its q-score computed by the power method, divided

by the total number of vertices. We then compute the average accuracy over all

the queries. The mean accuracy with standard error bars is shown in Figure 3.9

(ε = 0.03). We vary the number of random walks performed on each vertex. Both

FA and BA are shown to produce good accuracy with high mean and low standard
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error. Since the power method is slow, hereinafter we apply FA with 2K random

walks per vertex on larger graphs to provide “ground truth” q-scores.
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Figure 3.9: Random Walk-Based Aggregation Accuracy

3.6.4 Forward vs. Backward Aggregation

Recall and Runtime

Recall is defined as the number of iceberg vertices retrieved by gIceberg, di-

vided by the total number of iceberg vertices, i.e.,
∣∣{v|Pq(v) ≥ θ, P̃q(v) ≥ θ −

ε}
∣∣/∣∣{v|Pq(v) ≥ θ}

∣∣, where Pq(v) and P̃q(v) are true and approximate q-scores,

respectively. The effectiveness of pivot vertex, approximate q-score bounding and

pruning in pivot vertex-based FA (PFA) is also evaluated. In PFA, 150 random

walks are applied on each pivot vertex, while R random walks are applied on the

rest. Figure 3.10 shows the recall and runtime for Customer and DBLP. We plot

the average recall over all queries with error bars on each point. The first column
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shows how recall changes with ε, for R = 500; the second column shows how recall

changes with R, for ε = 0.03. We can observe that: (1) Both FA and PFA yield

high recall and BA yields satisfying recall when R is ≥ 500. The approximation

captures most of the real iceberg vertices. (2) The standard error across various

queries is small for all the methods, showing the performance is consistent and

robust to various queries. (3) Recall increases with ε and R, which is as expected.

(4) It is reasonable that PFA produces better recall than FA when R ≤ 150, even

though PFA uses approximate q-score bounding. This is because for all R val-

ues, 150 random walks are always applied on pivot vertices in PFA. Thus when

R ≤ 150, more random walks are used in PFA than in FA.

Runtime comparison in Figure 3.10 shows that BA significantly reduces the

runtime. When R is large, PFA reduces the runtime of FA via pivot vertex and

q-score bounding. Since the pivot vertices use 150 random walks, it is expected

for PFA to cost more time than FA when R is small. When R = 100, PFA is

still faster than FA, due to effective pruning. Table 3.2 shows that it takes a

reasonable amount of offline computation to select pivot vertices. To sum up, BA

still yields good recall while reducing the runtime. FA is preferred over BA when

higher recall is desired.
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Figure 3.10: gIceberg FA vs. BA: Recall and Runtime

Table 3.2: gIceberg Pivot Vertex Indexing Cost

Data Sets Customer DBLP RMAT 500K

Time (Hours) 0.176 0.162 1.230
Index/Graph Size (MB) 8.48/46.53 4.75/91.68 9.24/53.99

Precision

Precision is defined as the number of iceberg vertices retrieved by gIceberg,

divided by the total number of retrieved vertices, i.e.,
∣∣{v|Pq(v) ≥ θ, P̃q(v) ≥

θ− ε}
∣∣/∣∣{v|P̃q(v) ≥ θ− ε}

∣∣. Figure 3.11 shows the curves of the average precision

over all queries with error bars for Customer and DBLP. We can see that: (1) FA

and PFA yield better precision than BA. When R = 2000, all the methods yield
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decent precision. (2) The standard error is small for all the methods, showing

the performance is consistent across queries. (3) Precision decreases with ε and

increases with R as expected. (4) As previously analyzed, it is reasonable for PFA

to produce better precision than FA when R ≤ 150.
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Figure 3.11: gIceberg FA vs. BA: Precision

We can see that BA is much faster than FA and BA yields good recall when

R ≥ 500. However, the precision of BA is not satisfactory unless R ≥ 2000. FA

overall yields better precision than BA. Therefore a fast alternative to achieve both

good recall and precision would be: (1) apply BA to retrieve most real iceberg
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vertices with good recall; and then (2) apply FA on those retrieved vertices to

prune out the “false positives” to further achieve good precision.

3.6.5 Attribute Distribution

We now test the impact of attribute distribution on the aggregation perfor-

mance. To customize the attribute distribution, a synthetic R-MAT network

with 514,632 vertices and 2,998,960 edges is used (“R-MAT 500K”). Two tests are

done: (1) We customize the percentage of the black vertices, which is computed

as |Vq|/|V |. Given a query attribute q, we randomly distribute it into the graph.

The set of black vertices is Vq. (2) We customize the skewness of the black vertex

distribution. The attribute q can be randomly dispersed without any specific pat-

terns, or concentrated in certain regions. To instantiate this idea, we randomly

select a set of root vertices, and randomly assign q to a certain number, ω, of

vertices within each root’s close neighborhood. Let |Vr| be the total number of

roots. We have ω ∗ |Vr| = |Vq|. If |Vq| is fixed, by tuning ω and |Vr|, we can control

the skewness of the attribute distribution. A higher ω indicates a higher skewness.

We set ε = 0.05, R = 300 for FA and PFA, and R = 1200 for BA.

For percentage test, 50 queries are randomly generated for each percentage.

Figure 3.12(a) plots the mean recall with standard error. The percentage varies

from 0.1% to 10%. All three methods yield good recall with small standard errors.
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Figure 3.12: gIceberg Attribute Distribution Test

The recall slightly decreases when the percentage increases. Figure 3.12(b) shows

that the runtime of BA increases with |Vq|/|V |, which is as expected. BA is much

faster, even when its random walk number is four times that of FA and PFA.

For skewness test, 50 queries are randomly generated for each ω. Figure 3.12(c)

plots the mean recall with standard error. The number of black vertices concen-

trated locally surrounding each root vertex, ω, changes from 10 to 100. The black

vertex number is |Vq| =50K. All the methods yield good recall with small standard

errors. PFA yields slightly worse recall, due to approximate q-score bounding and
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pruning. Figure 3.12(d) shows the BA runtime is almost constant because |Vq| is

constant and BA is significantly faster.

These figures show that FA/BA are not sensitive to the skewness in terms of

recall and runtime. BA is sensitive to the percentage of black vertices in terms of

runtime, but not sensitive in terms of recall.

3.6.6 Scalability Test
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Figure 3.13: gIceberg BA Scalability Test

As shown in previous experiments, BA is much more efficient than FA and

PFA. We further demonstrate how scalable BA is on large graphs. A set of R-

MAT synthetic graphs with |V | ={2M, 4M, 6M, 8M, 10M} and |E| ={8M, 16M,

24M, 32M, 40M} are generated. The percentage of black vertices is 0.5% for all.

The skewness of the attribute distribution, ω, changes from 10 to 100. We set

ε = 0.05 and R = 250 for BA. Figure 3.13(a) plots the mean recall of BA with
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standard errors across all the queries. BA yields good recall on all the graphs and

the recall is not sensitive to attribute distribution skewness. Figure 3.13(b) shows

that the runtime of BA is approximately linear to the graph size. In conclusion,

BA exhibits good scalability over large graphs. FA and PFA do not scale as well

as BA. It takes them a few hours to return on large graphs. Therefore, we consider

BA as a scalable solution for large graphs with decent recall. If higher recall is

desired, users can choose FA instead of BA.
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Probabilistic Anomalies and
Attribute Distribution

In this chapter, we examine the third type of attributed anomalies, graph re-

gions with abnormal vertex attribute distributions compared to the majority of

the graph. Such anomalies provide important insight into network applications

such as disease propagation, information diffusion, and viral marketing. In this

chapter, we introduce a probabilistic framework to identify such anomalies in a

large vertex-attributed graph. Our framework models the processes that generate

vertex attributes and partitions the graph into regions that are governed by such

generative processes. It takes into consideration both structural and attributive in-

formation, while avoiding an artificially designed anomaly measure. The proposed

framework uses a two-component mixture model, and an iterative mechanism is

further proposed to accommodate for more general and challenging graphs. Two

types of regularizers are further employed to materialize smoothness of anomaly
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regions and more intuitive partitioning of vertices. We employ deterministic an-

nealing expectation maximization to iteratively estimate the model parameters,

which is less initialization-dependent and better at avoiding local optima. Vertices

are assigned to either the anomaly or the background class upon convergence. Ex-

periments on both synthetic and real data show our algorithm outperforms the

state-of-art algorithm at uncovering anomalous attributed patterns.

4.1 Background and Preliminary Material

Given a large vertex-attributed graph, how do we find regions which exhibit

abnormal vertex attribute distributions compared to the majority of the graph?

In this chapter, we propose a probabilistic framework that automatically captures

and describes the existence of such anomalous regions in a vertex-attributed graph

from a generative perspective, avoiding heuristic and arbitrary design of rules

and anomaly measures. Our framework combines both structural and attributive

information to uncover graph anomalies in a principled manner.

Consider a physical contact graph shown in Figure 4.1, where each vertex is

a person, an edge means there exist physical contact between two persons, and

the vertex color represents whether this person has been infected with a certain

disease. As shown, compared to the rest of the graph, the highlighted region, R,
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Figure 4.1: Graph Attribute Distribution Anomaly

exhibits abnormal distribution of vertex colors. Specifically, most of the people in

R have been infected, while the people outside the region are not. Given a large

graph, it will be important to single this region out so that we can study whether

people in R are more susceptible to infection.

Applications of such anomaly detection abound. In a customer social network,

where users are annotated with products they have purchased, we can uncover

interesting customer groups or chains where a great percentage of them have

purchased a certain product. Such information is very helpful for companies to

conduct personalized advertising. Another case in point, given a network of com-

puters, such anomaly detection can reveal the distribution patterns of various

types of intrusion attacks, as well as regions in the network that suffered a large

number of targeted attacks.

