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Thesis Statement

An artificial intelligent assistant uses the natural language interface as its core component

to conduct natural language understanding and natural language generation grounded

on various knowledge forms. In this thesis, I aim to push forward in both directions, with

the ultimate goal of building the assistant that can perform understanding, reasoning,

and realization to converse like human beings.
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Abstract

Knowledge-Grounded Natural Language Processing

by

Zhiyu Chen

As the primary means of human communication, natural language bears the func-

tionality to bridge the abstract knowledge form and its realizations to all kinds of human

usages. In an artificial intelligence assistant, the natural language interface is grounded

on various knowledge sources and designated to perform conveyance, navigation, and

reasoning among those sources. Based on the mechanism to interact with the knowledge

groundings, the natural language processing tasks can be primarily categorized into 1)

natural language understanding (NLU): understanding the semantics of the natural lan-

guage from the user to perform navigation or reasoning among the knowledge sources,

and 2) natural language generation (NLG): generating natural language responses to the

user grounded on the knowledge sources. In this thesis, I will elaborate on my work on

both NLU and NLG divisions in order to extend the edge of current research toward

building an advanced, human-like AI assistant.

For the NLU division, first, current large pre-trained language models can achieve very

strong performances on many NLP tasks but still struggle with tasks requiring complex

reasoning abilities. In this thesis, I will discuss my work on complex numerical reasoning

over structured and unstructured knowledge. Second, current dialogue assistants follow a

fixed ontology to represent user preferences, which makes them essentially agent-centric

and lack the power to represent fine-grained, realistic user preferences. In this thesis, I

will discuss our first step to build the user-centric dialogue system by proposing a new

formulation for user preference representations.
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For the NLG division, first, current models can obtain strong performances with large-

scale training data, but this is not realistic for real-world applications. In this thesis, I

will discuss my work on few-shot natural language generation from tabular data. Second,

NLG models often suffer from factual correctness when generating descriptions with

logical inferences. This thesis proposes to study high-fidelity natural language generation

with logical inferences. At last, I will discuss my work for NLG in the important real

application domain of dialogue systems. Current research on dialogue systems typically

studies each type of dialogue individually. However, the ultimate goal of conversational

AI is to build a unified assistant capable of conversing with all kinds of dialogues and

switching among them seamlessly. Towards this goal, this thesis studies to enrich task-

oriented dialogue with knowledge-grounded chitchat.

In the above work, we define the novel tasks and propose new datasets, as well as

design approaches to tackle the new challenges. Finally, we will make the conclusion and

discuss the future plans and directions.
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Chapter 1

Introduction

1.1 Knowledge-Grounded Natural Language Process-

ing

As the primary means of human communication, natural language is the innate bearer

of the functionality to bridge the abstract knowledge form and its realizations to all kinds

of human usages. In our daily life, we understand the meaning of the utterances from

others and use our own knowledge to finish the task or respond. Meanwhile, we use

language to express knowledge from our cognition so as to be understood by others. In

artificial intelligence (AI) assistant, analogous to the way humans ground language on

knowledge, a natural language interface typically serves as the core component to be

grounded on various knowledge sources and designated to perform conveyance, naviga-

tion, and reasoning among those sources. Popular AI assistants include, for example, the

Amazon Alexa, the Apple Siri, as well as some specialized assistants in specific domains.

To build such assistants, based on the mechanism to interact with the knowledge

groundings, the natural language processing tasks can be primarily categorized into 1)

1



Introduction Chapter 1

What’s percentage increase of covid cases 
last week?

Around 10%. 

Can you recommend me some places to have 
ramen?

Sure, here are some options… 

I would like to see a Musical show. 
system

user

I would like to find an event around SD.

What type of event do you prefer?

Alejandro Sanz is at Cal Coast Credit Union 
Amphitheater on March 7th at 7:30 pm. He 
is known for flamenco-influenced ballads, 
but experiments with other genres too,  it's 
sure to be a good show!

system

user

user

system

Question answering

Recommendation

Dialogue Generation

Knowledge sources
 Natural Language 
Understanding

 Natural Language 
Generation

Figure 1.1: The natural language interface in AI assistants.

natural language understanding (NLU): understanding the semantic meaning of the nat-

ural language from the user to perform navigation or reasoning among the knowledge

sources, and 2) natural language generation (NLG): generating natural language re-

sponses to the user grounded on the knowledge sources. Figure 1.1 illustrates these

two branches of tasks.

In the next two sections, I will dive into these two divisions and summarize my own

work and contributions.

1.2 Natural Language Understanding

In natural language understanding (NLU) tasks, the system aims to understand the

semantic meaning of the user utterances and take the actions correspondingly. The major

building blocks for NLU in modern AI assistants correspond to two core tasks, Question

Answering (QA), where the system provides answers to user queries, and dialogue un-

2



Introduction Chapter 1

derstanding, where the system understands user intentions and makes responses or takes

actions in an interactive way.

Question Answering In QA research, there have been decades of efforts on studying

different types of questions, modalities, knowledge forms, and domains [1, 2, 3]. For

example, text-based reading comprehensions [4, 5], knowledge base question answer-

ing [6, 7], open-domain question answering [8, 9], numerical question answering [10, 11],

and question answering for specialized domains [12], etc. Based on the challenge types

and difficulty, these tasks can be divided into two categories: 1) QA with a focus on se-

mantic matching and understanding, where the models mostly need to learn the language

patterns and navigate to the knowledge evidence, and 2) QA with a focus on reasoning,

including logical, mathematical, or commonsense reasoning over the knowledge evidence,

that humans typically need to think slowly and deliberately to solve [13]. Recently, with

the surge of deep neural networks, followed by the era of large pre-trained language mod-

els (LM) [14, 15], researchers have achieved strong performance on the first type QA

tasks, for example, many pre-training based models have beaten the human performance

on the SQuAD dataset [16]. However, for the second type of tasks, language models still

struggle a lot even with billions of parameters [17]. Therefore, we anticipate that such

tasks requiring complex reasoning will become the next research focus.

In this dissertation, we focus on studying the QA task requiring complex numerical

reasoning, and we propose FinQA [18], a new large-scale dataset over financial reports

consisting of both tabular and textual knowledge forms. To answer FinQA questions,

the model needs to understand the question, the input financial report, and derive a

calculation program to get the answer. In this work, we further introduce new models

and conduct comprehensive experiments on our dataset, discussing limitations and future

directions.

Dialogue Understanding During the conversation with the users, the AI assistant

3



Introduction Chapter 1

needs to understand user intents and make corresponding actions and responses. The

task-oriented dialogue system is the current research focus in industrial applications,

where the goal is to complete certain user tasks such as ticket booking, restaurant rec-

ommendations, etc. Existing work formulates the dialogue understanding as the dialogue

state tracking task to learn the semantic meaning of the user utterances and map to a

set of pre-defined slot-value pairs [19, 20, 21, 22, 23, 24]. The pre-defined slot-value

ontology provides a consistent and easy way to do database queries to access the knowl-

edge. However, such formulation essentially makes the dialogue system agent-centric.

The agent-centric systems require the users to unnaturally adapt to and even have a

learning curve on the system ontology, which is largely unknown to the users (such as

the sample instructions for most smart speakers).

In this dissertation, we take the first step to build user-centric dialogue systems. We

propose a new dialogue state formulation to capture fine-grained user preferences. We

construct a new dataset, named NUANCED, and demonstrate the effectiveness of such

a formulation.

1.3 Natural Language Generation

Opposite to the NLU tasks, where the models aim to map natural language to meaning

representations, in NLG tasks, we target generating natural language from the meaning

representations. The NLG module takes charge of realizing the knowledge-groundings

and system actions into responses to the users in the AI assistants. Common usages

include generating reports from structured data, such as game records, weather records,

and response generation in dialogue systems.

NLG from Structured Data Natural language generation from structured data or

knowledge (NLG) has been studied for many years. Early traditional NLG systems follow

4
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the pipeline paradigm that explicitly divides generation into content selection, planning,

and surface realization [25]. Recently, with the success of deep neural networks, data-

driven, neural-based approaches have been used [26, 27, 28] and achieved remarkable

performance on a number of benchmarks.

In this dissertation, we investigate NLG from structured data in two directions. First,

current deep neural network models can achieve good performance only with sufficient

training data. This prohibits most models from being adapted to real-world applications.

To tackle this, we propose a new model for NLG in the few-shot scenario and obtain signif-

icant improvements. Second, current work on NLG mostly focuses on generating surface

descriptions. When encountered with higher-level logical inferences, the models suffer

from hallucinations. We investigate how to generate more complex, logically entailed

descriptions while preserving fidelity.

Dialogue Response Generation Response generation in dialogue systems is another

important application of NLG. There are two types of most commonly studied dialogue

systems, task-oriented dialogue (TOD) and knowledge-grounded chit-chat. In TOD sys-

tems, the response generation module takes the retrieved database results and actions,

typically in structured data form, as the input and generates the responses to the user.

In chit-chat dialogue, the systems take relevant world knowledge to generate chit-chat

grounded on such knowledge. TOD systems focus on the completion of the user tasks;

as a result, the generated system responses are concise and templated. And chit-chat

systems aim to generate natural and engaging conversations. Existing studies mostly fo-

cus on one specific type of dialogue, either task-oriented dialogue or knowledge-grounded

chit-chat. However, the ultimate goal of conversational AI assistants is a human-like,

unified system capable of conversing with the users naturally and seamlessly among all

kinds of dialogues.

In this dissertation, we propose to generate the TOD responses enriched with knowledge-

5
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grounded chit-chat so as to conduct more social, natural, and engaging conversations.

We propose a new dataset, design new models, and demonstrate the effectiveness of our

approach.

1.4 Summary

In this section, I briefly summarize my contributions during my Ph.D. studies. I have

been working on building the natural language interface of AI assistants in both NLU

and NLG divisions.

