
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Modern Machine Learning in Time Series Forecasting

Permalink
https://escholarship.org/uc/item/8001x48g

Author
Jin, Xiaoyong

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8001x48g
https://escholarship.org
http://www.cdlib.org/

University of California
Santa Barbara

Modern Machine Learning in Time Series

Forecasting

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Xiaoyong Jin

Committee in charge:

Professor Xifeng Yan, Chair
Professor Yu-Xiang Wang
Professor Ambuj K. Singh

March 2022

The Dissertation of Xiaoyong Jin is approved.

Professor Yu-Xiang Wang

Professor Ambuj K. Singh

Professor Xifeng Yan, Committee Chair

February 2022

Modern Machine Learning in Time Series Forecasting

Copyright © 2022

by

Xiaoyong Jin

iii

To my parents, who have been providing unconditional love and

endless support.

iv

Acknowledgements

My deepest gratitude goes to my advisor, Prof. Xifeng Yan, without whom I would

not start or finish my pursuit of PhD. I appreciate that his introduction for me to the

fantastic domain of computer science and his suggestions on time series studies. He is an

experienced researcher with focus on details. During these years, he has deeply influenced

my way of thinking on both research and life.

I would like to thank Prof. Yu-Xiang Wang and Prof. Ambuj K. Singh for serving on

my committee. They provide invaluable comments and feedback on every stage of PhD

career over the years.

I’m also very lucky to work with so many brilliant lab mates. I owe many thanks to

Hanwen Zha, Zhiyu Chen, Shiyang Li, Wenhu Chen, Xiyou Zhou, Yu Su and Honglei

Liu. They provides significant help in my work and I learned a lot from them.

During my internship, it was a great honor to work with my mentors and peers Yusan

Lin, Hao Yang, Hao Wang, Youngsuk Park, Danielle Maddix and Bernie Wang. They

were so supportive and eager to help, and I learn a lot from the experiences of working

with them.

I would like to thank all my friends at UCSB and Amazon. It is always fun to chat,

eat and play with you, so I can relieve stress these years. Finally, I want to thank my

parents and grandparents for supporting my PhD study abroad.

v

Curriculum Vitæ
Xiaoyong Jin

Education

2016-2022 Ph.D. in Computer Science (Expected), University of California,
Santa Barbara.

2016-2020 M.Sc. in Computer Science, Universoty of California, Santa Bar-
bara

2012-2016 B.Sc. in Mathematics, Zhejiang University

Publications

Xiaoyng Jin, Youngsuk Park, Danielle Maddix, Hao Wang, Bernie Wang, ”Adaptation
for Time Series Forecasting via Attention Sharing”, submitted to AAAI 2022

Xiyou Zhou, Zhiyu Chen, Xiaoyong Jin, William Y. Wang, ”HULK: An Energy Ef-
ficiency Benchmark Platform for Responsible Natural Language Processing”, EACL 2021.

Xiaoyng Jin, Yu-Xiang Wang, Xifeng Yan, ”Inter-Series Attention Model for COVID-
19 Forecasting”, SDM 2020

Yunkai Zhang, Qiao Jiang, Shurui Li, Xiaoyong Jin, Xueying Ma and Xifeng Yan, ”You
May Not Need Order in Time Series Forecasting”, NeurIPS 2019 TPP workshop

Xiaoyong Jin, Shiyang Li, Xifeng Yan, ”Attention Guided Autoregression”, Preprint
Arxiv 2019

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang,
Xifeng Yan, ”Enhancing the Locality and Breaking the Memory Bottleneck of Trans-
former on Time Series Forecasting”, NeurIPS 2019

Xiaoyong Jin, Shiyang Li, Xifeng Yan, ”Multi-step Deep Autoregressive Forecasting
with Latent States”, ICML TS workshop 2018

vi

Abstract

Modern Machine Learning in Time Series Forecasting

by

Xiaoyong Jin

Because of its high dimensionality, complex dynamics and irregularity, forecasting of

time series data has been studied by both statistics and machine learning community for

decades. The massive and ever-growing volume of data created by modern applications

poses even more serious challenges to practical forecasting tools. (1) Scalability. Mod-

ern forecasters should be able to process large amount of diverse time series effectively

and efficiently. (2) Correlation Awareness. Modern forecasters should be able to take

advantage of correlated time series in addition to the history of the current time series.

(3). Generalizability. Modern forecasters should be able to generalize to a different data

domain than the domain they are trained on. While much effort has been devoted to

tackle these issues, forecasting in general is still an open problem.

In this dissertation, we propose complementary approaches targeting these challenges

towards large-scale forecasting. We begin with novel neural architectures that are able

to deal with various time series for more accurate predictions. Specifically, we present

the following methods: Layerwise Recurrent Temporal Convolution Networks (LRTCN)

combines the strengths of classic Recurrent Neural Nets (RNN) and Convolution Neural

Nets (CNNs) to process long time series. Convolutional Transformer (ConvTrans) aims

to enhance locality of attention-based forecasting model to further improve the perfor-

mance, as well as to break the memory bottleneck for long time series. Attention-guided

Autoregression (AGA), on the other hand, brings complicated autoregressive models and

simple regreesive models together via tailored attentino mechanism to quickly respond

vii

to change points in forecasting.

Next, we present Attention Cross Time Series (ACTS) that refers to correlated time

series in order to guide current forecasting. We study its application to epidemic data

and show its effectiveness in predicting cases and deaths of COVID-19 outbreak across

the United States.

Finally, we present Domain Adaptation Forecasters (DATS) that enables adapting a

forecaster trained on a data-rich source domain to a data-scarce target domain. Based

on the idea of domain-invariant data representations in existing domain adaptation ap-

proaches, we propose to align a subset of learned features in the forecaster across domains.

In the meantime, we keep remaining features domain-specific so that domain-dependent

forecasts can be made for each domain.

viii

Contents

Curriculum Vitae vi

Abstract vii

1 Introduction 1
1.1 Forecasting Services . 2
1.2 Forecasting Models . 4
1.3 Domain Adaptation . 8
1.4 Thesis Organization . 9

2 Multi-step Deep Autoregressive Forecasting with Latent States 10
2.1 Introduction . 10
2.2 Related Works . 13
2.3 Methodology . 14
2.4 Experiments . 21
2.5 Conclusions . 23

3 Enhanced Attention-based Forecasting 25
3.1 Introduction . 25
3.2 Related Work . 26
3.3 Methodology . 27
3.4 Breaking the memory bottleneck . 30
3.5 Experiments . 34
3.6 Conclusion . 40

4 Attention Guided Autoregression 42
4.1 Introduction . 42
4.2 Related Work . 44
4.3 Problem setup . 45
4.4 Methodology . 47
4.5 Experiments . 54
4.6 Conclusion . 61

ix

5 Inter-Series Attention Model for COVID-19 Forecasting 62
5.1 Introduction . 62
5.2 Related Work . 65
5.3 Problem Statement . 67
5.4 Methodology . 68
5.5 Experiments . 73
5.6 Conclusion . 79

6 Domain Adaptation for Time Series Forecasting via Attention Sharing 80
6.1 Introduction . 80
6.2 Related Work . 82
6.3 Domain Adaptation in Forecasting . 84
6.4 The Domain Adaptation Forecaster (DAF) 86
6.5 Experiments . 90
6.6 Conclusions . 94

7 Conclusion 95

Bibliography 97

x

Chapter 1

Introduction

Time-related data has been produced at an unprecedented rate in the past decades, with

broad application in finance, social networks, E-commerce, video processing, etc. The

collection and analysis of such data are of growing importance in various industries. For

example, the stock prices are updated every second, based on which investors adjust their

portfolios. The daily sales of a collection of products can be vital indicators for retailers

to plan future marketing strategies. In addition, web service providers need to monitor

performance indicators regularly for anomaly detection and emergency maintenance. The

extraordinary growth of time-related data requires modern techniques for large-scale

analysis, in which future predictions or forecasting receives increasing attention.

In principal, time-related data is generated by a temporal point process that is dom-

inated by latent factors. At an arbitrary time point, an observation can be recorded and

encoded as numerical values. By sampling the latent temporal process at certain rates,

we will obtain trajectories, namely time series, as sequence of values associated with

time stamps indicating when they are sampled. Formally, a point process is defined as

a sequences of tuples of sampled values and time stamps {{(xit, sit)}Ti
t=1}Ni=1, where N is

the number of the collected series, and Ti is the number of samples in the i-th series. For

1

Introduction Chapter 1

simplicity, we consider the number of samples in each series the same, and thus omit the

subscript of Ti by using T instead. In many cases, the values are sampled at a constant

rate, i.e. the time interval between two consecutive observations is fixed, which make up

a time series. Therefore, a time series can be simply represented by a sequence of values

without explicit time stamps, {{xit}Ti
t=1}Ni=1. In this thesis, we will focus on time series

as the representative type of time-related data. Depending on the task, time series data

is usually considered in three aspects, the values at certain time points of interest, the

time stamps of certain values of interest, and the dynamic patterns of changing values

within a period of time. In forecasting, the patterns over time are most informative and

usually the focus of the study. Essentially, forecasting requires extraction of patterns

from historical data, based on which inference of reasonable extrapolation are made.

1.1 Forecasting Services

Modern forecasting tasks expect efficient predictions on massive amount of time series

via a forecasting model learned using a collected repository of time series data. Figure 1.1

presents the basic framework of a forecasting service. The collected data, which is even

more considerable in terms of amount, is often prepared by the service provider and

used to train a set of fundamental and versatile forecasting models for various user

demands. The domain where it is collected is referred to as the source domain. The

data to be predicted, on the other hand, is provided by the users from a different target

domain, based on which the trained forecasting models produce predictions via inference.

Meanwhile, the learned forecasting models are adapted to fit the gap between the the

source and target domain that usually possess distinct properties, in order to increase

forecasting accuracy on the target domain. As an example service, the Amazon Forecast

host by Amazon Web Service provides public interfaces to users to upload target data

2

Introduction Chapter 1

and optionally related covariates. The cloud service would automatically inspect custom

data, identifies key attributes and selects appropriate forecasting models that are adapted

to fit the given data and to produce expected predictions in various forms 1.

Figure 1.1: General procedure of modern forecasting services.

As per the three stages of forecasting services, there are accordingly three challenges

posed on modern forecasting models

1. Capability. Can forecasting models capture not only patterns from individual

historical series but correlations between different time series in the massive training

data?

2. Scalability. Can forecasting models process many time series (potentially with

distinct properties such as seasonality or length) efficiently?

3. Adaptability. Can trained forecasting models be effectively adapted to new data

domains while preserving knowledge learned in existing domains?

In this dissertation, we investigate these challenges and study bottlenecks in common

forecasting models hindering effective and efficient forecasting. We further propose com-

1https://aws.amazon.com/forecast/

3

https://aws.amazon.com/forecast/

Introduction Chapter 1

plementary solutions towards effort-saving forecasting and domain adaptation. In the

following sections, we will first introduce existing studies on each topic.

1.2 Forecasting Models

Generally, a forecasting model can be summarized as an encoder-decoder structure as

shown in Figure 1.2. The encoder part receives historical series as input and produces an

encoding of all past data. The following decoder then produce future predictions based

on the encoding. In the past decades, numerous forecasting methods were proposed, and

many of them focused on various designs of the encoder/decoder module. We provide a

brief review in the following.

Figure 1.2: General structure of forecasting models. Besides historical time series, the
time stamps of the past and the future can also be helpful.

1.2.1 Encoder Module Design

The encoder mainly accounts for pattern extraction from historical data. To ac-

commodate quantitative analysis on the unknown future, we essentially pursue a low-

dimensional representation of the long series of past observations in high-dimensional

4

Introduction Chapter 1

spaces. Among the variety of representations researchers have invented, we are most

interested in three typical paradigms.

Decomposition Generally, there are four types of patterns in time series, as Figure 1.3

shows. First, trends denote long-term increase or decrease, which reflects general chang-

ing direction of the entity of interest. For example, population in a country is likely to

show upward or downward changes over the past decades. Second, cycles stand for rises

and falls without fixed frequencies. They are usually seen in economic indicators where

medium-term variations repeat over years. Third, seasonality refers to periodical fluc-

tuations repeating in regular intervals, which are highly likely to be related to calendar

events. As an example, the weather conditions such as temperatures usually show stable

variations across years with respect to seasons. Finally, irregularity remains after the

three patterns aforementioned are estimated and removed from original time series. It

results from short-term fluctuations, which are neither predictable nor systematic, caused

by random factors exogenous to the point process system.

Figure 1.3: The four main components in time series.

5

Introduction Chapter 1

In order to deal with highly complicated time series data, the original data is often

decomposed into such components to improve systematical predictability [104]. However,

there are still challenges for a forecasting tool, i.e. a forecaster, to properly process these

components. Specifically, considerable memory or context capacity is usually necessary

for the forecaster to capture long-term trends from other short-term variations by pro-

cessing large amount of historical data. For cyclic data, while being repetitive, it is often

challenging to predict the next occurrence of past patterns due to the irregular intervals.

For seasonal data, the forecaster has to recognize the seasons if not specified. The re-

maining irregularity, on the other hand, need to be filtered and modelled by probabilistic

frameworks as predicative uncertainty.

In forecasting tasks, decomposition is applied to historical series and predictions are

made for each component individually before aggregating into future series. For exam-

ple, [117] explicitly deconstructs historical time series into trends and seasonalities via

Bayesian inference. [108] employs matrix decomposition to discover. components. [89]

develops neural expansions on trend and seasonality bases. [49, 134] enables end-to-end

learning of decomposition using neural nets instead of a separated pre-processing step.

[124] further include wavelet decomposition to capture multiple frequencies.

Latent Variable Models Based on the assumption that time series are generated by

some underlying process, low-dimensional latent variables are introduced to model the

hidden dynamics, and in the meantime mappings between observed data and the latent

variables are learned. Linear Dynamic Systems (LDS) [34] are the simplest latent variable

model with linear hidden dynamic and observation emission

xt = Azt + et, (1.1)

zt = Bzt−1 + rt, (1.2)

6

Introduction Chapter 1

where zt is the latent variable, A is the observation matrix, B is the transition matrix, and

et, rt are Gaussian variations. Bayesian inference, typically expectation-maximization

(EM) algorithms, are used to estimate the parameters, namely A and B, and the latent

z alternately.

Based on LDS, various extensions have been proposed to break the constraint of linear

mappings and static parameters. [94, 95] assume state-dependent transition matrix. [75]

enrich the model with piecewise linear mapping from latent variables Z to observations

X. [123, 30, 150] further introduce nonparametric Gaussian processes to allow even

more flexible forms of transition dynamics and observation mappings. However, the

optimization and inference in these nonlinear methods are computationally costly and

thus remains an open problem.

Neural Embedding Models Instead of explicitly modeling how the dynamics evolve,

embedding approaches instead directly compute low-dimensional representations of time

series via highly flexible mappings. For example, autoregressive models such as ARIMA

[16] compute linear combination of historical observations as pattern encodings, where

the weights are determined by least square methods. Neural networks, as powerful ap-

proximating functions, are recently used for pattern encoding of massive time series data.

They mainly vary in the architecture of pattern encoder, such as conditional Restricted

Boltzmann Machine (cRBM) [116], Recurrent Neural Networks (RNN) [42, 39, 23] and

Convolutional Neural Networks (CNN) [13, 7]. On the other hand, most of them make

predictions in an autoregressive manner, which result in error cascading issue, i.e. pre-

vious errors may mislead following forecasts. Some works aim to perform multi-step

prediction in parallel. [40] explores fitting the future with a polynomial function, while

[129] uses temporal and static covariates to incorporate seasonal patterns and expected

spikes. In addition, other works try to improve the interpretability of deep neural net-

7

Introduction Chapter 1

works by incorporating traditional mechanisms. [101] aims to approximate nonlinear

dynamics with locally linear segments and uses an RNN to parameterize a linear expo-

nential smoothing system. Instead, [128] accounts for noise with a local Gaussian process

for each time series instance in supplement to a global RNN modeling shared patterns.

However, even though neural networks excel at capturing patterns in complex time

series data, the computational cost of training and inference remains a problem. For

long-term predictions, autoregressive decoding method become a bottleneck as it needs

to re-run the forward pass of the entire network at every step. Some explore to directly

generate all future predictions in one step [40] at the cost of inferior accuracy. [145]

introduces tensor decomposition to reduce the complexity in decoding. Nevertheless, a

general solution to efficient forecasting is still under active investigation.

1.3 Domain Adaptation

Although modern forecasting models are able to capture complicated nonlinear dy-

namics and latent features, it is prone to overfit to the training data and suffer perfor-

mance degradation when applied to a new domain for testing, especially if the training

data is insufficient. Unfortunately, in practice there are always subtle distinctions (usu-

ally termed as domain discrepancies) between training and test data, for which transfer

learning strategies need to be introduced to adapt the trained model to test data. In

forecasting services, the trained model using collected data should also be updated to fit

new user data.

Domain adaptation has been under active investigation for decades. Most researches

focus on classification or regression settings, where a label is expected given a static

set of inputs [12, 44, 121, 14, 57, 20]. In domain adaptation, knowledge learned in a

source domain with sufficient data is transferred to a target domain with unlabelled data

8

Introduction Chapter 1

or limited amount of labelled data [86, 130]. The mainstream methods aim to extract

invariant features between the source and target domain, so that a consistent mapping

from the feature space to the label space can apply to both domains. It is generally

achieved by optimizing the data representation to minimize certain measure of domain

shift such as maximum mean discrepancy (MMD) [120, 82], correlation distances [114,

115] or optimal transport [28]. Another way is to reconstruct target input using source

representations [48]. Recently, adversarial adaptation methods have gained increasing

popularity, in which an adversarial objective with respect to a domain discriminator is

optimized to approximate the domain discrepancy. These methods are closely related to

generative adversarial learning, which pits a generator and a discriminator against each

other: the generator is trained to produce samples to confuse the discriminator while the

discriminator in turn tries to distinguish generated samples from real ones [50]. Likewise,

the adaptation model is trained to fit source data as well as to ensure that the domain

discriminator cannot distinguish source features from target ones [2, 109].

However, time series forecasting differs from conventional settings in two aspects.

First, time series contain dynamically evolving patterns so that the expected prediction

may also changing accordingly. Second, instead of a fixed label space, the labels in

forecasting, i.e. the future values come from the same data space as the input and thus

are strongly related to the input too. Therefore, it is not straightforward to apply existing

domain methods to forecasting.

1.4 Thesis Organization

In this thesis, we will discuss solutions to modern forecasting tasks as well as domain

adaptation in forecasting, as the previous sections have covered.

In Chapter ??

9

Chapter 2

Multi-step Deep Autoregressive

Forecasting with Latent States

2.1 Introduction

Multi-step ahead forecasting is a challenging but critical task with various practical

applications, from resource management to business decision making. The forecasting

problem is essentially a probabilistic sequence modeling task in which the goal is to

capture the stochastic evolution of a time series. Specifically, given a sequence of obser-

vations, we are supposed to estimate the trajectory within a period of time in the future,

namely forecasting horizon. An example of forecasting result is illustrated in Figure 2.1.

Traditional methods can be roughly classified into two categories: State Space Mod-

els (SSMs) and AutoRegressive (AR) models. SSMs introduce latent state variables that

summarize all the information coming from the past to determine the present and the

future via some latent dynamic. A transition mechanism updates the latent states at

each time step and then a prediction is generated with an emission system [63, 107].

10

Multi-step Deep Autoregressive Forecasting with Latent States Chapter 2

Figure 2.1: An example of probabilistic forecasting. The colored area is the uncer-
tainty interval with 80% confidence. The red dashed line indicates the start time of
forecasting, i.e. the left side is observed history and the right side shows predictions
in comparison with ground truth.

AR models, on the other hand, describe a stochastic process where the current obser-

vation depends on a range of observed history. A prediction is made based on previous

observations and becomes a part of history for the next step.

Deep neural networks have been proposed as an alternative approach to the fore-

casting problem. Most existing works employ a Recurrent Neural Network (RNN)

[70, 78, 145, 39] or a Temporal Convolutional Netowrk (TCN) [13] to model a time series

after an autoregressive fashion. These approaches decompose the multi-step forecasting

task into a number of single-step subtasks where a sequence of history is mapped to one

prediction at each time step. In essence they are generalizations of traditional linear

AR models using nonlinear neural networks. Although they are able to accommodate

extremely complicated dynamics, a large neural network has to be applied recursively to

obtain multiple steps of predictions, which is computationally expensive and difficult to

parallelize. In addition, these methods can propagate error from one prediction to the

next due to dependence among steps [40].

In contrast, some works extend traditional linear Gaussian SSMs by combining la-

tent states with deep neural networks. One approach is to replace linear transition with

11

Multi-step Deep Autoregressive Forecasting with Latent States Chapter 2

Multi-layer Perceptrons (MLPs) [68] or RNNs [26]. [41] instead incorporates determin-

istic hidden states of an underlying RNN into the latent process. [101] keeps the linear

Gaussian structure but uses an RNN to specify the transition parameters. However, at

each time step the latent state can only access the previous state, either stochastic or

deterministic, which is supposed to encode all information. This might cause the prede-

fined latent dynamics to fail with heterogeneous data, especially in a large and diverse

time series corpus.

In this paper, we propose a novel framework named Deep Autoregressive La-

tent (DARL) network that fuses the advantages of both SSMs and AR models. The

framework introduces a latent state at each time step within the forecasting horizon. It

consists of a prior network that models the prior distribution of latent states based on ob-

served history, an emission network that makes predictions conditioned on latent states,

and an inference network that approximates latent posteriors given the ground truth in

the future. The prior network and the inference network employ a Layer Recurrent

TCN (LRTCN) encoder, which maps a range of observations to a latent state. It cap-

tures temporal patterns and long-term dependencies in the history with TCNs and then

implicitly restores the temporal order with recurrent connections between TCN layers.

The framework is trained using stochastic variational inference [58, 66]. Note that we

avoid the issues of accumulating error by predicting multiple steps in parallel, which also

significantly accelerates evaluation.

We evaluate our method on three public benchmark datasets and a proprietary

dataset including performance metrics from a real production environment. Our model

outperforms traditional methods and obtains better or competitive results against re-

cently proposed baselines. Moreover, our model can be evaluated much faster than

RNN-based models.

12

Multi-step Deep Autoregressive Forecasting with Latent States Chapter 2

2.2 Related Works

The field of time series forecasting has been supported by an abundance of classic

algorithms from the statistics community. State space model (SSM) is a principled

framework that models and learns time series patterns via a sequence of latent states. A

prominent example is exponential smoothing, which explicitly maintains patterns such

as level, trend and seasonality with linear transitions [63]. Another influential family is

autoregressive (AR) models. AR models specifically depend the prediction on previous

observations and a stochastic term. As a generalization, autoregressive integrated moving

average (ARIMA) models combine the properties of both families. Equipped with Box-

Jenkins methodology, it is the first attempt of many practitioners and there are abundant

researches on its variants [16]. However, the linear assumption and high computational

cost make these methods not suitable for large-scale forecasting tasks. Further, they

cannot transfer learned patterns across similar time series instances as they are separately

fitted.