This work is related to a few previous studies [60, 71, 99, 107], which can be

applied to detecting various kinds of graph anomalies. [107] proposed a novel graph

clustering algorithm using both structural and attributive similarities through
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Figure 4.2: Cohesive Subgraph

a unified distance measure. [99] introduced a model-based approach to discover

graph clusters where vertices in each cluster share common attribute and edge

distributions. Both studies aim for the same goal: the vertices within clusters

are densely connected in terms of structure, and have low diversity in terms of

attribute. The so-called cohesive subgraphs [71] these studies tend to uncover

are shown in Figure 4.2. An iceberg region [60] contains frequent occurrence of

an attribute in its close neighborhood. Since high personalized PageRank scores

in a neighborhood usually means a highly connected local cluster, the patterns

discovered in [60] are usually well connected too. Our model does not require

vertices in an anomaly to be highly connected. A path in a sparse region where

the majority of vertices on the path are infected with the same disease is definitely

abnormal if the occurrence of this disease in the whole population is low. Our

framework aims to discover connected subgraphs where vertices exhibit abnormal

distributions, in comparison with most of the graph. An abnormal region is not

necessarily a dense subgraph; it can take any structural form, such as a path or a
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tree. In addition, we shall not require every vertex in the region to have the same

attribute, due to missing data and noise.

Our framework is designed to model the attribute distributions of the anomaly

and the background in a vertex-attributed graph, and to discover regions whose

distribution is significantly different from the background. It is based on the in-

tuition that multiple attribute distributions coexist in a graph and govern the

behavior of vertices. Uncovering these distributions and their corresponding re-

gions enables fundamental understanding of vertex behavior in the structural and

attributive space, which is the key to finding graph anomalies.

Finite mixture model (FMM) has been widely used to interpret the presence

of sub-populations exhibiting various probabilistic distributions within an overall

population [32, 17, 77]. We adopt an FMM to model the underlying attribute

distributions in a vertex-attributed graph. While statistical models have been

successfully applied to various graph mining tasks [99, 69, 56], probabilistically

modeling attribute distributions in a graph is still under-explored. In order to

accommodate graph structure, we propose network regularizers to enhance our

model. An entropy regularizer is further introduced to control the mixture pro-

portions for each vertex, which facilitates assigning vertices into different mixture

components. In addition, we utilize deterministic annealing expectation maxi-

mization (DAEM) [49, 79] to estimate model parameters, reducing the chance for

97



Chapter 4. Probabilistic Anomalies and Attribute Distribution

local optima and the dependency on model initialization. Experiments on both

synthetic and real data demonstrate the effectiveness of our framework.

4.1.1 Problem Statement

Our model identifies anomalous vertices and regions, by modeling the under-

lying generative process that governs the distribution of vertex attributes. In an

vertex-attributed graph, there might exist regions, where the distribution of at-

tributes significantly differs from the majority. Using the previous contact network

example, if we consider the attribute type “infected” with values, {“Yes”, “No”},

we will discover that some regions in the network contain an abnormally higher

percentage of infected people. For instance, a region in which 90% of the peo-

ple are infected is distinctive, if such percentage for the background is only 10%.

How to automatically discover these anomalous regions and their corresponding

generative process is the problem we aim to solve.

Let G = (V,E,A) be an undirected vertex-attributed graph. V is the vertex

set, E is the edge set, and A is a function that maps a vertex to an attribute value,

A : V → A, where A is the set of distinct attribute values in G. For the ease

of presentation, we assume there is only one attribute type with binary values.

For example, if the attribute type is “gender”, A could be: {“Female”, “Male”};

if the attribute type is “political view”, A could be: {“Liberal”, “Conservative”}.
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Without loss of generality, assume A = {1, 0}. Such assumptions are only made

to simplify the presentation of our discussions. Our model is readily applicable to

multiple attribute types with categorical attribute values.

Definition 10 (Binary Vertex Color). Given a vertex-attributed graph G and an

attribute of interest a, each vertex either contains a or not. Let A be the domain,

i.e., the set of possible values, of a. A = D(a) = {1, 0}. A vertex has value 1 if it

contains a, and 0 otherwise. Furthermore, a vertex is called black vertex if it has

value 1 for a, and white otherwise.

Problem 3 (Probabilistic Anomaly Search). Given a vertex-attributed graph G

of black and white vertices, assuming the white vertices are the majority of the

graph, find anomalous regions where a much higher percentage of black vertices

occur. A region takes the form of a connected subgraph, which may or may not be

densely connected.

4.2 Data Model

In order to detect anomaly regions with significantly different attribute distri-

bution, we first make assumptions about how those anomaly vertices occur and

create a model to describe their occurrence. Inspired by the anomaly detection

model proposed in [32], we employ a two-component mixture model to interpret
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the existence of anomalies. Let V (0) be the set of majority (background) vertices,

and V (1) be the set of anomaly vertices. V = V (0)
⋃
V (1), and V (0)

⋂
V (1) = ∅.

Similar to PLSA, we assume each vertex has its own probability to belong to ei-

ther the majority or the anomaly class. Given a vertex vi, with probability θ
(k)
i ,

vi belongs to class V (k), k = {0, 1}. Let P be a mixture model interpreting the

overall distribution for a vertex, we have

P (vi) =
1∑

k=0

θ
(k)
i P (k)(vi), (4.1)

where {θ(0)
i , θ

(1)
i } is the vertex-dependent mixture weights and θ

(0)
i +θ

(1)
i = 1. P (0)

is the background model, and P (1) is the anomaly model. P (k)(vi), k = {0, 1}

can be considered as the conditional likelihood of observing vi, given model P (k).

Depending on the mixture weights {θ(0)
i , θ

(1)
i }, each vertex is better explained by

either the anomaly model, P (1) (θ
(1)
i ≥ 0.5), or the background model, P (0) (θ

(1)
i <

0.5). The goal of our framework is to estimate such “belonging” memberships,

which eventually leads to uncovering anomaly vertices.

4.2.1 Bernoulli Mixture Model

The mixture model describes the overall attribute value distribution for any

vertex, assuming that there are two different underlying components in G, the

anomaly and the background. Now we show more details on how to formulate
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each component. The attribute value at each vertex, is chosen from a predefined

set of discrete values. As aforementioned, for the ease of presentation, we assume

there is only one attribute type in G, where each vertex either contains this at-

tribute or not. Let Xi be a Bernoulli random variable indicating if vi has this

attribute. We can naturally model each mixture component P (k) as a Bernoulli

distribution. Let p(k) = (p(k)(1),p(k)(2))T be the vector of outcome probabilities

in this distribution. p(k)(1) + p(k)(2) = 1. 1 p(k)(1) is the probability for a vertex

to contain the attribute in the k-th mixture component. For each component P (k),

we model the conditional likelihood of vi as:

P (k)(vi) = p(k)(1)Xi(1− p(k)(1))1−Xi . (4.2)

Our framework is extensible to more complicated data models. If there are

multiple attribute types, which are assumed to be independent among each other,

we can model each of them independently. If an attribute has more than two

distinct values, we can model P (k) using a categorical distribution. It can also

be extended to include multiple levels of anomalies, i.e., the number of mixture

components is greater than two.

1In this chapter, we typeset vectors in boldface (for example, p(k)) and use parentheses to
denote an element in the vector (for example, p(k)(1)).
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4.3 Model Updating and Parameter Estimation

Given the above mixture model, detecting anomalies existing in G is essentially

the following process: (1) estimating the data likelihood function of observing all

vertices under the mixture model; (2) determining the best component model

to describe each vertex; (3) uncover the anomaly vertices based on the vertex-

component association.

4.3.1 Regularized Data Likelihood

An important step in our method is to determine the best component model

to describe each vertex. We achieve this goal via fitting the observed data with

the model and estimating the mixture weights, θ
(k)
i ’s. The total (conditional) data

likelihood of the entire set of vertices, V , given the finite mixture, is the product

of such likelihood of each vertex vi ∈ V ,

L(V ) =
N∏
i=1

P (vi) =
N∏
i=1

1∑
k=0

(
θ

(k)
i P (k)(vi)

)
. (4.3)

We compute the log-likelihood to turn multiplication to addition,

`(V ) =
N∑
i=1

logP (vi) =
N∑
i=1

log
1∑

k=0

(
θ

(k)
i P (k)(vi)

)
. (4.4)

However, estimating parameters by simply maximizing the above likelihood

overlooks the network structure. Solely maximizing Equation (4.4) generates the
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same estimates even if we change the edge structure. In fact, it will group all black

vertices together as the anomaly and leave the white vertices as the background.

Network Regularizer

If we assign all black vertices into one component, and all white into the other,

such assignment is bound to produce the highest data likelihood. However, such

assignment produces little practical value, because the vertices within the same

component are most likely spread out in the graph. In reality, it is desirable for

vertices assigned to the same class to exhibit satisfying connectivity. To achieve

this goal, a distinctive feature of our model is to smoothen the mixture weights

across the graph, so that neighboring vertices have similar model memberships.

Inspired by the NetPLSA model proposed in [69], we adopt a graph-based dis-

crete regularizer that smoothens vertex model memberships. The criterion of this

harmonic regularization is succinct and intuitive: vertices which are connected

should have similar model membership priors, namely the mixture weights, θ
(k)
i ’s.

Let Θ be the N×2 mixture weights matrix, where Θ(i, k+1) = θ
(k)
i is the mixture

weight vertex vi has for component P (k), k = {0, 1}. Let M i denote the i-th row
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in a matrix M . The network regularizer in [69], R
(0)
N (Θ), is formulated as,

R
(0)
N (Θ) =

1

2

∑
(vi,vj)∈E

1∑
k=0

(θ
(k)
i − θ

(k)
j )2

=
1

2

∑
(vi,vj)∈E

‖Θi −Θj‖2, (4.5)

where ‖ · ‖ is the l2 norm of a vector. The essence of R
(0)
N (Θ) is: by deducting this

term from the data log-likelihood in Equation (4.4), we can minimize the sum of

squared differences of the mixture weights of all connected vertex pairs in G.

The regularizer developed in [69] is used to smooth the topic models of neigh-

boring documents, while it is used here to smooth the mixture coefficients of neigh-

boring nodes. By applying this regularizer, the anomaly vertices should form a

few connected components, which are good for subsequent information diffusion

analysis. It is only meaningful to further study how information traverses among

the anomalies, if they form one or a few connected subgraphs.