For natural language understanding (NLU), in [18], I studied how to answer complex

numerical reasoning questions over textual and tabular data. In [29], I propose a new

formulation for dialogue state tracking to better capture fine-grained user preferences.

For natural language generation (NLG), in [30], I studied NLG in few-shot scenario.

In [31], I studied high-fidelity generation with logical inferences. In [32], I propose to

enrich task-oriented dialogue with knowledge-grounded chit-chat.

6



Chapter 2

Question Answering with Numerical

Reasoning

2.1 Introduction

Financial analysis is a critical means of assessing business performance, and the con-

sequences of poor analysis can involve costs of billions of dollars [33, 34]. To facilitate

high quality, timely decision making, professionals — such as analysts or investors —

perform complex quantitative analysis to select information from financial reports. Such

analysis demands advanced expertise in reasoning among heterogeneous (structured and

unstructured) data sources and performing complex numerical reasoning, for example,

comparing financial ratios of profitability or growth. These challenges are compounded

by an exponentially expanding collection of company financial documents [35, 36] such

that it is genuinely unclear whether dedicated human effort can produce fiscal analysis

of sufficient quality for current decision making. This poses an interesting question: can

we automate such deep analysis of financial data?

A few NLP studies in Question Answering (QA) explored the numerical reasoning

7
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capabilities needed to answer questions correctly. For example, the DROP dataset [10]

focused on Wikipedia-based questions that require numerical reasoning, e.g., “Where

did Charles travel to first, Castile or Barcelona?” needs a comparison between the times

of two events. However, most prior work only targeted the general domain, where the

questions involve much less calculation (mostly one-step calculation) than that of the

financial domain. Financial QA is more challenging than classic QA [16, 37] because it

requires the system to spot relevant information across heterogeneous sources, such as

tables and unstructured texts, and then create a numerical reasoning path to connect

all the information. It also takes substantial knowledge to ask meaningful financial

questions. It is not clear how well the large language models, which performed well for

general-domain QA, can be adapted to answer realistic, complex financial questions.

This chapter introduces FinQA, a expert-annotated dataset that contains 8,281

financial QA pairs, along with their numerical reasoning processes. Eleven finance pro-

fessionals collectively constructed FinQA based on the earnings reports of S&P 500

companies [38]. The questions in FinQA, such as “Considering the weighted average

fair value of options, what was the change of shares vested from 2005 to 2006?” (Fig-

ure 2.1) and “What was the net change in tax positions in 2014?”, require information

from both tables and unstructured texts to answer. The reasoning processes answering

these questions are made of many common calculations in financial analysis, such as ad-

dition, comparison, and table aggregation. To the best of our knowledge, FinQA is the

first dataset of its kind to tackle complicated QA tasks based on the real-world financial

documents.

We propose a retriever-generator QA framework to first retrieve supporting facts from

financial reports, then to generate executable reasoning programs to answer the questions.

Equipped with pre-trained language models, such as BERT [39] and RoBERTa [40], our

proposed approach outperforms all other baselines and achieves an execution accuracy of

8
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65.05%. Although our system outperforms the non-expert crowd (50.68%), the significant

accuracy gap between the model and human experts (91.16%) motivates the need for

future research.

The main contribution of this work is three-fold:

• We propose the task of QA over financial data to assist financial analysis. The

task emphasizes an important phenomenon for the NLP community to study and

analyze how the current pre-trained models perform on complex and specialized

domains.

• We construct a new large-scale dataset, FinQA, with 8,281 examples written by

financial experts, with fully annotated numerical reasoning programs.

• We experiment on various baselines and find that the models are still far behind

expert performance, strongly motivating future research.

2006 2005 2004

Weighted average fair value of options granted $20.01 $9.48 $7.28

Expected volatility 0.3534 0.3224 0.3577

Distribution yield 1.00% 0.98% 1.30%

Expected life of options in years 6.3 6.3 6.3

Risk-free interest rate 5% 4% 4%

Page 91 from the annual reports of GRMN (Garmin Ltd.)
The fair value for these options was estimated at the date of grant using a 
Black-Scholes option pricing model with the following weighted-average assumptions 
for 2006, 2005 and 2004:

… The total fair value of shares vested during 2006, 2005, and 2004 was $9,413, 
$8,249, and $6,418 respectively. The aggregate intrinsic values of options 
outstanding and exercisable at December 30, 2006 were $204.1 million and $100.2 
million, respectively. ( … abbreviate 10 sentences ... )

Question: Considering the weighted average fair value of options , 
what was the change of shares vested from 2005 to 2006?
Answer: - 400
Calculations:

divide ( 9413, 20.01 ) divide ( 8249, 9.48 )

substract ( #0, #1 )

9413

20.01

8249

9.48
( ( )) - = - 400

Program:

Figure 2.1: An example from FinQA: The system needs to learn how to calculate the
number of shares, then select relevant numbers from both the table and the text to
generate the reasoning program to get the answer.

9
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2.2 Related Work

Questions Answering. There have been several QA datasets involving numerical un-

derstandings and calculations. The major source is from structured tables or knowl-

edge bases, owning the nature to succinctly organize numerical information. Popular

datasets include ComplexWebQuestions [41], WikiTableQuestions [42], Spider [43], Tab-

Fact [44], etc. For reading comprehension, the dataset most related to ours is the DROP

dataset [10], which applies simple calculations over texts. The top methods on DROP

typically use specific prediction heads for each kind of calculation. HybridQA [45] targets

QA over both the table and the text, but not with the focus of numerical reasoning. All

these existing datasets are built upon the general domain (mostly based on Wikipedia).

In contrast, our dataset focus on the finance domain, which demonstrates much more

complex nature in numerical reasoning questions, combining both the structured tables

and unstructured texts. Another kind of QA datasets related to ours is the math word

problem datasets, like MaWPS [46], MathQA [11]. The task is to generate the solution

programs given a short input math problem. Existing models include [47, 48, 49], etc.

Financial NLP. Financial NLP has become one of the major application domains

attracting growing attentions. Previous works in finance domain include risk management

to detect fraud [50, 51, 52], sentiment analysis to assist market prediction [53, 54, 55],

opinionated Question Answering [56], such as the FiQA1 dataset built from forums and

social media. Recent works attempt to develop pre-trained models specialized for finance

domain [57, 58], and the downstream tasks are mostly sentiment classifications. To the

best of our knowledge, there is no previous work and dataset on building QA systems of

numerical reasoning on financial reports.

1https://sites.google.com/view/fiqa/home
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2.3 Task Definition

Problem Formulation. Presented with a financial report consisting of textual con-

tents E and structured table T , given a question Q, the task is to generate the reasoning

program G = {w0, w1, ...wn}, where wi is the program tokens defined by domain specific

language (DSL), then it is executed to get the answer A:

P (A|T,E,Q) =
∑

P (Gi|T,E,Q) (2.1)

Where {Gi} is all the correct programs to evaluate to the answer. For financial tables,

there is typically a description header (blue header in Figure 2.1), which often gives the

timing information; and each row has its name on the left. Some of the financial tables

may demonstrate more complicated layouts, e.g., nested structures. As a first step for

this direction, in this chapter we only focus on the regular layout cases for simplicity.

Domain Specific Language. In this work, we use DSL consisting of mathematical

operations and table operations as executable programs. The program consists of a

sequence of operations:

op1[args1], op2[args2]..., opn[argsn] (2.2)

Each operation takes a list of arguments argsn. On consulting with financial experts,

as most of the accounting and financial valuation theory primarily include linear algebra,

we include 10 common types of operations in our dataset. There are 6 mathematical

operations: add, subtract, multiply, divide, greater, exp, and 4 table aggregation

operations table-max, table-min, table-sum, table-average, that apply aggregation

operations on table rows. The mathematical operations take arguments of either numbers
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from the given reports, or a numerical result from a previous step; The table operations

take arguments of table row names. We use the special token #n to denote the result

from the nth step. For example, in Figure 2.1, the program consists of 3 steps; The first

and the second division steps take arguments from the table and the text, respectively,

then the third step subtracts the results from the two previous steps. Refer to A for

more details of the operations and the grammars.

Evaluations. Previous studies on QA with numerical reasoning only evaluate the ex-

ecution accuracy, i.e., the final results from the generated programs, such as DROP [10]

and MathQA [11]. However, the applications for the finance domain generally pose much

higher requirements of explainability and transparency. Therefore, we also provide the

gold programs for our dataset. Besides execution accuracy, we also propose to evaluate

the accuracy of the generated programs. Specifically, we replace all the arguments in a

program with symbols, and then we evaluate if two symbolic programs aremathematically

equivalent. For example, the following two programs are equivalent programs:

add(a1, a2), add(a3, a4), subtract(#0,#1)

add(a4, a3), add(a1, a2), subtract(#1,#0)

Note that execution accuracy tends to overestimate the performance because sometimes

the model just hit the correct answer by chance; While program accuracy tends to produce

false negatives since some questions may have multiple correct programs.

12
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2.4 The FinQA Dataset

2.4.1 Data Preparation

Data Source. We develop FinQA based on the publicly available earnings reports

of S&P 500 companies from 1999 to 2019, collected in the FinTabNet dataset [38]. An

earnings report is a set of pages in a PDF file that outlines the financials of a company,

which usually contains tables and texts. The FinTabNet dataset has annotated the tables

in each report.

Data Filtering. Realistic earnings reports contain many tables not suitable for numer-

ical reasoning tasks. Equipped with the table annotations in FinTabNet, we filter the

data as follows: First, we extract the pages in earnings reports with at most one table.

Second, we exclude the tables with over 20 rows, over 2 description headers, or with

other complex nested structures. We also exclude the tables with tedious contents, such

as catalogs, which is common in FinTabNet. As stated in §2.3, these over-complicated

tables are out of the scope of this work. Finally, for the tables with 2 description headers,

we merge them into a single header to simplify the representations. As a result, a total

of 12,719 pages were selected for further annotation.