Deep neural networks have been proposed to deal with massive time series corpus.

By extracting higher-order features and modeling nonlinear dynamics, they are able to

identify complex patterns and temporal-spatial correlations without much human effort

[31, 146]. Recently, the successful practice of deep RNNs [25, 56] in many sequence

modeling tasks such as language modeling has inspired the forecasting community. [39]

augments traditional linear AR models with RNNs to accommodate complicated non-

linear dynamics. [145] employs tensor-train to directly model higher-order moments and

transition structures. On the other hand, to address the error accumulation issue in

vanilla recurrent architectures, some works aim to perform multi-step prediction in par-

allel. [40] explores fitting the future with a polynomial function, while [129] uses temporal

and static covariates to incorporate seasonal patterns and expected spikes. In addition,

13

Multi-step Deep Autoregressive Forecasting with Latent States Chapter 2

other works try to improve the interpretability of deep neural networks by incorporat-

ing traditional mechanisms. [101] aims to approximate nonlinear dynamics with locally

linear segments and uses an RNN to parameterize a linear exponential smoothing sys-

tem. Instead, [128] accounts for noise with a local Gaussian process for each time series

instance in supplement to a global RNN modeling shared patterns.

Convolutional neural networks (CNNs) have also been proven to be effective in se-

quence modeling. [70, 78] introduce a CNN layer to model temporal or spatial local

patterns. Moreover, temporal Convolutional Networks (TCNs) [47, 88] achieve competi-

tive performances without any recurrence structure and significantly accelerate training

on parallel computational platforms [7]. [13] attempts to apply TCN directly to time-

series data. In addition, TCNs are flexible to vary the amount of accessible history

by controlling the size of their receptive fields. Consequently, practitioners are able to

balance long-term dependencies and short-term concentrations [143].

Deep networks have also been proposed to augment traditional SSMs with nonlinear

transition structures. [41] makes the latent process dependent on an underlying RNN,

while [26] radically cuts the ties between latent states and associates them to the deter-

ministic RNN dynamics. Both methods extend variational autoencoders to sequential

data and learn the models with stochastic variational inference, where the latent priors

are conditioned on the observed history.

2.3 Methodology

In multi-step ahead forecasting tasks, given a sequence of observations x1:t, the goal

is to predict τ steps in the future, i.e. xt+1:t+τ . We call x1:t the observed history and τ

the forecasting horizon. Formally, we want to model a conditional predictive distribution

p(xt+1:t+τ |x1:t). State Space Models introduce a series of latent state variables zt+1:t+τ to

14

Multi-step Deep Autoregressive Forecasting with Latent States Chapter 2

encode temporal patterns [63]. They decompose the predictive model into three modules:

zt+i−1 ∼ p(zt+i−1|x1:t+i−1);

zt+i ∼ p(zt+i|zt+i−1);

xt+i ∼ p(xt+i|zt+i);

(2.1)

for i = 1, 2, · · · , τ . Here zt+i−1 ∼ p(zt+i−1|x1:t+i−1) is a filtered posterior distribution of

zt+i−1 that summarizes the history. p(zt+i|zt+i−1) models a transition mechanism that de-

termines the latent dynamic. p(xt+i|zt+i) is an emission system that produces predictions

conditioned on the corresponding latent state at each step. We propose to replace the re-

cursive latent dynamic p(zt+i|zt+i−1) in equation (2.1) with a straightforward translation

from zt

zt+i ∼ p(zt+i|zt, et+1:t+i), i = 1, · · · , τ, (2.2)

by taking advantage of a series of known covariates et+1:t+i that indicate common patterns

such as daily or weekly seasonality and a stochastic encoding of given history zt. The

translation is intuitively a guess based on our knowledge about the impact of various

factors inside the covariates upon the current state. For example, suppose that zt carries

the information about level and trend at time step t, one can estimate the level at a

future time step with the elapsed time from t contained in covariates. This estimation is

reasonable as long as the patterns in the past remain stationary within the forecasting

horizon, which is a common assumption in forecasting.

Recent findings have shown that a single zt might be ignored by the translation [15,

143]. To alleviate this, we employ a modified translation equation (2.4) with dependence

15

Multi-step Deep Autoregressive Forecasting with Latent States Chapter 2

on x1:t and thus get the following predictive process:

zt ∼ p(zt|x1:t); (2.3)

zt+i ∼ p(zt+i|zt;x1:t, et+1:t+i); (2.4)

xt+i ∼ p(xt+i|zt+i), i = 1, · · · , τ. (2.5)

From a Bayesian perspective, we call equation (2.4) a prior network, because it

models priors over the latent states before we observe the ground truths within the

horizon. We also name equation (2.5) an emission network as in SSMs. Furthermore,

combining the prior network and the emission network makes a generative network

because it describes the generative process of the time series.

Since exact inference for equation (2.1) is intractable, the model cannot be learned

by directly maximizing the likelihood of ground truths. Stochastic variational inference

[58] provides an alternative that maximizes a lower bound of likelihood by introducing

an inference network to approximate the latent posterior with another probabilistic

model q(zt+i|x1:t+i). Note that equation (2.3) has the same dependence structure as the

inference network when i = 0, as it is also a filtered posterior of latent state at t. Hence

we also apply the inference network to equation (2.3).

We use deep neural nets to parameterize all networks above. An overview of the

framework is illustrated in Figure 2.2.

2.3.1 Emission Network

The emission network parameterizes the conditional distribution equation (2.5) through

a neural network with learnable parameters θd. The type of distribution can be chosen

with flexibility according to data being modeled. For example, we can employ negative

binomial distribution for positive count data and beta distribution for percentage data

16

Multi-step Deep Autoregressive Forecasting with Latent States Chapter 2

.

.

.

.

.

.

.

.

.

.

.

.

Inference
Network

Generative
Network

Figure 2.2: Graphical view of inference network (left) and generative network (right).
Plain circles are latent states, shaded circles are observable data, and diamonds are
deterministic history. The approximate posterior of zt+i is conditioned on x1:t+i, while
the prior only depends on x1:t and zt. Dashed lines connect priors and their posterior
counterparts.

[39]. For simplicity, we only illustrate Gaussian distribution:

xt+i = µθd(zt+i) + σθd(zt+i) · εt+i (2.6)

where µθd ,σθd are feed-forward networks with one or more hidden layers, εt+i ∼ N (0, I).

For standard deviation σθd , we add a softplus activation function to the last hidden

output in order to ensure positivity of the standard deviation. Note that θd is shared

across the forecasting horizon, as latent states encode all time-specific information.

2.3.2 Inference Network

The inference network maps a range of history to a latent variable. Instead of

commonly-used RNNs, Temporal convolutional networks (TCN) has been proven to be

more effective and efficient in many sequential modeling tasks [7]. Although TCNs do

17

Multi-step Deep Autoregressive Forecasting with Latent States Chapter 2

not have a sense of temporal order because of their locality, the higher-level representa-

tions in TCNs have access to longer history. Hence the convolutional feature maps at

different layers implicitly form a temporal hierarchy in a top-down fashion. We propose

to explicitly reconstruct the temporal structure by stacking a top-down RNN layer over

the hierarchy. A systematical illustration is shown in Figure 2.3. In our experiments, we

choose to use GRU cells [25] to instantiate the RNN. Note that we also use covariates as

an additional input associated with the observations to the TCN module. These time-

based covariates can be regarded as “positional embeddings” that expose the temporal

information to order-insensitive TCNs [47]. We use θc to denote all trainable parameters

in an LRTCN.

Conv GRU

GRU

GRU

Conv

...... ...

Conv

Figure 2.3: An architectural view of an LRTCN encoder. The TCN representations
at different layers are consumed by a GRU network. As the upper layers have access
to distant history and the lower layers focus on recent observations, the top-down
hierarchy implicitly keeps the temporal order of the input sequence. We also feed
covariates into the TCN associated with observations.

As shown in Figure 2.3, the approximated posterior of zt+i is derived from the RNN

output at the first layer of LRTCN, and similar to the emission network, we apply feed-

18

Multi-step Deep Autoregressive Forecasting with Latent States Chapter 2

forward networks with parameter θe to obtain the state

h
(1)
t+i = LRTCN(x1:t+i, e1:t+i;θc)

zt+i = µθe

(
h
(1)
t+i

)
+ σθe

(
h
(1)
t+i

)
· εt+i.

(2.7)

Note that the inference process resembles a Bayes filter of a recursive latent process.

This implies the implicit temporal connection among latent states (and the intermediate

state) even if they are conditionally independent in equation (2.4).

2.3.3 Prior Network

Notice that equation (2.4) also explicitly attend to past observations except that

it should never have access to the current time step or unknown future. Therefore,

we apply the same architecture as the inference network to the prior network but first

roughly estimate xt+1:t+τ with corresponding covariates and zt through another group of

feed-forward networks fθg

x̃t+i = fθg (zt, et+i) i = 1, · · · , τ, (2.8)

where θg contains trainable parameters. θg is shared across the forecasting horizon as in

the emission network. We then apply LRTCN to the concatenation [x1:t; x̃t+1:t+τ] along

with e1:t+τ as in the inference network. We illustrate an overview of this structure in

Figure 2.4.

Finally, we distinguish priors from posteriors by introducing different feed-forward

networks with parameter θp to shape the Gaussian priors

h̃
(1)
t+i = LRTCN(x1:t, x̃t+1:t+i, e1:t+i;θc)

zt+i = µθp

(
h̃
(1)
t+i

)
+ σθp

(
h̃
(1)
t+i

)
· εt+i.

(2.9)

19

Multi-step Deep Autoregressive Forecasting with Latent States Chapter 2

LRTCN

......

......

Figure 2.4: The prior network. The estimations x̃t+1:t+τ and the history x1:t are
concatenated and fed into the LRTCN with covariates as in the inference model.

2.3.4 Training

To learn the model, we are given a time series dataset {x(n)
1:T}Mn=1 and associated

covariates {e(n)1:T}Mn=1, where T is the length of all available observations and M is the

number of different time series. We create training instances by selecting windows with

fixed history length t and forecasting horizon τ but varying the start point of forecasting

from each of the original long time series [39]. As a result, we get a training dataset with

N sliding windows {x(n)
1:t+τ , e

(n)
1:t+τ}Nn=1.

The Evidence Lower Bound (ELBO) [58] of the log-likelihood can be derived as:

log p(x
(n)
t+1:t+τ |x

(n)
1:t) ≥ −L(n)

NLL − L(n)
KL (2.10)

where

L(n)
NLL = −

τ∑
i=1

E
q(z

(n)
t+i)

[
log p(x

(n)
t+i|z

(n)
t+i)
]

L(n)
KL = E

q(z
(n)
t)

τ∑
i=1

KL
(
q(z

(n)
t+i|x

(n)
1:t+i)∥p(z

(n)
t+i|z

(n)
t)
)
.

(2.11)

20

Multi-step Deep Autoregressive Forecasting with Latent States Chapter 2

Hence we define our loss function

L =
1

N

N∑
n=1

(
L(n)

NLL + L(n)
KL

)
(2.12)

and learn the prior, emission and inference network jointly by minimizing the loss w.r.t

their parameters, namely θg,θp,θd,θe and θc.

2.4 Experiments

We conducted experiments on three public benchmark datasets electricity 1, traffic

2 and M4-hourly 3. Each dataset is split into a training set, a validation set and a test

set in chronological order as in [144]. We compare our method with shallow methods

ARIMA, exponential smoothing (ETS) and TRMF [144], as well as recent deep models

DeepAR [39] and Deep SSM [101]. For fair comparison, we use ρ-quantile risk to evaluate

the prediction accuracy. The ρ-quantile risk Rρ with ρ ∈ (0, 1) is defined as:

Rρ(x, x̂) =
2
∑

i,t(ρ− 1x≤x̂)(x
(i)
t − x̂t

(i))∑
i,t |x

(i)
t |

,

where x̂ is the empirical ρ-quantile of the predictive distribution.

Table 2.1 summarizes the experimental results. Generally, our model achieves better

or competitive results. All models have similar number of parameters.

We also compare the evaluation speed of our model with DeepAR, a representative

recurrent model that makes predictions step-by-step. After both models are trained,

we predict 100 time series from electricity dataset for a number of steps on a single

Nvidia GTX 1080 Ti GPU. For each prediction, 200 samples are drawn. We repeat the

evaluation 10 times and report the average elapsed time in Figure 2.5. Notice that our

1https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
2http://archive.ics.uci.edu/ml/datasets/PEMS-SF
3https://github.com/M4Competition/M4-methods/tree/master/Dataset

21

 https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
http://archive.ics.uci.edu/ml/datasets/PEMS-SF
https://github.com/M4Competition/M4-methods/tree/master/Dataset

Multi-step Deep Autoregressive Forecasting with Latent States Chapter 2

Dataset Electricity Traffic M4
Horizon 1 day 1 week 1 day 1 week 2 days

ARIMA
R0.5 0.154 0.30 0.223 0.501 0.052
R0.9 0.102 0.110 0.137 0.298 0.035

ETS
R0.5 0.101 0.130 0.236 0.532 0.054
R0.9 0.077 0.110 0.148 0.60 0.027

TRMF R0.5 0.084 0.087 0.186 0.202 0.057

DeepAR
R0.5 0.075 0.125 0.161 0.219 0.090
R0.9 0.040 0.080 0.099 0.138 0.030

DeepSSM
R0.5 0.083 0.085 0.167 0.168 0.044
R0.9 0.056 0.057 0.113 0.114 0.027

Ours
R0.5 0.073 0.085 0.146 0.169 0.037
R0.9 0.038 0.053 0.105 0.113 0.019

Table 2.1: Result summary of short-term (1-2 days) and long-term (1 week) forecasting.

model is much faster than DeepAR. Moreover, the evaluation time of our model almost

remains constant as the forecasting horizon grows. In contrast, the time cost of DeepAR

increases linearly due to sequential generation.

2.4.1 Ablation Study

To demonstrate the necessity of our design, we conducted an ablation study. We

remove an individual component in our framework at a time and get the following baseline

models:

• DARLw/oGRU: The GRU in LRTCN is removed and the encoder is thus a pure

TCN;

• DARL-straight: The prior network directly obtains future latent states from the

intermediate state and the covariates without LRTCN. Specifically, we introduce a

simple MLP with one hidden layer to map zt with et+i to zt+i. In this setting, the

prior network has no direct access to the history.

For fair comparison, we modify the hidden dimensions of both baselines such that they

22

Multi-step Deep Autoregressive Forecasting with Latent States Chapter 2

Figure 2.5: The evaluation time of DeepAR and our model on electricity dataset.
Vertical black lines indicate standard deviations. The time cost of DeepAR increases
linearly while our model is much more efficient.

have similar numbers of parameters to the complete model. The short-term predictions

within 24/48 hours and long-term predictions within 168 hours are compared. The test

results on electricity and traffic datasets in terms of R0.5 and R0.9 are shown in Figure

2.6.

The results show that our design is effective in improving forecasting performance.

Note that the significant performance reduction of DARL-straight proves that näıve

translation without history is not enough to capture latent dynamics, especially in the

long term. On the other hand, it indicates the effectiveness of our autoregressive prior

network.

2.5 Conclusions

We present a new deep learning framework for multi-step ahead time series fore-

casting task that combines the strengths of both autoregressive models and state space

23

Multi-step Deep Autoregressive Forecasting with Latent States Chapter 2

Figure 2.6: Results of DARL in the ablation tests on Electricity and Traffic dataset.

models. We avoid step-by-step generation by a fully-parallelizable latent process. This

also prevents the issue of accumulating errors in recurrent models. Our model is able to

achieve better or competitive performance on a variety of datasets. A main challenge we

are facing is to improve long-term forecasting accuracy. Modeling latent process within

the forecasting horizon efficiently is a crucial step.

24

Chapter 3

Enhanced Attention-based

Forecasting

3.1 Introduction

Although still widely used, traditional time series forecasting models, such as State

Space Models (SSMs) [36] and Autoregressive (AR) models [16], are designed to fit each

time series independently. Besides, they also require practitioners’ expertise in manu-

ally selecting trend, seasonality and other components. To sum up, these two major

weaknesses have greatly hindered their applications in the modern large-scale time series

forecasting tasks.

To tackle the aforementioned challenges, deep neural networks have been proposed

as an alternative solution, where Recurrent Neural Network (RNN) [70, 145] has been

employed to model time series in an autoregressive fashion. However, RNNs are notori-

ously difficult to train [92] because of gradient vanishing and exploding problem. Despite

the emergence of various variants, the issues still remain unresolved. As an example,

[65] shows that language models using LSTM have an effective context size of about 200

25

Enhanced Attention-based Forecasting Chapter 3

tokens on average but are only able to sharply distinguish 50 tokens nearby, indicating

that even LSTM struggles to capture long-term dependencies. On the other hand, real-

world forecasting applications often have both long- and short-term repeating patterns

[70]. For example, the hourly occupancy rate of a freeway in traffic data has both daily

and hourly patterns. In such cases, how to model long-term dependencies becomes the

critical step in achieving promising performances.

Recently, Transformer [122, 90] has been proposed as a brand new architecture which

leverages attention mechanism to process a sequence of data. Unlike the RNN-based

methods, Transformer allows the model to access any part of the history regardless of

distance, making it potentially more suitable for grasping the recurring patterns with

long-term dependencies. However, canonical dot-product self-attention matches queries

against keys insensitive to local context, which may make the model prone to anoma-

lies and bring underlying optimization issues. More importantly, space complexity of

canonical Transformer grows quadratically with the input length L, which causes mem-

ory bottleneck on directly modeling long time series with fine granularity. We specifically

delve into these two issues and investigate the applications of Transformer to time series

forecasting.

3.2 Related Work

Deep neural networks have been proposed to capture shared information across related

time series for accurate forecasting. [39] fuses traditional AR models with RNNs by

modeling a probabilistic distribution in an encoder-decoder fashion. Instead, [129] uses

an RNN as an encoder and Multi-layer Perceptrons (MLPs) as a decoder to solve the

so-called error accumulation issue and conduct multi-ahead forecasting in parallel. [101]

uses a global RNN to directly output the parameters of a linear SSM at each step for each

26

Enhanced Attention-based Forecasting Chapter 3

time series, aiming to approximate nonlinear dynamics with locally linear segments. In

contrast, [128] deals with noise using a local Gaussian process for each time series while

using a global RNN to model the shared patterns.

The well-known self-attention based Transformer [122] has recently been proposed

for sequence modeling and has achieved great success. Several recent works apply it to

translation, speech, music and image generation [61, 97, 91]. However, scaling attention

to extremely long sequences is computationally prohibitive since the space complexity of

self-attention grows quadratically with sequence length. This becomes a serious issue in

forecasting time series with fine granularity and strong long-term dependencies.

3.3 Methodology

Suppose we have a collection of N related univariate time series {zi,1:t0}Ni=1, where

zi,1:t0 ≜ [zi,1, zi,2, · · · , zi,t0] and zi,t ∈ R denotes the value of time series i at time t1. We

are going to predict the next τ time steps for all time series, i.e. {zi,t0+1:t0+τ}Ni=1. Besides,

let {xi,1:t0+τ}Ni=1 be a set of associated time-based covariate vectors with dimension d that

are assumed to be known over the entire time period, e.g. day-of-the-week and hour-of-

the-day. We aim to model the following conditional distribution

p(zi,t0+1:t0+τ |zi,1:t0 ,xi,1:t0+τ ;Φ) =

t0+τ∏
t=t0+1

p(zi,t|zi,1:t−1,xi,1:t;Φ). (3.1)

We reduce the problem to learning a one-step-ahead prediction model p(zt|z1:t−1,x1:t;Φ)

2, where Φ denotes the learnable parameters shared by all time series in the collection.

To fully utilize both the observations and covariates, we concatenate them to obtain an

1Here time index t is relative, i.e. the same t in different time series may represent different actual
time point.

2Since the model is applicable to all time series, we omit the subscript i for simplicity and clarity.

27

Enhanced Attention-based Forecasting Chapter 3

augmented matrix as follows:

yt ≜ [zt−1 ◦ xt] ∈ Rd+1, Yt = [y1, · · · ,yt]
T ∈ Rt×(d+1),

where [· ◦ ·] represents concatenation. An appropriate model zt ∼ f(Yt) is then explored

to predict the distribution of zt given Yt.

Transformer We instantiate f with Transformer 3 by taking advantage of the multi-

head self-attention mechanism, since self-attention enables Transformer to capture both

long- and short-term dependencies, and different attention heads learn to focus on differ-

ent aspects of temporal patterns. These advantages make Transformer a good candidate

for time series forecasting.

In the self-attention layer, a multi-head self-attention sublayer simultaneously trans-

forms Y 4 into H distinct query matrices Qh = YWQ
h , key matrices Kh = YWK

h , and

value matrices Vh = YWV
h respectively, with h = 1, · · · , H. Here WQ

h ,W
K
h ∈ R(d+1)×dk

and WV
h ∈ R(d+1)×dv are learnable parameters. After these linear projections, the scaled

dot-product attention computes a sequence of vector outputs:

Oh = Attention(Qh,Kh,Vh) = softmax

(
QhK

T
h√

dk
·M
)
Vh. (3.2)

Note that a mask matrix M is applied to filter out rightward attention by setting

all upper triangular elements to −∞, in order to avoid future information leakage. Af-

terwards, O1,O2, · · · ,OH are concatenated and linearly projected again. Upon the at-

tention output, a position-wise feedforward sublayer with two layers of fully-connected

network and a ReLU activation in the middle is stacked.

3By referring to Transformer, we only consider the autoregressive Transformer-decoder in the
following.

4At each time step the same model is applied, so we simplify the formulation with some abuse of
notation.

28

Enhanced Attention-based Forecasting Chapter 3

3.3.1 Enhancing the locality of Transformer

 Masked Multi-Head Attention Masked Multi-Head Attention

Q V K

Conv, 1 Conv, 1 Conv, 1 Conv, k Conv, 1 Conv, k

Q V K

(a) (b) (c) (d)

Figure 3.1: The comparison between canonical and our convolutional self-attention
layers. “Conv, 1” and “Conv, k” mean convolution of kernel size {1, k} with stride
1, respectively. Canonical self-attention as used in Transformer is shown in (b), may
wrongly match point-wise inputs as shown in (a). Convolutional self-attention is
shown in (d), which uses convolutional layers of kernel size k with stride 1 to transform
inputs (with proper paddings) into queries/keys. Such locality awareness can correctly
match the most relevant features based on shape matching in (c).