One drawback of R
(0)
N (Θ) is, the number of neighbors around a vertex has a

significant effect on its mixture weights; i.e., if a vertex has many connections to

other vertices, it is less likely to have different mixture weights from its neighbors.

In this situation, distribution of attributes plays a less significant role in deter-

mining the underlying probabilistic components and assigning mixture weights.

As a result, vertices which have fewer connections to others usually are separated

to one component while strongly connected vertices stay in another component.
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We name this phenomenon as neighborhood size effect. To alleviate the problem,

we further propose two variations of the network regularizer:

[Type 1: Minimizing Mean] R
(1)
N (Θ) minimizes the sum of the average

difference between the mixture weights of a vertex and those of its neighbors, for

all vertices. R
(1)
N (Θ) is a vertex degree-normalized version of R

(0)
N (Θ).

R
(1)
N (Θ) =

1

2

∑
vi∈V

1

|N(i)|
∑

vj∈N(i)

1∑
k=0

(θ
(k)
i − θ

(k)
j )2

=
1

2

∑
vi∈V

1

|N(i)|
∑

vj∈N(i)

‖Θi −Θj‖2, (4.6)

where N(i) is the set of neighbors of vertex vi, and | · | is the set cardinality.

[Type 2: Minimizing Minimum] R
(2)
N (Θ) minimizes the sum of the smallest

difference between the mixture weights of a vertex and those of its neighbors, for

all vertices in G.

R
(2)
N (Θ) =

1

2

∑
vi∈V

min
vj∈N(i)

‖Θi −Θj‖2. (4.7)

Different from the original network regularizer R
(0)
N (Θ), the effect of the number

of neighbors for each vertex (i.e., the neighborhood size effect) is discounted by

adopting either the average or the minimum function in our proposed regularizers.

Furthermore, the rationales behind R
(1)
N (Θ) and R

(2)
N (Θ) are very different. The

goal of R
(1)
N (Θ) is to make a vertex close to the majority of its neighbors, in

terms of mixture weights. That is, using R
(1)
N (Θ) helps a vertex to be assigned
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to the same class as most of its neighbors. Intuitively, this contributes to larger

connected areas in each mixture component. On the other hand, the goal of

R
(2)
N (Θ) is to make a vertex close to the neighbor that it has the most similar

mixture weights with. Since vertices with the same attribute tend to have similar

mixture weights, R
(2)
N (Θ) helps assigning connected vertices with high attribute

homogeneity into the same mixture component. Section 4.6 empirically compares

these two regularizers.

There are alternative regularizer formulations. For example, instead of mini-

mizing the minimum difference, we can minimize the maximum difference. The

intuition behind this is also to generate large connected areas. In addition, we

can modify the formulation in Equation (4.6). Instead of assigning the same

weight (1/N(i)) to all the neighbors, different emphasis can be assigned to differ-

ent neighbors. For instance, we can assign higher weights to neighbors that share

the same attribute as the root vertex. We experimented with a few alternative

regularizers, with which no consistent advantage was observed over the previous

two regularizers. Thus in this chapter, we focus on R
(1)
N (Θ) and R

(2)
N (Θ). Cer-

tainly, choosing which regularizer depends on applications and the propagation

mechanism of attributes.
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Entropy Regularizer

Additionally, in order to facilitate vertex assignment, our model should have

the ability to generate biased mixture weights (e.g., {1, 0} or {0, 1}), rather

than balanced weights (e.g., {0.5, 0.5}) across the two components. Since biased

mixture weights correspond to lower Shannon entropy, we further incorporate an

entropy regularizer to accommodate this property. We design this regularizer to

take the form as the sum of the negative entropy function over the mixture weights

on all vertices. Intuitively by favoring a larger value of such regularizer, it will

result in more biased mixture weights. That is, the mixture weights tend to be

more focused on one component, instead of balanced across the two. Let RE(Θ)

denote such regularizer.

RE(Θ) =
N∑
i=1

(Θi log ΘT
i ) =

N∑
i=1

1∑
k=0

(θ
(k)
i log θ

(k)
i ). (4.8)

Regularized Likelihood

We modify the original mixture model with the aforementioned network/connectivity

and entropy regularizers. The regularized data likelihood over the entire vertex
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set has the following form:

ˆ̀(V ) = `(V )− λR(τ)
N (Θ) + γRE(Θ)

=
N∑
i=1

log
1∑

k=0

(θ
(k)
i P (k)(vi))

− λR(τ)
N (Θ) + γ

N∑
i=1

(Θi log ΘT
i ), (4.9)

where `(V ) is the log-likelihood of the mixture model, R
(τ)
N (Θ) is one of the network

regularizers, and RE(Θ) is the entropy regularizer. λ and γ are the coefficients

associated with the network and entropy regularizer, respectively. Note that such

a regularization framework can be generalized to other forms of log-likelihood

functions and regularizers.

4.3.2 DAEM Framework

Although the expectation-maximization (EM) [17, 16] algorithm has been widely

used to approximate the maximum likelihood estimation (MLE) in mixture model

learning, a standard EM has the drawbacks of converging to local optima and

initialization dependence. To address such drawbacks, deterministic annealing

EM (DAEM) has been proposed and applied to various mixture model scenar-

ios [49, 79, 88, 72]. DAEM reformulates the log-likelihood maximization as the

problem of minimizing the free energy function by using a statistical mechanics

analogy. The posterior probability of latent variables further includes a “tem-
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perature” parameter which controls the influence of unreliable model parameters.

The annealing process of adjusting the temperature is able to reduce the depen-

dency on initial model parameters. Therefore in this chapter we adopt the DAEM

approach, as outlined in Algorithm 7, to learn our model parameters.

In the DAEM algorithm, maximizing the log-likelihood of our mixture model,

as shown in Equation (4.4), is reformulated as the problem of minimizing a free

energy function

fβ(Φ) = − 1

β

N∑
i=1

log
1∑

k=0

(θ
(k)
i P (k)(vi))

β, (4.10)

where 1/β is called the “temperature”, and Φ is the set of model parameters,

{Θ,p(k)}. The temperature is initialized at a high value and decreases gradually

as the iterations proceed. When β = 1, the negative free energy becomes the

log-likelihood of our mixture model.

Maximizing the regularized data likelihood in Equation (4.9) is then reformu-

lated into minimizing a regularized free energy function, f̂β(Φ), where the network

and entropy regularizers are kept unchanged,

f̂β(Φ) = fβ(Φ) + λRN(Θ)− γRE(Θ). (4.11)

We now describe in depth the E-step and M-step in the DAEM procedure.
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Expectation Step

Let zi be the latent membership of vertex vi, where zi = k is the event that

vi is assigned to component k. Let Φt be the current estimates of the model

parameters, and w
(k)
i be the posterior probability of the event zi = k. In the

E-step of a standard EM procedure, the posterior distribution of zi is:

w
(k)
i = P (zi = k|vi; Φt)

=
θ

(k)
i P (vi|zi = k;p(k))∑1
l=0 θ

(l)
i P (vi|zi = l;p(l))

. (4.12)

Then the expectation of the complete log-likelihood with respect to the posterior

distribution P (zi|vi; Φt) is:

Q(Φ|Φt) =
N∑
i=1

1∑
k=0

w
(k)
i log

(
θ

(k)
i P (k)(vi)

)
. (4.13)

In DAEM, the posterior probability of belonging to either mixture component fur-

ther contains the temperature parameter β. Let w
(k)
i (β) denote this new posterior

probability, i.e., the new latent membership. It is given by [79].

w
(k)
i (β) = P (zi = k|vi; Φt, β)

=

(
θ

(k)
i P (vi|zi = k;p(k))

)β∑1
l=0

(
θ

(l)
i P (vi|zi = l;p(l))

)β . (4.14)
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Using Jensen’s inequality, we have

fβ(Φ) = − 1

β

N∑
i=1

log
1∑

k=0

w
(k)
i (β)

(θ
(k)
i P (k)(vi))

β

w
(k)
i (β)

≤ −
N∑
i=1

1∑
k=0

w
(k)
i (β) log(θ

(k)
i P (k)(vi)). (4.15)

Therefore, in the E-step of DAEM, we estimate the expectation of the complete

log-likelihood with respect to the new posterior distribution P (zi|vi; Φt, β) as in

Equation (4.14), and fβ(Φ) is upper bounded by −Q̂β(Φ|Φt).

Q̂β(Φ|Φt) =
N∑
i=1

1∑
k=0

w
(k)
i (β) log

(
θ

(k)
i P (k)(vi)

)
. (4.16)

Maximization Step

Finally, the goal of the M-step boils down to minimizing a regularized upper

bound function, Fβ(Φ|Φt):

Fβ(Φ|Φt) = −Q̂β(Φ|Φt) + λRN(Θ)− γRE(Θ). (4.17)

In our model, we use the widely adopted L-BFGS [64] algorithm for the opti-

mization. Instead of storing the dense Hessian approximation matrix, during

optimization, the L-BFGS algorithm saves only a few vectors to represent the

approximation implicitly, which significantly decreases the memory requirement.

Since L-BFGS is a classic and well-established algorithm [64], we omit the detailed

analysis on its complexity and convergence rate.
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Algorithm 7: DAEM-Based Model Learning

Input: G = (V,E,A)

Output: Estimated mixture model parameters, p(k)’s and Θ

1 Initialize the mixture model parameters, and set temperature parameter

β = β(0)(0 < β(0) < 1);

2 while f̂β(Φ) is not converged and β ≤ 1 do

3 E-step: using the current parameters, estimate the latent memberships of

each vertex as the posterior probabilities, w
(k)
i (β)’s;

4 M-step: update the model parameters via minimizing the regularized upper

bound function Fβ(Φ|Φt);

5 Increase temperature parameter β;

6 Assign each vertex vi to a component based on the mixture weight matrix Θ;

7 return Estimated p(k)’s, Θ;

Vertex Assignment

Upon the convergence of the iterative DAEM process, the next step is to assign

each vertex to either the anomaly or the background mixture component. We can

subsequently use such assignment to uncover anomaly regions in G. Let z∗i be

the component label that vi is assigned to after convergence. z∗i can be estimated
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using the updated mixture weight matrix at the time of convergence.

z∗i = argmax
k
θ

(k)
i , (4.18)

where z∗i is estimated as the label of the mixture component for which vi has the

highest mixture weight.