2.4.2 Annotation Procedure

Recruiting Expert Annotators. We post job ads on UpWork2 and hire eleven US-

based experts with professional finance backgrounds (CPAs, MBAs, etc.) Each hire is

interviewed using four example report pages and asked to compose example Q&A pairs.

After hiring, each annotator first goes through a training session to learn the task and

the annotation interface ( A). When the workers fully master the annotation process, we

2UpWork (www.upwork.com) is a platform where requesters can recruit skilled freelancers.
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launch the official batches for them to work on.

An annotator can compose up to two questions for each given report page or skip if

it is hard to compose any meaningful question. We pay around $2.0 for each question,

which leads to an average hourly wage of $35.0. The whole data collection took around

eight weeks.

We do not use popular micro-task platforms, such as Amazon Mechanical Turk

(MTurk), because our preliminary studies show that many MTurk workers can not

perform this task effectively. Our experiment with MTurk workers in § 2.4.3 further

echo this observation. As most existing QA datasets were constructed by MTurk work-

ers [37, 10, 45], it requires substantial domain-specific knowledge to compose meaningful

questions that are hard for computers to answer.

Annotation Task Design. For each page selected in §2.4.1, the annotators are asked

to (i) write a meaningful financial question, (ii) compose a reasoning program to answer

the question, and (iii) to annotate the supporting fact. Each page is assigned to one or

two experts for annotation. We detail each part as follows. (I) Financial question:

For a given page of earnings reports, the annotators are asked first to compose a question

that is “meaningful for financial analysis or learning insights of the company financial

reports” and require numerical calculations to answer. We encourage the experts to

write questions that require the information from both the text and the table to answer.

(II) Reasoning program: After providing the question, the annotators are then asked

to elaborate the operation steps to answer the question. Specifically, they compose a

maximum of 5 steps of operation, where each operation has four slots: “operation”,

“argument1”, “argument2”, and “result”. The “operation” is one of the ten predefined

operations described in §2.3. An “argument” is a number or a table’s row name, either

from the report or a previous step’s result. For operations that only use one argument,
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such as table aggregation, workers can leave argument2 blank. The annotation interface

(see A) automatically validates the inputs to ensure correctness. (III) Supporting

fact: We also ask the annotators to mark all the sentences in the text and the table rows

that contain the information needed to answer the question.

2.4.3 Data Quality Assessment

External experts answer FinQA questions with a high accuracy and a high

inter-annotator agreement. To validate the quality of the annotations, as well as

to set up human expert performance upper bound, we hire another two financial profes-

sionals on UpWork. We randomly sample 200 examples from our dataset, and ask the

professionals to answer the questions as well as write the operation steps, following the

same procedure as in the dataset construction. The payment is $2.0 per question. For

execution accuracy, they reach 92.25% and 90.06%, respectively (mean = 91.16%). For

program accuracy, they reach 89.44% and 85.53% (mean = 87.49%). The agreements

between the two annotators are 92.65% for execution accuracy, and 86.76% for program

accuracy.

Non-expert crowd workers answer FinQA questions with a low accuracy. We

also test how well non-expert MTurk workers can answer FinQA questions. We distribute

the samples to MTurk3 and take the similar process to distribute each example to two

workers. We end up with an average execution accuracy of 50.68% and a program

accuracy of 48.17%, which is far below the expert performance; the agreement rate is

only around 60%. These results echo our preliminary study’s observations for MTurk

workers in §2.4.2.
3Three built-in worker qualifications are used: HIT Approval Rate (≥95%), Number of Approved

HITs (≥ 3000), and Locale (US Only) Qualification. We do not select any profession constraints. We
pay $2.0 for each question.
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Examples (Q&A pairs with program, fact) 8,281
Report pages 2,789
Vocabulary 22.3k
Avg. # sentences in input text 24.32
Avg. # tokens in input text 628.11
Avg. # rows in input table 6.36
Avg. # tokens in input table 59.42
Avg. # tokens in all inputs (text & table) 687.53
Max. # tokens in all inputs (text & table) 2,679
Avg. question length 16.63

Table 2.1: Statistics of FinQA.

2.4.4 Data Analysis

FinQA contains 8,281 examples. The data is released as training (6,251), validation

(883), and test (1,147) following an 75%/10%/15% split. The three sets do not have

overlapping input reports. We quantitatively analyze some key properties of FinQA.

Table 2.1 shows the general statistics.

Statistics of Supporting Facts. In FinQA, 23.42% of the questions only require the

information in the text to answer; 62.43% of the questions only require the information

in the table to answer; and 14.15% need both the text and table to answer. Meanwhile,

46.30% of the examples have one sentence or one table row as the fact; 42.63% has two

pieces of facts; and 11.07% has more than two pieces of facts. For the examples with

more than one piece of fact, we also calculate the maximum distances between all the

same example’s facts. 55.48% has a maximum distance of 3 or less sentences4; 24.35%

has a maximum distance of 4-6 sentences; and 20.17% has over 6 sentences.

Statistics of Reasoning Programs. In the programs, the most frequent operations,

add, subtract, multiply, and divide, have the distributions of 14.98%, 28.20%, 5.82%,

4For tables, we consider one row as one “sentence”.
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The fair value for these options was estimated at the date 
of grant using a Black-Scholes option pricing model with 
the following weighted-average assumptions for 2006, 
2005 and 2004:

The total fair value of shares vested during 2006, 2005 was 
$9,413, $8,249 respectively. 

The aggregate intrinsic values of options outstanding and 
exercisable at December 30, 2006 were $204.1 million and $100.2 
million, respectively.

The total fair value of shares vested during 
2006, 2005 was $9,413, $8,249 respectively. 

Financial Report

Retrieved Facts

Figure 2.2: The retriever retrieves supporting facts (text sentences or table rows) from
the input financial report.

and 45.29%, respectively. The operation division has the highest frequency, as calcu-

lating ratios is common in financial analysis. In FinQA, 59.10% of the programs have 1

step, 32.71% have 2 steps, and the rest 8.19% have 3 or more steps.

2.5 Baseline Systems

In this section, we first describe our main baseline framework FinQANet in §2.5.1,

and then we introduce other baselines in §2.5.2.

2.5.1 The FinQANet Framework

As a preliminary attempt on FinQA, we propose FinQANet, with a retriever to

first retrieve the supporting facts from the input financial report, then a generator to

generate the program to get the answer.

Retriever The full page of the financial report can go beyond 2,000 tokens, which

cannot be coped with the current popular QA models [39]. Therefore we first retrieve

the supporting facts from the input report. For the tables, we use templates to turn each
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Input encoder

Step memory embeddings

9413add( )8249 #0divide(

Step memory embeddings

)8249

Step memory embeddings

#0 #1 ...

... was $ 9413

add( ) ...
Special token embeddings

Input embeddings

Attentions

Concat

.........

... was $ 9413

Output space Predicted token
#0 #1 ...#0 #1 ...

Update memory

LSTM 
decoder

Figure 2.3: The program generator. The retriever results and the question are first
encoded using pre-trained LMs. At each decoding step, the model can generate from
the numbers or table row names from the input, the special tokens in the DSL, or the
step memory tokens. At the end of the generation of each operation step, we update
the step memory token embeddings.

row into sentences. For example, the last row of the table in Figure 2.1 is represented

as ‘the risk-free interest rate of 2006 is 5%; ...’. We concatenate each supporting fact

with the question and train a classifier using pre-trained LMs like BERT [39]. Then we

take the top n retrieved facts, reordered as they appear in the input report. This set

of retriever results will serve as the input to the second phase. Figure 2.2 illustrates

the retrieving procedure. Another common strategy is sliding window [59]. We take the

sliding window of a fixed size with a stride to go through the report, then the windows

containing all the supporting facts are marked as positive. However, we observe in the

experiments that the length of the input to the program generator in the second phase

greatly influences the performance. The performance of using sliding window falls far

behind the previous method.

Program Generator Given the retrieved supporting facts from the retriever, the pro-

gram generator aims to generate the executable program to answer the question. Fig-

ure 2.3 gives an overview of the program generator. The generated tokens come from

3 sources: 1) The input passage (retriever output) and the question tokens {ei}, like

the numbers or the table row names. 2) The special tokens {si} from the DSL, like the

function names, predefined constants, etc. 3) The step memory tokens {mi} to denote
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the results from previous steps, like #0, #1 , etc. We first use pre-trained LMs to en-

code {ei}, denote the output embeddings as {he
i}. The embeddings of the special tokens

and the step memory tokens are randomly initialized and denoted as {hs
i} and {hm

i }

respectively. Denote all the token embeddings H = [he
i ;h

s
i ;h

m
i ].

An LSTM is used for decoding. At each decoding step T , the program token embed-

dings H are fed as the input; The decoder output hT is used to calculate the attention

vector attp and atth over the input and the decoding history. Then a context vector cT

combines all the contextual information:

cT = Wc[attp; atth;hT ] (2.3)

Meanwhile, another attention vector att
′
p over the input is applied to all the token em-

beddings:

H
′

T = Wh[H;H ◦ att′p] (2.4)

Different from other program tokens, the step memory tokens {mi} imply the reasoning

path of the program. To make use of such structure information, at each decoding

step indicating the end of one operation[args] unit, i.e., the step to generate the ending

parentheses in our DSL, we compute another context vector aT :

aT = Wa[attp; atth;hT ] (2.5)

Then the step memory token embedding corresponding to the current step is updated as

aT .

The final prediction is calculated with:

wT = softmax(H
′

T · cT ) (2.6)
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During inference time, based on the grammar of the DSL, we use masks at each decoding

step to ensure the structural correctness of the generated programs. In the retriever

phase, we take the top n retrieved results as the input to the program generator. There-

fore, for the training of the program generator, we use the retriever result on the training

set (combined with the gold facts if there is any wrong prediction) as the input.

2.5.2 Other Baselines

TF-IDF + Single Op. We use TF-IDF to retrieve the top 2 sentences from the input

report. Since the most common case in our dataset is one-step program and the most

common operation is division, we take the first number from each sentence and apply

the division operation.