Patterns in time series may evolve with time significantly due to various events, e.g.

holidays and extreme weather, so whether an observed point is an anomaly, change point

or part of the patterns is highly dependent on its surrounding context. However, in

the self-attention layers of canonical Transformer, the similarities between queries and

keys are computed based on their point-wise values without fully leveraging local context

like shape, as shown in Figure 3.1(a) and (b). Query-key matching agnostic of local

context may confuse the self-attention module in terms of whether the observed value is

an anomaly, change point or part of patterns, and bring underlying optimization issues.

We propose convolutional self-attention to ease the issue. The architectural view of

proposed convolutional self-attention is illustrated in Figure 3.1(c) and (d). Rather than

using convolution of kernel size 1 with stride 1 (matrix multiplication), we employ causal

convolution of kernel size k with stride 1 to transform inputs (with proper paddings) into

queries and keys. Note that causal convolutions ensure that the current position never

has access to future information. By employing causal convolution, generated queries and

29

Enhanced Attention-based Forecasting Chapter 3

keys can be more aware of local context and hence, compute their similarities by their

local context information, e.g. local shapes, instead of point-wise values, which can be

helpful for accurate forecasting. Note that when k = 1, the convolutional self-attention

will degrade to canonical self-attention, thus it can be seen as a generalization.

3.4 Breaking the memory bottleneck

Mon Tue Wed Thu Fri Sat Sun Mon
0.00

0.05

0.10

0.15

0.20 occupancy rate
attn score in layer 2
attn score in layer 6
attn score in layer 10

Figure 3.2: Learned attention patterns from a 10-layer canonical Transformer trained
on traffic-f dataset with full attention. The green dashed line indicates the start
time of forecasting and the gray dashed line on its left side is the conditional history.
Blue, cyan and red lines correspond to attention patterns in layer 2, 6 and 10, respec-
tively, for a head when predicting the value at the time corresponding to the green
dashed line. a) Layer 2 tends to learn shared patterns in every day. b) Layer 6 focuses
more on weekend patterns. c) Layer 10 further squeezes most of its attention on only
several cells in weekends, causing most of the others to receive little attention.

To motivate our approach, we first perform a qualitative assessment of the learned

attention patterns with a canonical Transformer on traffic-f dataset. The traffic-f

dataset contains occupancy rates of 963 car lanes of San Francisco bay area recorded every

20 minutes. We trained a 10-layer canonical Transformer on traffic-f dataset with full

attention and visualized the learned attention patterns. One example is shown in Figure

3.2. Layer 2 clearly exhibited global patterns, however, layer 6 and 10, only exhibited

pattern-dependent sparsity, suggesting that some form of sparsity could be introduced

without significantly affecting performance. More importantly, for a sequence with length

30

Enhanced Attention-based Forecasting Chapter 3

L, computing attention scores between every pair of cells will cause O(L2) memory usage,

making modeling long time series with fine granularity and strong long-term dependencies

prohibitive.

We propose LogSparse Transformer, which only needs to calculate O(logL) dot prod-

ucts for each cell in each layer. Further, we only need to stack up to O(logL) layers

and the model will be able to access every cell’s information. Hence, the total cost of

memory usage is only O(L(logL)2). We define Ikl as the set of indices of the cells that

cell l can attend to during the computation from kth layer to (k + 1)th layer. In the

standard self-attention of Transformer, Ikl = {j : j ≤ l}, allowing every cell to attend to

all its past cells and itself as shown in Figure 3.3(a). However, such an algorithm suffers

from the quadratic space complexity growth along with the input length. To alleviate

such an issue, we propose to select a subset of the indices Ikl ⊂ {j : j ≤ l} so that |Ikl |

does not grow too fast along with l. An effective way of choosing indices is |Ikl | ∝ logL.

Notice that cell l is a weighted combination of cells indexed by Ikl in kth self-attention

layer and can pass the information of cells indexed by Ikl to its followings in the next layer.

Let Sk
l be the set which contains indices of all the cells whose information has passed to

cell l up to kth layer. To ensure that every cell receives the information from all its previous

cells and itself, the number of stacked layers k̃l should satisfy that S k̃l
l = {j : j ≤ l} for

l = 1, · · · , L. That is, ∀l and j ≤ l, there is a directed path Pjl = (j, p1, p2, · · · , l) with

k̃l edges, where j ∈ I1p1 , p1 ∈ I2p2 , · · · , pk̃l−1 ∈ I k̃ll .

We propose LogSparse self-attention by allowing each cell only to attend to its previ-

ous cells with an exponential step size and itself. That is, ∀k and l, Ikl = {l− 2⌊log2 l⌋, l−

2⌊log2 l⌋−1, l − 2⌊log2 l⌋−2, ..., l − 20, l}, where ⌊·⌋ denotes the floor operation, as shown in

Figure 3.3(b).5

Theorem 1. ∀l and j ≤ l, there is at least one path from cell j to cell l if we stack

5Applying other bases is trivial so we don’t discuss other bases here for simplicity and clarity.

31

Enhanced Attention-based Forecasting Chapter 3

(a). Full Self Attention (b). LogSparse Self Attention

(d). Restart Attention + LogSparse Self Attention(c). Local Attention + LogSparse Self Attention
LogSparse Attention Range LogSparse Attention Range LogSparse Attention RangeLocal Attention Range

Self LogSparse Attention Range Self

SelfSelf

Figure 3.3: Illustration of different attention mechanisms between adjacent layers in
Transformer.

⌊log2 l⌋ + 1 layers. Moreover, for j < l, the number of feasible unique paths from cell j

to cell l increases at a rate of O(⌊log2(l − j)⌋!).

Proof: According to the attention strategy in LogSparse Transformer, in each

layer, cell l could attend to the cells with indices in Ikl = {l − 2⌊log2 l⌋, l − 2⌊log2 l⌋−1, l −

2⌊log2 l⌋−2, · · · , l − 20, l}. To ensure that every cell receives the information from all its

previous cells and itself, the number of stacked layers k̃l should satisfy that S k̃l
l = {j : j ≤

l} for l = 1, · · · , L. That is, ∀ l and j ≤ l, there is a directed path Pjl = (j, p1, p2, · · · , l)

with k̃l edges, where j ∈ I1p1 , p1 ∈ I2p2 , · · · , pk̃l−1 ∈ I k̃ll . We prove the theorem by

constructing a path from cell j to cell l, with length (number of edges) no larger than

⌊log2 l⌋+1. Case j = l is trivial, we only need to consider j < l here. Consider the binary

representation of l − j, l − j =
∑⌊log2(l−j)⌋

m=0 bm2m, where bm ∈ {0, 1}. Suppose {msub} is

the subsequence {m|0 ≤ m ≤ ⌊log2(l− j)⌋, bm = 1} and mp is the pth element of {msub}.

A feasible path from j to l is Pjl = {j, j + 2m0 , j + 2m0 + 2m1 , · · · , l}. The length of this

path is |{msub}|, which is no larger than ⌊log2(l − j)⌋ + 1. So

min {k̃l|S k̃l
l = {j : j ≤ l}} ≤ max

{j|j<l}
⌊log2(l − j)⌋ + 1 ≤ ⌊log2 l⌋ + 1. (3.3)

Furthermore, by reordering {msub}, we can generate multiple different paths from cell j

32

Enhanced Attention-based Forecasting Chapter 3

to cell l. The number of feasible paths increases at a rate of O(⌊log2(l− j)⌋!) along with

l.

Theorem 1 implies that despite an exponential decrease in the memory usage (from

O(L2) to O(L log2 L)) in each layer, the information could still flow from any cell to

any other cell provided that we go slightly “deeper” — take the number of layers to

be ⌊log2 L⌋ + 1. Note that this implies an overall memory usage of O(L(log2 L)2) and

addresses the notorious scalability bottleneck of Transformer under GPU memory con-

straint. Moreover, as two cells become further apart, the number of paths increases at

a rate of super-exponential in log2(l − j), which indicates a rich information flow for

modeling delicate long-term dependencies.

Local Attention We can allow each cell to densely attend to cells in its left window of

size O(log2 L) so that more local information, e.g. trend, can be leveraged for current step

forecasting. Beyond the neighbor cells, we can resume our LogSparse attention strategy

as shown in Figure 3.3(c).

Restart Attention Further, one can divide the whole input with length L into sub-

sequences and set each subsequence length Lsub ∝ L. For each of them, we apply the

LogSparse attention strategy. One example is shown in Figure 3.3(d).

Employing local attention and restart attention won’t change the complexity of our sparse

attention strategy but will create more paths and decrease the required number of edges

in the path. Note that one can combine local attention and restart attention together.

33

Enhanced Attention-based Forecasting Chapter 3

3.5 Experiments

3.5.1 Synthetic datasets

To demonstrate Transformer’s capability to capture long-term dependencies, we con-

duct experiments on synthetic data. Specifically, we generate a piece-wise sinusoidal

signals

f(x) =

A1 sin(πx/6) + 72 +Nx x ∈ [0, 12),

A2 sin(πx/6) + 72 +Nx x ∈ [12, 24),

A3 sin(πx/6) + 72 +Nx x ∈ [24, t0),

A4 sin(πx/12) + 72 +Nx x ∈ [t0, t0 + 24),

where x is an integer, A1, A2, A3 are randomly generated by uniform distribution on

[0, 60], A4 = max(A1, A2) and Nx ∼ N (0, 1). We aim to predict the last 24 steps given

the previous t0 data points. Intuitively, larger t0 makes forecasting more difficult since

the model is required to understand and remember the relation between A1 and A2 to

make correct predictions after t0 − 24 steps of irrelevant signals. Hence, we create 8

different datasets by varying the value of t0 within {24, 48, 72, 96, 120, 144, 168, 192}. For

each dataset, we generate 4.5K, 0.5K and 1K time series instances for training, validation

and test set, respectively. An example time series with t0 = 96 is shown in Figure 3.4(a).

In this experiment, we use a 3-layer canonical Transformer with standard self-attention.

For comparison, we employ DeepAR [39], an autoregressive model based on a 3-layer

LSTM, as our baseline. Besides, to examine if larger capacity could improve perfor-

mance of DeepAR, we also gradually increase its hidden size h as {20, 40, 80, 140, 200}.

Following [39, 144], we evaluate both methods using ρ-quantile loss Rρ with ρ ∈ (0, 1),

Rρ(x, x̂) =
2
∑

i,tDρ(x
(i)
t , x̂

(i)
t)∑

i,t |x
(i)
t |

, Dρ(x, x̂) = (ρ− I{x≤x̂})(x− x̂),

where x̂ is the empirical ρ-quantile of the predictive distribution and I{x≤x̂} is an indicator

34

Enhanced Attention-based Forecasting Chapter 3

function.

0 12 24 96 120

84.7

125.6
110.4

24 48 72 96 120 144 168 192
t0

0.02

0.04

0.06

0.08

0.10

0.12

R0.5
Loss

Models
Transformer
DeepAR hidden = 20
DeepAR hidden = 40
DeepAR hidden = 80
DeepAR hidden = 140
DeepAR hidden = 200

Figure 3.4: (a) An example time series with t0 = 96. Black line is the conditional
history while red dashed line is the target. (b) Performance comparison between
DeepAR and canonical Transformer along with the growth of t0. The larger t0 is, the
longer dependencies the models need to capture for accurate forecasting.

Figure 3.4(b) presents the performance of DeepAR and Transformer on the synthetic

datasets. When t0 = 24, both of them perform very well. But, as t0 increases, especially

when t0 ≥ 96, the performance of DeepAR drops significantly while Transformer keeps its

accuracy, suggesting that Transformer can capture fairly long-term dependencies when

LSTM fails to do so.

3.5.2 Real-world datasets

We further evaluate our model on several real-world datasets. The electricity-f

(fine) dataset consists of electricity consumption of 370 customers recorded every 15

35

Enhanced Attention-based Forecasting Chapter 3

minutes and the electricity-c (coarse) dataset is the aggregated electricity-f

by every 4 points, producing hourly electricity consumption. Similarly, the traffic-f

(fine) dataset contains occupancy rates of 963 freeway in San Francisco recorded every

20 minutes and the traffic-c (coarse) contains hourly occupancy rates by averaging

every 3 points in traffic-f. The solar dataset6 contains the solar power production

records from January to August in 2006, which is sampled every hour from 137 PV plants

in Alabama. The wind7 dataset contains daily estimates of 28 countries’ energy potential

from 1986 to 2015 as a percentage of a power plant’s maximum output. The M4-Hourly

contains 414 hourly time series from M4 competition.

Long-term and short-term forecasting We first show the effectiveness of canoni-

cal Transformer equipped with convolutional self-attention in long-term and short-term

forecasting in electricity-c and traffic-c dataset. These two datasets exhibit both

hourly and daily seasonal patterns. However, traffic-c demonstrates much greater

difference between the patterns of weekdays and weekends compared to electricity-c.

Hence, accurate forecasting in traffic-c dataset requires the model to capture both

long- and short-term dependencies very well. As baselines, we use classical forecasting

methods auto.arima, ets implemented in R’s forecast package and the recent ma-

trix factorization method TRMF [144], a RNN-based autoregressive model DeepAR and a

RNN-based state space model DeepState [101]. For short-term forecasting, we evaluate

rolling-day forecasts for seven days (i.e., prediction horizon is one day and forecasts start

time is shifted by one day after evaluating the prediction for the current day). For long-

term forecasting, we directly forecast 7 days ahead. As shown in Table 3.1, our models

with convolutional self-attention get betters results in both long-term and short-term

forecasting, especially in traffic-c dataset compared to strong baselines, partly due

6https://www.nrel.gov/grid/solar-power-data.html
7https://www.kaggle.com/sohier/30-years-of-european-wind-generation

36

https://www.nrel.gov/grid/solar-power-data.html
https://www.kaggle.com/sohier/30-years-of-european-wind-generation

Enhanced Attention-based Forecasting Chapter 3

ARIMA ETS TRMF DeepAR DeepState Ours

e-c1d 0.154/0.102 0.101/0.077 0.084/- 0.075⋄/0.040⋄ 0.083⋄/0.056⋄ 0.059/0.034
e-c7d 0.283⋄/0.109⋄ 0.121⋄/0.101⋄ 0.087/- 0.082/0.053 0.085⋄/0.052⋄ 0.070/0.044
t-c1d 0.223/0.137 0.236/0.148 0.186/- 0.161⋄/0.099⋄ 0.167⋄/0.113⋄ 0.122/0.081
t-c7d 0.492⋄/0.280⋄ 0.509⋄/0.529⋄ 0.202/- 0.179/0.105 0.168⋄/0.114⋄ 0.139/0.094

Table 3.1: Results summary (R0.5/R0.9-loss) of all methods. e-c and t-c represent
electricity-c and traffic-c, respectively. In the 1st and 3rd row, we perform
rolling-day prediction of 7 days while in the 2nd and 4th row, we directly forecast 7
days ahead. TRMF outputs points predictions, so we only report R0.5. ⋄ denotes results
from [101]

0 2 4 6 8 10 12 14
iter. (1e4)

3.8

3.6

3.4

3.2

3.0

2.8

2.6

2.4

tra
in

in
g

lo
ss

 (N
LL

)

k=1
k=3
k=9

0 2 4 6 8 10 12 14
iter. (1e4)

7.0

7.2

7.4

7.6

7.8

tra
in

in
g

lo
ss

 (N
LL

)

k=1
k=3
k=9

Figure 3.5: Training curve comparison (with proper smoothing) among kernel size
k ∈ {1, 3, 9} in traffic-c (left) and electricity-c (right) dataset. Being aware
of larger local context size, the model can achieve lower training error and converge
faster.

to the long-term dependency modeling ability of Transformer as shown in our synthetic

data.

Convolutional self-attention In this experiment, we conduct ablation study of our

proposed convolutional self-attention. We explore different kernel size k ∈ {1, 2, 3, 6, 9}

on the full attention model and fix all other settings. We still use rolling-day prediction

for seven days on electricity-c and traffic-c datasets. The results of different kernel

sizes on both datasets are shown in Table 3.2. On electricity-c dataset, models with

kernel size k ∈ {2, 3, 6, 9} obtain slightly better results in term of R0.5 than canonical

Transformer but overall these results are comparable and all of them perform very well.

We argue it is because electricity-c dataset is less challenging and covariate vectors

37

Enhanced Attention-based Forecasting Chapter 3

k = 1 k = 2 k = 3 k = 6 k = 9

electricity-c1d 0.060/0.030 0.058/0.030 0.057/0.031 0.057/0.031 0.059/0.034
traffic-c1d 0.134/0.089 0.124/0.085 0.123/0.083 0.123/0.083 0.122/0.081

Table 3.2: Average R0.5/R0.9-loss of different kernel sizes for rolling-day prediction of 7 days.

have already provided models with rich information for accurate forecasting. Hence, be-

ing aware of larger local context may not help a lot in such cases. However, on much

more challenging traffic-c dataset, the model with larger kernel size k can make more

accurate forecasting than models with smaller ones with as large as 9% relative improve-

ment. These consistent gains can be the results of more accurate query-key matching by

being aware of more local context. Further, to verify if incorporating more local context

into query-key matching can ease the training, we plot the training loss of kernel size

k ∈ {1, 3, 9} in electricity-c and traffic-c datasets. We found that Transformer

with convolutional self-attention also converged faster and to lower training errors, as

shown in Figure 3.5, proving that being aware of local context can ease the training

process.

Sparse attention Further, we compare our proposed LogSparse Transformer to the

full attention counterpart on fine-grained datasets, electricity-f and traffic-f. Note

that time series in these two datasets have much longer periods and are noisier comparing

to electricity-c and traffic-c. We first compare them under the same memory

budget. For electricity-f dataset, we choose Le1 = 768 with subsequence length

Le1/8 and local attention length log2(Le1/8) in each subsequence for our sparse attention

model and Le2 = 293 in the full attention counterpart. For traffic-f dataset, we

select Lt1 = 576 with subsequence length Lt1/8 and local attention length log2(Lt1/8)

in each subsequence for our sparse attention model, and Lt2 = 254 in the full attention

counterpart.

38

Enhanced Attention-based Forecasting Chapter 3

Constraint Dataset Full Sparse Full + Conv Sparse + Conv

Memory
electricity-f1d 0.083/0.051 0.084/0.047 0.078/0.048 0.079/0.049
traffic-f1d 0.161/0.109 0.150/0.098 0.149/0.102 0.138/0.092

Length
electricity-f1d 0.082/0.047 0.084/0.047 0.074/0.042 0.079/0.049
traffic-f1d 0.147/0.096 0.150/0.098 0.139/0.090 0.138/0.092

Table 3.3: Average R0.5/R0.9-loss comparisons between sparse attention and full at-
tention models with/without convolutional self-attention by rolling-day prediction of
7 days. “Full” means models are trained with full attention while “Sparse” means they
are trained with our sparse attention strategy. “+ Conv” means models are equipped
with convolutional self-attention with kernel size k = 6.

We conduct experiments on aforementioned sparse and full attention models with or

without convolutional self-attention on both datasets. By following such settings, we

summarize our results in Table 3.3 (Upper part). No matter equipped with convolu-

tional self-attention or not, our sparse attention models achieve comparable results on

electricity-f but much better results on traffic-f compared to its full attention

counterparts. Such performance gain on traffic-f could be the result of the dateset’s

stronger long-term dependencies and our sparse model’s better capability of capturing

these dependencies, which, under the same memory budget, the full attention model can-

not match. In addition, both sparse and full attention models benefit from convolutional

self-attention on challenging traffic-f, proving its effectiveness.

To explore how well our sparse attention model performs compared to full atten-

tion model with the same input length, we set Le2 = Le1 = 768 and Lt2 = Lt1 = 576

on electricity-f and traffic-f, respectively. The results of their comparisons are

summarized in Table 3.3 (Lower part). As one expects, full attention Transformers can

outperform our sparse attention counterparts no matter they are equipped with convo-

lutional self-attention or not in most cases. However, on traffic-f dataset with strong

long-term dependencies, our sparse Transformer with convolutional self-attention can get

better results than the canonical one and, more interestingly, even slightly outperform

39

Enhanced Attention-based Forecasting Chapter 3

its full attention counterpart in term of R0.5, meaning that our sparse model with con-

volutional self-attention can capture long-term dependencies fairly well. In addition, full

attention models under length constraint consistently obtain gains from convolutional

self-attention on both electricity-f and traffic-f datasets, showing its effectiveness

again.

Further Exploration In our last experiment, we evaluate how our methods perform

on datasets with various granularities compared to our baselines. All datasets except

M4-Hourly are evaluated by rolling window 7 times since the test set of M4-Hourly has

been provided. The results are shown in Table 3.4. These results further show that our

method achieves the best performance overall.

electricity-f1d traffic-f1d solar1d M4-Hourly2d wind30d

TRMF 0.094/- 0.213/- 0.241/- -/- 0.311/-
DeepAR 0.082/0.063 0.230/0.150 0.222/0.093 0.090⋄/0.030⋄ 0.286/0.116
Ours 0.074/0.042 0.139/0.090 0.210 /0.082 0.067 /0.025 0.284/0.108

Table 3.4: R0.5/R0.9-loss of datasets with various granularities. The subscript of each
dataset presents the forecasting horizon (days). TRMF is not applicable for M4-Hourly2d
and we leave it blank. For other datasets, TRMF outputs points predictions, so we only
report R0.5.

⋄ denotes results from [10].

3.6 Conclusion

We propose to apply Transformer in time series forecasting. Our experiments on

both synthetic data and real datasets suggest that Transformer can capture long-term

dependencies while LSTM may suffer. We also showed, on real-world datasets, that

the proposed convolutional self-attention further improves Transformer’ performance and

achieves state-of-the-art in different settings in comparison with recent RNN-based meth-

ods, a matrix factorization method, as well as classic statistical approaches. In addition,

40

Enhanced Attention-based Forecasting Chapter 3

with the same memory budget, our sparse attention models can achieve better results on

data with long-term dependencies.

41

Chapter 4

Attention Guided Autoregression

4.1 Introduction

While abundant prior works have proposed various solutions to make accurate pre-

dictions for time series via statistical and machine learning approaches, they generally

encode all available historical information into a fixed-size vector that is later fed into a

decoder module. When there is an abrupt change taking place within the observed time

interval, the unwanted information before the change can be misleading in prediction.

For example, RNNs make predictions based on a hidden state that tries to memorize all

inputs up to the current time step. The information prior to a change point are kept

in the hidden state until sufficient new data points are observed, even if the model is

equipped with gating mechanisms [56, 25] that are able to control the information flow

for better memory management.

To detect such changes in the temporal evolution of a system, considerable attention

has been paid from machine learning and data mining community [11, 106, 17, 77, 22].