4.4 Iterative Anomaly Detection

Our framework described so far makes two assumptions on the graphs: (1)

There are only two underlying generative processes that govern the vertex at-

tribute distribution in the graph, anomaly and background. (2) The number of

the anomaly vertices is comparable to that of the background vertices. However,

many real-world networks might violate such assumptions. It is desirable to de-

sign a robust framework that has the following properties: (1) When there are

more than two attribute distributions existing in the graph, it is able to detect

the most anomalous distribution compared to the rest. (2) It detects such an

anomaly region even when it constitutes a small fraction of the graph, and has

little impact on the total data likelihood across the entire graph.

In this section, we propose an iterative framework to account for challenging

scenarios like above. Our iterative approach utilizes the previously proposed two-

component mixture model, iteratively removes background vertices and refocuses
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Figure 4.3: Iterative Procedure Demonstration

the search within the uncovered anomaly vertices. In each iteration, the two-

component mixture model is applied upon the current graph, and classifies the

vertices into anomaly and background. Then only the anomaly-induced subgraph

of the current graph will be fed into the mixture model again in the next iteration,

while the background is pruned. Such process continues until an anomaly region

of desirable size and attribute distribution is found.

Figure 4.3 (better viewed in color) shows how such iterative process works on a

small example. Suppose we have a graph whose vertex attributes are generated by

three distributions, an anomaly distribution with the highest probability of black

vertices, a background distribution with the least probability of black vertices,

and a noise distribution that lies in between. The red region in Figure 4.3 is

the anomaly region, and the blue region is the noise region. If the noise region is

significantly larger than the anomaly region, a non-iterative model will most likely
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fail to pinpoint the actual red anomaly region. We alleviate such behavior via

iteration. As in Figure 4.3, the iteration starts off with labeling both the anomaly

and noise as anomaly, and gradually shrinks the boundary of the anomaly marked

by the red dotted line, until the most anomalous region of the graph is located.

Since within each iteration, our model performs a binary classification on the

graph and retrieves regions with a higher probability of black vertices as the

anomaly, such iterative process is bound to gradually increase the probability of

black vertices in the anomaly distribution. Meanwhile by removing background

vertices in each iteration, such process also reduces the size of the anomaly over

time. A threshold ρ is used to form the stop condition. The iteration stops when

the uncovered anomaly size is ±ρ of the desirable size.

4.5 Performance Measurement

In order to measure the performance of our model, we study the largest

anomaly (the largest connected component, LCC) that can be discovered by these

algorithms, denoted as S0. Two variables are extracted to describe each LCC:

(1) the percentage of black vertices; (2) the pattern size, namely the number of

vertices. To measure these two variables simultaneously, we develop two metrics:

Mahalanobis distance and pattern probability.
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4.5.1 Mahalanobis Distance

We use Mahalanobis distance (M-distance) to evaluate how good each method

is at finding non-random patterns. M-distance is a multivariate version of z-

score. It gauges the distance of an observation from the centroid of a multivariate

distribution, given the covariance of the distribution. We use it to evaluate if the

pattern found in the original graph is a multivariate outlier against random cases.

Two variables are considered: the size and the percentage of black vertices. The

following steps are taken: (1) Apply a method (our method or other methods)

on G, and retrieve the pattern S0. Let B(S0) and |S0| be the percentage of

black vertices in S0, and the size of S0, respectively. (2) Randomly shuffle the

vertex attribute values in G, while keeping the total number of black vertices

unchanged. Let {G1, . . . , Gr} be the set of r randomly-shuffled graphs (all have

the same structure as G). (3) Create a reference random sample set by applying

the same method on each Gi and retrieving the pattern Si. Let B(Si) and |Si| be

the respective two variables. (4) Compute the M-distance of S0 to the r random

samples. Let ~Si = (B(Si), |Si|)T , i = {0, 1, . . . , r}, and ~µ be the mean of the

random samples { ~S1, . . . , ~Sr}. The M-distance of ~S0 is:

DM( ~S0) =

√
( ~S0 − ~µ)TΣ−1( ~S0 − ~µ). (4.19)
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Σ is the covariance matrix of the r random samples. A larger M-distance means

a higher deviation from random cases.

4.5.2 Pattern Probability

Another important measure is to calculate the statistical significance of the

uncovered patterns, which refers to the “non-randomness” of the pattern, meaning

that the occurrence of this pattern is not random in the original graph. If we

randomly shuffle the attribute values in the graph, and apply our model on the

randomized graph, the chance to retrieve such a pattern again should be small.

It is difficult to calculate the statistical significance of anomalies proposed in

this work due to the lack of closed-form solution and the inefficiency of using a

simulation approach. We use pattern probability to measure how “rare” a pat-

tern is in G, without considering the pattern structure. The random variable of

observing a percentage of black vertices follows a binomial distribution. Let Pb

denote the percentage of black vertices in G. Pb is considered as the probability

to observe black vertices. Let N b
0 be the number of black vertices in S0. The

probability of observing N b
0 or more black vertices from a set randomly chosen

vertices with size |S0| is:

P (S0) =

|S0|∑
n=Nb

0

(
|S0|
n

)
P n
b (1− Pb)|S0|−n. (4.20)

A small pattern probability means a higher abnormality of S0.
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4.6 Experimental Evaluation

In this section, we empirically evaluate our framework, which we refer to as

gAnomaly. We evaluate gAnomaly using both synthetic and real-world networks.

Results show that compared to the baseline, gAnomaly is better at uncovering large

subgraphs with high concentration of black vertices. gAnomaly was implemented

in MATLAB. The machine used to run the experiments has a 2.5GHz Intel Xeon

processor, 32G RAM, and runs 64-bit Fedora 8.

We compare gAnomaly with the state-of-art probabilistic graph clustering algo-

rithm BAGC [99] in terms of discovering non-random anomalous patterns. BAGC

is a Bayesian model designed to find cohesive patterns in attributed graphs via

graph clustering where vertices in each cluster share common attribute and edge

distributions. Given that black vertices are those of interest, we treat the clus-

ter with the highest fraction of black vertices as the anomaly cluster in either

method. We focus on: (1) M-distance and pattern probability comparison for

both gAnomaly and BAGC. (2) How performance changes with the network reg-

ularizer coefficient λ. The entropy regularizer coefficient, γ, is set as 0.5, and the

number of generated random samples, r, is set as 100.
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4.6.1 Data Description

Both synthetic and real networks are tested. One attribute of interest is chosen

for each network. Vertices with this attribute are colored black. The motivation

of using synthetic networks is to test the robustness of gAnomaly and make com-

parisons when parameters in synthetic data are varied.

Last.fm Network. We use a subgraph extracted from the Last.fm 2 network

provided in [85], with 5,000 vertices and 6,789 edges. Vertices are users, edges

are friendships, and the vertex attributes are the artists the user listened to. We

choose the attribute “Radiohead” in [85], and color vertices with this attribute as

black. The percentage of black vertices in this subgraph is 39.56%.

Synthetic Last.fm Networks. Each synthetic network is a real Last.fm net-

work structure annotated with synthetic vertex attributes. The previous Last.fm

network is used as the structure for all synthetic Last.fm networks. (1) Group

I: The attributes are generated from two distributions: anomaly and background

distributions. The probability for an anomaly vertex to be black, ωA, varies from

60%, 70%, 80% to 90%, while the probability for a background vertex to be black

varies from 40%, 30%, 20% to 10%. A random set of connected components (CCs),

which occupies 30% of the network, is chosen to be the anomaly region, and the

rest is the background. (2) Group II: The attributes are generated from three dis-

2www.last.fm
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tributions: anomaly, noise and background distributions. The percentage of black

vertices in the anomaly, noise region and background region is 95%, 30%, and 5%,

respectively. A random connected region is chosen as the anomaly region, whose

size varies from 1%, 5%, to 10%. A noise region is further added that takes 20%

of the network. The rest if the background. The purpose of Group II networks

is to show that with the iterative detection process, gAnomaly performs well even

when the network has multiple generative attribute distributions, or the anomaly

region takes a very small fraction of the graph.

Cora Network. The Cora network 3 consists of 2,708 scientific publications

and their 5,429 citation relations. Each vertex is a publication, and each edge

denotes a citation relation. Publications are classified into: {“Case Based”, “Ge-

netic Algorithms”, “Neural Networks”, “Probabilistic Methods”, “Reinforcement

Learning”, “Rule Learning”, “Theory”}. We choose the most prevalent class as the

attribute of interest, “Neural Networks” (with 818 vertices). A vertex is black if

it is from the class “Neural Networks”.

DBLP Networks. This network composed of 6,307 vertices and 8,709 edges

is extracted from the DBLP bibliography. Each vertex is an author. There is

an edge between two authors if they have coauthored at least five papers. Each

author is labeled with a research field from: {“Database”, “Data Mining”, “In-

3http://www.cs.umd.edu/~sen/lbc-proj/LBC.html
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formation Retrieval”, “Artificial Intelligence”} as in [99]. We use two versions of

this network: DBLP-IR and DBLP-DM, where black vertices are authors with

the label “Information Retrieval” (totally 795 black vertices) and “Data Mining”

(totally 1,096 black vertices), respectively.

4.6.2 Results on Synthetic Data

In this section, we show how gAnomaly performs on both groups of synthetic

networks, with different purposes. For Group I, M-distance and pattern proba-

bility are used for evaluation. Since similar results using these two metrics are

observed for Group II, we use F1 score in Group II test to evaluate the ability of

gAnomaly to retrieve true anomalies in challenging scenarios.