Retriever + Direct Generation. To demonstrate the necessity of generating the rea-

soning programs, we keep the architecture the same as our model, but directly generating

the final results.

Retriever + Seq2seq. We use a Seq2seq architecture for the generator, similar to the

Seq2seq baseline in the MathQA dataset [11]. A bi-LSTM is used for encoding the input,

and then an LSTM is used for decoding with attention.

Retriever + NeRd. The Neural Symbolic Reader(NeRd) [49] is also a pointer-generator

based model for program generation, with the state of the art results on the MathQA

dataset [11]. Different from ours, it directly learns the program with nested format as a

sequence, i.e., without the step memory tokens. This way the model is able to learn the

program structures as patterns from very large-scale data (˜40k for MathQA), but may

fail on learning the reasoning paths. We keep the retriever part the same and compare
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with the generator part to demonstrate the usefulness of structure learning.

Pre-Trained Longformer. There are also works on modeling very long documents

with thousands of characters, with the attention mechanism that scales linearly with

sequence length, like the Longformer [60]. To demonstrate the necessity of breaking

up into the pipeline of retriever and program generator, we remove the retriever and

directly use the pre-trained Longformer as the input encoder in the program generator,

and encode the whole report. The table rows are linearized similar as in §2.5.1.

2.6 Experiments

2.6.1 Experiment Setups.

For the retriever, we use BERT-base as the classifier (other pre-trained models per-

form similarly). Since most of the examples in our dataset have 1 or 2 facts, and we find

that longer inputs lower the performance of the program generator, we take the top 3

ranked facts as the retriever results. For the program generator, we experiment on using

BERT [39], RoBERTa [40], and FinBert [58] as the encoder, to test the performances of

popular large pre-trained models. For all models, we use the Adam optimizer [61]. Check

A for more details of training and parameter settings.

2.6.2 QA Model Performance

Table 2.2 presents the results for all the baseline systems. We evaluate the execution

accuracy (exe acc) and program accuracy (prog acc) as explained in §2.3. For the BERT-

based retriever, we have 89.66% recall for the top 3 retrieved facts and 93.63% recall

for the top 5. Using TF-IDF results in 82.91% recall for the top 5 facts. We use the
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Baselines Exe Acc Prog Acc

TF-IDF + Single Op 1.01 0.90

Retriever + Direct Generation 0.30 -

Pre-Trained Longformer (base) 21.90 20.48

Retriever + Seq2seq 19.71 18.38

Retriever + NeRd (BERT-base) 48.57 46.76

FinQANet (FinBert) 50.10 47.52

FinQANet (BERT-base) 50.00 48.00

FinQANet (BERT-large) 53.52 51.62

FinQANet (RoBERTa-base) 56.10 54.38

FinQANet (RoBERTa-large) 61.24 58.86

FinQANet-Gold (RoBERTa-large) 70.00 68.76

Human Expert Performance 91.16 87.49

General Crowd Performance 50.68 48.17

Table 2.2: The execution accuracy (Exe Acc) and program accuracy (Prog Acc) for
all the models. Although our best system (61.24%) outperforms the non-expert crowd
(50.68%), the significant accuracy gap between the model and human experts (91.16%)
motivates the need for future research.

same retriever results for all retriever-generator based models. Directly generating

the execution results gives near-zero scores, which indicates the necessity of generating

the reasoning programs. If without using the retriever-generator pipeline, but directly

applying an end-to-end pre-trained Longformer model, the performance falls far behind.

Because longer inputs have more numbers which put more confusions on the program

generator and thus make it harder to learn. Generally, the program generators using

pre-trained models perform much better than the Seq2seq baseline, as there is language

modeling knowledge that can also be used for the finance domain. And larger pre-

trained models give better performance, as they tend to see more financial corpus during

their pre-training. FinBert [58] is a pre-trained model for the finance domain; its main

downstream tasks are sentiment analysis. The performance of using FinBert is no better
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Methods Exe Acc Prog Acc

full results 61.24 58.86

Necessity of table and text

table-only inference 45.81 43.62

text-only inference 15.80 15.33

Performances on table and text

table-only questions 67.38 64.48

text-only questions 54.86 53.70

table-text questions 43.80 41.61

Performances regarding program steps

1 step programs 67.61 65.28

2 step programs 59.08 56.37

¿2 step programs 22.78 21.52

Programs with constants 43.88 39.80

Table 2.3: Performance breakdown of FinQANet (RoBERTa-large). The model ben-
efits from using both table and text, as inferences on individual source yield much
lower performance. FinQANet is better at answering table-only questions, and the
questions that require more steps to solve are indeed more challenging to the model.

than BERT-large, mostly because its pre-training corpus is limited (˜30M words from

news articles). Comparing FinQANet with the retriever + NeRd baseline [49], it shows

the improvements from learning the logical structure of the programs. We also run the

program generator using the gold retriever result, shown as FinQANet-Gold. Another

interesting observation is the comparisons with human performances. While there is still

a large gap from the human expert upper bound, the best performing model already

surpasses the general crowd performance.

2.6.3 Performance Breakdown

We conduct a set of performance breakdowns using the FinQANet (RoBERTa-large)

model. Table 2.3 shows all the results.
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Gold program: subtract(746, 554)

Predicted program: multiply(554, const_1000000)

Gold supporting facts: text sentence(s) Question: 
what is the amount of credit lines that has been drawn in millions
 as of year-end 2016?

[1] additionally , we have other committed and uncommitted credit lines of $ 746 
million with major international banks and financial institutions to support our 
general global funding needs , including with respect to bank supported letters of 
credit, performance bonds and guarantees .
[2] approximately $ 554 million of these credit lines were available for use as of 
year-end 2016 .

shares weighted average grant-date fair value

non-vested at may 31 2009 762 42

non-vested at may 31 2010 713 42

Gold supporting facts: table row(s) Question: what is the percentage change in the total fair value of 
non-vested shares from 2009 to 2010?
Gold program: 
multiply(762, 42), multiply(713, 42), subtract(#1, #0), 
divide(#2, #0)

Predicted program: subtract(713, 762), divide(#0, 762)

Gold supporting facts: text sentence(s) Question: what is the estimated percentage of revolving credit 
facility in relation with the total senior credit facility in millions?
Gold program: multiply(1.4, const_1000), divide(945.5, #0)
Predicted program: divide(945.5, const_1000)

[1] we maintained a $ 1.4 billion senior credit facility with various financial 
institutions , including the $ 420.5 million term loan and a $ 945.5 million 
revolving credit facility .

Error 
case 
(1)

Error 
case 
(2)

Error 
case 
(3)

Figure 2.4: Error cases. In these examples, the retriever results all correctly cover
the gold facts; thus we only present the gold facts, gold program, and the predicted
program to study the errors of the program generator. We give more error cases in
A, including the cases for the retriever errors. Example 1: The financial knowledge
to calculate the ‘credit lines that has been drawn’. Example 2: Complex reasoning
of 4 steps. Example 3: Number unit conversion between ‘billion’ and ‘million’.

Necessity of using both table and text. We run inferences taking facts only from

a single source from the retriever. Inferences on individual source (table-only: 45.81%,

text-only: 15.80%) are both far behind the full results (61.24%).

The model performs the best on the table-only questions. The model performs

the best on table-only questions (67.38%). Tables tend to have more unified structures

and might be easier for the model to learn. Table 2.3 also shows that the questions

involving both tables and texts are the most challenging ones for the model (43.80%).

Questions that need more than two steps to answer are challenging. The

model has a low accuracy (22.78%) on the questions that need three or more steps.

Meanwhile, not surprisingly, the questions that require only one step are the easiest.

Constants in programs. Many programs in FinQA contain constants as arguments.

A constant is often used to convert an English number word to another. For example, we

need first to use the constant “1,000” to convert “1.5 billion” to “1,500 million” so that it
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can be added with “50 million”. A constant is also used to explicate the implicit numbers

hidden in the language. For example, to calculate “the average for the year 2012, 2013,

and 2014”, the program needs to use the constant “3” as the denominator, which is not

mentioned explicitly in the text. As shown in Table 2.3, the programs with constants

yield great challenges for our model, as the performance (43.88%) is much lower than

that of the whole set (61.24%).

2.6.4 Error Analysis

We sample 50 error cases from the results of the FinQANet (RoBERTa-large) model

and analyze them manually. 15% of the errors are caused by the retriever, e.g., missing

facts. Half of the rest are due to the lack of financial knowledge, such as the meaning of

some terminology. And the rest half are primarily numerical reasoning errors, including

complex programs with multiple steps, numerical unit conversions, or resolving the or-

dering and matching of the numbers and the years. Many error cases involve both the

numerical reasoning problems and misunderstandings of financial knowledge. We show

three representative error cases in Figure 2.4.
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Chapter 3

Representation Learning for

Fine-Grained User Preference

3.1 Introduction

Conversational artificial intelligence is one of the long-standing research problems in

natural language processing, such as task-oriented dialogue [62, 63, 64], conversational

recommendation [65, 66] and chi-chat [67, 68] etc. However, most existing systems are

agent-centric. Such systems require the users to unnaturally adapt to and even have a

learning curve on the system ontology, which is largely unknown to the users (such as

the sample instructions for most smart speakers). Figure 3.1 shows a dialogue snippet

commonly found in traditional datasets: the user is expected to closely follow the system

ontology with the exact ontology terms, or at most with minor variations like synonyms.

In the real-world use cases, such formulation may easily results in information loss,

or breaks a conversation if the user speaks anything out of the system ontology; In this

work, we argue that a smart agent can ideally be more user-centric, by allowing users

to speak freely without restrictions. The system is expected to uncover the connection
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System ontology:
food category: Japanese, Korean, Chinese, New American, etc. 
alcohol: full bar, beer and wine, don’t serve
wifi: free, paid, no

free or paid wifi please. 

agent user

Slot: Wifi = free, paid

Hello, can you get me some Chinese food?