A detection algorithms aims to find a point such that the respective distributions of

the observations before and after it are significantly different. A new forecaster will

42

Attention Guided Autoregression Chapter 4

then be trained using the observations after the change point only, based on the natural

assumption that the changed pattern will be preserved in the future [5]. However, the

criterion of unsupervised change point detectors is highly task-dependent, and supervised

methods require expensive human-annotated labels. On the other hand, the detector has

to search the change point step by step, and the composite approach suffers from error

cascading issue. In fact, we do not have to find the exact change point to make good

predictions, as long as we can identify observations subject to new patterns and exclude

observations before them, as shown in Figure 4.1.

Time

old pattern new pattern

change point

observations

predictions

AR Model

Figure 4.1: The top panel depicts the concept of Localized autoregressive forecasting
in case of change points. Even though there are 6 observations after the change
points, the AR model may encode the last 3 samples only and ignore all previous
time steps when predict the next 3 steps. The bottom panel shows a simulation study
as an example. We try to forecast noisy cyclic signals with randomly injected shifts
as abrupt changes. Various deep autoregressive models are trained and evaluated.
Two test samples in which the forecasts start shortly after a change point are shown.
While most baselines manage to gradually adapt to the new patterns after observing
the changes, AGA can address the changes more quickly thanks to the localized AR
component.

Self-attention based networks, also known as Transformers [122], have been a prefer-

43

Attention Guided Autoregression Chapter 4

able choice in many sequence modeling tasks, especially in language modeling [33, 140].

Transformers locate the observations that are most informative for current predictions

via pairwise comparison between an input variable and all historical encodings. On top

of that, multi-head attention mechanism is able to focus on multiple subspaces of hidden

activations for better comparison, which resembles the concept of feature maps in con-

volution neural nets [72]. Some previous works apply it to time series analysis and get

promising results [113, 76, 80], but they did not consider the challenge imposed by change

points. Nevertheless, the flexibility of transformers in selecting observations makes it an

ideal choice to combat change points in forecasting tasks.

We propose a novel self-attention architecture to address the aforementioned issues.

The idea is to first encode observations and other auxiliary covariates with local process-

ing operations to obtain temporal contextual information at each time step. Then we

use self-attention to find historical time points at which temporal contextual information

is similar to that of the current time step and scale the observed values at those points

accordingly as prediction. In case no such time points exist, it’s likely that a potential

change point has occurred and we use a relatively simple and localized autoregressive

module to produce a “backup” estimate. The two estimates are dynamically fused with

self-attention. Finally we employ a fully-connected network to emit predictions and use

quantile regression [67] to train the model.

4.2 Related Work

Self-attention Attention mechanism was firstly introduced in [6, 83] for machine trans-

lation task. [122] proposed a architecture named Transformer based solely on multi-head

self-attention which became a game changer in the domain. Later on, self-attention was

applied to language modeling and achieved impressive success in many tasks [33, 141,

44

Attention Guided Autoregression Chapter 4

142, 19]. While most variants of Transformer takes a single input, it has been shown that

improvements in many aspects can be obtained by manipulating the inputs. For example,

[81] compress the length of sequence with a convolution layer to mitigate the memory

bottleneck of Transformer. Notably, [141] introduced another self-attention operation to

maintain an independent contextual representations, which is different from the stan-

dard self-attention that is aware of the target content. Our model follows this idea and

transforms raw inputs into two sets of representations and maintain them separately.

Change Point Detection Change point detection (CPD) aims to find critical times

when important events have occurred and caused significant changes in observed vari-

ables. Classical parametric approaches for change point detection (CPD) usually rely on

strong assumption on data distributions [11, 137, 1]. Non-parametric methods are free of

such assumptions but depend heavily on carefully engineered divergence metrics or kernel

functions [106, 77]. Recently deep learning methods are introduced for better detection

accuracy [37, 22]. However, these methods still rely on manually annotated labels and

have to perform a binary classification per observation, which is usually expensive and

unnecessary in forecasting non-stationary time series. Moreover, the imperfect detectors

introduce extra error for the downstream forecasting task. Hence we focus on forecasting

only and implicitly detect changes within self-attention.

4.3 Problem setup

Given a time series dataset with N unique instances, such as different stores for de-

mand forecasting or households in energy consumption analysis. Each instance i consists

of a sequence of observations xi,0:T ≜ {xi,0,xi,1, · · · ,xi,T}, where the t-th observation

is xi,t ∈ Rdx , a static covariate si ∈ Rs that is time-invariant, as well as a series of

45

Attention Guided Autoregression Chapter 4

time-varying covariates ai,0:T+τ where ai,t ∈ Rda , such as date/time information. Note

that the auxiliary inputs a0:T+τ are known within the forecasting horizon as well. Our

goal is to predict the next τ time steps in the future, i.e. xi,T+1:T+τ . In the following

sections, we will call x0:T the condition and τ the forecasting horizon. Formally, we want

to model a conditional distribution p(xT+1:T+τ |x0:T ,a0:T+τ).

An autoregressive model tackles this problem by decomposing the distribution ac-

cording to the chain rule, i.e.

p(xi,T+1:T+τ |xi,0:T) =
T+τ∏

t=T+1

p(xi,t|xi,0:t−1,ai,0:t, si;θ). (4.1)

This reduces the problem to learning a single-step-ahead predictor f(xi,0:t−1,ai,0:t, si;θ)

and iteratively applying it τ times by feeding the prediction x̂i,t back into the model.

In our experiments, we simply concatenate si with each ai,t. We still use ai,t to denote

the concatenated vector by slightly abusing notations, and omit the subscript i for sim-

plicity throughout the paper if not stated explicitly. Here θ denotes the set of trainable

parameters of the model that are shared across and learned jointly from all N instances.

For probabilistic forecasting, it is usually desired to quantify the uncertainty of predic-

tions. Previous works [39, 101] assume p(xt|x0:t−1) to be Gaussian and explicitly output

the maximum likelihood estimate of its mean and variance. Instead, when the provision

for prediction intervals is specified, we can directly predict the required intervals via

quantile regression [67], e.g. outputting the 10th, 50th and 90th percentiles of p(xt|x0:t−1)

[129, 38, 80], so that we do not need to make any assumption on the data distribution.

46

Attention Guided Autoregression Chapter 4

𝑥0:𝑡−1

𝑎0:𝑡

Conv Linear MLPs

Two-Stream Multi-head Self-attention

Two-Stream Multi-head Self-attention

MLP MLP Avg

MLP

Quantiles

multi-scale

global local

Linear

Target Stream

+

Context Stream

+

multi-head

Figure 4.2: The overall architecture of AGA. Best viewed in color.

4.4 Methodology

4.4.1 Basic Multi-head Self-attention Network

We have introduced self-attention mechanism in Chapter 3, and here we briefly review

its multi-head version [122]. Formally, suppose we have a sequence of values with length

L which is packed into a matrix V , and similarly a query sequence Q and a key sequence

K, then

Attention(Q,K,V) = A(Q,K)V

A(Q,K) = Softmax(QKT/
√
ds)

(4.2)

Instead of a single attention function, the self-attention can be enriched by producing

H versions of queries, keys and values via different linear projections, which is usually

called “heads”. Then we apply attention function to each of these H heads and obtain

H different outputs. They are concatenated and linearly projected again, resulting in

47

Attention Guided Autoregression Chapter 4

the final output.

MHAttention(Q,K,V) = Concat(A1, · · · ,AH)WO

Ai = Attention(QW
(i)
Q ,KW

(i)
K ,V W

(i)
V)

(4.3)

Here WQ,WK and WV are parameters to be learned, and they are usually compressing

projections so that different heads attend to information from different hidden subspaces

at each time step. In addition, to make the function autoregressive, attention from a

query at step i to a key at step j is prohibited when i < j.

4.4.2 Motivation

Single-step-ahead forecasting basically aims at finding a mapping from a number of

observed measures or events to an estimate of unknown future. While non-stationary

time series are generally not predictable [63], a plausible prediction can be made if the

observed patterns repeat themselves. Intuitively, if we currently observe a temporal

pattern that has been observed in the history after which an event immediately took

place, we expect that a similar event is likely to occur again at this moment. In other

words, to measure the relation between two time points, their surrounding observations

are often considered. Self-attention mechanism exactly follows this intuition and actively

compares the contextual patterns at two arbitrary time steps.

In light of this, we are supposed to maintain a temporal-context encoding (context

encoding in short) ct to capture such patterns prior to each time step t for comparison in

attention. Simultaneously, we expect a prediction-target encoding (target encoding) pt

that contains the event or measure that we want to predict, i.e. the ground-truth xt. The

context encodings will then be queries and keys in attention, and the target encodings

will play the role of values. On the other hand, if no recurring patterns are found within

observations, then another predictor p̂t should be introduced in place of target encodings.

48

Attention Guided Autoregression Chapter 4

In the next two subsections, we propose the formulation of these components, and the

left panel of figure 4.2 illustrates the overall architecture of our design.

4.4.3 Context and Target Encoding

Since the context encodings ct are expected to encode shapes and variations before

t. Hence we use convolution to extract local patterns, following [76]:

ct = tanh(Convk(xt−k:t−1,at−k:t−1)) (4.4)

where k is the filter size of convolution. Note that the input is padded with zero on

the left side so that the output will have the same shape as the input and contain no

information about future. Meanwhile, we compute the target encodings via a simple

step-wise linear layer so that it contains xt:

pt = tanh(Linear(xt)) (4.5)

4.4.4 Global-Local Autoregressive Structure

We then set Q = K = C ≜ [c1, c2, · · · , ct] as part of inputs to self-attention layers, so

that the attention will compare the temporal contextual patterns extracted from the local

convolution layer. For example, suppose we are predicting time step t, then ct attends

to c1, · · · , ct−1, as well as itself. In this way, when there is a similar context pattern ci

found, then the corresponding target encoding pi is likely to be from an observation xi

that is close to the ground-truth xt, e.g. periods in cyclical time series. In this case,

pi will receive a large attention weight in composing the attention output. Note that

here i < t since we know neither the ground-truth xt nor its target encoding pt. We

call this component “global” since it attends to all available history. If no such similar

patterns are found, it is likely that a potential change occurs, and attention weight will

49

Attention Guided Autoregression Chapter 4

concentrate on the current step since the compared context encodings are exactly the

same. In this case, it is safer to rely on recent observations which are more likely to

belong to the new patterns.

We propose to use a simpler component to generate a localized autoregressive estimate

of the unknown pt. Specifically, we use a step-wise MLP to encode both the observations

and covariates at step {t−u, t−u+ 1, · · · , t− 1}, where u ≥ 1 is a small integer, usually

less than 3. The encodings are then averaged and fed into another MLP together with

at to decode the esitmate p̂t.

hi = MLP(xi,ai),

ĥ =
1

u

u∑
j=1

ht−j,

p̂t = MLP(ĥ,at)

(4.6)

In a sense, we expect the decoder to fit a regression function from at to pt, which is

dependent on recent patterns encoded by the encoder. This architecture resembles that

of Conditional Neural Processes [46], in which an accurate predictor can be learned from

a handful of training data points. The right bottom panel of figure 4.2 shows the local

autoregressive structure.

Provided with both the global and localized estimates, we assemble both compo-

nents into the framework of self-attention. We obtain the value matrix V = P =

[p1,p2, · · · ,pt−1, p̂t] by concatenation, and Q,K,V are then fed into multi-head self-

attention network to aggregate both estimates.

Distance encoding Self-attention has no clue about the temporal order of inputs and

thus breaks the temporal dependencies. To recover the temporal order in non-recurrent

structures, [122, 47] proposed to use sinusoidal functions or learned embeddings to en-

code absolute position as additional input to the network. In our setting, the absolute

50

Attention Guided Autoregression Chapter 4

positional information can be reconstructed from the given date/time information in co-

variates. A more flexible alternative is to encode relative distances between the compared

pair of positions [110, 29]. Hence we introduce a sinusoidal distance encoding R, in which

the dth row rd ∈ Rds corresponds to distance d. We adopt the sinusoidal formulation for

its generalizability to arbitrarily long time series. Formally, we modify equation (4.2) as

follows:

r̂i−j = WRri−j

Âi,j(Q,K) = qT
i kj + r̂T

i−jqi + r̂T
i−jkj

A = Softmax(Â)

(4.7)

where Âi,j is the (i, j)th entry of pre-normalized attention weight matrix; qi and kj

are rows of Q and K, respectively. In essence we add a query-dependent and a key-

dependent bias term to the original attention that are both dependent on the distance

i−j. This formulation is similar to the relative positional encoding employed in [29], but

they differ essentially in how to connect keys and distance encodings. While [29] used

an additive combination of keys and relative position encodings, we use a dot-product

function instead that does not introduce extra parameters. Empirically we find that this

formulation performs as well as the additive one.

Multi-scale context encodings Preliminary experiments in [76] shows that the fil-

ter sizes of convolutions that enhances locality can be highly data-dependent and have

significant impact on the forecasting performance. A practical problem is then to choose

the appropriate kernel size k. Intuitively, larger filters are more reliable in pattern match-

ing as they encode more contexts, but smaller kernels usually focus on finer details that

might be more important in certain cases, e.g. outliers and changes.

Since multi-head self-attention itself combines information gathered from multiple

tries of attention, we propose to divide attention heads into a number of groups, each

51

Attention Guided Autoregression Chapter 4

receives convolutional output with different filter sizes. In other words, we employ G

convolution layers equation (4.4) with various filter sizes k1, k2, · · · , kG. The number of

attention heads H is selected to be divisible by G so that the heads can be evenly divided

into G groups. Each group i has H/G heads and takes the output of the convolution

layer with filter size ki as input. Moreover, inside the self-attention operation, the linear

projections that produce queries and keys will also be restricted so that only intra-

group interactions take place. This can be achieved by using block-diagonal weight

matrices, i.e. WQ and WK . In this way, these groups compute distinct attention scores

and aggregate values based on temporal patterns at various scales, and the results are

eventually assembled with the output projection. This design improves the robustness of

attention in case of subtle variations that a single attention may fail to recognize. And

more importantly, the model is less likely to detect a false change point due to limited

receptive field of context encodings.

4.4.5 Two-Stream Self-Attention

As shown in equation (4.4)equation (4.5), at each time step t, the context encoding

ct uses the observations before xt yet the target encoding pt contains xt. However, a

standard Transformer fuses all input into a single output, which makes the following

self-attention layers inconsistent with the first one computationally and mix up two en-

codings conceptually. To resolve such a contradiction, we borrow the idea of two-stream

self-attention from [141] that maintains the two types of representations separately. To

be specific, we obtain the initial encodings c
(0)
t ,p

(0)
t according to equation (4.4) equa-

tion (4.5). Then each self-attention layer m ∈ [1, 2, · · · ,M] performs two attention

52

Attention Guided Autoregression Chapter 4

operations equation (4.3) with shared parameters:

c
(m)
t = MHAttention(c

(m−1)
t ,C

(m−1)
0:t ,C

(m−1)
0:t), (4.8)

p
(m)
t = MHAttention(c

(m−1)
t ,C

(m−1)
0:t ,P

(m−1)
0:t), (4.9)

We call equation (4.8) context stream and equation (4.9) target stream. The target

stream is the structure covered in Section 4.4.4. The context stream is a typical self-

attention in which keys and values are tied, such that the updated context encodings

summarize all c1:t instead of a restricted convolutional representation. On the other

hand, a skip connection keeps context encodings locality-aware by adding lower-level

features to upper-level. Note that we use the local estimate from equation (4.6) in all

subsequent layers, i.e. p
(m−1)
t is always replaced by p̂t, so that it stays localized. The top

right panel of figure 4.2 summarizes the concept of two-stream self-attention.

Despite being conceptually similar to [141], our design keeps both encodings distinct

throughout all attention layers in terms of encoded values, so they are not likely to be

mixed up. In addition, we do not need to use different masks in two streams of attention,

which simplifies implementation.

4.4.6 Training and Evaluation

The target encoding from the last self-attention layer p
(M)
t will be fed into a fully-

connected layer that emits quantile predictions of interest in parallel. For example, we

are predicting the 10th, 50th, 90th percentiles at each time step, then

[x̂t,10; x̂t,50; x̂t,90] = WPp
(M)
t + bP (4.10)

where WP ∈ R3dx×dV and bP ∈ R3dx are linear coefficients.

As per [129], the AGA is trained by minimizing cumulative the quantile loss across

53

Attention Guided Autoregression Chapter 4

all predictions, horizons and time series instances

L(P,θ) =
N∑
i=1

τ∑
t=1

∑
ρ∈P

D(xi,T+t, x̂i,T+t,ρ)

D(x, x̂ρ) = (ρ− I[x≤x̂])(x− x̂ρ)

(4.11)

where P represents required quantiles, and I[·] is an indicator function. We evaluate the

performance in terms of normalized ρ-quantile risks Rρ.

Rρ(x, x̂) =
2
∑

i,tD(xi,t, x̂i,t,ρ)∑
i,t |xi,t|

(4.12)

4.5 Experiments

4.5.1 Simulation Study

To verify the motivation of dealing with change points in forecasting task, we conduct

experiments on a synthetic dataset and compare AGA with other deep autoregressive

models, namely DeepAR, TCN and ConvTrans. Specifically, we generate noisy cyclic

signals consisting of a sinusoidal component, a square wave and a triangle wave, corrupted

by white noise with standard variance 0.2. They have a fixed length 240 with period

40 and 8. Afterwards, we randomly select a time point λ from [0, 160) and a shift

s ∼ Unif(3, 10). Then the shift is added to or subtracted from xt for all t ∈ (λ, 240)

according to coin toss. We generate 5000 such signals and 5000 normal sinusoids without

shifts to make a dataset, on which we train the mentioned AR models. We then evaluate

the forecasting performance on an independent test set with 1000 instances generated in

the same way. During training and evaluation, the known periodicity is revealed to the

models as covariates.

As a result, we observe that the forecasting accuracy of all models are influenced by

the injected shifts when they occur. Meanwhile, the models are able to adapt to the

54

Attention Guided Autoregression Chapter 4

Figure 4.3: RMSE of forecasts against the distance from the start of forecasts to the
time point where a random shift takes place. All models are able to make reasonable
predictions after sufficient data from new patterns is observed, but AGA does the
best.

changed patterns after observing a few time steps. However, it takes different amount

of time for each model to accomodate the changes. Figure 4.3 illustrates the averaged

root mean square error (RMSE) depending on the elapsed time from the occurrence of a

shift to the start of forecast. It shows that AGA is able to respond to the changes much

more quickly than baselines. On the other hand, TCN and ConvTrans are more likely

to be misled by the patterns before the changes, due to their reliability on all historical

observations. Some examples are shown in figure 4.1 from a qualitative perspective.

4.5.2 Quantitative Evaluation

Dataset

We then evaluate our model on a variety of publicly available real-world datasets

across a wide range of domains. First we use two benchmark datasets that present clear

seasonality. Then we conduct experiments on two datasets with highly non-stationary

time series, one of which is large and the other is small but has labelled anomalies or

55

Attention Guided Autoregression Chapter 4

change points.

Electricity The electricity dataset contains hourly energy comsumption of 370 house-

holds from Jan 1, 2011 to Dec 31, 2015. We use the last 4 weeks

Traffic The traffic dataset contains hourly occupancy rates of 963 lanes in San Francisco

bay area. The occupancy rates are in the range of [0, 1] and were collected from Jan 1,

2008 to Mar 30, 2009.

Web The web dataset contains web traffic to 145K Wikipedia pages from July 1, 2015

to Sept 10, 2017. Each time series represent a number of daily views of the Wikipedia

article. The data has no clear seasonalities, and the patterns varies significantly according

to the popularity of the corresponding webpage.

Yahoo The yahoo dataset contains metrics of various Yahoo services with labeled

anomalies and change points for a few weeks. It consists of 67 real production records

and 100 of synthetic time series.

For each dataset, we split it into a training set, a validation and a test set in temporal

order. A sample, which is a window of trajectory with specified length of condition and

forecasting horizon, i.e. T and τ defined in section Section 4.3, is extracted from each

subset during training and evaluation. Due to the large variance in magnitude across

trajectories, we apply z-score normalization to numerical inputs. Specifically, the mean

and standard variance of condition is computed and used to normalize both condition

and prediction target.

56

Attention Guided Autoregression Chapter 4

w/ labels w/o labels

DeepAR 0.183/0.313 0.035/0.019
TCN 0.208/0.186 0.039/0.020

ConvTrans 0.228/0.276 0.033/0.019
AGA 0.161/0.171 0.033/0.023

Table 4.1: Performance on yahoo subsets with or without labeled change points, in
terms of R0.5/R0.9. AGA not only outperforms baselines on the subset with changes,
but also works well on regular data.

Baselines

To place our model in a line of researches, we compare AGA with a variety of machine

learning models proposed recently.

• TRMF[144] is a method based onmatrix factorization

• DeepAR[39] is an autoregressive model based on stacked LSTMs

• TCN[13] is an autoregressive model based on temporal convolution networks

• MQ-RNN[129] is an LSTM-based quantile forecaster that makes multi-horizon

forecasts directly

• DeepSSM[101] is a state space model parameterized by an LSTM.

• ConvT[76] is an autoregressive model based on Transformer architecture.

We used the open-sourced implementation for TRMF 1, DeepAR, MQ-RNN and

DeepSSM 2 and our own implementation for the rest. Hyperparameters of all mod-

els are tuned using the same validation set.

Results

Table 4.2 presents the overvall results. As we can see, our model outperforms all

existing methods in most of experiments, especially on web, suggesting the effectiveness

1https://github.com/rofuyu/exp-trmf-nips16/tree/master/python
2https://github.com/awslabs/gluon-ts

57

https://github.com/rofuyu/exp-trmf-nips16/tree/master/python
https://github.com/awslabs/gluon-ts

Attention Guided Autoregression Chapter 4

Dataset electricity traffic web yahoo

T 168 168 380 168
τ 24 24 30 24

TRMF 0.084/- 0.186/- 0.091/- 0.039/-
TCN 0.073/0.060 0.151/0.118 0.062/0.052 0.044/0.030

DeepAR 0.075/0.040* 0.161/0.099* 0.056/0.037 0.038/0.030
MQ-RNN 0.077/0.036 0.132/0.110 0.076/0.054 0.042/0.027
DeepSSM 0.083/0.056* 0.161/0.113* 0.065/0.050 0.041/0.042

ConvT 0.059/0.034 0.122/0.081 0.042/0.036 0.041/0.031
AGA(Ours) 0.054/0.029 0.121/0.078 0.039/0.026 0.036/0.027

Table 4.2: Performance comparison with state-of-the-art models on various datasets
in terms of R0.5/R0.9. T represents the length of condition and τ is forecasting hori-
zon. As TRMF only produces a point prediction, the normalized deviation (ND) is
reported, which is equivalent to R0.5. * denotes results from [101]. Our results are
medians of 3 runs over the test sets.

of our model design. Notably, AGA is less effective on traffic dataset because it is more

stationary and a ConvTrans model is good enough to capture the seasonal patterns.