Group I: Graphs With Two Generative Processes

Figure 4.4 visualizes the M-distance of the pattern S0 in the original graph, to a

set of random samples. R
(2)
N is used. The blue circles are the patterns found in the

randomized graphs, {S1, . . . , S100}, and the red star is S0. The numeric value of

the M-distance can be obtained by looking up the star color in the color bar. The

distance between S0 to the centroid of the random samples indicates the power

of the algorithm for anomaly detection. M-distance is much more significant in

gAnomaly than BAGC, especially when ωA >= 0.7. It seems BAGC often finds
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(c) gAnomaly, ωA = 0.8
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Figure 4.4: gAnomaly vs. BAGC, M-Dist Visualization on Group-I Synthetic
Last.fm Networks

the same set of dense subgraphs in the randomized graphs, as many blue circles

overlap. For both methods, M-distance decreases, namely the red star gets closer

to the centroid of the blue circles, when ωA decreases. When ωA is small, the

anomalies are harder to detect since the anomaly cluster differs less from the

background cluster.

We now present sensitivity analysis of λ. Figure 4.5 shows how the two metrics

change with λ on the synthetic network with ωA = 0.9 from Group-I. With ap-

propriate setting of λ, gAnomaly performs significantly better than BAGC. Both

versions of gAnomaly outperform BAGC in M-distance when λ <= 0.1, and in

pattern probability for all λ’s. Performance of gAnomaly decreases as λ increases.
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This is because when λ is small, network regularization plays a smaller role, re-

sulting in smaller patterns with higher concentration of black vertices; when λ is

large, the patterns tend to be larger with less fraction of black vertices. In com-

parison with R
(1)
N , R

(2)
N is less sensitive to λ, yielding good abnormality measures

even for large λ. This conforms with the intuition of R
(2)
N . We can conclude: (1)

There is a trade-off between the abnormality and the size of the pattern; (2) It

is validated that minimizing the minimum mixture weight difference between a

vertex and its neighbors as R
(2)
N , is the best way to connect abnormal regions with

high fraction of black vertices. R
(2)
N is a good choice if both abnormality and size

of a pattern are desired.
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Figure 4.5: M-Dist & Pattern-Prob vs. λ in gAnomaly on Group-I Synthetic
Last.fm, ωA = 0.9

How the two metrics change with ωA is shown in Figure 4.6 with λ = 0.01. A

larger ωA means a larger difference between the anomaly and the background in

terms of attribute distribution. It shows that both versions of gAnomaly signifi-
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cantly outperform BAGC on all networks. R
(1)
N outperforms R

(2)
N in this scenario,

which will be analyzed in Section 4.6.5. The performance improves as ωA in-

creases, because when the difference between the anomaly and the background

increases, it becomes easier for both methods to identify the anomalies.
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Figure 4.6: gAnomaly vs. BAGC, M-Dist & Pattern-Prob vs. ωA on Group-I
Synthetic Networks

Group-II: Graphs With Multiple Generative Processes

Now we evaluate the performance of the iterative version of gAnomaly using

more challenging networks where: (1) there are more than two generative processes

underlying the network; (2) the fraction of anomaly region is small. Group II

Last.fm synthetic networks are used in service of these goals.

With known ground truth anomaly region, F1 score is used to measure the

quality of anomaly retrieval. Figure 4.7(a) shows how F1 changes with the size

of the anomaly region in the synthetic network (ρ = 5%). How F1 changes with
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ρ (anomaly region size is fixed to 1%) is shown in Figure 4.7(b). As shown, with

the adoption of the iterative process, both versions of gAnomaly yield good F1

performance, and beat BAGC significantly.
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Figure 4.7: Iterative gAnomaly vs. BAGC, F1 on Group-II Synthetic Networks

Figure 4.8 shows one case of iteration convergence using gAnomaly and R
(1)
N

regularizer, where the anomaly region is 1%, and the stop threshold is 5%. We

can see that the iteration starts off with a large anomaly region which contains

a small fraction of black vertices; as the iteration continues, gAnomaly is able to

gradually shrink the anomaly region and increase the percentage of black vertices

within, until the iteration converges to a desirable anomaly region.

4.6.3 Results on Real Data

In this section, we report results on four real networks. Figure 4.9 visualizes

the M-distance of the uncovered pattern S0 in each real network, to a set of
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patterns uncovered from randomized networks derived from the real network with

the attributes shuffled. R
(2)
N is used in gAnomaly. Again the distance between S0

to the centroid of the random samples is much more significant in gAnomaly than

BAGC, especially on Cora, DBLP-IR, and DBLP-DM.

Figure 4.10 further presents λ sensitivity analysis on those networks. We can

observe a very similar trend as in Figure 4.5. Overall in most cases gAnomaly

outperforms BAGC in M-distance when λ <= 0.1, and in pattern probability

for all λ’s. For most networks, R
(2)
N is again less sensitive to λ, yielding good

measures even for large λ. Note that the performance of gAnomaly is contingent

on the structure and pattern distribution within the network. If the network does

not contain a significant anomaly region, gAnomaly is not able to identify it; or

if the anomaly consists of many cohesive patterns, BAGC will do better than

gAnomaly. This explains why gAnomaly does not perform as well on DBLP-DM
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Figure 4.9: gAnomaly vs. BAGC, M-Dist Visualization on Real Networks

as on other networks. Figure 4.11 shows the comparison between gAnomaly and

BAGC using λ = 0.01, where gAnomaly significantly outperforms BAGC on all

networks but DBLP-DM, in both metrics.

4.6.4 Case Study

We further conduct case studies on the two DBLP networks to examine the con-

tent of uncovered anomaly patterns. Figure 4.12 shows a portion of the anomaly

patterns gAnomaly uncovers from DBLP-IR and DBLP-DM. Black authors rep-

resent those that are classified as from the respective field. For example in Fig-

ure 4.12(a), Chengxiang Zhai is classified as “Information Retrieval”, whereas Ge-
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Figure 4.10: M-Dist & Pattern-Prob vs. λ in gAnomaly on Real Networks
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Figure 4.11: gAnomaly vs. BAGC, M-Dist & Pattern-Prob on Real Networks

oge Karypis is not. We use the author labels provided by [99], which assigns

the most representative label from the four research areas to each author. A few

observations are made from our case studies: (1) For a specific research field,

gAnomaly uncovers a continuous region with a high concentration of authors from
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this field. (2) The uncovered pattern is not necessarily densely connected, mean-

ing that gAnomaly is not looking for cliques or near-cliques where most authors

have collaborated with everybody else. (3) The pattern contains a small frac-

tion of authors not from this field. gAnomaly includes such “bridge’ authors to

tolerate noise so that a region can span across multiple research groups. Once

such patterns are found, it will be useful to further study how information has

diffused among those authors over time. Finding such patterns is a critical step

for localized network influence analysis.

4.6.5 Discussion

Our experiments clearly demonstrate the advantage of gAnomaly over BAGC.

M-distance comparison shows that gAnomaly is better at generating statistically

significant patterns. Pattern probability comparison shows that patterns found

by gAnomaly are more rare. gAnomaly discovers large abnormal patterns with a

significant portion of black vertices. Such patterns are different from either dense

or cohesive patterns. Meanwhile, the larger the difference between the anomaly

and the background is, namely the more distinctive the anomaly is, the easier it

is for gAnomaly to detect it. Results in Section 4.6.3 indicate that the anomalies

in Cora and DBLP-IR are more distinctive than those in Last.fm and DBLP-DM.

BAGC is better at finding densely-connected cohesive patterns. For example, we
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Figure 4.12: gAnomaly Case Study on DBLP

also tested DBLP-DB network (authors labeled as “Database” are colored black);

BAGC outperformed gAnomaly in M-distance. Users can choose the algorithm

based on the network property and application. Figures 4.4 and 4.9 show that

the patterns found by BAGC concentrate on a few distinct sizes. This is due

to the unchanged graph structure while creating random graph samples. BAGC

finds cohesive patterns, which entails dense connectivity in a pattern. While the
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attributes in the graph are randomly shuffled, the unchanged topological structure

leads BAGC to frequently uncover the few regions with high edge density.

We further summarize the findings on comparing R
(1)
N and R

(2)
N . (1)R

(2)
N is

less sensitive to λ. When λ is large, the patterns found by R
(2)
N contain more

black vertices. This conforms with its design, which enforces vertices of the same

color to have similar mixture weights. The black cluttering effect is resultantly

more apparent in R
(2)
N . (2) On average R

(1)
N generates larger patterns than R

(2)
N ,

which leads to a better performance of R
(1)
N when λ = 0.01. (3) When λ = 0.01,

both R
(1)
N and R

(2)
N produce patterns with high percentage of black vertices. This is

because when the weight on network regularizer is small, the regularized likelihood

is predominated by the likelihood term (`(V ) in Equation (4.9)), therefore vertices

with the same color tend to be assigned to the same component.
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Vertex Classification for
Attribute Generation

In this chapter, we discuss an important pre-step for finding attributed anoma-

lies, attribute generation. Many real-world graph data are noisy and incomplete.

They are often times partially attributed, where the attributes of some vertices

are unknown. In the context of vertex classification, it means that the class labels

of some vertices are not available. It is therefore critical to assign class labels to

unlabeled vertices using existing class labels. Such class labels are considered im-

portant attributive information for vertices, on which all of our previous attributed

graph mining algorithms can be applied. It constitutes an essential pre-step for

mining graphs that are partially attributed. In this chapter, we introduce an

efficient random walk-based vertex classification framework for dynamic graphs

where vertices are annotated with text. Our goal is to classify the vertices using

both structure and text. The result of such a framework is enriched vertex infor-
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mation, which provides critical additional vertex attributes for attributed graph

mining. The work in this chapter is published in [3].

Much of the existing vertex classification work has focused on classification

using either the textual, or the structural information of the graph. Furthermore,

existing work is mostly designed for the problem of static graphs. However, a

real-world graph may be quite diverse and dynamic, and the use of either the text

or the structure could be more or less effective in different parts of the graph. In

this chapter, we examine the problem of vertex classification in dynamic informa-

tion networks where each vertex is annotated with a textual document. We use

a random walk approach that takes into consideration both the structural and

textual information, in order to facilitate an effective classification process. This

results in an efficient approach which is more robust to variations in text and

structure. Our approach is dynamic, and can be applied to networks which are

updated incrementally. Experimental results suggest that an approach which is

based on a combination of text and structure is robust and effective.