Slot: Category = Chinese

Sure, what wifi option would you like?

Traditional Dataset

I want to update blog on my laptop with a dry 
martini on side.

agent user

Slot: Wifi = (free, 0.7), (paid, 0.3), (no, 0.0)
Slot: Alcohol = (full bar, 1.0), (beer/wine, 0.0), 
(don’t serve, 0.0)

Hello, can you get me something like ramen?

Slot: Category = (Japanese, 0.5), (Chinese, 
0.4), (Korean, 0.2)

Sure, what wifi option would you like?

Slot: Category = Japanese, Chinese, Korean

Slot: Wifi = free, paid
Slot: Alcohol = full bar

coarse 
tags

nuanced 
distribution

nuanced 
distribution

Our Dataset NUANCED

coarse 
tags

Figure 3.1: Examples of traditional dataset and nuanced: In nuanced, we model
the user preferences as distributions over the ontology to allow mapping of entities
unknown to multiple values and slots for efficient conversation.

between the freestyle user utterance and one or more slots and values by the system

ontology.

To build a user-centric dialogue system, we propose to model the mapping from

the free form user utterances to the system ontology as probability distributions to

capture fine-grained user preferences. To learn the distributions, we construct a new

dataset, named nuanced (Natural Utterance Annotation for Nuanced Conversation

with Estimated Distributions). nuanced targets conversational recommendation be-

27



Representation Learning for Fine-Grained User Preference Chapter 3

cause such type of dialogue system encourages more modeling of soft matching and

implicit reasoning for user preference. We employ professional linguists to annotate the

dataset, and end up with 5.1k dialogues and 26k turns of high-quality user utterances.

Our dataset captures a wide range of phenomena naturally occurring in realistic user

utterances, including specified factoid knowledge, commonsense knowledge and users’

own situations. We conduct comprehensive experiments and analyses to demonstrate

the challenges. We hope nuanced can serve as a valuable resource to bridge the gap

between current researches and real-world applications.

3.2 Related Work

Task-oriented dialogue systems are typically divided into several sub modules, in-

cluding user intent detection [69, 70], dialogue state tracking [19, 71], dialogue policy

learning [72, 73], and response generation [74, 75]. More recent approaches begin to

build unified models that bring the pipeline together [76, 64]. Conversational recom-

mendation focus on combining the recommendation system with online conversation

to capture user preference [77, 65, 66]. Previous works mostly focus on learning the

agent side policy to ask the right questions and make accurate recommendations, such

as [78, 79, 80, 81]. Chit-Chat [67, 68] is the most free form dialogue but almost with

no knowledge grounding or state tracking. Both existing task-oriented, conversational

recommendation systems have a pre-defined system ontology as a representation con-

nected to the back-end database. The ontology defines all entity attributes as slots and

the option values for each slot. In existing datasets, such as the DSTC challenges [82],

Multi-WOZ [63], MGConvRex [78], etc, the utterances from the users mostly closely

follow the system ontology. While in task-oriented dialogue systems, parsing the user

utterances into dialogue states is more on hard matching, in conversational recommen-
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dation systems soft matching is more encouraged since the user preferences are more

salient and diverse in this type of conversations.

3.3 The nuanced Dataset

3.3.1 User Preference Modeling

Given a system ontology, denote the set of all slots as {Si}, with the option values

for each slot as {V j
i }. Denote the current user utterance as T and dialogue context (of

past turns) as C. We model the user preference as a distribution over each slot-value,

namely preference distribution:

P j
i = P (V j

i |T,C). (3.1)

Note that we expect the representation to be general, expandable, and to hold the fewest

assumptions, i.e., there is no assumption on the dependency among slot-values, nor the

completeness of the value set. Therefore we model the distribution as a Bernoulli dis-

tribution over each slot-value. Intuitively, P j
i represents the probability that the user

chooses an item with attributes V j
i , under the observed condition of the dialogue up to

the current turn. Note that the preference distributions may differ among individuals

which causes variances, In this work, we aim to aggregate estimated distributions from

large-scale data collected from multiple workers as “commonsense” distributions. We

leave modeling user-specific distributions to future work.
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3.3.2 Dataset Construction

We first simulate the dialogue flow with the preference distributions, then we ask the

annotators to compose utterances that imply the distribution.

Dialogue Simulator We follow the approach from the MGConvRex dataset [78] to

build the user visiting histories from real-world data. For each user with its visiting

history as a list of restaurants with slot-values, we sample a subset of the history and

aggregate to get a value distribution for each slot. For example, in the list of restaurants

of a user’s visiting history, we sampled two restaurants, restaurant 1 and restaurant 2.

Restaurant 1 has the slot-values of Alcohol = full bar, Restaurant 2 has the slot-value

of Alcohol = beer and wine. Then the aggregated distributions is Alcohol = (full bar,

0.5), (beer and wine, 0.5), (no serve, 0.0). As generally, for the same user, the attributes

of its visited restaurants tends to follow certain trends. Therefore the aggregated dis-

tributions created this way can be more natural. Using the sampled distribution as the

ground truth distribution, we simulate the dialogue skeletons of the following scenar-

ios: 1) Straight dialogue flow: the system asks each slot, followed by the user response

filled with preference distributions; 2) User updating preference: the user updates the

preference distributions in a previous turn; 3) System yes/no questions: the system can

choose to ask confirmation questions; For each turn, we randomly select 1 to 3 slots,

corresponding to the cases that the user utterances naturally imply multiple slot-values.

The system turns are composed using templates.

User Utterances Composition After simulating the dialogue skeletons, we employ

professional linguists to do the composition to ensure high quality. We provide two com-

posing strategies: Implicit Reasoning: do not mention the slot-value terms explicitly.

This is the focus of this work because we expect that users are unaware of the system
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ontology and to depict their requests naturally. Explicitly Mention: use the slot-value

terms (or synonyms), as a backup option when the first one is not applicable. We also em-

phasize the following aspects: 1) Read the whole dialogue first to have an overall “story”

in mind before composing each utterance to ensure consistency; 2) Try to compose ut-

terances as diverse as possible; 3) Reject any cases with invalid or unnatural preference

distributions. We provide learning sessions to linguists to ensure they all master the

tasks.

3.3.3 Dataset Statistics and Analysis

With an average of 5.39 user turns per dialogue, we have 5,100 dialogues consisting of

25,757 user turns. The user utterances have an average length of 19.43 tokens. 84.7% of

the utterances are composed using implicit reasoning ; 6.5% of the utterances explicitly

mention the ontology terms, and the rest use mixed strategies. The train / valid / test

split is 3,600 / 500 / 1,000 in the number of dialogues, and 18,182 / 2,529 / 5,046 in the

number of user turns. To evaluate the quality of our dataset, we randomly sample 500

examples and ask the linguistics whether a preference distribution is reasonable based on

the corresponding utterance. We end up with a turn-level correctness rate of 90.2%.

Reasoning types Example user utterances Example preference distributions

Type I Factoid Knowledge
(37.3%)

I really want a G&T or a Riesling,
but I could also have a tonic water.

Slot: Alcohol = (full bar, 0.7), (beer and wine, 0.2),
(don’t serve, 0.1)

Type II Commonsense knowledge
or User Situations
(43.8%)

five to ten dollars, I don’t want a
place with people wearing ties, you
know?

Slot: Price = (cheap, 0.6), (affordable, 0.4),
(moderately priced, 0.0), (expensive, 0.0)
Slot: Attire = (casual, 1.0), (dressy, 0.0), (formal, 0.0)

Type III Mixed Type I & II
(19.0%)

I want to update blog on my laptop,
with a dry martini on side.

Slot: Wifi = (free, 0.7), (paid, 0.3), (no, 0.0)
Slot: Alcohol = (full bar, 1.0), (beer and wine, 0.0),
(don’t serve, 0.0)

Table 3.1: Examples of reasoning types. Type I utterance: G&T is only served in a full
bar, while Riesling is a kind of wine and tonic water does not require alcohol options.
Type II utterance, ‘place without people wearing ties’ indicates casual attire, and ‘five
to ten dollars’ indicates a price range of cheap or affordable. Type III utterance, we
need both kinds of reasonings.
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Among the utterances involving implicit reasoning, we summarize 3 basic reasoning

types. The examples are shown in Table 3.1. Type I (Factoid Knowledge) is largely

agreed on by people and is relatively stable. Type II (Commonsense Knowledge

or User Situations) may not be formally defined. For example, a food item less than

$10 is considered cheap. In many cases, such knowledge needs to be inferred from a

situation described by users. Type III (Mix of Type I and II) may appear in a single

utterance.

NUANCED-reduced We also provide a reduced variant called nuanced-reduced, by

discretizing the distributions for preference into binary numbers. For all slot-values with

a positive preference distribution1 we label them as 1.0, otherwise 0.0. This reduced

variant does not have continuous probabilities to tell the nuanced differences but it still

needs to map free form utterances to binary labels. We conduct human evaluation

by asking the annotators to decide which representation can better capture more fine-

grained user preferences. As Table 3.2 shows, nuanced can better capture the nuanced

information. Note that in real applications, which version of the data to use may depend

on requirements of the system, i.e., level of granularity for state representation.

NUANCED win NUANCED-reduced win Tied

54.7% 16.7% 28.6%

Table 3.2: Human evaluation results of comparing two versions.

1In practice we set a threshold of 10%, because in the utterance composition stage a preference
distribution lower than 10% is generally considered ignorable.
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3.4 Experiments

In this section, we conduct experiments on both versions of the datasets in §3.4.1

and §3.4.2, respectively.

3.4.1 NUANCED-reduced

Baselines

Exact match & Random guess We follow the preceding system query to make slot

prediction; we then use an exact match to predict the slot-values; if no match is found,

we apply a random guess.

BERT [39], The input is the concatenation of the slot name, current turn system

question and user utterance, and the dialogue context of past turns. We add two types

of prediction heads on the [CLS] token of BERT, one for slot prediction (whether the

input slot is updated or not), and the other for the value prediction of each slot. The loss

is a combination of cross-entropy loss for slot prediction and mean squared error (MSE)

loss for value prediction. During inference, we set up a threshold to decide positive or

negative predictions.