In contrast, AGA is more favorable in web and yahoo, indicating our model works better

on noisy and non-stationary time series datasets with different scales.

4.5.3 Ablation Analysis

However, it is not clear which design contributes most to the empirical results. In

this regard, we conduct ablation study for short-term forecasting task to examine the

effects of the proposed techniques:

Global-local Autoregression (GL) We remove the local estimates in prediction, i.e.

replace [p1, · · · ,pt−1, p̂t] with [p0, · · · ,pt−1] in compoing the value matrix of self-attention

according to 4.4.4.

58

Attention Guided Autoregression Chapter 4

Two-stream Self-attention (TS) We employ a standard self-attention block in [122]

that maintains one hidden representation only instead of the two-stream self-attention

strucuture in 4.4.5. For upper-level self-attention, queries and keys come from the same

input as values.

Multi-scale Convolution (MC) Instead of using different sizes for convolution filters,

we fix a single kernel size as in [76]. For example, if the complete model uses 5, 9 as filter

sizes, we select the larger 9 as the filter size in ablation study.

Distance Encoding (DE) We try removing the distance encoding and replacing the

dot-product key-distance interaction with an parametric addition.

The results can be found in Figure 4.4. We first notice that global-local autoreres-

sion and two-stream self-attention result in better performance in general, except traffic

in which change points are rare and simple self-attention works well enough. Then we

observe that multi-scale convolution also contributes to the overall performance. In addi-

tion, the pattern-dependent distance encodings empirically improves pure self-attention

as well, and the parameter-free dot-product formulation works as well as the widely-used

additive function. An interesting exception is the smaller and simpler yahoo dataset, on

which multi-scale and distance encodings worsen the forecasting accuracy. A possible

reason is over-fitting since these operations introduce extra complexity to the model.

4.5.4 Analysis of Changes

To illustrate the capability of AGA to capture change points and other potential

anomalies, we take advantage of the labels in yahoo dataset. To be specific, we separate

test instances containing labeled anomalies (about 4%) from those without positive la-

59

Attention Guided Autoregression Chapter 4

-15%

-10%

-5%

0%

5%

10%

15%

20%

No GL No TS No MC No DE Additive DE

Electricity Traffic Web Yahoo

-15%

-7.5%

0%

7.5%

15%

22.5%

30%

No GL No TS No MC No DE Additive DE

Electricity Traffic Web Yahoo

Figure 4.4: Ablation study on four datasets. The base model contains all components
introduced in the paper. The tested configurations are derived from the base setting
by removing each key components according to 4.5.3. The percentage of changes in
R0.5 (left panel) and R0.9 (right panel) are reported. Smaller values are better.

bels and evaluate models on two groups of data individually in comparison with other

AR models. The results are presented in Table 4.1. AGA can significantly improve

accuracy on anomalous data as well as preserve favorable performance on normal data.

This observation provides preliminary quantitative proof that our model is promising in

forecasting certain non-stationary time series.

In order to provide a qualitative illustration of AGA’s ability, we select a test sample

from web dataset in which change points exist and visualize the predictions along with

the attention distribution in figure 4.5. Note that we only employ a single self-attention

layer in this experiment for better interpretability. We can see that significantly more

attention was paid to the changed trends after time step 140 across the whole forecast

horizons, meaning that model is able to distinguish new patterns from deprecated ones.

Moreover, we can see a peak of attention on the last step of context in every single-step-

ahead prediction, which reflects the activation of the local component of AGA.

60

Attention Guided Autoregression Chapter 4

0 25 50 75 100 125 150 175 200

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

lo
g

va
lu

e

0.00

0.02

0.04

0.06

0.08

0.10

at
te

nt
io

n
sc

or
e

target
prediction
interval
change
attention at 170
attention at 176
attention at 182
attention at 188
attention at 194

Figure 4.5: Attention distribution for predictions on web dataset. The red line indi-
cates the predictive median and the rendered interval means the gap between the 10th

and 90th percentiles. For all forecast at various horizons, the attention score over the
context starts to increase significantly when a change in trend occurs. And the local
estimate is activated by paying most attention to the last time steps.

4.6 Conclusion

We present a novel neural network model called Attention Guided Autoregression

(AGA) based on Transformer architecture for time series forecasting task. Our model is

able to achieve strong empirical performance on benchmark datasets and, also, to deal

with breaking changes in non-stationary time series in a proper way. We find it beneficial

to maintain two types of representations of time series data separately for more reliable

attention, by which a combination of a global and a local autoregressive forecaster can

intelligently cooperate to forecast both stationary and certain kinds of non-stationary

time series.

61

Chapter 5

Inter-Series Attention Model for

COVID-19 Forecasting

5.1 Introduction

The Coronavirus disease 2019 (COVID-19) has been impacting the human society

since early 2020. At the time of this writing, it is an ongoing public health crisis in over

187 countries and territories around the world, with more than 30 million confirmed cases,

and a growing death toll exceeding 1, 000, 000. During this crisis, reliable forecasting of

COVID-19 cases becomes important as it will help (1) healthcare institutes to allocate

sufficient supply and resources, (2) policy-makers to consider new and further adminis-

trative interventions, (3) general public to be aware of the situation and to follow rules

against the epidemic. Therefore, the Center for Disease Control and Prevention (CDC)

has been actively collecting and publishing data about confirmed cases, hospitalization

and deaths related to COVID-19, and hosting forecasting results in the coming weeks.

The US has been suffering the most severe loss from the pandemic, in which more

than 200, 000 lives were lost. To encourage and to bring together efforts of COVID-

62

Inter-Series Attention Model for COVID-19 Forecasting Chapter 5

19 modeling, CDC has launched a forecasting challenge1. It calls for models that give

predictions of the next 4 weeks on a daily or weekly basis. Besides COVID-19 data, other

kinds of data such as demographic data, mobility data and intervention policies are also

encouraged to be used in predictions.

Epidemic forecasting is regarded as a challenging task for a long time, for which many

methods have been developed. They can be roughly categorized into two classes:

1. Compartmental models These models explicitly compartmentalize the popula-

tion in groups based on their status of infection and recovery, and simulate the

transmission process using differential equations. As of today, most of the CDC-

featured forecasting methods fall into this category. Examples includes [4, 96, 139]

that are built upon classic SIR or SEIR models [55]. Compartmental models de-

scribe disease spreading dynamics; however, it is quite hard to determine parame-

ters in these models as they are influenced by many uncontrollable and dynamically

changing factors.

2. Statistical models This type of methods fits the data to regression models di-

rectly, such as [3, 87, 132]. While they are more flexible in processing real data

compared to compartmental models, they often assume a simplified model class

such as generalized linear models [3], or require sophisticated hand-crafted features

from additional, and possibly proprietary, data sources [132].

The forecasting of COVID-19 is even harder as various constantly changing factors, such

as virus characteristics, social and cultural distinctions, public attitudes and behaviors,

intervention policies and healthcare preparation, influence the contagious rate and death

rate significantly. Will there be a better alternative that is solely data-driven without

any assumptions about the underlying disease propagation mechanisms? In particular,

1https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/forecasting.html

63

https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/forecasting.html

Inter-Series Attention Model for COVID-19 Forecasting Chapter 5

115000
110000
105000
100000
95000
90000
85000
80000

2200

2100

2000

1900

1800
28 29 30 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19

Similar Patterns

Reference

Model Model

Dataset
History Forecast ForecastHistory

Reference

(a)

(b) (c)

Cumulative Confirmed Cases

Jun
2020

Figure 5.1: (a) A similar growth pattern of confirmed cases in Santa Barbara County,
California, in mid June is observed in Mexico in late May and early June. (b) Con-
ventional auto-regressive forecasting model. (c) The proposed inter-series forecasting
model (ACTS).

we experimented a set leading neural forecasters [80, 105], but none of them gave the

best result.

Since the deep models are originally designed for sufficiently long time series with

hundreds of points, the scarce historical data in this task might be the reason of their

failures. A natural alternative is to exploit other time series in the dataset if they reveals

similar dynamics. Fortunately, even if any two regions present different disease curves

over long term, it is likely to find short periods in which different regions sharing similar

patterns. Figure 5.1(a) shows surprisingly that the growth pattern of confirmed cases in

Santa Barbara county, California, is highly similar to that in Mexico 11 days ago even

though at different scales. Moreover, the further growth in Santa Barbara is also close to

that within the corresponding time period in Mexico. In light of this key observation, it

is intuitively possible to do better forecasting for Santa Barbara by referring to Mexico

64

Inter-Series Attention Model for COVID-19 Forecasting Chapter 5

in this specific time window via proper transformations.

Based on this intuition, we propose to generalize the conventional auto-regressive

forecasting to a novel paradigm: besides the local historical data, we also refer to the

past reports in all other regions simultaneously in forecasting. Figures 5.1(b) and (c)

illustrate the the fundamental difference between the two paradigms. With time series

data of COVID-19 from various locations accumulating over time, we are able to deliver

a model outperforming the existing methods by inter-series modeling. Note that unlike

other cross-location epidemic forecasters such as [32], only certain time periods rather

than the entire time series from other regions will be referred to.

In order to make the proposed paradigm work, it is critical to find small segments in

reference time series that exhibit similarity with target time series. It turns out that the

attention mechanism [122] is a good choice for pattern matching. Moreover, it is found

that solely applying attention does not work the best as the embedded small segments

do not contain long-term trends that are not directly comparable. We filter out these

trends and introduce a normalization step so that the small segments can be matched at

a consistent scale. In the end, we put all of these components together and achieve global

optimum by joint training. Our new model called ACTS (Attention Crossing multiple

Time Series), is able to outperform leading forecasters hosted at CDC.

5.2 Related Work

There has been a large body of work focusing on epidemic forecasting. To incorpo-

rate domain knowledge, mechanistic models [73, 147] has been favored since they often

consider various factors such as epidemiological and social properties, and they make fore-

casts based on simulation. Moreover, geographic information can also be incorporated

into the mechanistic models to better illustrate the spreading process of an infectious dis-

65

Inter-Series Attention Model for COVID-19 Forecasting Chapter 5

symbol interpretation

xi
t The value at time t in location i.

xi
s:t The time series from s to t in location i

W· Parameter matrices to be learned.
[a; b] The concatenation of a and b.
⟨a, b⟩ Inner product of a and b.
Js, tK Consecutive index set s, s+ 1, · · · , t

Table 5.1: Used notations

ease [8, 9]. These models have excellent interpretability but often fail to fit real observed

data due to their rigid and over-simplified assumptions without careful calibration.

On the other hand, statistical methods explicitly fit historical data to a statistical

model and use it to obtain predictions by extrapolation [18, 21]. For example, [102]

relies on kernel density estimation, [84] uses seasonal ARIMA, [138] chooses particle

filtering and [150] employs Gaussian process regression. These methods are either too

simple or require laborious feature engineering. Hence, various deep learning techniques

are also introduced to forecast disease spreading, such as [136, 125, 62, 118, 119, 99].

They use deep neural networks to extract complex temporal patterns from historical

data and a selected set of additional features. [32, 45] are conceptually closer to our

model, both of which employ attention mechanism to compare encoded temporal patterns

across multiple locations. However, they require a fixed graph structure with geographic

information and produce a similarity score between locations that is independent of time.

Instead, in our model we generate embeddings of dynamical patterns for attention over

both spatial and temporal dimensions so that the generated attention map are temporally

dynamical and free from any predefined geographic structures.

66

Inter-Series Attention Model for COVID-19 Forecasting Chapter 5

5.3 Problem Statement

In COVID-19 forecasting, there are three types of incidences, namely confirmed cases,

hospitalizations and deaths, to be predicted. The historical data is reported on a daily

basis, and we will predict them for the coming weeks. Table 5.1 summarizes the notations

we use in the following sections. Note that throughout the paper, terms “location” and

“region” will be used interchangeably. Problem definition is formulated as follows.

DEFINITION 1. Incidence Time Series We denote by xi
t the reported value of

a certain type of incidence data at date t and location i, for t = 1, 2, · · · , T and i =

1, 2, · · · , N . Hence, the incidence time series of location i denoted by xi
1:T . xi

s:t is called

a time segment of xi, where Js, tK, 1 ≤ s < t ≤ T is called a window.

DEFINITION 2. Target Region At the last date T , we predict the future incidences

for location i0 ∈ [1, N] beyond T . We call i0 the target region and xi0
1:T the target time

series.

DEFINITION 3. Reference Regions The regions other than the target region i0 are

called reference regions. The reference time series are xi
1:T where i ̸= i0. In a generalized

definition, reference regions could include the target region.

DEFINITION 4. Additional Features Besides historical incidences in each region,

other features might be available including demographic information, mobility index, and

interventions. For each region i, time-independent features are concatenated into a single

vector ui, and time-dependent ones into another time series ri
t.

Problem Statement Given N time series X i
1:T (i ∈ [1, N]) and additional features, we

aim to predict future incidences in a target region i0 ∈ [1, N] over H consecutive days

after T , i.e. xi0
T+1:T+H .

67

Inter-Series Attention Model for COVID-19 Forecasting Chapter 5

Time

Region

Mar 01 Aug 15

CA

NJ

ND

WA

Jun 01

Detrending

target

references

NN

 NN

NN

NN

NN

Residual
Time series snapshots embeddings

additional
features

Inter-Series Attention

Trends

Figure 5.2: Our proposed Inter-series Attention Network. Best view in color.

5.4 Methodology

Traditionally, epidemic forecasts are made by analyzing only the growth pattern of

incidences. [8, 9, 32, 45] take the incidences from neighboring regions into consideration

as diseases spread through social interaction. Rather than explicitly modeling the disease

spreading process, we take a bold step to directly compare the incidence curves across

regions. Once the similarities between the current incidences in the target region with

the past time segments in reference regions are identified, the following incidences in the

reference regions can be used to forecast the future incidences in the target region.

Formally, we introduce an embedding function ϕ(·) to encode a time series segment

xt−l+1:t into a vector, and then use dot-product of vectors to measure similarity. The

following incidences xt+1:t+h is also encoded by another embedding function ψ(·) for

further aggregation. However, while there are comparable short-term patterns that can

be extracted from time series segments, there are also non-stationary long-term trends

that hinder reasonable comparison and aggregation of local patterns within segments.

We resolve the problem in two steps. First, we apply a trainable detrending module to

the raw time series to remove long-term trends so that incidences across different regions

68

Inter-Series Attention Model for COVID-19 Forecasting Chapter 5

are more comparable. Second, we take rolling windows from residual time series and

transform them into a common feature space using normalized convolution as embedding

functions ϕ(·) and ψ(·). The embedding of the recent window in the target region is then

compared with windows from references to produce weights for combining the following

incidences of each reference window. In such pairwise comparisons, differences in both

time-dependent and time-independent features are taken into account so that the curves

in corresponding windows can be better aligned. The combinations are then added to

the extrapolation of filtered trends to generate the final prediction. We jointly train both

modules in an end-to-end manner so that both the long- and short-term patterns can be

decoupled in an adaptive way.

Figure 5.2 gives an overview of the framework. In the following subsections, we

introduce each component in details.

5.4.1 Detrending

We adopt a learnable Holt smoothing model ([112]) to remove long-term trends from

the raw time series. Specifically, we introduce a set of parameters θie = [ai0; b
i
0;α

i; βi]

per series, where ai0 is the initial level, bi0 is the initial trend, αi is the level smoothing

coefficient and βi is the trend smoothing coefficient. Then Holt’s equations ([59]) are

launched to iteratively derive levels and piecewise linear slopes in xi
1:T ,

ait = αixi
t + (1 − αi)(ait−1 + bit−1),

bit = βi(ait − ait−1) + (1 − βi)bit−1,

x̂i
t = xi

t − ait.

(5.1)

After detrending, the residual time series x̂1:T will contain short-term patterns for further

processing. Projection from the long-term trend is generated by simple linear extrapola-

69

Inter-Series Attention Model for COVID-19 Forecasting Chapter 5

tion,

x̄i
t+h = ait + hbit. (5.2)

A more sophisticated detrending process might further boost performance; we leave it

for future study. The detrending process is applied to all the time series and the residual

time series are fed into the following attention module.

5.4.2 Attention Module

As COVID-19 is a new disease, we do not have its historical data in the past sea-

sons. Hence, it is critical to leverage limited data from the same season, but across

different regions, i.e. model the correlations between regions that have been undergoing

the pandemic. Without detailed information about spatial dynamics such as population

movement, we instead employ attention mechanism to measure the relation of one region

to other regions by directly comparing the incidence curves after trend filtering. Since

there are many stages in a dynamical epidemiological process, it is necessary to learn a

representation for each time period in a region for alignment in attention. In light of

this idea, we apply a convolution layer to encode the residual time series segment x̂t−l+1:t

to a vector, based on which attention scores measuring similarity between regions are

computed.

Segment Embedding

Even after detrending, the scales of reported numbers in residual time series are still

quite different across regions. It is important to normalize residuals before embedding.

We empirically find it better to apply min-max normalization to the cumulative sum

of incidence time series, which can be regarded as a kind of smoothing. Specifically,

for a rolling window of size l representing a period of time, i.e. x̂i
t−l+1:t, t ∈ [l, T], we

70

Inter-Series Attention Model for COVID-19 Forecasting Chapter 5

compute its cumulative sums and apply the min-max normalization to the monotonically

increasing series,

cij =

j∑
k=t−l+1

x̂i
k; c̃ij =

cij − cit−l+1

cit − cit−l+1

, (5.3)

for j ∈ [t − l + 1, t]. As a result, the first and last values of the normalized series will

consistently be 0 and 1 respectively.

We then instantiate the function ϕ(·) using a convolution layer with d feature maps to

the scaled segment and time-dependent features. The kernel size is empirically selected,

and when it is smaller than l, average pooling is applied in order to reduce a sequence to

a vectorized embedding,

pi
t = AvgPool

(
Conv

([
c̃it−l+1:t; r

i
t−l+1:t

]))
∈ Rd. (5.4)

These segment embeddings are used to model similarity in different temporal periods

across different regions.

Likewise, we employ another convolution-pooling layer as ψ(·) to encode the following

incidences over H days after each segment into so-called development embedding,

gi
t = AvgPool

(
Conv

(
c̃it+1:t+H

))
∈ Rd. (5.5)

They represent the succeeding development after encoded segments and will be the ref-

erences for the prediction of the given target region. In fact, we can pair the segments

and references by aligning the time indices, i.e. {pi
t, g

i
t} for t ∈ [l, T −H].

Inter-series Attention

Given the embeddings, we use dot-product attention to compare segments and com-

bine the values. Specifically, we linearly map the segment embeddings to query vectors

qi
t and key vectors kt

i, from which the similarity score is computed. The development

71

Inter-Series Attention Model for COVID-19 Forecasting Chapter 5

embeddings are projected to value vectors vi
t. On the other hand, the additional time-

independent features ui are also incorprated into queries and keys.

qi
t = WQp

i
t + Wu,qu

i;

ki
t = WKp

i
t + Wu,ku

i;

vi
t = WV g

i
t;

(5.6)

For a target region i0, we take qi0
T for the last segment and compute its similarity with

all the keys from other time segments across all the regions, which is then used to obtain

a weighted sum of values.

v̂i0
T =

∑
i,t∈Ω

exp
(
⟨qi0

T ,k
i
t⟩
)∑

i,t∈Ω exp
(
⟨qi0

T ,k
i
t

)vi
t, (5.7)

where Ω = [1, N]× [l, T −H]. In this way, the past observations in both the target region

and reference regions are fully utilized. The weighted combination of values v̂i0
T is then

linearly projected to an estimate of c̃i0T+1:T+H . We apply the inverse transformation of

equation (5.3) to get an estimate of x̂i0
T+1:T+H , denoted by ŷi0

T+1:H .

In the end, the estimate from attention module is added to the extrapolations in the

detrending module to produce the final forecast yi0
T+1:T+H , where

yi0
t = x̄i0

t + ŷi0
t , t ∈ [T + 1, T +H].

5.4.3 Joint Training

The model can be trained by minimizing the joint loss with respect to the parameters

in all the modules. The joint loss is an aggregation of prediction error E(·, ·) computed in

two steps. First, for a single target region, we compare our forecasts and ground truths

for different T , i.e. lengths of history. Second, we take the aggregated loss in the first

step for every region. Formally, the joint loss is defined as

L =
N∑
i=1

L−H∑
T=l

E(yi
T+1:T+H ,x

i
T+1:T+H) (5.8)

72

Inter-Series Attention Model for COVID-19 Forecasting Chapter 5

where L is the total number of available historical reports, and l is the minimum required

history length. In our experiments, we choose Mean Absolute Error (MAE) to be the

error metric E(·, ·), i.e.

E(yi
T+1:T+H ,x

i
T+1:T+H) =

1

H

T+H∑
t=T+1

|yi
t − xi

t|

5.5 Experiments

In this section, we demonstrate the effectiveness of the proposed model on real

COVID-19 datasets. We intend to answer the following questions:

• Can ACTS outperform the popular COVID-19 forecasters referred at CDC and

other state-of-the-art deep learning models?

• How much does each component of ACTS contribute to the model performance?

• What kind of similarity can inter-series attention capture?

5.5.1 Experimental Settings

Dataset The COVID-19 incidence data is publicly available at JHU-CSSE2 and COVID

tracking project3. Additional features are also publicly available 4 5 6. The features we

used include total population, population density, ratios of age/gender/race, available

hospital beds, and traffic mobility, which are proven to bring marginal accuracy gain in

the hospitalization forecasting task in our experiments. The dataset covers the reports

up to September 27, 2020 from 50 states and DC in the US.

2github.com/CSSEGISandData/COVID-19
3covidtracking.com/
4github.com/descarteslabs/DL-COVID-19
5github.com/djsutherland/pummeler
6data.world/liz-friedman/hospital-capacity-data-from-hghi

73

github.com/CSSEGISandData/COVID-19
covidtracking.com/
github.com/descarteslabs/DL-COVID-19
github.com/djsutherland/pummeler
data.world/liz-friedman/hospital-capacity-data-from-hghi

Inter-Series Attention Model for COVID-19 Forecasting Chapter 5

Evaluation Protocol As required by CDC, we predict the incidence data over the

next 4 weeks at a given date and compare the forecasts with the reported ground truths.

Suppose we are predicting the new confirmed cases in the state of California starting

from 08/16. As context, we are provided a daily time series consisting of incidences

in all the states till 08/15. There are three forecasting tasks: daily forecasts for new

hospitalizations, weekly forecasts for new confirmed cases and deaths.

The forecasting performance is evaluated in terms of Weighted Absolute Percentage

Error (WAPE), defined by the ratio of Mean Absolute Error (MAE) and mean value of

ground truths.