5.1 Background and Preliminary Material

Graphs annotated with text are ubiquitous, such as publication citation net-

works and co-author collaboration networks. Such networks are highly dynamic
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and may be frequently updated over time. For example, new vertices are created

in the network, as new authors appear in a collaboration network; new edges are

added between vertices, as new collaborations are established. A key problem

which often arises in the context of such networks is vertex classification [4, 2].

Intuitively, it is assumed that a subset of the vertices in the graph are already

labeled. It is desirable to use these labeled vertices in conjunction with the graph

structure and vertex documents for the classification of vertices which are not cur-

rently labeled. For example, many network documents may naturally belong to

specific topics on the basis of their textual and structural patterns. However, most

such documents may not be formally associated with labels in social networking

scenarios because of a lack of resources available for a human-centered labeling

process. In this chapter, we will address the classification problem, in which it is

desirable to determine the categories of the unlabeled vertices in an automated

way using both the structural and textual information. The presence of labels on

a subset of the vertices provides the implicit training data which can be leveraged

for learning purposes.

The vertex classification problem is particularly challenging in the context of

very large, dynamic, and evolving social and information networks. In particu-

lar, a number of natural desiderata are applicable in the design of classification

algorithms in this scenario. These desiderata are as follows:
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• Social and information networks are very large, as a result of which our

vertex classification algorithm need to be efficient and scalable.

• Many such networks are dynamic, and are frequently updated over time.

Therefore, our algorithm needs to be efficiently updatable in real time in

order to account for such changes.

• Such networks are often noisy, as many of the structural and textual features

may not be relevant to the classification process. In addition, different por-

tions of the network may be better suited to different kinds of classification

models. We need to design a classifier, which can make such decisions in

a seamless way, so that the appropriate parts of the network may be used

most effectively for classification.

The problem of vertex classification is extensively studied in the data mining

community [29]. It has been examined in the context of both structure-based [12,

15, 65] and text-based [51, 74, 82, 102] analysis. In this chapter, we propose a

random walk approach, which combines structural and textual behavior, and show

that it can be used in a seamless way in order to perform robust classification.
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5.2 Text-Augmented Graph Representation

Assume that we have a large network containing a set of vertices Vt at time t.

Since the approach is dynamic, we use a time-subscripted notation Vt in order to

denote the changing vertices in the network. We also assume that a subset V L
t of

these vertices Vt are labeled. These vertices form the training vertices, and they

contribute both structural and textual information for classification purposes. The

vertices in V L
t are labeled from a total of K classes, which are drawn from the

set {1, . . . , K}. As in the case of the vertex set Vt, the set V L
t is not static, but

may dynamically change over time, as new labeled vertices may be added to the

network. Similarly, the set of edges at time t is denoted by Et. The entire network

is denoted by Gt = (Vt, Et, V
L
t ) at a given time t.

In order to utilize both structural and textual information, we construct a

summary text-augmented representation of the original graph, which is leveraged

for classification purposes. Our broad approach is to construct an intuitive random

walk based approach on the summary representation, in which both text and

structure are used during the walk process for classification. Since we intend to

design classification techniques which use the text, it is useful to first determine

the words which are most discriminative for classification purposes. The ability to

select a compact classification vocabulary is also useful in reducing the complexity
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and size of the model at a later stage. The discriminative quantification of a

given word from the corpus is performed using a well known measure called gini-

index. We dynamically maintain a sample reservoir St of labeled documents in the

collection, and use them for computing the gini-indices. We can use the reservoir

sampling algorithm discussed in [95]. From time to time, we compute the gini-

indices to obtain the discriminative power of different words. For a given word

w, let p1(w), . . . , pK(w), be the relative fractional presence of the word w in the

K classes. In other words, if nk(w), k = {1, . . . , K} is the number of documents

which contain the word w from class i, then we estimate pi(w) as follows:

pk(w) = nk(w)/
K∑
j=1

nj(w) (5.1)

Then, the gini-index g(w) for the word w is computed as follows:

g(w) =
K∑
j=1

pj(w)2 (5.2)

The value of g(w) always lies in the range (0, 1). If the word is evenly distributed

across the different classes, then the value of g(w) is closer to 0. On the other

hand, if the word w has a preponderance in one of the classes, then the value

of g(w) is closer to 1. Thus, words which have a higher value of g(w) are more

discriminative for classification purposes. As a first step, we pick a set Mt of

the top m words which have the highest value of g(w) and use them in order

to construct our text-augmented graph summary representation. The set Mt
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1

2

3

4

STRUCTURAL NODES

WORD NODES

DASHED LINES => WORD PRESENCE IN NODES

Figure 5.1: Semi-bipartite Transformation

represents the active vocabulary which is useful for classification purposes. In

our current implementation, Mt is updated at the same pace as the dynamic

network is updated. Nonetheless, we note that Mt does not need to be updated

at each time step t. Rather, it can be updated in batch at specific steps in time,

with a much less frequency compared to that the network is updated. The most

discriminatory words are used to create a new semi-bipartite representation of the

network which is useful for classification purposes.

5.2.1 Semi-Bipartite Transformation

In our framework, both text and structure are transformed into a summary

representation of the original graph, which takes the form of a new semi-bipartite
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graph. This process is referred to as the semi-bipartite text-augmented trans-

formation. The set Mt provides a more compact vocabulary to facilitate this

transformation. One partition in the semi-bipartite representation allows vertices

to have edges either within the partition, or to the other partition; the other

partition is only allowed to have edges to the first, but not within itself.

The semi-bipartite text-augmented transformation defines two kinds of ver-

tices: (i) structure vertices which are the same as the original vertex set Vt, and

inherit edges from the original network; (ii) word vertices which are the same as

Mt. Then, we construct the semi-bipartite graph Ft = (Vt ∪ Mt, At ∪ A′t), in

which Vt and Mt form the two sides of the bipartite partition. The set At is

inherited from the original network, whereas A′t is constructed on the basis of

word-presence in the text of vertices. Specifically, an undirected edge exists be-

tween vertex v ∈ Vt, and the word vertex w ∈ Mt, if the corresponding word is

contained in vertex v’s text. Thus, the edges in At are within a partition, whereas

the edges in A′t are across the partition. An example of this transformation is

illustrated in Figure 5.1. The structure vertices have edges which are indicated

by solid lines, whereas the connections between structure and word vertices are

illustrated by dashed lines. Therefore, a walk from one vertex to another may use

either solid or dashed lines. This provides a way to measure proximity in terms

of both structure and text.
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In addition, a number of data structures are required in order to allow efficient

traversal of the text and structure: (1) For each of the word vertices w ∈Mt, we

maintain an inverted list containing the set of vertex identifiers which contain w.

Let Pw be the set of vertices pointed to by word w. (2) For each of the original

vertices v ∈ Vt, we maintain an inverted list of words contained in v’s text. The

set of words pointed to by vertex v is denoted by Qv. These lists can be updated

efficiently during the addition or deletion of vertices and words in the graph.

5.3 Random Walk-Based Classification

In this section, we will describe our classification approach. Since random

walks can be used to define proximity in a variety of ways [50], a natural approach

is to construct proximity-based classifiers which use the majority labels of the

random walk vertices. Since textual information is included in the semi-bipartite

representation, it follows that a random walk on this graph would implicitly use

both text and structure during the classification process. The starting vertex in

this random walk is an unlabeled vertex in Vt which needs to be classified. A

straightforward use of a random walk over the semi-bipartite graph Ft may not be

very effective, because the walk can get lost by the use of individual word vertices

in the random walk. In order to control this relative importance, we will define
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the walk only over the structure vertices with implicit hops over word vertices.

Specifically, a step in the random walk can be one of two types: (1) The step

can be a structural hop from one vertex in Vt to another vertex in Vt. This is

a straightforward step using linkage information in the original graph. (2) The

step can be a word-based multi-hop from a vertex in Vt to another vertex in Vt,

which uses edges between the structure and word vertices. Each step conducts

an aggregate analysis of the word-based edges between one structure vertex in Vt

and another in Vt. The reason for this aggregate analytical multi-hop approach

is to reduce the noise which naturally arises as a result of using straightforward

walks over individual word vertices while moving from one structure vertex to

another. Many of the words in a given document may not be directly related

to the relevant class. Thus a walk from one structure vertex to another using a

random word vertex could diffuse the random walk to less relevant classes.

A key aspect is to control the relative importance of structure and text during

the walk. To serve this goal, we use a structure parameter ps, which defines the

probability that a particular hop is a structural hop rather than a word-based

multi-hop. ps being set to 1 is equivalent to using only structure for classification,

and 0 to using only text for classification.

Our classifier uses repeated random walks of length h starting at the source

vertex. The random walk proceeds as follows. In each iteration, we assume that
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the probability of a structural hop is ps, and of a word-based multi-hop is (1−ps).

By varying the value of ps, it is possible to control the relative importance of

structure and text in the classification process. A total of l such random walks

are performed. Thus, a total of l · h vertices are visited in the random walks.

These vertices may either belong to a particular class, or they may not be labeled

at all. The most frequently encountered class among these l ·h vertices is reported

as the class label. If no labeled vertex is encountered through all random walks,

we simply report the most frequent label of all vertices currently in the network.

A high-level sketch of the classification algorithm is presented in Algorithm 8.

Algorithm 8: Random Walk-Based Classification Process

Data: Network Gt = (Nt,At, Tt), number of random walks, l, walk length, h,

structural hop probability, ps

Result: Classification of Tt, accuracy, θ

1 for each node v in Tt do

2 Perform l random walks with structural hop probability, ps, each of

which contains h hops;

3 Classify v with the class label most frequently encountered;

4 θ ← the percentage of nodes correctly classified;

5 Return classification labels and θ;
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5.3.1 Word-Based Multi-Hops

At each step of the random walk, we flip a coin with probability ps. In the

event of a success, we perform a structural hop; otherwise we perform a word-

based multi-hop. A structural hop is straightforward, which randomly picks a

neighbor of the current vertex. For a word-based multi-hop, a two-step approach

is required. First, we determine the top-ω vertices with the most number of 2-

hop paths from the current vertex with the use of an intermediate word vertex.