Transformer [83] We use the similar architecture as the BERT baseline but train the

weights from scratch.

Train-ConvRex As MGConvRex dataset [78] has similar domain and ontology, we

compare the BERT model trained on MGConvRex2 with that tested on NUANCED-

reduced. We use this baseline to demonstrate the open challenges caused by users’

free-form speaking.

We refer the readers to B for more details. For all baselines, we evaluate on the turn

level slot prediction accuracy and joint accuracy.

2We contacted the first author to obtain the dataset.
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Results for NUANCED-reduced As shown in Table 3.3, the BERT model achieves

the best performance as the external knowledge obtained from pre-training helps draw a

better relevance between unrecognized entities from the user and entities from the agent.

Train-ConvRex limits such mapping to system ontology, indicating that existing dialogue

datasets may limit what an agent can understand from users. Lastly, by comparing with

BERT without dialogue context (or past turns), we notice that context may help in

learning better values but yields more noise for slot prediction.

Baselines Slot Accuracy (%) Joint Accuracy (%)

Exact match & Random guess 48.83 4.84

Train-ConvRex 38.70 4.02

Transformer 74.14 21.52

BERT 88.21 36.56

BERT w/o context 88.78 34.99

Table 3.3: Results on NUANCED-reduced. Slot Accuracy : percentage of turns that
all slots are correct; Joint Accuracy : percentage of turns that all slots and values are
correct.

3.4.2 NUANCED

Baselines

Exact match & Random guess Similar to NUANCED-reduced, we assign a proba-

bility of 1.0 for matched values or random value otherwise.

BERT, Transformer Similar to NUANCED-reduced, we use MSE loss between the

ground truth and the predicted distribution.

Train-reduced-XWe train the model onNUANCED-reduced and test onNUANCED

to see how data with binary states can infer states in the continuous space. We define a

fixed number of X as the continuous number for all positive predictions. We experiment
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with X = 0.5 and 1.0.

We keep the same evaluation for slot prediction. For value predictions, we evaluate

the soft average mean absolute error (MAE) between the ground truth distribution and

the predictions.

Results for NUANCED

As in Table 3.4, BERT reaches the best performance. One interesting observation is

that using the same model BERT, the slot prediction accuracy increases (from 88.21%

to 89.62%) compared with training on the reduced version. NUANCED helps to reduce

the noise of sparse entities in context (past turns). This is probably because numbers

in continuous space can draw more relevance among different entities. As we can see,

Train-reduced-X has a much larger error. This indicates that simply adapting the results

from the reduced state labels suffers from information loss, i.e., the nuanced differences

in continuous distributions.

Baselines Slot Accuracy (%)
Correct slots

mean MAE (1e-2)

Exact match & Random guess 48.83 46.84

Train-reduced-1.0 88.21 40.72

Train-reduced-0.5 88.21 21.62

Transformer 78.42 16.78

BERT 89.62 14.20

BERT w/o context 88.08 14.49

Table 3.4: Evaluation results on NUANCED. Correct slots mean MAE (lower the
better): mean absolute error of predicted distribution for all correctly predicted up-
dated slots;

Analysis on Slots We study how the models perform on different kinds of turns,

shown in Table 3.5. Generally speaking, the turns with more slots are relatively harder
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to learn. The turns that update the preference in previous turns have the highest error,

the preference distribution needs to be jointly inferred from the previous mention and

the current turn. We also study the performance on each slot in B, and provide some

case studies in B.

Type of turn all 1 slot 2 slots 3 slots
updating

preferences

Slot Accuracy(%) 89.62 96.67 78.91 67.65 90.61

Mean MAE(1e-2) 14.12 14.06 13.55 14.20 15.63

Table 3.5: Performance for different kinds of slots: all : all kinds of turns; n slots:
turns that the user utterance jointly implies n slots; updating preferences: turns that
the user utterance updates the preference in previous turns.

Human Evaluation We further conduct a human evaluation on baseline models. We

first evaluate the model outputs of Transformer, BERT, and BERT w/o context, through

pairwise comparison between the model predictions and the gold labels. The results on

200 samples are shown in Table 3.6. There is a large gap between the best-performing

baseline and the gold reference, which indicates significant room for improvement for

future research. Further, we study the breakdown of predictions of BERT on 3 different

types of reasoning. As shown in Table 3.7, the type 1 utterances, that involve factoid

knowledge, are relatively harder to learn. This is close to our intuition because factoid

knowledge is huge (and keeps increasing) and the limited utterances in the dataset may

not cover all of the knowledge.
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Methods Model output win(%) Tied(%) Gold win(%)

Transformer 10 9.5 80.5

Bert 23.6 20.9 55.4

Bert w/o context 19.5 9.6 70.9

Table 3.6: Human evaluation results for the model predictions.

Methods Model output win(%) Tied(%) Gold win(%)

Type I 22.5 19.9 57.6

Type II 27.4 24.1 48.5

Type III 21.1 11.2 67.7

Table 3.7: Human evaluation results for different reasoning types. Type I: factoid
knowledge; Type II: commonsense knowledge or user situations; Type III: Mixed
Type I & II.
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Chapter 4

Few-Shot Natural Language

Generation

4.1 Introduction

Natural language generation (NLG) from structured data or knowledge [84] is an

important research problem for various NLP applications. Some examples are task-

oriented dialog, question answering [85, 86, 87, 88, 89] and interdisciplinary applications

such as medicine [90, 91] and health-care [90, 92]. There is great potential to use au-

tomatic NLG systems in a wide range of real-life applications. Recently, deep neural

network based NLG systems have been developed, such as those seen in the E2E chal-

lenge [93], WeatherGov [94], as well as more complex ones such as WikiBio [26] and

RotoWire [95]. Compared to traditional slot-filling pipeline approaches, such neural-

based systems greatly reduce feature engineering efforts and improve text diversity as

well as fluency.

Although they achieve good performance on benchmarks such as E2E challenge [93]

and WikiBio [96], their performance depends on large training datasets, e.g., 500k table-
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text training pairs for WikiBio [96] in a single domain. Such data-hungry nature makes

neural-based NLG systems difficult to be widely adopted in real-world applications as

they have significant manual data curation overhead. This leads us to formulate an

interesting research question:

1. Can we significantly reduce human annotation effort to achieve reasonable

performance using neural NLG models?

2. Can we make the best of generative pre-training, as prior knowledge, to

generate text from structured data?

Motivated by this, we propose the new task of few-shot natural language generation:

given only a handful of labeled instances (e.g., 50 - 200 training instances), the system

is required to produce satisfactory text outputs (e.g., BLEU ≥ 20). To the best of our

knowledge, such a problem in NLG community still remains under-explored. Herein, we

propose a simple yet very effective approach that can generalize across different domains.

In general, to describe information in a table, we need two skills to compose coherent

and faithful sentences. One skill is to select and copy factual content from the table

- this can be learned quickly by reading a handful of tables. The other is to compose

grammatically correct sentences that bring those facts together - this skill is not restricted

to any domain. One can think of a latent “switch” that helps us alternate between these

two skills to produce factually correct and coherent sentences. To do this, we use the pre-

trained language model [97, 98] as the innate language skill, which provides strong prior

knowledge on how to compose fluent and coherent sentences. The ability to switch and

select/copy from tables can be learned successfully using only a few training instances,

freeing the neural NLG model from data-intensive training. Previous best performing

methods based on large training data, such as [26], which does not apply such switch

mechanism but trains a strong domain-specific language model, perform very poorly
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under few-shot setting.

Since we are operating under a highly data-restricted few-shot regime, we strive for

simplicity of model architecture. This simplicity also implies better generalizability and

reproducibility for real-world applications. We crawl multi-domain table-to-text data

from Wikipedia as our training/test instances. With just 200 training instances, our

method can achieve very reasonable performance.

In a nutshell, our contributions are summarized as the following:

• We propose the new research problem of few-shot NLG, which has great potential

to benefit a wide range of real-world applications.

• To study different algorithms for our proposed problem, we create a multi-domain

table-to-text dataset.

• Our proposed algorithm can make use of the external resources as prior knowl-

edge to significantly decrease human annotation effort and improve the baseline

performance by an average of over 8.0 BLEU on various domains.

Input Table

Attribute (R) Value (V)

Name Walter Extra
Nationality German
Occupation Aircraft designer

and manufacturer
... ...

Table encoder

Attention weights

Walter  Extra     is     ...

Pre-trained Language Model

Walter   Extra   German 
name    name   nationaltily

table values
attribute names
position information

 Walter  Extra     is        a     …

 ...
The swicth 
policy

 name   name     --        --     ...
                           --        --     ...

Matching

Figure 4.1: Overview of our approach: Under the base framework with switch policy,
the pre-trained language model serves as the generator. We follow the same encoder
as in [26]. The architecture is simple in terms of both implementation and parameter
space that needs to be learned from scratch, which should not be large given the
few-shot learning setting.

40



Few-Shot Natural Language Generation Chapter 4

4.2 Related Work

4.2.1 NLG from Structured Data

As it is a core objective in many NLP applications, natural language generation from

structured data/knowledge (NLG) has been studied for many years. Early traditional

NLG systems follow the pipeline paradigm that explicitly divides generation into content

selection, macro/micro planning and surface realization [25]. Such a pipeline paradigm

largely relies on templates and hand-engineered features. Many works have been proposed

to tackle the individual modules, such as [94, 99, 100]. Later works [101, 102] investigated

modeling context selection and surface realization in an unified framework.