At each prediction date, we keep the data in the last 7 days for validation, and the

remaining historical data for training. We use the validation data to tune the hyperpa-

rameters and to avoid overfitting by early stopping. Other implementation details can

be found in Appendix too.

Baselines We compare the performance of the epidemic models featured at CDC,

including

• YYG [51]: An SEIR model with learnable parameters that attracts a lot of atten-

tion from media;

• CU [96]: A metapopulation SEIR model developed by researchers in Columbia

University;

• UCLA [151]: An SuEIR model using machine learning developed by Statistical

Machine Learning Lab at UCLA;

• ERDC7: An SEIR model that considers unreported infections and isolated popu-

7https://github.com/reichlab/covid19-forecast-hub/blob/master/data-processed/

USACE-ERDC_SEIR/metadata-USACE-ERDC_SEIR.txt

74

https://github.com/reichlab/covid19-forecast-hub/blob/master/data-processed/USACE-ERDC_SEIR/metadata-USACE-ERDC_SEIR.txt
https://github.com/reichlab/covid19-forecast-hub/blob/master/data-processed/USACE-ERDC_SEIR/metadata-USACE-ERDC_SEIR.txt

Inter-Series Attention Model for COVID-19 Forecasting Chapter 5

lation developed by US Army Engineer Research and Development Center;

• LANL [71]: A statistical dynamical growth model accounting for population sus-

ceptibility developed by Los Alamos National Laboratory;

• CovidSim8: Machine learning model based on generalized random forests.

The first four are compartmental models and the last two rely on statistical modelling.

Other than these conventional models, we also evaluate three deep learning models for

time series forecasting,

• DeepCOVID [105] An operational deep learning framework designed for real-time

COVID-19 forecasting developed by Georgia Tech;

• ConvTrans [76] A self-attention based Transformer model that also employs con-

volutions for pattern representations;

• TFT [80] A self-attention based deep learning model with feature selection.

We implement the ConvTrans and TFT and tune the hyperparameters using the vali-

dation data. All of our implementations run on a server with an Intel i7-6700K CPU

and a single GTX 1080Ti GPU. For other baselines, since their implementations are not

open-sourced, we take their forecasts submitted to the challenge hosted by CDC 9.

5.5.2 Performance Comparison

Table 5.2 shows the forecasting performance on 6 different dates. Three types of

incidence data, namely confirmed cases (C), hospitalizations (H) and deaths (D) are

separately predicted. We have three key observations: (1) In 13 out of 18 cases, ACTS

8https://www.covid19sim.org/documents/outbreak-methods
9https://github.com/reichlab/covid19-forecast-hub

75

https://www.covid19sim.org/documents/outbreak-methods
https://github.com/reichlab/covid19-forecast-hub

Inter-Series Attention Model for COVID-19 Forecasting Chapter 5

Method

YYG CU UCLA ERDC LANL Covid Deep Conv TFT ACTS
Sim COVID Trans

06/21
C - - - - 0.51 - - 1.09 0.51 0.39±0.01
H - 1.91 - - 1.08 0.95 0.63 1.22 0.80 0.80±0.02
D 0.52 1.48 0.56 - 0.58 1.46 0.66 1.09 0.67 0.45±0.01

07/05
C - - - - 0.37 - - 0.37 0.39 0.33±0.01
H - 0.98 1.23 0.66 0.95 - 0.65 1.08 0.84 0.61±0.04
D 0.45 0.65 0.53 0.38 0.52 - 0.85 0.60 0.51 0.60±0.01

07/19
C - - - - 0.27 - - 0.50 0.44 0.31±0.01
H - 0.67 1.24 0.77 0.78 1.71 0.70 0.99 0.66 0.60±0.03
D 0.30 0.43 0.39 1.10 0.48 0.33 0.4506 0.54 0.67 0.28±0.01

08/02
C - - - - 0.30 - - 0.24 0.24 0.16±0.04
H - 0.67 0.95 0.71 0.68 1.66 0.79 0.93 0.92 0.66±0.09
D 0.24 0.37 0.27 0.57 0.44 0.26 0.29 0.45 0.38 0.21±0.01

08/16
C - 0.67 0.35 0.28 0.29 0.23 - 0.33 0.55 0.20±0.03
H - 0.64 0.99 0.60 0.65 1.38 0.98 0.96 0.92 0.57±0.02
D 0.19 0.42 0.25 0.53 0.34 0.27 0.28 0.44 0.31 0.23±0.01

08/30
C - 0.43 0.31 0.34 0.33 0.23 - 0.36 0.29 0.23±0.03
H - 0.66 0.91 0.68 0.69 1.31 0.83 0.93 0.82 0.58±0.03
D 0.20 0.41 0.23 0.56 0.34 0.25 0.36 0.42 0.40 0.25±0.02

Table 5.2: Forecasting performances across different time periods for different types of
incidence data in terms of WAPE. A smaller value indicates better performance. We
also include the variance of our model’s performance by running 5 times with different
random initalizations. “-” means the forecasting results of the corresponding baseline
are not available.

outperforms other algorithms by a considerable margin. On average, it improves 9%,

5% and 4% over the best of these algorithms for C, H and D, respectively. (2) ACTS

is more favorable on recent days when there are more abundant data available, showing

that data-driven methods benefit from more data. (3) The two deep learning approaches

ConvTrans and TFT do not exhibit strong performance. The main difference between

ours and these approaches is the employment of attention across multiple time series,

which dramatically boosts the performance. Note that our model can be trained in less

than 5 minutes and inference takes only seconds.

76

Inter-Series Attention Model for COVID-19 Forecasting Chapter 5

Figure 5.3: Empirical effects of each component of ACTS on forecasting error.

5.5.3 Ablation Study

For deeper understanding of our model, we disable each component of ACTS to

examine its contribution:

• ACTS-d We remove the detrending module and obtain an attention-only fore-

caster;

• ACTS-n We remove the normalization in segment embedding;

• ACTS-i We restrict the attention to the target time series only. The model de-

generates to an auto-regressive model similar to ConvTrans and TFT;

• ACTS-f We remove the additional features in the model and only rely on incidence

data.

The hyperparameters of all variants are kept the same. We compare their performance

against ACTS using training data up to August 30, 2020. Figure 5.3 depicts the results,

based on which we have the following observations:

77

Inter-Series Attention Model for COVID-19 Forecasting Chapter 5

• Overall every component of ACTS has positive effects on forecasting accuracy,

except that the introduction of additional features has mixed effect. We suspect

that either better modelling could help or their effect has been absorbed by the

incidence time series;

• Among all the components, inter-series attention has the most significant impact

on the performance, which proves that our design of attention crossing multiple

time series is valid. It can capture cross-region similarity in COVID-19 forecasting;

• The detrending module makes some contribution. We believe it has the potential

for further improvement, e.g. employing advanced trend filtering or even epidemic

models.

5.5.4 Cross-region Similarity

A key feature of ACTS is that it can capture similarity between regions via attention

from data. According to equation (5.7), the reference set Ω is common for any target

regions i0, and the learned attention distribution is determined by qi0
T . Hence, we directly

take those d-dim queries for every region and apply K-means clustering to group them.

In this experiment, we use the death forecasting model as an example, where T is August

30, 2020, and K = 4 is selected based on the Elbow method [85].

A colored map is shown in Figure 5.4 based on obtained clusters. We can see that

California, Texas and Florida, the three states recently hit most seriously are grouped

together. Furthermore, states like Arizona, Illinois, North Carolina and Georgia are

recognized since they also suffer severe crisis. Interestingly, the states of Wyoming and

Vermont are distinguished by our model, in which few deaths are observed for a long

period. Overall, our method is able to identify similarities between regions to a certain

degree.

78

Inter-Series Attention Model for COVID-19 Forecasting Chapter 5

Figure 5.4: Groups of the US states learned by inter-series attention on death tolls by
August 30, 2020.

5.6 Conclusion

We present ACTS for COVID-19 forecasting, a purely data-driven framework for

an urgent forecasting problem concerning the entire world. It extends the popular deep

learning technique, namely attention mechanism, to learning inter-series similarity for

time series forecasting. Above that, we also introduce a detrending component to model

long-term trends that are difficult for attention model to capture. Both modules are

learned jointly based solely on COVID-19 incidence data and a handful of simple features.

Without any domain knowledge, our model can empirically outperform many strong

forecasters featured by CDC.

79

Chapter 6

Domain Adaptation for Time Series

Forecasting via Attention Sharing

6.1 Introduction

While deep forecasting models excel at capturing complex temporal dynamics from a

sufficiently large time series dataset, it is often challenging in practice to collect enough

data. A common solution to the data scarcity problem is to introduce another dataset

with abundant data samples from a so-called source domain related to the dataset of

interest, referred to as the target domain. For example, traffic data from an area with an

abundant number of sensors (source domain) can be used to train a model to forecast the

traffic flow in an area with insufficient monitoring recordings (target domain). However,

deep neural networks trained on one domain can be poor at generalizing to another

domain due to the issue of domain shift, that is, the distributional discrepancy between

domains [126].

Domain adaptation (DA) methods attempt to mitigate the harmful effect of domain

shift by aligning features extracted across source and target domains [44, 14, 57, 10]. Ex-

80

Domain Adaptation for Time Series Forecasting via Attention Sharing Chapter 6

isting approaches mainly focus on classification tasks, where a classifier learns a mapping

from a learned domain-invariant latent space to a fixed label space using source data.

Consequently, the classifier depends only on common features across domains, and can

be applied to the target domain [130].

There are two main challenges in directly applying existing DA methods to time series

forecasting. First, due to the temporal nature of time series, evolving patterns within

time series are not likely to be captured by a representation of the entire history. Future

predictions may depend on local patterns within different time periods, and a sequence

of local representations can be more appropriate than using the entire history as done

with most conventional approaches. Second, the output space in forecasting tasks is not

fixed across domains in general since a forecaster generates a time series following the

input, which is domain-dependent, e.g. kW in electrical source data vs. unit count

in stock target data. Both domain-invariant and domain-specific features need to be

extracted and incorporated in forecasting to model domain-dependent properties so that

the data distribution of the respective domain is properly approximated. Hence, we need

to carefully design the type of features to be shared or non-shared over different domains,

and to choose a suitable architecture for our time-series forecasting model.

We propose to resolve the two challenges using an attention-based model [122] equipped

with domain adaptation. First, for evolving patterns, attention models can make dynamic

forecasts based on a combination of values weighted by time-dependent query-key align-

ments. Second, as the alignments in an attention module are independent of specific

patterns, the queries and keys can be induced to be domain-invariant while the values

can stay domain-specific for the model to make domain-dependent forecasts. Figure 6.1

presents an illustrative example of a comparison between a conventional attention-based

forecaster (AttF) and its counterpart combined with our domain adaptation strategy

(DAF) on synthetic datasets with sinusoidal signals. While AttF is trained using lim-

81

Domain Adaptation for Time Series Forecasting via Attention Sharing Chapter 6

Figure 6.1: Forecasts of single-domain attention-based forecaster (AttF) and our
cross-domain forecaster (DAF). Sample forecasts from steps 72-84 on traffic data
where our DAF uses household electricity data as source data (top left). Bar plot
of the weights on the context history of the attention distributions of AttF and DAF
associated with forecasting step 84 (bottom left). Attention keys (top right) and val-
ues (bottom right) of AttF and DAF after dimension reduction to 2D. The keys and
values of AttF in the source domain are generated by simply applying AttF model
trained on target data to the source data. The strategy of aligning keys rather than
values between source and target domains in our DAF captures the correct attention
weights, as illustrated by the accurate forecasts compared to AttF (cf. red dots vs.
blue dots from steps 72-84).

ited target data, DAF is jointly trained on both domains. By aligning the keys across

domains as the top rightmost panel shows, the context matching learned in the source

domain helps DAF generate more reasonable attention weights that focus on the same

phases in previous periods of target data than the uniform weights generated by AttF in

the bottom left panel. The bottom right panels illustrate that the single-domain AttF

produces the same values for both domains as the input is highly overlapped, while DAF

is able to generate distinct values for each domain. As a result, the top left panel shows

that DAF produces more accurate domain-specific forecasts than AttF does.

6.2 Related Work

Deep neural networks have been introduced to time series forecasting with consider-

able successes [39, 13, 89, 129, 128, 108, 101]. In particular, attention-based transformer-

like models [122] have achieved state-of-the-art performance [76, 80, 135, 149]. A down-

82

Domain Adaptation for Time Series Forecasting via Attention Sharing Chapter 6

side to these sophisticated models is their reliance on a large dataset with homogeneous

time series to train. Once trained, the deep learning models may not generalize well to

a new domain of exogenous data due to domain shift issues [127, 98, 126].

To solve the domain shift issue, domain adaptation has been proposed to transfer

knowledge captured from a source domain with sufficient data to the target domain with

unlabeled or insufficiently labeled data for various tasks [86, 130, 100]. In particular,

sequence modeling tasks in natural language processing mainly adopt a paradigm where

large transformers are successively pre-trained on a general domain and fine-tuned on

the task domain [33, 54, 53, 103]. It is not immediate to directly apply these methods

to forecasting scenarios due to several challenges. First, it is difficult to find a common

source dataset in time series forecasting to pre-train a large forecasting model. Second, it

is expensive to pre-train a different model for each target domain. Third, the predicted

values are not subject to a fixed vocabulary, heavily relying on extrapolation. Lastly,

there are many domain-specific confounding factors that cannot be encoded by a pre-

trained model.

An alternative approach to pre-training and fine-tuning for domain adaptation is to

extract domain-invariant representations from raw data [12, 27]. Then a recognition

model that learns to predict labels using the source data can be applied to the target

data. In their seminal works, [43, 44] propose DANN to obtain domain invariance by

confusing a domain discriminator that is trained to distinguish representations from

different domains. A series of works follow this adversarial training paradigm [121, 148,

2, 133], and outperform conventional metric-based approaches [82, 24, 52] in various

applications of domain adaptation. However, these works do not consider the task of

time series forecasting, and address the challenges in the introduction accordingly.

In light of successes in related fields, domain adaptation techniques have been intro-

duced to time series tasks [98, 131]. [20] aim to solve domain shift issues in classification

83

Domain Adaptation for Time Series Forecasting via Attention Sharing Chapter 6

and regression tasks by minimizing the discrepancy of the associative structure of time

series variables between domains. A limitation of this metric-based approach is that it

cannot handle the multi-horizon forecasting task since the label is associated with the

input rather than being pre-defined. [60] propose DATSING to adopt adversarial train-

ing to fine-tune a pre-trained forecasting model by augmenting the target dataset with

selected source data based on pre-defined metrics. This approach lacks the efficiency

of end-to-end solutions due to its two-stage nature. In addition, it does not consider

domain-specific features to make domain-dependent forecasts. Lastly, [48, 14, 111] make

use of domain-invariant and domain-specific representations in adaptation. However,

since these methods do not accommodate the sequential nature of time series, they can-

not be directly applied to forecasting.

6.3 Domain Adaptation in Forecasting

Adversarial Domain Adaptation in Forecasting Suppose a set of N time series,

and each consists of observations zi,t ∈ R at time t. Given T past observations and all

future input covariates, we wish to make τ multi-horizon future predictions at time T

via model F :

zi,T+1, . . . , zi,T+τ = F (zi,1, . . . , zi,T). (6.1)

We focus on the scenario where little data is available for the problem of interest while

sufficient data from other sources is provided. For example, one or both of the number

of time series N and the length T is limited. We denote the dataset D = {(Xi,Yi)}Ni=1

with past observations Xi = [zi,t]
T
t=1 and future ground truths Yi = [zi,t]

T+τ
t=T+1 for the

i-th time series. We also omit the index i when the context is clear. To find a suitable

forecasting model F in equation (6.1) on a data-scarce time series dataset, we cast the

problem in terms of a domain adaptation problem, given that another “relevant” dataset

84

Domain Adaptation for Time Series Forecasting via Attention Sharing Chapter 6

is accessible. In the domain adaption setting, we have two types of data: source data

DS with abundant samples and target data DT with limited samples. Our goal is to

produce an accurate forecast on the target domain T , where little data is available, by

leveraging the data in the source domain S. Since our goal is to provide a forecast in

the target domain, in the remainder of the text, we use T and τ to denote the target

historical length and target prediction length, respectively, and also use the subscript S

for the corresponding quantities in the source data DS , and likewise for T .

To compute the desired target prediction Ŷi = [ẑi,t]
T+τ
t=T+1, i = 1, . . . , N , we optimize

the training error on both domains jointly and in an adversarial manner in the following

minimax problem:

min
GS ,GT

max
D

Lseq(DS ;GS) + Lseq(DT ;GT) − λLdom (DS ,DT ;D,GS , GT) , (6.2)

where the parameter λ ≥ 0 balances between the estimation error Lseq and the domain

classification error Ldom. Here, GS , GT denote sequence generators that estimate se-

quences in each domain, respectively, and D denotes a discriminator that classifies the

domain between source and target.

We first define the estimation error Lseq induced by a sequence generator G as follows:

Lseq(D;G) =
N∑
i=1

(
1

T

T∑
t=1

l(zi,t, ẑi,t) +
1

τ

T+τ∑
t=T+1

l(zi,t, ẑi,t)

)
, (6.3)

where l is a loss function and estimation ẑi,t is the output of a generator G, and each

term in equation (6.3) represents the error of input reconstruction and future prediction,

respectively. Next, let H = {hi,t}N,T+τ
i=1,t=1 be a set of some latent feature hi,t induced by

generator G. Then, the domain classification error Ldom in equation (6.2) denotes the

cross-entropy loss in the latent spaces as follows:

Ldom(DS ,DT ;D,GS , GT) = − 1

|HS |
∑

hi,t∈HS

logD(hi,t) −
1

|HT |
∑

hi,t∈HT

log [1 −D(hi,t)] ,

(6.4)

85

Domain Adaptation for Time Series Forecasting via Attention Sharing Chapter 6

`

Time

Encoder Attention Decoder Reconstruction

Forecast

Source-only

Target-only

Shared

Domain
Discriminator

Domain Prediction

`Decoder Attention Encoder

Figure 6.2: An architectural overview of DAF. The grey modules belong to the source
domain, and red modules belong to target domain. The attention modules and domain
discriminators shown in beige are shared by both domains. The model takes the
historical portion of a time series as input, and produces a reconstruction of input and
a forecast of the future time steps. The domain discriminator is a binary classifier,
and predicts the origin of an intermediate representation within the attention module,
either the source or the target.

where HS and HT are latent feature sets associated with the source DS and target DT ,

and |H| denotes the cardinality of a set H. The minimax objective equation (6.2) is

optimized via adversarial training alternately. In the following subsections, we propose

specific design choices for GS , GT and the latent features HS ,HT in our DAF model.

6.4 The Domain Adaptation Forecaster (DAF)

We propose a novel strategy based on attention mechanism to perform domain adap-

tation in forecasting. The proposed solution, the Domain Adaptation Forecaster (DAF),

employs a sequence generator to process time series from each domain. Each sequence

generator consists of an encoder, an attention module and a decoder. As each domain

provides data with distinct patterns from different spaces, we keep the encoders and de-

coders privately owned by the respective domain. The core attention module is shared

by both domains for adaptation. In addition to computing future predictions, the gen-

erator also reconstructs the input to further guarantee the effectiveness of the learned

representations. Figure 6.2 illustrates an overview of the proposed architecture.

86

Domain Adaptation for Time Series Forecasting via Attention Sharing Chapter 6

6.4.1 Sequence Generators

In this subsection, we discuss our design of the sequence generators GS , GT in equa-

tion (6.2). Since the generators for both domains have the same architecture, we omit

the domain index of all quantities and denote either generator by G in the following

paragraphs by default. The generator G in each domain processes an input time series

X = [zt]
T
t=1 and generates the reconstructed sequence X̂ and the predicted future Ŷ.

Private Encoders The private encoder transforms the raw input X into the pattern

embedding P = [pt]
T
t=1 and value embedding V = [vt]

T
t=1. For the value embedding, we

apply a position-wise MLP with parameter θv to encode input X = [zt]
T
t=1

vt = MLP(zt;θv).

For the pattern embedding P, we apply M independent temporal convolutions with

various kernel sizes in order to extract short-term patterns at different scales. Specifically,

for j = 1, . . . ,M , each convolution with parameter θp takes the input X to give a sequence

of local representations,

pj = Conv
(
X;θj

p

)
.

We concatenate each pj
t to build a multi-scale pattern embedding pt = [pj

t]
M
j=1 and

P = [pt]
T
t=1 with parameters θp = [θj

p]
M
j=1 accordingly. To avoid dimension issues from

the concatenation, we keep the dimension of P and V the same. The extracted pattern

P and value V are fed into the shared attention module.

Shared Attention Module We design the attention module to be shared by both

domains since its primary task is to generate domain-invariant queries Q and keys K

from pattern embeddings P for both source and target domains. Formally, we project P

87

Domain Adaptation for Time Series Forecasting via Attention Sharing Chapter 6

Shared Attention
Reconstruction

ForecastMLP

Figure 6.3: In DAF, the shared attention module processes pattern and value em-
beddings from either domain. A kernel function encodes pattern embeddings to a
shared latent space for weight computation. We combine value embeddings by differ-
ent groups of weights to obtain the interpolation t ≤ T for reconstruction X̂ and the
extrapolation t = T + 1 for the forecast Ŷ.

into d-dimensional queries Q = [qt]
T
t=1 and keys K = [kt]

T
t=1 via a position-wise MLP

(qt,kt) = MLP(pt;θs).

As a result, the patterns from both domains are projected into a common space, which

is later induced to be domain-invariant via adversarial training. At time t, an attention

score α is computed as the normalized alignment between the query qt and keys kt′ at

neighborhood positions t′ ∈ N (t) using a positive semi-definite kernel K(·, ·),

α(qt,kt′) =
K(qt,kt′)∑

t′∈N (t) K(qt,kt′)
, (6.5)

e.g. an exponential scaled dot-product K(q,k) = exp
(

qTk√
d

)
. Then, a representation

ot is produced as the average of values vµ(t′) weighted by attention score α(qt,kt′) on

neighborhood N (t), followed by a MLP with parameter θo:

ot = MLP

 ∑
t′∈N (t)

α(qt,kt′)vµ(t′);θo

 , (6.6)

where µ : N → N is a position translation. The choice of N (t) and µ(t) depends on

whether G is in interpolation mode for reconstruction when t ≤ T or extrapolation mode

for forecasting when t > T .

Private Decoders The private decoder produces prediction ẑt out of ot through an-

other position-wise MLP: ẑt = MLP(ot;θd). By doing so, we can generate reconstructions

88

Domain Adaptation for Time Series Forecasting via Attention Sharing Chapter 6

X̂ = [ẑt]
T
t=1 and the one-step prediction ẑT+1 . This prediction ẑT+1 is fed back into the

encoder and attention model to predict the next one-step ahead prediction. We recur-

sively feed the prior predictions to generate the predictions Ŷ = [ẑt]
T+τ
t=T+1 over τ time

steps.