Secondly, let the relative frequency of the number of 2-hop paths leading to these

ω vertices be denoted by r1, . . . , rω, based on which we sample the i-th vertex with

probability ri. By truncating the random walk process to only the top-ω vertices,

we ensure that the random walk is not lost because of non-topical words in the

documents. Both steps can be efficiently performed through inverted lists.

5.4 Experimental Evaluation

In this section, we evaluate our framework on real data sets. Our algorithm is

referred to as DyCOS, corresponding to the fact that it is a Dynamic Classification

algorithm with cOntent and Structure. The effectiveness is measured by classifi-

cation accuracy, which is the proportion of correctly classified vertices as to the

total number of test vertices which are classified. The efficiency is measured by
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the runtime. For this purpose, we report the wall-clock time. In order to establish

a comparative study, we compare DyCOS to a baseline method, the NetKit-SRL

toolkit 1, which is an open-source network learning toolkit for statistical rela-

tional learning [66]. The results obtained in a multi-class classification environ-

ment demonstrate that DyCOS improves the average accuracy over NetKit-SRL

by 7.18% to 17.44%, while reducing the average runtime to only 14.60% to 18.95%

of that of NetKit-SRL. The specific setup of NetKit-SRL chosen in our experi-

ments will be described later. Note that NetKit-SRL is a generic toolkit without

particular optimization for our problem definition.

We conduct experiments on: (1) comparative study between DyCOS and the

baseline NetKit, with respect to classification accuracy; (2) how well DyCOS per-

forms in a dynamic environment; (3) sensitivity to two important parameters,

the number of most discriminative words, m, and the size constraint of inverted

lists for words, a. All experiments are run in Fedora 8 on an one-core Intel Xeon

2.5GHz machine with 32G RAM. Parameters used in DyCOS include:

• The number of most discriminative words, m (Section 5.2);

• The number of top 2-hop paths, ω (Section 5.3.1);

• The size of the inverted list for word w (Section 5.2.1), a, i.e., |Pw| <= a;

1http://www.research.rutgers.edu/~sofmac/NetKit.html
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• The structure parameter, ps (Section 5.3);

• The number of random walks for each source vertex, l (Section 5.3.1);

• The number of hops in each random walk, h (Section 5.3.1).

5.4.1 Data Description

Two real networks are used in our experimental evaluation, CORA and DBLP

networks, as shown in Table 5.1. The labeled vertex number is the number of

vertices whose class labels are known and the class number is the number of

distinct classes the vertices belong to.

Table 5.1: Data Description

Name Vertexs Edges Classes Labeled Vertexs

CORA 19,396 75,021 5 14,814
DBLP 806,635 4,414,135 5 18,999

CORA Network. The CORA network 2 contains a set of research papers and

the citation relations among them. There are 19,396 distinct papers and 75,021

citation relations among them. Each vertex is a paper and each edge is a citation

relation. A total of 12,313 English words are extracted from the titles of those

papers to associate each paper with keywords. The CORA data set is well-suited

for our experiments because the papers are classified into a topic hierarchy tree

2http://www.cs.umass.edu/~mccallum/code-data.html

145

http://www.cs.umass.edu/~mccallum/code-data.html


Chapter 5. Vertex Classification for Attribute Generation

with 73 leaves. Each leaf represents a specific research area in computer science.

We reconfigure the hierarchy to achieve a more coarse-grained classification. We

extract 5 classes out of the 74 leaves, and 14,814 of the papers belong to these

5 classes. Since the CORA graph does not include temporal information, we

segment the data into 10 sub-graphs, representing 10 synthetic time periods. The

classification is performed dynamically when the graph increasingly evolves from

containing only the first sub-graph to containing all sub-graphs.

DBLP Network. The DBLP network contains 806,635 distinct authors and

4,414,135 collaboration edges among them. Each vertex is an author and each edge

represents a co-author relationship. A total of 194 English words in the domain

of computer science are manually collected to associate authors with keyword

information. The number of occurrences of each word is calculated based on

the titles of publications associated with each author. We use 5 class labels,

which denote 5 computer science domains: computer architecture, data mining,

artificial intelligence, networking and security. We associate some of the authors

with ground-truth class labels using information provided by ArnetMiner 3, which

offers a set of comprehensive search and mining services for academic community.

In total we have collected class labels for 18,999 authors. We segment the whole

3http://www.arnetminer.org/
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DBLP graph into 36 annual graphs from year 1975 to year 2010. The classification

is performed dynamically as the graph evolves over time.

5.4.2 NetKit-SRL Toolkit

We use the well-known NetKit-SRL toolkit as the baseline. NetKit-SRL, or

NetKit for short, is an open-source network learning toolkit for statistical rela-

tional learning. It aims at estimating the class membership probability of un-

labeled vertices in a partially labeled network [66]. NetKit contains three key

modules, local classifier, relational classifier and collective inferencing. For more

details on NetKit, we refer the readers to [66]. In our experiments, we use domain-

specific class-prior as the local classifier, network-only multinomial Bayes classifier

as the relational classifier and relaxation labeling for collective inferencing.

5.4.3 Classification Performance

The classification performance is measured by accuracy and efficiency. The

accuracy is the fraction of correctly classified vertices. The efficiency is defined

by the wall-clock execution time in seconds. The parameter setting for DyCOS is:

m = 5, a = 30, ps = 0.7, l = 3, and h = 10. We will show later DyCOS is not

significantly sensitive to these parameters.
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Comparative Study on CORA

In this section, we compare the DyCOS and Netkit algorithms on the CORA

data set. Figure 5.2(a) shows the average classification accuracy of both the

DyCOS and Netkit algorithms for each synthetic time period. Clearly, the DyCOS

classification model enables a performance gain ranging from 9.75% (time period

1) to 22.60% (time period 7). The average accuracy increment induced by DyCOS

is 17.44% on the CORA data set.
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Figure 5.2: DyCOS vs. NetKit on CORA

The comparison of running time for each time period is shown in Figure 5.2(b).

As illustrated, DyCOS is much more efficient in terms of running time. The

running time of DyCOS is only a portion of that of NetKit, and it ranges from

12.45% (time period 10) to 16.70% (time period 7). The average running time of

DyCOS is 14.60% that of NetKit on the CORA data set.
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Comparative Study on DBLP

Next, we present the comparative results on DBLP data. In order to establish

a dynamic view, we divide the entire 36-year course of time into three periods,

1975-1989, 1990-1999 and 2000-2010. Figure 5.3(a) presents the average accuracy

of both DyCOS and Netkit, for each time period. DyCOS achieves a performance

gain ranging from 1.75% (time period 2000-2010) to 13.73% (time period 1975-

1989). The average accuracy increment induced by DyCOS is 7.18% on DBLP.
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Figure 5.3: DyCOS vs. NetKit on DBLP

The comparison of classification running time for each time period is shown in

Figure 5.3(b). As shown, DyCOS again decreases running time significantly. The

running time of DyCOS is only a portion of that of NetKit. This time ranges from

11.30% (time period 2000-2010) to 21.30% (time period 1975-1989). The average

running time of DyCOS is 18.95% that of NetKit on DBLP data.

149



Chapter 5. Vertex Classification for Attribute Generation

5.4.4 Dynamic Update Efficiency

In this section, we investigate the efficiency of DyCOS in the presence of dy-

namically arriving data. As aforementioned, DyCOS handles temporally-evolving

graphs with efficient update mechanisms. Table 5.2 presents the average model

update time (in seconds) of DyCOS when new data from the next synthetic time

period arrives, on CORA data. The average model update time over all 10 time

periods is 0.015 seconds.

Table 5.2: DyCOS Dynamic Updating Time on CORA

Time Period 1 2 3 4 5
Update Time (Sec.) 0.019 0.013 0.015 0.013 0.023

Time Period 6 7 8 9 10
Update Time (Sec.) 0.015 0.014 0.014 0.013 0.011

Table 5.3 presents the average annual model update time (in seconds) of Dy-

COS over various time periods, on DBLP data. The average annual model update

time over all 36 years is 0.38 seconds.

Table 5.3: DyCOS Dynamic Updating Time on DBLP

Time Period 1975-1989 1990-1999 2000-2010

Update Time (Sec.) 0.03107 0.22671 1.00154

The results demonstrate the efficiency of maintaining the DyCOS model under a

dynamically-evolving network environment. This is a unique advantage of DyCOS

in terms of its ability to handle dynamically updated graphs.

150



Chapter 5. Vertex Classification for Attribute Generation

5.4.5 Parameter Sensitivity

This section examines the sensitivity of DyCOS to various parameters. We

focus on two particularly important parameters, the number of most discriminative

words, m, and the size constraint of inverted lists for words, a.

Parameter Sensitivity on CORA

For CORA data, three different scenarios are created, which are (i) l = 5,

h = 8, (ii) l = 3, h = 5, and (iii) l = 3, h = 10, with ω set to 10 for all

three. Figures 5.4(a) and 5.4(b) demonstrate how classification accuracy and

runtime change over different m values, respectively. It is evident that there is no

significant correlation between m and the classification performance, though the

runtime increases slightly with m. This is expected because a content hop takes

more time to process if there are more discriminative keywords. The accuracy

and efficiency variations with the parameter a are presented in Figures 5.4(c)

and 5.4(d). The result is reasonable, considering that while larger inverted lists

for words give opportunity for more 2-hop paths to be considered, they might

meanwhile include less relevant 2-hop paths. The robustness of DyCOS is therefore

illustrated since it does not heavily rely on parameter setting, and more efficient

choices can achieve equally effective results.
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Parameter Sensitivity on DBLP

For DBLP data, Figures 5.4(e) and 5.4(f) demonstrate the sensitivity to pa-

rameter m in terms of both accuracy and runtime, under three scenarios: (i)

a = 20, ps = 0.7, (ii)a = 30, ps = 0.7, and (iii)a = 10, ps = 0.5, with ω = 10

for all scenarios. Interestingly, we can observe that, on DBLP data, classification

accuracy reduces when m increases. This is expected because a higher value of

m implies that less discriminative words are included into computing 2-hop paths

during random walks. The sensitivity to a in Figures 5.4(g) and 5.4(h) shows

similar trends in DBLP as in CORA.
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Figure 5.4: DyCOS Parameter Sensitivity
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Chapter 6

Conclusions

Anomaly detection in large attributed graphs is an important research topic

with many interesting real-world applications. This thesis extends the current lit-

erature by proposing new types of interesting graph anomalies in vertex-attributed

graphs. Efficient and robust algorithms are further introduced for mining each

type of anomaly. The fundamental motivation is to enrich the attributed graph

mining research community with new anomaly definitions and mining techniques,

while addressing the drawbacks of existing mining frameworks. Given a graph

augmented with vertex attributes, the proposed frameworks find attributed con-

stituent components of the graph, with abnormal features that deviate from the

majority of constituent components of the same nature. Our approaches span

across two categories: (1) combinatorial methods based on graph indexing and

querying; (2) statistical methods based on probabilistic models and regularization.