Most recently, with the success of deep neural networks, data-driven, neural based

approaches have been used, including the end-to-end methods that jointly model context

selection and surface realization [26, 27, 28]. Such data-driven approaches achieve good

performance on several benchmarks like E2E challenge [93], WebNLG challenge [103]

and WikiBio [96]. However, they rely on massive amount of training data. ElSahar

et al. [104] propose zero-shot learning for question generation from knowledge graphs,

but their work applies on the transfer learning setting for unseen knowledge base types,

based on seen ones and their textual contexts, which still requires large in-domain training

dataset. This is different from our few-shot learning setting. Ma et al. [105] propose low-

resource table-to-text generation with 1,000 paired examples and large-scale target-side

examples. In contrast, in our setting, only tens to hundreds of paired training examples

are required, meanwhile without the need for any target examples. This is especially

important for real-world use cases where such large target-side gold references are mostly

hard to obtain. Therefore, our task is more challenging and closer to real-world settings.
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4.2.2 Large Scale Pre-Trained Models

Many of the current best-performing methods for various NLP tasks adopt a combi-

nation of pre-training followed by supervised fine-tuning, using task-specific data. Dif-

ferent levels of pre-training include word embeddings [106, 107, 108], sentence embed-

dings [109, 110], and most recently, language modeling based pre-training like BERT [111]

and GPT-2 [98]. Such models are pre-trained on large-scale open-domain corpora, and

provide down-streaming tasks with rich prior knowledge while boosting their perfor-

mance. In this chapter, we adopt the idea of employing a pre-trained language model

to endow in-domain NLG models with language modeling ability, which cannot be well

learned from few shot training instances.

4.3 Method

4.3.1 Problem Formulation

We are provided with semi-structured data: a table of attribute-value pairs {Ri :

Vi}ni=1. Both Ri and Vi can be either a string/number, a phrase or a sentence. Each

value is represented as a sequence of words Vi = {vj}mj=1. For each word vj, we have

its corresponding attribute name Ri and position information of the word in the value

sequence. The target is to generate a natural language description based on the semi-

structured data, provided with only a handful of training instances.

4.3.2 Base Framework with Switch Policy

We start with the field-gated dual attention model proposed in [26], which achieves

state-of-the-art performance (BLEU) on WikiBio dataset. Their method uses an LSTM

decoder with dual attention weights. We first apply a switch policy that decouples the
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framework into table content selection/copying and language model based generation.

Inspired by the pointer generator [112], at each time step, we maintain a soft switch pcopy

to choose between generating from softmax over vocabulary or copying from input table

values with the attention weights as the probability distribution.

pcopy = sigmoid(Wcct +Wsst +Wxxt + b)

Where ct =
∑

i a
i
thi, {hi} is the encoder hidden states, xt, st, at is the decoder input,

state and attention weights respectively at time step t. Wc,Ws,Wx and b are trainable

parameters.

The pointer generator learns to alternate between copying and generating based on

large training data and shows its advantage of copying out-of-vocabulary words from

input. In our task, the training data is very limited, and many of the table values are

not OOV. We need to explicitly “teach” the model where to copy and where to generate.

Therefore, to provide the model accurate guidance of the behavior of the switch, we

match the target text with input table values to get the positions of where to copy. At

these positions, we maximize the copy probability pcopy via an additional loss term. Our

loss function:

L = Lc + λ
∑
wj∈m
m∈{Vi}

(1− pjcopy)

Where Lc is the original loss between model outputs and target texts. wj is the target

token at position j, {Vi} is the input table value list defined in Section 4.3.1, and m

means a matched phrase. λ is hyperparameter as the weight for this copy loss term.

We also concatenate the decoder input with its matched attribute name and position

information in the input table as xt to calculate pcopy .
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4.3.3 Pre-Trained LM as Generator

We use a pre-trained language model as the generator, serving as the “innate language

skill”. Due to the vocabulary limitation of few training instances, we leave the pre-trained

word embedding fixed while fine-tuning other parameters of the pre-trained language

model, so that it can generalize with tokens unseen during training.

Figure 4.1 shows our model architecture. We use the pre-trained language model

GPT-21 proposed in [98], which is a 12-layer transformer. The final hidden state of

the transformer is used to calculate attention weights and the copy switch pcopy. We

first feed the embedded attribute-value list serving as the context for generation. In this

architecture, the generator is fine-tuned from pre-trained parameters while the encoder

and attention part is learned from scratch, the initial geometry of the two sides are

different. Therefore we need to apply larger weight to the copy loss pcopy, to give the

model a stronger signal to “teach” it to copy facts from the input table.

4.4 Experiments

4.4.1 Datasets and Experiment Setup

The original WikiBio dataset [96] contains 700k English Wikipedia articles of well-

known humans, with the Wiki infobox serving as input structured data and the first

sentence of the article serving as target text. To demonstrate generalizability, we collect

datasets from two new domains: Books and Songs by crawling Wikipedia pages. After

filtering and cleanup, we end up with 23,651 instances for Books domain and 39,450

instances for Songs domain2. Together with the Humans domain of the originalWikiBio

1https://github.com/openai/gpt-2
2Note that the target text sometimes contains information not in the infobox. This is out of the

scope of the few-shot generation in this work. Therefore we further filter the datasets and remove the
ones with rare words out of infobox. Check [113] for a related study of this issue on the WikiBio dataset
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dataset, for all three domains we conduct experiments by varying the training dataset

size to 50, 100, 200 and 500. The rest of data is used for validation (1,000) and testing.

The weight λ of the copy loss term is set to 0.7. Other parameter settings can be found

in C. To deal with vocabulary limitation of few-shot training, for all models we adopt

the Byte Pair Encoding (BPE) [114] and subword vocabulary in [98].

We compare the proposed method with other approaches investigated in Section 4.3,

serving as the baselines - Base-original: the original model in [26]; Base: uses the

same architecture, but in addition applies the pre-trained word embedding and fix it

during training; Base + switch: adds the switch policy; Base + switch + LM-

scratch: makes the architecture same as our method, except training the model from

scratch instead of using pre-trained weights for generator. Template: template-based

non-neural approach, manually crafted for each domain.

4.4.2 Results and Analysis

Following previous work [26], we first conduct automatic evaluations using BLEU-

4, shown in Table 4.1. The ROUGE-4 (F-measure) results follow the same trend with

BLEU-4 results, which we show in C.

As we can see, the original model Base-original [26], which obtains the state-of-

the-art result on WikiBio full set, performs very poorly under few-shot setting. It

generates all tokens from softmax over vocabulary, which results in severe overfitting

with limited training data, and the results are far behind the template-based baseline.

With the switch policy, Base+switch first brings an improvement of an average of

over 10.0 BLEU points. This indicates that the content selection ability is easier to

be learned with a handful of training instances. However, it forms very limited, not

fluent sentences. With the augmentation of the pre-trained language model, our model
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Base+switch+LM brings one more significant improvement of an average over 8.0

BLEU points. We provide sample outputs of these methods using 200 training instances

in Table 4.2.

Domain Humans Books Songs
# of training instances - 50 100 200 500 - 50 100 200 500 - 50 100 200 500

Template 16.3 - - - - 25.6 - - - - 30.1 - - - -

Base-original - 2.2 3.7 4.9 5.1 - 5.8 6.1 7.4 6.7 - 9.2 10.7 11.1 11.3
Base - 2.9 5.1 6.1 8.3 - 7.3 6.8 7.8 8.8 - 10.4 12.0 11.6 13.1

Base + switch - 15.6 17.8 21.3 26.2 - 24.7 26.9 30.5 33.2 - 29.7 30.6 32.5 34.9
Base + switch + LM-scratch - 6.6 11.5 15.3 18.6 - 7.1 9.2 14.9 21.8 - 11.6 16.2 20.6 23.7
Base + switch + LM (Ours) - 25.7 29.5 36.1 41.7 - 34.3 36.2 37.9 40.3 - 36.1 37.2 39.4 42.2

Table 4.1: BLEU-4 results on three domains. Base-original: the original method
in [26]; Base: applies pre-trained word embedding; Base+switch: adds the switch
policy; Base+switch+LM-scratch: makes the same architecture as our method, but
trains the model from scratch without pre-trained weights for the generator. Template:
manually crafted templates

Attribute Value Attribute Value

name andri ibo fullname andri ibo

birth date 3 april 1990 birth place sentani , jayapura , indonesia

height 173 cm currentclub persipura jayapura

position defender ...

Gold Reference: andri ibo ( born april 3 , 1990 ) is an indonesian footballer who currently plays for persipura jayapura in the
indonesia super league .

Generated texts of different methods

Base: vasco emanuel freitas ( born december 20 , 1992 in kong kong ) is a hong kussian football player and currently plays for hong
kong first division league side tsw pegasus .

Base+switch: andri ibo andri ibo ( 3 april 1990 ) is a international cricketer .

Base+switch+LM (Ours): andri ibo ( born 3 april 1990 ) is an indonesian football defender , who currently plays for

persipura jayapura .

Table 4.2: A sample input table and generated summaries from the test set of Humans
domain, using 200 training instances

Table 4.3 shows the effect of the copy switch loss pcopy introduced in Section 4.3.2,

giving the model a stronger signal to learn to copy from input table.

Ma et al. [105] propose the Pivot model, for low-resource NLG with 1,000 paired

examples and large-scale target-side examples. We compare our method with the Pivot

model in table 4.4. Note that here we train and evaluate the models on the original
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# of training instances 50 100 200 500

Base + switch + LM 25.7 29.5 36.1 41.7
- w/o copy loss pcopy 21.4 25.5 31.3 38.0

Table 4.3: Ablation study: Effect of the copy loss term on Humans domain, measured
by BLEU-4. The loss term brings an average improvement of over 4.0 BLEU points.

WikiBio dataset used in their work, in order to maintain the size of the target side

examples for their settings.

# of paired training instances 50 100 200 500 1000

Pivot 7.0 10.2 16.8 20.3 27.3
Ours 17.2 23.8 25.4 28.6 31.2

Table 4.4: Comparison with the Pivot model [105]. Compared to their method using
additional large-scale target side examples, our method requires no additional target
side data, while achieving better performance.