6.4.2 Domain Discriminator

In order to induce the queries and keys of the attention module to be domain-invariant,

a domain discriminator is introduced to classify the origin of a given query or key. We

employ a position-wise MLP D : Rd → [0, 1]:

D(qt) = MLP(qt;θD), D(kt) = MLP(kt;θD).

The discriminator D performs binary classifications on whether qt and kt originate from

the source or target domain by minimizing the cross entropy loss of Ldom in equation (6.4).

We design the latent features HS ,HT in equation (6.4) to be the keys K = [kt]
T+τ
t=1 and

queries Q = [qt]
T+τ
t=1 in both source and target domains, respectively.

6.4.3 Adversarial Training

Recall we have defined generators GS , GT based on the private encoder/decoder and

the shared attention module. The discriminator D induces the invariance of latent fea-

tures keys K and queries Q across domains. While D tries to classify the domain between

source and target, GS , GT are trained to confuse D. By choosing the MSE loss for l,

the minimax objective in equation (6.2) is now formally defined over generators GS , GT

with parameters ΘG = {θS
p ,θ

S
v ,θ

S
d ,θ

T
p ,θ

T
v ,θ

T
d ,θs,θo} and domain discriminator D with

parameter θD. Algorithm 1 summarizes the training routine of DAF. We alternately

update ΘG and θD in opposite directions so that G = {GS , GT } and D are trained

89

Domain Adaptation for Time Series Forecasting via Attention Sharing Chapter 6

Algorithm 1 Adversarial Training of DAF

1: Input: dataset DS , DT ; epochs E, step sizes

2: Initialization: parameter ΘG for generator GS , GT , parameter θD for discriminator

D

3: for epoch = 1 to E do

4: repeat

5: sample XS ,YS ∼ DS and XT ,YT ∼ DT

6: generate X̂S , ŶS = GS(XS) and X̂T , ŶT = GT (XT)

7: compute Lseq in equation (6.3) for S and T , Ldom in equation (6.4) , and total

L in equation (6.2)

8: gradient descent with ∇ΘG
L to update GS , GT

9: gradient ascent with ∇θDL to update D

10: until DT is exhausted

11: end for

adversarially. Here, we use a standard pre-processing for X,Y and post-processing for

X̂, Ŷ.

6.5 Experiments

6.5.1 Baselines and Evaluation

In the experiments, we compare DAF with the following single-domain and cross-

domain baselines. The conventional single-domain forecasters trained only on the target

domain include:

• DAR: DeepAR [39];

• VT: Vanilla Transformer [122];

90

Domain Adaptation for Time Series Forecasting via Attention Sharing Chapter 6

• AttF: the sequence generator GT for the target domain trained by minimizing

Lseq(DT ;GT) in equation (6.2).

The cross-domain forecasters trained on both source and target domain include:

• DATSING: pretrained and finetuned forecaster [60];

• RDA: RNN-based DA forecaster obtained by replacing the attention module in

DAF with a LSTM module and inducing the domain-invariance of LSTM encodings.

Specifically, we consider three variants:

– RDA-DANN: adversarial DA via gradient reversing [44];

– RDA-ADDA: adversarial DA via GAN-like optimization [121];

– RDA-MMD: metric based DA via minimizing MMD between LSTM encodings

[74].

We implement the models using PyTorch [93], and train them on AWS Sagemaker [79].

For DAR, we call the publicly available version on Sagemaker. The hyperparameter of

DAF and the baselines are tuned on a held-out validation set.

We evaluate the forecasting error in terms of the Normalized Deviation (ND) [144]:

ND =

(
N∑
i=1

T+τ∑
t=T+1

|zi,t − ẑi,t|

)
/

(
N∑
i=1

T+τ∑
t=T+1

|zi,t|

)
,

where Yi = [zi,t]
T+τ
t=T+1 and Ŷi = [ẑi,t]

T+τ
t=T+1 denote the ground truths and predictions,

respectively.

6.5.2 Real-World Datasets

We perform experiments on four real benchmark datasets that are widely used in

forecasting literature: elec and traf from the UCI data repository [35], sales [64] and

91

Domain Adaptation for Time Series Forecasting via Attention Sharing Chapter 6

DT traf elec wiki sales
DS elec wiki traf sales sales traf wiki elec
τ 24 7

DAR 0.205 0.141 0.055 0.305
VT 0.187 0.144 0.061 0.293

AttF 0.182 0.137 0.050 0.308
DATSING 0.184 0.189 0.137 0.149 0.049 0.052 0.301 0.305

RDA-DANN 0.181 0.180 0.133 0.135 0.047 0.053 0.297 0.287
RDA-ADDA 0.174 0.181 0.134 0.142 0.045 0.049 0.281 0.287
RDA-MMD 0.186 0.179 0.140 0.144 0.045 0.052 0.291 0.289

DAF 0.169 0.176 0.125 0.123 0.042 0.049 0.277 0.280

Table 6.1: Performance comparison of DAF on real-world benchmark datasets with
prediction length τ in the target domain in terms of the mean +/- standard deviation
ND metric. The winners and the competitive followers (the gap is smaller than its
standard deviation over 5 runs) are bolded for reference.

wiki [69] from Kaggle. Notably, the elec and traf datasets present clear daily and weekly

patterns while sales and wiki are less regular and more challenging. We use the following

time features ξt ∈ R2 as covariates: the day of the week and hour of the day for the

hourly datasets elec and traf, and the day of the month and day of the week for the daily

datasets sales and wiki.

To evaluate the performance of DAF, we consider cross-dataset adaptation, i.e., trans-

ferring between a pair of datasets. Since the original datasets are large enough to train

a reasonably good forecaster, we only take a subset of each dataset as a target domain

to simulate the data-scarce situation. Specifically, we take the last 30 days of each time

series in the hourly dataset elec and traf, and the last 60 days from daily dataset sales

and wiki. We partition the target datasets equally into training/validation/test splits,

i.e. 10/10/10 days for hourly datasets and 20/20/20 days for daily datasets. The full

datasets are used as source domains in adaptation. We follow the rolling window strategy

from [39], and split each window into historical and prediction time series of lengths T

and T + τ , respectively. In our experiments, we set T = 168, τ = 24 for hourly datasets,

92

Domain Adaptation for Time Series Forecasting via Attention Sharing Chapter 6

and T = 28, τ = 7 for the daily datasets. For DA methods, the splitting of the source

data follows analogously.

Table 6.1 shows that DAF outperforms all the baselines. The real-world experiments

also demonstrate that in general the success of DAF is agnostic of the source domain,

and is even effective when transferring from a source domain of different frequency than

that of the target domain. In addition, the cross-domain forecasters, DATSING, the

RDA variants and our DAF outperform the three single-domain baselines in most cases.

As in the synthetic cases, DATSING performs relatively worse than RDA and DAF. The

accuracy differences between DAF and RDA are larger than in the synthetic case, and

in favor of DAF. This finding further demonstrates that our choice of an attention-based

architecture is well-suited for real domain adaptation problems.

6.5.3 Ablation Studies

In order to examine the effectiveness of our designs, we conduct ablation studies by

adjusting each key component successively. We consider the following DAF variants:

• no-adv: no domain discriminator or adversarial training;

• no-q-share: no sharing of queries across domains;

• no-k-share: no sharing of keys across domains;

• v-share: shares values across domains.

Table 6.2 shows the improved performance of DAF over its variants on the target

domain on four adaptation tasks. Equipped with a domain discriminator, DAF improves

its effectiveness of adaptation compared to its non-adversarial variant (no-adv). We see

that sharing both keys and queries in DAF results in performance gains over not sharing

either (no-k-share and no-q-share). Furthermore, it is clear that our design choice of the

93

Domain Adaptation for Time Series Forecasting via Attention Sharing Chapter 6

DT DS τ no-adv no-q-share no-k-share v-share DAF
traf elec 24 0.172 0.171 0.172 0.176 0.168
elec traf 24 0.121 0.122 0.120 0.127 0.119
wiki sales 7 0.042 0.042 0.044 0.049 0.041
sales wiki 7 0.294 0.283 0.282 0.291 0.280

Table 6.2: Results of ablation studies of DAF variants on four adaptation tasks on
real-world datasets.

values to be domain-specific for domain-dependent forecasts rather than shared (v-share)

has the largest positive impact on the performance.

6.6 Conclusions

In this work, we aim to apply domain adaptation to time series forecasting to solve

the data scarcity problem. We identify the differences between the forecasting task and

common domain adaptation scenarios, and accordingly propose the Domain Adapta-

tion Forecaster (DAF) based on attention sharing. Through empirical experiments, we

demonstrate that DAF outperforms state-of-the-art single-domain forecasters and vari-

ous domain adaptation baselines on synthetic and real-world datasets. We further show

the effectiveness of our designs via extensive ablation studies. In spite of empirical evi-

dences, the theoretical justification of having domain-invariant features within attention

models remains an open problem.

94

Chapter 7

Conclusion

In this dissertation, we studied time series forecasting under modern setting with the ex-

plosion of data. Essentially, we identify the basic procedure of modern forecasting services

and three key challenges that practical forecasting services need to cope with. Besides

scalable models that are able to process large amount of time series data efficiently,

we also demonstrate the urgent demand of taking advantage of inter-series correlations

and adapting trained models to brand new domains. Accordingly, we propose solutions

to address these challenges and provide preliminary evidences of their effectiveness and

applicability.

The ultimate goal of forecasting research is to build a system with capability to

make accurate short- or long-term forecasts, scalability to process correlated and high-

dimension time series data and flexibility to be customized and adapted to the consider-

able variety of real scenarios. With such a system, users only need to provide structured

time series data and set a few key parameters of forecasting tasks, and leave complex or

tedious details to the system. In addition, it is supposed to transfer learned knowledge

from related tasks to the current task when provided data is insufficient. Nevertheless,

forecasting in general remains an open problem, and much research efforts are being

95

Conclusion Chapter 7

devoted in several direction.

Long-term forecasting Longer-term forecasts are required in certain scenarios. It

is not only difficult as temporal dependencies become even more complex in long-range

time series, but also expensive as time and space complexity grows along with the length

of data. It is an active topic to search architectures with higher efficiency in encoding

long sequences, especially those able to capture diverse patterns in multiple resolutions.

Interpretable forecasting Although current neural forecasting models are able to

improve predictive accuracy by a significant margin, it is not easy to interpret the pre-

dictions, and hence not easy to analyze the underlying factors or failure cases in produced

forecasts. A popular solution in this regard is to incorporate time series decomposition

into neural nets by learning individual components before they are combined.

Few-shot forecasting While time series data is abundant, data of certain domains or

entities may be insufficient for neural nets to learn. Besides domain adaptation techniques

that have been introduced to alleviate the data scarcity issue, other few-shot learning and

meta-learning methods can be tailored to increase versatility of models by transferring

learned knowledge across related tasks.

96

Bibliography

[1] Ryan Prescott Adams and David JC MacKay. Bayesian online changepoint detec-
tion. arXiv preprint arXiv:0710.3742, 2007.

[2] Firoj Alam, Shafiq Joty, and Muhammad Imran. Domain Adaptation with Adver-
sarial Training and Graph Embeddings. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pages
1077–1087, Melbourne, Australia, 2018. Association for Computational Linguistics.

[3] Nick Altieri, Rebecca L Barter, James Duncan, Raaz Dwivedi, Karl Kumbier,
Xiao Li, Robert Netzorg, Briton Park, Chandan Singh, Yan Shuo Tan, and others.
Curating a COVID-19 data repository and forecasting county-level death counts in
the United States. arXiv preprint arXiv:2005.07882, 2020.

[4] Sercan O Arık, Chun-Liang Li, Jinsung Yoon, Rajarishi Sinha, Arkady Epshteyn,
Yash Sonthalia, Hootan Nakhost, Elli Kanal, and Tomas Pfister. Interpretable
Sequence Learning for COVID-19 Forecasting. volume 33, page 12, 2020.

[5] Dheeraj Baby and Yu-Xiang Wang. Online Forecasting of Total-Variation-bounded
Sequences. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d\textquotesingle
Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems 32, pages 11071–11081. Curran Associates, Inc., 2019.

[6] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-
lation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473,
2014.

[7] Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. An Empirical Evalua-
tion of Generic Convolutional and Recurrent Networks for Sequence Modeling.
arXiv:1803.01271 [cs], March 2018. arXiv: 1803.01271.

[8] Duygu Balcan, Vittoria Colizza, Bruno Gonçalves, Hao Hu, José J Ramasco,
and Alessandro Vespignani. Multiscale mobility networks and the spatial spread-
ing of infectious diseases. Proceedings of the National Academy of Sciences,
106(51):21484–21489, 2009. Publisher: National Acad Sciences.

97

[9] Duygu Balcan, Bruno Gonçalves, Hao Hu, José J Ramasco, Vittoria Colizza, and
Alessandro Vespignani. Modeling the spatial spread of infectious diseases: The
GLobal Epidemic and Mobility computational model. Journal of computational
science, 1(3):132–145, 2010. Publisher: Elsevier.

[10] Sergey Bartunov and Dmitry P Vetrov. Few-shot Generative Modelling with Gen-
erative Matching Networks. International Conference on Artificial Intelligence and
Statistics, pages 670–678, 2018.

[11] Michèle Basseville and Igor V. Nikiforov. Detection of abrupt changes: theory and
application, volume 104. prentice Hall Englewood Cliffs, 1993.

[12] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira,
and Jennifer Wortman Vaughan. A theory of learning from different domains.
Machine Learning, 79(1-2):151–175, May 2010.

[13] Anastasia Borovykh, Sander Bohte, and Cornelis W Oosterlee. Conditional
time series forecasting with convolutional neural networks. arXiv preprint
arXiv:1703.04691, 2017.

[14] Konstantinos Bousmalis, George Trigeorgis, Nathan Silberman, Dilip Krishnan,
and Dumitru Erhan. Domain Separation Networks. volume 29, pages 345–351,
2016.

[15] Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew M. Dai, Rafal Joze-
fowicz, and Samy Bengio. Generating Sentences from a Continuous Space.
arXiv:1511.06349 [cs], May 2016. arXiv: 1511.06349.

[16] George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. Time
series analysis: forecasting and control. John Wiley & Sons, 2015.

[17] E. Brodsky and Boris S. Darkhovsky. Nonparametric methods in change point
problems, volume 243. Springer Science & Business Media, 2013.

[18] Logan C Brooks, David C Farrow, Sangwon Hyun, Ryan J Tibshirani, and Roni
Rosenfeld. Flexible modeling of epidemics with an empirical Bayes framework.
PLoS Comput Biol, 11(8):e1004382, 2015. Publisher: Public Library of Science.

[19] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, and others. Language models are few-shot learners. Advances in neural
information processing systems, 33:1877–1901, 2020.

[20] Ruichu Cai, Jiawei Chen, Zijian Li, Wei Chen, Keli Zhang, Junjian Ye, Zhuozhang
Li, Xiaoyan Yang, and Zhenjie Zhang. Time Series Domain Adaptation via Sparse
Associative Structure Alignment. Proceedings of the AAAI Conference on Artificial
Intelligence, 35:6859–6867, 2021.

98

[21] Prithwish Chakraborty, Pejman Khadivi, Bryan Lewis, Aravindan Mahendiran,
Jiangzhuo Chen, Patrick Butler, Elaine O Nsoesie, Sumiko R Mekaru, John S
Brownstein, Madhav V Marathe, and others. Forecasting a moving target: En-
semble models for ILI case count predictions. In Proceedings of the 2014 SIAM
international conference on data mining, pages 262–270. SIAM, 2014.

[22] Wei-Cheng Chang, Chun-Liang Li, Yiming Yang, and Barnabás Póczos. Kernel
Change-Point Detection with Auxilliary Deep Generative Models. page 14, 2019.

[23] Zhengping Che, Sanjay Purushotham, Guangyu Li, Bo Jiang, and Yan Liu. Hier-
archical deep generative models for multi-rate multivariate time series. In Interna-
tional Conference on Machine Learning, pages 784–793. PMLR, 2018.

[24] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, and Jia-Bin
Huang. A Closer Look at Few-shot Classification. arXiv:1904.04232 [cs], January
2020. arXiv: 1904.04232.

[25] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representa-
tions using RNN encoder-decoder for statistical machine translation. arXiv preprint
arXiv:1406.1078, 2014.

[26] Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron Courville,
and Yoshua Bengio. A Recurrent Latent Variable Model for Sequential Data.
arXiv:1506.02216 [cs], June 2015. arXiv: 1506.02216.

[27] Corinna Cortes and Mehryar Mohri. Domain Adaptation in Regression. In Jyrki
Kivinen, Csaba Szepesvári, Esko Ukkonen, and Thomas Zeugmann, editors, Algo-
rithmic Learning Theory, volume 6925, pages 308–323. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2011. Series Title: Lecture Notes in Computer Science.

[28] Nicolas Courty, Rémi Flamary, Amaury Habrard, and Alain Rakotomamonjy. Joint
distribution optimal transportation for domain adaptation. In Proceedings of the
31st International Conference on Neural Information Processing Systems, pages
3733–3742, 2017.

[29] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V. Le, and Rus-
lan Salakhutdinov. Transformer-XL: Attentive Language Models Beyond a Fixed-
Length Context. arXiv:1901.02860 [cs, stat], January 2019. arXiv: 1901.02860.

[30] Andreas C Damianou, Michalis K Titsias, and Neil D Lawrence. Variational Gaus-
sian process dynamical systems. Adavances in Neural Information Processing Sys-
tems, pages 2510–2518, 2011.

99

[31] Sakyasingha Dasgupta and Takayuki Osogami. Nonlinear dynamic Boltzmann ma-
chines for time-series prediction. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, volume 31, 2017. Issue: 1.

[32] Songgaojun Deng, Shusen Wang, Huzefa Rangwala, Lijing Wang, and Yue Ning.
Graph message passing with cross-location attentions for long-term ILI prediction.
arXiv preprint arXiv:1912.10202, 2019.

[33] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 4171–4186, 2019. arXiv: 1810.04805.

[34] Gianfranco Doretto, Alessandro Chiuso, Ying Nian Wu, and Stefano Soatto. Dy-
namic textures. International Journal of Computer Vision, 51(2):91–109, 2003.
Publisher: Springer.

[35] Dheeru Dua and Casey Graff. UCI Machine Learning Repository. University of
California, Irvine, School of Information and Computer Sciences, 2017.

[36] James Durbin and Siem Jan Koopman. Time series analysis by state space methods,
volume 38. OUP Oxford, 2012.

[37] Zahra Ebrahimzadeh and Samantha Kleinberg. Multi-scale change point detection
in multivariate time series. In NIPS Time Series Workshop, 2017.

[38] Chenyou Fan, Heng Huang, Yuze Zhang, Yi Pan, Xiaoyue Li, Chi Zhang, Rong
Yuan, Di Wu, Wensheng Wang, and Jian Pei. Multi-Horizon Time Series Forecast-
ing with Temporal Attention Learning. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining - KDD ’19, pages
2527–2535, Anchorage, AK, USA, 2019. ACM Press.

[39] Valentin Flunkert, David Salinas, and Jan Gasthaus. DeepAR: Probabilistic Fore-
casting with Autoregressive Recurrent Networks. International Journal of Fore-
casting, 36:1181–1191, 2020. arXiv: 1704.04110.

[40] Ian Fox, Lynn Ang, Mamta Jaiswal, Rodica Pop-Busui, and Jenna Wiens. Deep
Multi-Output Forecasting: Learning to Accurately Predict Blood Glucose Tra-
jectories. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining - KDD ’18, pages 1387–1395, London, United
Kingdom, 2018. ACM Press.

[41] Marco Fraccaro, Søren Kaae Sønderby, Ulrich Paquet, and Ole Winther. Sequential
Neural Models with Stochastic Layers. arXiv:1605.07571 [cs, stat], May 2016.
arXiv: 1605.07571.

100

[42] Katerina Fragkiadaki, Sergey Levine, and Jitendra Malik. Recurrent network mod-
els for kinematic tracking. CoRR, abs/1508.00271, 1(2):4, 2015.

[43] Yaroslav Ganin and Victor Lempitsky. Unsupervised Domain Adaptation by Back-
propagation. International conference on machine learning, pages 1180–1189, 2015.

[44] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo
Larochelle, François Laviolette, Mario Marchand, and Victor Lempitsky. Domain-
Adversarial Training of Neural Networks. The journal of machine learning research,
17:2096–2030, 2016.

[45] Junyi Gao, Rakshith Sharma, Cheng Qian, Lucas M Glass, Jeffrey Spaeder,
Justin Romberg, Jimeng Sun, and Cao Xiao. STAN: Spatio-Temporal Atten-
tion Network for Pandemic Prediction Using Real World Evidence. arXiv preprint
arXiv:2008.04215, 2020.

[46] Marta Garnelo, Dan Rosenbaum, Chris J. Maddison, Tiago Ramalho, David Sax-
ton, Murray Shanahan, Yee Whye Teh, Danilo J. Rezende, and S. M. Ali Es-
lami. Conditional Neural Processes. arXiv:1807.01613 [cs, stat], July 2018. arXiv:
1807.01613.

[47] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin.
Convolutional sequence to sequence learning. In International Conference on Ma-
chine Learning, pages 1243–1252. PMLR, 2017.

[48] Muhammad Ghifary, W. Bastiaan Kleijn, Mengjie Zhang, David Balduzzi, and
Wen Li. Deep Reconstruction-Classification Networks for Unsupervised Domain
Adaptation. In European conference on computer vision, pages 597–613, 2016.

[49] Luke B. Godfrey and Michael S. Gashler. Neural Decomposition of Time-Series
Data for Effective Generalization. IEEE Transactions on Neural Networks and
Learning Systems, pages 1–13, 2017. arXiv: 1705.09137.

[50] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.
Advances in neural information processing systems, 27, 2014.

[51] Youyang Gu. COVID-19 projections using machine learning.

[52] Han Guo, Ramakanth Pasunuru, and Mohit Bansal. Multi-Source Domain Adap-
tation for Text Classification via DistanceNet-Bandits. Proceedings of the AAAI
Conference on Artificial Intelligence, 34(05):7830–7838, April 2020.

[53] Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy,
Doug Downey, and Noah A. Smith. Don’t Stop Pretraining: Adapt Language
Models to Domains and Tasks. In Proceedings of the 58th Annual Meeting of the

101

Association for Computational Linguistics, pages 8342–8360, Online, 2020. Associ-
ation for Computational Linguistics.