This thesis has introduced anomaly detection frameworks including attributed-
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based proximity search, attribute aggregation for iceberg search, generative at-

tribute distribution modeling, and attribute generation via vertex classification.

6.1 Summary

Chapter 2 studies the attribute-based graph proximity search problem, which

finds the top-k query-covering proximity anomalies with the smallest diameters.

The proposed gDensity framework introduces likelihood ranking to speed up the

search. Fast pruning and early stopping are enabled by nearest attribute pruning

and progressive search. Density indexing is proposed for fast likelihood estimation.

Partial indexing is further proposed to reduce indexing cost. Empirical studies on

real and synthetic data show the efficiency and scalability of gDensity.

Chapter 3 introduces a novel concept, graph iceberg anomaly, which extends

iceberg queries to vertex-attributed graphs. A graph iceberg anomaly is a vertex

that is close to an attribute under the proposed PageRank-based aggregate score.

A scalable framework, gIceberg, is proposed with two aggregation schemes: for-

ward and backward aggregations. Optimization techniques are designed to prune

unpromising vertices and reduce aggregation cost. Experiments on real and syn-

thetic large graphs show the effectiveness and scalability of gIceberg.
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A probabilistic approach to detect anomalous attribute distributions is pro-

posed in Chapter 4. Given a vertex-attributed graph, we aim to uncover graph

regions exhibiting significantly different attribute distributions compared to the

majority of the graph. gAnomaly utilizes an extended mixture model with net-

work and entropy regularizers to describe the presence of graph anomalies, and

further uncovers abnormal regions using the learned model. Experiments on both

synthetic and real data demonstrate the effectiveness of our framework.

In Chapter 5, we present a dynamic and scalable framework, DyCOS, for vertex

classification in attributed graphs that are partially labeled. An intuitive random

walk-based solution is proposed to classify vertices in a text-augmented represen-

tation of the original graph. We present experimental results on real graphs, and

show that DyCOS is more effective and efficient than competing algorithms.

6.2 Future Directions

An important future direction is to extend the anomaly definitions and detec-

tion algorithms discussed in this thesis to edge-weighted and edge-directed graphs,

which are prevalent in reality. Challenges arise with such extension. For exam-

ple in gIceberg, even though the random walk approximation bounds still hold

for edge-weighted graphs, the reversibility of random walks no longer exists when
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edges have directions. As a result, new mechanisms need to be designed to speed

up aggregation in large graphs. Another case in point, in gDensity, the current

anomaly measure uses the diameter of the vertex set, which becomes more costly

for directed edges, since the distance from vertex u to v is no longer the same as

that from v to u. How we can adjust the definition without introducing too much

computational overhead is a critical future task.

Second of all, how to modify our definitions and frameworks to account for

temporal graphs that are changing over time has important real-world motiva-

tions. This is especially the case for gAnomaly, which discovers anomalous regions

that are most likely caused by influence propagation and information diffusion.

Incorporating temporal information into the graphs, such as temporal vertices,

edges and attributes, provides critical insight into the model design and learn-

ing. Temporal graphs also allow us to conduct causal analysis among different

anomalies occurring at different time steps to examine their relationship.

How to evaluate the abnormality of the uncovered anomalies is essential for

anomaly detection. We plan to further employ statistical significance test to gDen-

sity, gIceberg and DyCOS. As for gAnomaly, in addition to Mahalanobis distance

and pattern probability, we intend to further examine the possibility of applying

the statistical significant pattern recognition techniques in [71].
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Some other important future directions include deploying our computation

frameworks on a parallel platform, examining new types of objective functions in

gDensity and gIceberg, and new types of network regularizers in gAnomaly.
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Appendix A

Proofs

Proof of Theorem 2:

Proof. For each random walk Wi(i = {1, . . . , R}), let Xi be a random variable
such that

Xi =

{
1, if random walk Wi ends at vertex x,
0, otherwise.

Thus we have p̃v(x) = (ΣiXi)/R. According to the findings in [35], pv(x) =
E[p̃v(x)]. From the definition of Xi, we have Pr[Xi ∈ [0, 1]] = 1, and Xi(i =
{1, . . . , R}) are independent variables, therefore according to Hoeffding Inequality,
we can derive

Pr[
ΣiXi

R
− E[

ΣiXi

R
] ≥ ε] ≤ exp{− 2(Rε)2

Σi=R
i=1 (1− 0)2

}

≤ exp{−2Rε2}.

Therefore, we have Pr[p̃v(x)−pv(x) ≥ ε] ≤ exp{−2Rε2} and Pr[|p̃v(x)−pv(x)| ≥
ε] ≤ 2 exp{−2Rε2}.

Proof of Theorem 3:

Proof. Recall that a vertex which contains attribute q is called a black vertex. For
each random walk Wi(i = {1, . . . , R}), let Yi be a random variable such that

Yi =

{
1, if random walk Wi ends at a black vertex,
0, otherwise.
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Thus we have P̃q(v) = (ΣiYi)/R and Pq(v) = E[(ΣiYi)/R]. According to the defi-
nition of Yi, Pr[Yi ∈ [0, 1]] = 1, and Yi(i = {1, . . . , R}) are independent variables.
Therefore, according to Hoeffding Inequality, we can derive

Pr[
ΣiYi
R
− E[

ΣiYi
R

] ≥ ε] ≤ exp{− 2(Rε)2

Σi=R
i=1 (1− 0)2

}

≤ exp{−2Rε2}.

Similarly, we have Pr[|P̃q(v)− Pq(v)| ≥ ε] ≤ 2 exp{−2Rε2}.

Proof of Theorem 6:

Proof. Since dv
1−c(P̃q(v)− c1q∈L(v)) < θ1− ε, we have P̃q(v) < (1−c)(θ1−ε)

dv
+ c1q∈L(v).

From Theorem 3, we know Pr[Pq(v)−ε ≤ P̃q(v) ≤ Pq(v)+ε] ≥ 1−2 exp{−2Rε2}.
Thus Pr[Pq(v) ≤ P̃q(v) + ε < (1−c)(θ1−ε)

dv
+ c1q∈L(v) + ε] ≥ 1− 2 exp{−2Rε2}. Based

on θ1 = θ − dvε/(1 − c) + ε, we can derive Pr[ dv
1−c(Pq(v) − c1q∈L(v)) < θ] ≥

1− 2 exp{−2Rε2}. So from Corollary 2, Pr[Pq(x) < θ] ≥ 1− 2 exp{−2Rε2}.

Proof of Theorem 7:

Proof. Let B = c(1q∈L(v) − 1q∈L(u)du/dv) + (1 − c)(1 − σv). Since P̃q(u)du/dv +

c(1q∈L(v)−1q∈L(u)du/dv)+(1−c)(1−σv) < θ2−ε, we have P̃q(u) < dv(θ2−ε−B)
du

. From

Theorem 3, we know Pr[Pq(u) − ε ≤ P̃q(u) ≤ Pq(u) + ε] ≥ 1 − 2 exp{−2Rε2}.
Thus Pr[Pq(u) ≤ P̃q(u) + ε < dv(θ2−ε−B)

du
+ ε] ≥ 1 − 2 exp{−2Rε2}. Based on

θ2 = θ − duε/dv + ε, we can derive Pr[Pq(u)du/dv + B < θ] ≥ 1− 2 exp{−2Rε2}.
So from Theorem 5, Pr[Pq(v) < θ] ≥ 1− 2 exp{−2Rε2}.

Proof of Theorem 8:

Proof. For any vertex v, for each random walk W x
i (i = {1, . . . , R}, x ∈ Vq) starting

from black vertex x, let Zx
i be a random variable such that

Zx
i =

{
1, if random walk W x

i ends at a v,
0, otherwise.

Thus we have p̃x(v) = (ΣiZ
x
i )/R. px(v) = E[(ΣiZ

x
i )/R]. By Equation (3.7), we

have p̃v(x) = dx
dv

(ΣiZ
x
i )/R and pv(x) = E[dx

dv
(ΣiZ

x
i )/R]. We therefore can further
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derive

P̃q(v) = Σx∈Vq p̃v(x) = Σx∈Vq
(dx
dv

(ΣiZ
x
i )/R

)
= Σx∈VqΣi

dxZ
x
i

dvR
,

Pq(v) = E[Σx∈Vqpv(x)] = E[Σx∈VqΣi
dxZ

x
i

dvR
].

Let Axi =
dxZx

i

dvR
. Axi is a random variable such that Pr[Axi ∈ [0, dx

dvR
]] = 1 and

Axi (i = {1, . . . , R}, x ∈ Vq) are independent from each other. We have P̃q(v) =
ΣxΣiA

x
i and Pq(v) = E[ΣxΣiA

x
i ]. According to Hoeffding Inequality,

Pr[P̃q(v)− Pq(v) ≥ ε] = Pr[ΣxΣiA
x
i − E[ΣxΣiA

x
i ] ≥ ε]

≤ exp{− 2ε2

Σx∈VqΣ
i=R
i=1

d2x
d2vR

2

} ≤ exp{− 2Rd2
vε

2

Σx∈Vqd
2
x

}.

Similarly Pr[|P̃q(v)− Pq(v)]| ≥ ε] ≤ 2 exp{− 2Rd2vε
2

Σx∈Vqd
2
x
}.
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