[54] Xiaochuang Han and Jacob Eisenstein. Unsupervised Domain Adaptation of Con-
textualized Embeddings for Sequence Labeling. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages
4237–4247, Hong Kong, China, 2019. Association for Computational Linguistics.

[55] Tiberiu Harko, Francisco SN Lobo, and MK Mak. Exact analytical solutions of the
Susceptible-Infected-Recovered (SIR) epidemic model and of the SIR model with
equal death and birth rates. Applied Mathematics and Computation, 236:184–194,
2014. Publisher: Elsevier.

[56] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural com-
putation, 9(8):1735–1780, 1997.

[57] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko,
Alexei A Efros, and Trevor Darrell. CyCADA: Cycle-Consistent Adversarial Do-
main Adaptation. International conference on machine learning, pages 1989–1998,
2018.

[58] Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. Stochastic
variational inference. Journal of Machine Learning Research, 2013.

[59] Charles C Holt. Forecasting seasonals and trends by exponentially weighted moving
averages. International journal of forecasting, 20(1):5–10, 2004. Publisher: Elsevier.

[60] Hailin Hu, MingJian Tang, and Chengcheng Bai. DATSING: Data Augmented
Time Series Forecasting with Adversarial Domain Adaptation. In Proceedings of
the 29th ACM International Conference on Information & Knowledge Management,
pages 2061–2064, Virtual Event Ireland, October 2020. ACM.

[61] Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer, Ian Si-
mon, Curtis Hawthorne, Andrew M. Dai, Matthew D. Hoffman, Monica Dinculescu,
and Douglas Eck. Music Transformer. 2018.

[62] Chiou-Jye Huang, Yamin Shen, Ping-Huan Kuo, and Yung-Hsiang Chen. Novel
Spatiotemporal Feature Extraction Parallel Deep Neural Network for Forecasting
Confirmed Cases of Coronavirus Disease 2019. medRxiv, 2020. Publisher: Cold
Spring Harbor Laboratory Press.

[63] Robin John Hyndman and George Athanasopoulos. Forecasting: Principles and
Practice. 2013.

102

[64] Pratyusha Kar. Dataset of Kaggle Competition Rossmann Store Sales, version 2,
January 2019.

[65] Urvashi Khandelwal, He He, Peng Qi, and Dan Jurafsky. Sharp Nearby, Fuzzy
Far Away: How Neural Language Models Use Context. In Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 284–294, 2018.

[66] Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes.
arXiv:1312.6114 [cs, stat], December 2013. arXiv: 1312.6114.

[67] R. Koenker and K. F. Hallock. Quantile Regression. Journal of Economic Perspec-
tives, 15(4):143–156, 2001.

[68] Rahul G. Krishnan, Uri Shalit, and David Sontag. Deep Kalman Filters.
arXiv:1511.05121 [cs, stat], November 2015. arXiv: 1511.05121.

[69] Lai. Dataset of Kaggle Competition Web Traffic Time Series Forecasting, Version
3, August 2017.

[70] Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling Long-
and Short-Term Temporal Patterns with Deep Neural Networks. arXiv:1703.07015
[cs], April 2018. arXiv: 1703.07015.

[71] LANL COVID-19. COVID-19 Confirmed and Forecasted Case Data, 2020.

[72] Yann LeCun and Yoshua Bengio. Convolutional networks for images, speech, and
time series. The handbook of brain theory and neural networks, 3361(10):1995, 1995.

[73] Justin Lessler and Derek AT Cummings. Mechanistic models of infectious disease
and their impact on public health. American journal of epidemiology, 183(5):415–
422, 2016. Publisher: Oxford University Press.

[74] Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, and Barnabás Póczos.
MMD GAN: towards deeper understanding of moment matching network. In Pro-
ceedings of the 31st International Conference on Neural Information Processing
Systems, pages 2200–2210, 2017.

[75] Rui Li, Tai-Peng Tian, and Stan Sclaroff. Simultaneous learning of nonlinear man-
ifold and dynamical models for high-dimensional time series. In 2007 IEEE 11th
International Conference on Computer Vision, pages 1–8. IEEE, 2007.

[76] Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang,
and Xifeng Yan. Enhancing the Locality and Breaking the Memory Bottleneck of
Transformer on Time Series Forecasting. Advances in Neural Information Process-
ing Systems, pages 5243–5253, 2019.

103

[77] Shuang Li, Yao Xie, Hanjun Dai, and Le Song. M-statistic for kernel change-point
detection. Advances in Neural Information Processing Systems, 28, 2015.

[78] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion Convolutional Recur-
rent Neural Network: Data-Driven Traffic Forecasting. In International Conference
on Learning Representations, 2018.

[79] Edo Liberty, Zohar Karnin, Bing Xiang, Laurence Rouesnel, Baris Coskun, Ramesh
Nallapati, Julio Delgado, Amir Sadoughi, Yury Astashonok, Piali Das, Can Bali-
oglu, Saswata Chakravarty, Madhav Jha, Philip Gautier, David Arpin, Tim
Januschowski, Valentin Flunkert, Yuyang Wang, Jan Gasthaus, Lorenzo Stella,
Syama Rangapuram, David Salinas, Sebastian Schelter, and Alex Smola. Elastic
Machine Learning Algorithms in Amazon SageMaker. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data, pages 731–737,
Portland OR USA, June 2020. ACM.

[80] Bryan Lim, Sercan O. Arik, Nicolas Loeff, and Tomas Pfister. Temporal
Fusion Transformers for Interpretable Multi-horizon Time Series Forecasting.
arXiv:1912.09363 [cs, stat], December 2019. arXiv: 1912.09363.

[81] Peter J Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz
Kaiser, and Noam Shazeer. Generating Wikipedia by Summarizing Long Sequences.
In International Conference on Learning Representations, 2018.

[82] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I. Jordan. Learning Trans-
ferable Features with Deep Adaptation Networks. pages 97–105, 2015. arXiv:
1502.02791.

[83] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches
to attention-based neural machine translation. arXiv preprint arXiv:1508.04025,
2015.

[84] Edson Zangiacomi Martinez, Elisângela Aparecida Soares da Silva, and Amaury
Lelis Dal Fabbro. A SARIMA forecasting model to predict the number of cases of
dengue in Campinas, State of São Paulo, Brazil. Revista da Sociedade Brasileira
de Medicina Tropical, 44(4):436–440, 2011. Publisher: SciELO Brasil.

[85] Dhendra Marutho, Sunarna Hendra Handaka, Ekaprana Wijaya, and others. The
determination of cluster number at k-mean using elbow method and purity evalua-
tion on headline news. In 2018 International Seminar on Application for Technology
of Information and Communication, pages 533–538. IEEE, 2018.

[86] Saeid Motiian, Quinn Jones, Seyed Mehdi Iranmanesh, and Gianfranco Doretto.
Few-Shot Adversarial Domain Adaptation. Advances in Neural Information Pro-
cessing Systems, pages 6670–6680, 2017. arXiv: 1711.02536.

104

[87] CJ Murray and others. Forecasting the impact of the first wave of the COVID-19
pandemic on hospital demand and deaths for the USA and European Economic
Area countries. 2020.

[88] Aaron van den Oord, Yazhe Li, Igor Babuschkin, Karen Simonyan, Oriol Vinyals,
Koray Kavukcuoglu, George van den Driessche, Edward Lockhart, Luis C. Cobo,
Florian Stimberg, Norman Casagrande, Dominik Grewe, Seb Noury, Sander Diele-
man, Erich Elsen, Nal Kalchbrenner, Heiga Zen, Alex Graves, Helen King, Tom
Walters, Dan Belov, and Demis Hassabis. Parallel WaveNet: Fast High-Fidelity
Speech Synthesis. arXiv:1711.10433 [cs], November 2017. arXiv: 1711.10433.

[89] Boris N Oreshkin, Nicolas Chapados, Dmitri Carpov, and Yoshua Bengio. N-
BEATS: Neural basis expansion analysis for interpretable time series forecasting.
International Conference on Learning Representations, page 31, 2020.

[90] Ankur Parikh, Oscar Täckström, Dipanjan Das, and Jakob Uszkoreit. A Decompos-
able Attention Model for Natural Language Inference. In Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing, pages 2249–
2255, 2016.

[91] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer,
Alexander Ku, and Dustin Tran. Image Transformer. arXiv:1802.05751 [cs], June
2018. arXiv: 1802.05751.

[92] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training
recurrent neural networks. In International conference on machine learning, pages
1310–1318. PMLR, 2013.

[93] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. PyTorch: An Imperative Style, High-Performance Deep Learning Li-
brary. Advances in neural information processing systems, pages 8026–8037, 2019.

[94] Vladimir Pavlovic, James M Rehg, Tat-Jen Cham, and Kevin P Murphy. A dy-
namic Bayesian network approach to figure tracking using learned dynamic models.
In Proceedings of the seventh IEEE international conference on computer vision,
volume 1, pages 94–101. IEEE, 1999.

[95] Vladimir Pavlovic, James M Rehg, and John MacCormick. Learning switching
linear models of human motion. In NIPS, volume 2, page 4, 2000. Issue: 3.

[96] Sen Pei and Jeffrey Shaman. Initial Simulation of SARS-CoV2 Spread and Inter-
vention Effects in the Continental US. medRxiv, 2020. Publisher: Cold Spring
Harbor Laboratory Press.

105

[97] Daniel Povey, Hossein Hadian, Pegah Ghahremani, Ke Li, and Sanjeev Khudanpur.
A time-restricted self-attention layer for ASR. In 2018 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), pages 5874–5878.
IEEE, 2018.

[98] Sanjay Purushotham, Wilka Carvalho, Tanachat Nilanon, and Yan Liu. Variational
Recurrent Adversarial Deep Domain Adaptation. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings. OpenReview.net, 2017.

[99] Ankit Ramchandani, Chao Fan, and Ali Mostafavi. DeepCOVIDNet: An Inter-
pretable Deep Learning Model for Predictive Surveillance of COVID-19 Using Het-
erogeneous Features and Their Interactions. IEEE Access, 2020. Publisher: IEEE.

[100] Alan Ramponi and Barbara Plank. Neural Unsupervised Domain Adaptation in
NLP—A Survey. arXiv:2006.00632 [cs], May 2020. arXiv: 2006.00632.

[101] Syama Sundar Rangapuram, Matthias Seeger, Jan Gasthaus, Lorenzo Stella,
Yuyang Wang, and Tim Januschowski. Deep State Space Models for Time Series
Forecasting. In Advances in neural information processing systems, pages 7785–
7794, 2018.

[102] Evan L Ray, Krzysztof Sakrejda, Stephen A Lauer, Michael A Johansson, and
Nicholas G Reich. Infectious disease prediction with kernel conditional density
estimation. Statistics in medicine, 36(30):4908–4929, 2017. Publisher: Wiley Online
Library.

[103] Alexander Rietzler, Sebastian Stabinger, Paul Opitz, and Stefan Engl. Adapt or
Get Left Behind: Domain Adaptation through BERT Language Model Finetun-
ing for Aspect-Target Sentiment Classification. Proceedings of The 12th Language
Resources and Evaluation Conference, pages 4933–4941, 2020.

[104] Cleveland Robert, C William, and Terpenning Irma. STL: A seasonal-trend de-
composition procedure based on loess. Journal of official statistics, 6(1):3–73, 1990.

[105] Alexander Rodriguez, Anika Tabassum, Jiaming Cui, Jiajia Xie, Javen Ho, Pulak
Agarwal, Bijaya Adhikari, and B Aditya Prakash. DeepCOVID: An Operational
Deep Learning-driven Framework for Explainable Real-time COVID-19 Forecast-
ing. medRxiv, 2020. Publisher: Cold Spring Harbor Laboratory Press.

[106] Yunus Saatçi, Ryan Turner, and Carl Edward Rasmussen. Gaussian process change
point models. In Proceedings of the 27th International Conference on International
Conference on Machine Learning, pages 927–934, 2010.

106

[107] Matthias W Seeger, David Salinas, and Valentin Flunkert. Bayesian intermittent
demand forecasting for large inventories. In Advances in Neural Information Pro-
cessing Systems, pages 4646–4654, 2016.

[108] Rajat Sen, Hsiang-Fu Yu, and Inderjit Dhillon. Think Globally, Act Locally: A
Deep Neural Network Approach to High-Dimensional Time Series Forecasting. Ad-
vances in Neural Information Processing Systems, 32, 2019.

[109] Yuanjie Shao, Lerenhan Li, Wenqi Ren, Changxin Gao, and Nong Sang. Domain
Adaptation for Image Dehazing. In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2805–2814, Seattle, WA, USA,
June 2020. IEEE.

[110] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-Attention with Relative
Position Representations. In Proceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 2 (Short Papers), pages 464–468, 2018.

[111] Ge Shi, Chong Feng, Lifu Huang, Boliang Zhang, Heng Ji, Lejian Liao, and Heyan
Huang. Genre Separation Network with Adversarial Training for Cross-genre Re-
lation Extraction. In Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing, pages 1018–1023, Brussels, Belgium, 2018. Associa-
tion for Computational Linguistics.

[112] Slawek Smyl. A hybrid method of exponential smoothing and recurrent neural
networks for time series forecasting. International Journal of Forecasting, 36(1):75–
85, 2020. Publisher: Elsevier.

[113] Huan Song, Deepta Rajan, Jayaraman J Thiagarajan, and Andreas Spanias. At-
tend and diagnose: Clinical time series analysis using attention models. In Thirty-
Second AAAI Conference on Artificial Intelligence, 2018.

[114] Baochen Sun, Jiashi Feng, and Kate Saenko. Return of frustratingly easy domain
adaptation. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 30, 2016. Issue: 1.

[115] Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain
adaptation. In European conference on computer vision, pages 443–450. Springer,
2016.

[116] Graham W Taylor, Geoffrey E Hinton, and Sam T Roweis. Modeling human motion
using binary latent variables. In Advances in neural information processing systems,
pages 1345–1352, 2007.

[117] Sean J Taylor and Benjamin Letham. Forecasting at scale. The American Statis-
tician, 72(1):37–45, 2018. Publisher: Taylor & Francis.

107

[118] Ting Tian, Yukang Jiang, Yuting Zhang, Zhongfei Li, Xueqin Wang, and Heping
Zhang. COVID-Net: A deep learning based and interpretable predication model
for the county-wise trajectories of COVID-19 in the United States. medRxiv, 2020.
Publisher: Cold Spring Harbor Laboratory Press.

[119] Yuan Tian, Ishika Luthra, and Xi Zhang. Forecasting COVID-19 cases using Ma-
chine Learning models. medRxiv, 2020. Publisher: Cold Spring Harbor Laboratory
Press.

[120] Eric Tzeng, Judy Hoffman, Trevor Darrell, Kate Saenko, and UMass Lowell. Si-
multaneous Deep Transfer Across Domains and Tasks. Proceedings of the IEEE
International Conference on Computer Vision, pages 4068–4076, 2015.

[121] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial Discrim-
inative Domain Adaptation. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2962–2971, Honolulu, HI, July 2017. IEEE.

[122] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need.
In Advances in neural information processing systems, pages 5998–6008, 2017.

[123] Jack M Wang, David J Fleet, and Aaron Hertzmann. Gaussian process dynamical
models. In NIPS, volume 18, page 3. Citeseer, 2005.

[124] Jingyuan Wang, Ze Wang, Jianfeng Li, and Junjie Wu. Multilevel wavelet decom-
position network for interpretable time series analysis. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pages 2437–2446, 2018.

[125] Lijing Wang, Jiangzhuo Chen, and Madhav Marathe. DEFSI: Deep learning based
epidemic forecasting with synthetic information. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 33, pages 9607–9612, 2019.

[126] Rui Wang, Danielle Maddix, Christos Faloutsos, Yuyang Wang, and Rose Yu.
Bridging Physics-based and Data-driven modeling for Learning Dynamical Sys-
tems. In Learning for Dynamics and Control, pages 385–398, 2021.

[127] Wen Wang, Pieter HAJM Van Gelder, and JK Vrijling. Some issues about the
generalization of neural networks for time series prediction. In International Con-
ference on Artificial Neural Networks, pages 559–564. Springer, 2005.

[128] Yuyang Wang, Alex Smola, Danielle C Maddix, Jan Gasthaus, Dean Foster, and
Tim Januschowski. Deep Factors for Forecasting. In International conference on
machine learning, pages 6607–6617, 2019.

108

[129] Ruofeng Wen, Kari Torkkola, Balakrishnan Narayanaswamy, and Dhruv Madeka. A
Multi-Horizon Quantile Recurrent Forecaster. arXiv:1711.11053 [stat], November
2017. arXiv: 1711.11053.

[130] Garrett Wilson and Diane J. Cook. A Survey of Unsupervised Deep Domain Adap-
tation. arXiv:1812.02849 [cs, stat], February 2020. arXiv: 1812.02849.

[131] Garrett Wilson, Janardhan Rao Doppa, and Diane J. Cook. Multi-Source Deep
Domain Adaptation with Weak Supervision for Time-Series Sensor Data. In Pro-
ceedings of the 26th ACM SIGKDD International Conference on Knowledge Dis-
covery & Data Mining, pages 1768–1778, Virtual Event CA USA, August 2020.
ACM.

[132] Spencer Woody, Mauricio Garcia Tec, Maytal Dahan, Kelly Gaither, Michael Lach-
mann, Spencer Fox, Lauren Ancel Meyers, and James G Scott. Projections for first-
wave COVID-19 deaths across the US using social-distancing measures derived from
mobile phones. medRxiv, 2020. Publisher: Cold Spring Harbor Laboratory Press.

[133] Dustin Wright and Isabelle Augenstein. Transformer Based Multi-Source Domain
Adaptation. In Proceedings of the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 7963–7974, Online, 2020. Association
for Computational Linguistics.

[134] Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decom-
position Transformers with Auto-Correlation for Long-Term Series Forecasting.
Advances in Neural Information Processing Systems, 34, 2021.

[135] Sifan Wu, Xi Xiao, Qianggang Ding, Peilin Zhao, Ying Wei, and Junzhou Huang.
Adversarial Sparse Transformer for Time Series Forecasting. Advances in Neural
Information Processing Systems, 33:11, 2020.

[136] Yuexin Wu, Yiming Yang, Hiroshi Nishiura, and Masaya Saitoh. Deep learning for
epidemiological predictions. In The 41st International ACM SIGIR Conference on
Research & Development in Information Retrieval, pages 1085–1088, 2018.

[137] Kenji Yamanishi and Jun-ichi Takeuchi. A unifying framework for detecting outliers
and change points from non-stationary time series data. In Proceedings of the eighth
ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 676–681, 2002.

[138] Wan Yang, Alicia Karspeck, and Jeffrey Shaman. Comparison of filtering methods
for the modeling and retrospective forecasting of influenza epidemics. PLoS Comput
Biol, 10(4):e1003583, 2014. Publisher: Public Library of Science.

109

[139] Wan Yang, Jaimie Shaff, and Jeffrey Shaman. COVID-19 Transmission Dynamics
and Effectiveness of Public Health Interventions in New York City during the 2020
Spring Pandemic Wave. medRxiv, 2020. Publisher: Cold Spring Harbor Laboratory
Press.

[140] Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and William W. Cohen. Breaking
the Softmax Bottleneck: A High-Rank RNN Language Model. arXiv:1711.03953
[cs], November 2017. arXiv: 1711.03953.

[141] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov,
and Quoc V Le. Xlnet: Generalized autoregressive pretraining for language under-
standing. Advances in neural information processing systems, 32, 2019.

[142] Zhilin Yang, Thang Luong, Russ R Salakhutdinov, and Quoc V Le. Mixtape:
Breaking the softmax bottleneck efficiently. Advances in Neural Information Pro-
cessing Systems, 32, 2019.

[143] Zichao Yang, Zhiting Hu, Ruslan Salakhutdinov, and Taylor Berg-Kirkpatrick. Im-
proved Variational Autoencoders for Text Modeling using Dilated Convolutions.
arXiv:1702.08139 [cs], February 2017. arXiv: 1702.08139.

[144] Hsiang-Fu Yu, Nikhil Rao, and Inderjit S Dhillon. Temporal Regularized Matrix
Factorization for High-dimensional Time Series Prediction. NIPS, pages 847–855,
2016.

[145] Rose Yu, Stephan Zheng, Anima Anandkumar, and Yisong Yue. Long-term Fore-
casting using Tensor-Train RNNs. page 10, 2017.

[146] Guoqiang Zhang, B Eddy Patuwo, and Michael Y Hu. Forecasting with artifi-
cial neural networks:: The state of the art. International journal of forecasting,
14(1):35–62, 1998. Publisher: Elsevier.

[147] Qian Zhang, Nicola Perra, Daniela Perrotta, Michele Tizzoni, Daniela Paolotti, and
Alessandro Vespignani. Forecasting seasonal influenza fusing digital indicators and
a mechanistic disease model. In Proceedings of the 26th international conference
on world wide web, pages 311–319, 2017.

[148] Han Zhao, Shanghang Zhang, Guanhang Wu, José M F Moura, Joao P Costeira,
and Geoffrey J Gordon. Adversarial Multiple Source Domain Adaptation. Advances
in neural information processing systems, pages 8559–8570, 2018.

[149] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong,
and Wancai Zhang. Informer: Beyond Efficient Transformer for Long Sequence
Time-Series Forecasting. In Proceedings of the AAAI Conference on Artificial In-
telligence, 2021. arXiv: 2012.07436.

110

[150] Christoph Zimmer and Reza Yaesoubi. Influenza Forecasting Framework based
on Gaussian Processes. In International Conference on Machine Learning, pages
11671–11679. PMLR, 2020.

[151] Difan Zou, Lingxiao Wang, Pan Xu, Jinghui Chen, Weitong Zhang, and Quanquan
Gu. Epidemic Model Guided Machine Learning for COVID-19 Forecasts in the
United States. medRxiv, 2020. Publisher: Cold Spring Harbor Laboratory Press.

111

	Curriculum Vitae
	Abstract
	Introduction
	Forecasting Services
	Forecasting Models
	Domain Adaptation
	Thesis Organization

	Multi-step Deep Autoregressive Forecasting with Latent States
	Introduction
	Related Works
	Methodology
	Experiments
	Conclusions

	Enhanced Attention-based Forecasting
	Introduction
	Related Work
	Methodology
	Breaking the memory bottleneck
	Experiments
	Conclusion

	Attention Guided Autoregression
	Introduction
	Related Work
	Problem setup
	Methodology
	Experiments
	Conclusion

	Inter-Series Attention Model for COVID-19 Forecasting
	Introduction
	Related Work
	Problem Statement
	Methodology
	Experiments
	Conclusion

	Domain Adaptation for Time Series Forecasting via Attention Sharing
	Introduction
	Related Work
	Domain Adaptation in Forecasting
	The Domain Adaptation Forecaster (DAF)
	Experiments
	Conclusions

	Conclusion
	Bibliography