Human Evaluation

We also conduct human evaluation studies using Amazon Mechanical Turk, based on

two aspects: Factual correctness and Language naturalness. We evaluate 500 samples.

Each evaluation unit is assigned to 3 workers to eliminate human variance. The first

study attempts to evaluate how well the generated text correctly conveys information

in the table, by counting the number of facts in the text supported by the table, and

contradicting with or missing from the table. The 2nd and 3rd columns of Table 4.5 show

the average number of supporting and contradicting facts for our method, comparing to

the strongest baseline and the gold reference. The second study evaluates whether the

generated text is grammatically correct and fluent, regardless of factual correctness. We

conduct pairwise comparison among all methods, and calculate the average times each

method is chosen to be better than another, shown in the 4th column of Table 4.5. Our
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method brings a significant improvement over the strongest baseline (p < 0.01 in Tukey’s

HSD test for all measures). The copy loss term further alleviates producing incorrect

facts. The language naturalness result of our method without the copy loss is slightly

better, because this evaluation does not consider factual correctness; thus the generated

texts with more wrong facts can still get high score. See C for more details of our

evaluation procedure.

# Supp. # Cont. Lan. Score
Gold Reference 4.25 0.84 1.85

Base + switch 2.57 2.17 0.93

Base + switch + LM (ours) 3.64 1.12 1.59
- w/o copy loss pcopy 3.54 1.30 1.63

Table 4.5: Human evaluation results: Average number of supporting facts (column
2, the larger the better), contradicting facts (column 3, the smaller the better), and
language naturalness score (column 4, the larger the better).
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Chapter 5

High-Fidelity Natural Language

Generation from Logical Forms

5.1 Introduction

Natural language generation (NLG) from structured data has been an important

research problem in many applications. Recent data-driven methods have achieved good

performances on various NLG tasks [26, 115, 116]. However most studies focus on surface

descriptions of simple record sequences, for example, attribute-value pairs of fixed or very

limited schema, like E2E [93] and WikiBio [96]. In real-world cases for multi-row tables, it

is often more desirable and plausible to provide descriptions involving higher-level logical

inference across data records. For example, in Figure 5.1, instead of plain restatements,

human readers would be more favorable to abstract descriptions that can summarize or

conclude information over the table records. To produce such logical-level generations of

high fidelity, it is not yet appropriate to provide only the table as the input in a real-world

NLG system, based on the following reasons:

1) Low Fidelity. Given only the table, it is challenging for existing neural models to
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produce such logically correct generations involving reasoning and symbolic calculations,

e.g., max, min, counting, averaging, etc.

2) Uncontrollable content selection. Given a table, the space of logically entailed

descriptions is exponentially large, due to vast number of combinations of different op-

erations and arguments from the table, e.g., count, comparison, superlative, etc. It

is hard and uncontrollable for neural models to decide a valid, favorable choice of logical

selections solely based on the table, due to the difficulty of imposing high-level semantic

constraints in the compositional generation process.

To combat with the above problems, we argue that it is necessary to leverage inter-

mediate meaning representations to achieve faithful and controllable logical generations.

To this end, we formulate the task of logical-level NLG as a logical form to text

problem. Specifically, besides the table information, the generation module is provided

with a logical form representing the semantics of the target text (see Figure 5.1 for an

example). By separating logical reasoning and language realization, the correctness of

the intermediate logical form is guaranteed, and the challenge for the realization module

is fully shifted to semantic understanding.

To facilitate research in this direction, we propose a new dataset named Logic2Text,

consisting of 5.6k open-domain tables, 10.8k manually annotated (logical form, descrip-

tion) pairs. Our dataset is of high quality in terms of (1) natural and interesting descrip-

tions; (2) accurate logical forms with 100% execution correctness. In our dataset, the

coarse logic types are 7 common ones to describe multi-row tables: count, superlative,

comparative, aggregation, majority, unique, and ordinal. We employ a Python-like

program to serve as our logical forms, which can be easily converted to other types of

logical forms. Figure 5.1 shows two examples of our dataset. Compared with previous

surface-level NLG datasets, one major distinction of our dataset is the free schema of the

logical forms, which can be represented as diversified graph structures. The new dataset
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poses great challenges on the model’s ability to understand the structural semantics in

graph representation.

Logical-level NLG with logical forms ( our dataset )
logical form: eq { count { filter_eq { all_rows ; region ; africa } } 
; 4 } = True

Description: In 2012 in opec, there were 4 member countries 
from africa.
logical form: and { eq { hop { argmax { all_rows ; joined opec } 
; region } ;  africa } ; eq { hop { argmax { all_rows ; joined opec 
} ; country } ;  angola } } = True

Description: In 2012 in opec, angola, from africa, was the 
latest country to join. 

country region
joined 
opec

population 
(july 2012)

area (km 
square)

algeria africa 1969 37367226 2381740
angola africa 2007 18056072 1246700
iraq middle east 1960 31129225 437072
libya africa 1962 5613380 1759540
nigeria africa 1971 170123740 923768
... ... ... ... ...

table caption: opec

Surface-level NLG
Description: angola, from the region africa, joined opec in 
2007, with an population of 18056072 in 2012.
Description: algeria, from the region africa, joined opec in 
1969, with an population of 37367226 in 2012.

all_rows region africa

filter_eq

count

eq

4

all_rows joined opec

argmax

hophop

countryregion

eq eq

africa angola

and

Figure 5.1: Examples of surface-level NLG compared with NLG with logical forms of
our dataset. Here are two examples with logic type count and superlative. The
function nodes are in blue, and the text nodes in grey.

We employ an array of popular generation models as the baseline approaches. The

experiments are conducted in (1) Fully-supervised setting. We train the models using

the full dataset to analyze their performances. (2) Few-shot setting. We simulate the

low-resource scenario in real-world use cases. Experimental results show that the logical
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forms are critical to acquiring high-fidelity generations. The pre-trained language model

outperforms other baselines (pointer-generator, graph2seq, transformer, etc.), but still

makes factual and logical errors.

In summary, our contributions are the following:

• We propose a new large-scale dataset, Logic2Text, with descriptions of common

logic types accompanied by the underlying logical forms. The logical forms present

diversified graph structures, which raises more challenges on semantic understand-

ings.

• We surveyed several popular generation models as the baselines under fully-supervised

and few-shot settings, as well as analyze their pros and cons.

Our dataset can also be used in the reverse way (text to logical form) to facilitate

tasks related to semantic parsing. [117] propose the task of fact verification against

tables, however the performance is greatly limited due to the lack of the ground truth

logical forms. This can be one direct application of our dataset. In this work, we focus

on NLG.

5.2 Related Work

NLG from structured data or knowledge has been studied for many years. There

are various applications, such as the automatic generations of weather reports [94], sport

reports [95], clinical and health reports [92, 118], response generation in task-oriented

dialogue systems [75, 63, 119], etc.

Traditional methods typically employ a pipeline-based approach including content

selection, planning and surface realization [25, 120]. Recent data-driven methods tend

to conflate the pipeline modules into one end-to-end neural networks, such as [26, 95,
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27, 121]. Most recently, large-scale pre-trained models [98, 122, 123] have achieved new

state-of-the-arts on various generation tasks. Chen et al. [116] demonstrate that a sim-

ple pre-training based method can achieve very reasonable performance on the WikiBio

dataset [96] under few-shot setting. More recent works begin to focus on fidelity pre-

serving of the generation, such as [113, 124]. Their work obtains good performances on

surface-level NLG. In contrast, our work focus on the fidelity of logical-level generations.

There are a few popular NLG datasets mostly on surface-level generation. Such as

WeatherGov [94], E2E [93], WikiBio [96], and ToTTo [125]. RotoWire [95] is a more

challenging dataset on generating basketball game reports from multi-row tables. But

the reports are still limited to superficial restatements of table records, with very few

involving logical inference. [126] investigate generation of interesting trivia from superla-

tive wikipedia tables. [127] propose the task of generating arbitrary sentences with logical

inference from the table. Their task mainly works for probing purpose, i.e., to test the

ability of neural models to produce any logically correct descriptions solely based on the

table. However, such a task formulation is not yet appropriate for building a real-world

NLG system due to low-fidelity, as we discussed in the introduction. The best-performing

model in [127] only obtains a factual correctness rate over 20% based on human evalua-

tion, which is clearly far from an acceptable level in real-world systems.

Another line of works related to ours is the text generation from syntactic or semantic

sentence structure, such as generation from CCG grammar [128], UCG grammar [129],

AMR [130]. There are many early works attempting algorithmic approaches on such

kinds of logical formulations [131, 132, 133, 131], etc. Later proposed datasets include

the Groningen Meaning Bank [134], the AMR bank [135], the DeepBank [136], etc. In

contrast, our work focus on the logical formulations executed on database style tables,

and common symbolic operations on tables, such as count, superlative, comparison. As

nowadays much of the production data is stored in table based DB, we believe such a
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dataset should help building systems with table based data.

5.3 Dataset Construction

1980 denver broncos season

date opponent game site attendance

sep 7 philadelphia eagles veteran 's stadium 70307

sep 14 dallas cowboys mile high stadium 74919

sep 21 san diego chargers mile high stadium 74970

sep 29 new england patriots schaefer stadium 60153

oct 5 cleveland browns municipal stadium 81065
... ... ... ...

superlative

ordinal

count

majority

aggregation

unique

comparative

select logic type
Logic type: superlative
Description: in the 1980 denver broncos season the highest 
attendance at the mile high satdium was 74970 on september 21st.
Logic type: count
Description: among the september games in the 1980 denver broncos 
season, there were 3 times they drew over 70000 fans.
Logic type: unique
Description: the september 29 game was the only one held in 
schaefer stadium in the 1980 denver broncos season.

Figure 5.2: description composition: the workers are asked to select three logic types
and compose a statement based on the selected logic type, that describe interesting
facts in the table.

The table source of Logic2Text is from WikiTables1 [137], a collection of open-

domain tables crawled from Wikipedia. We follow [117] to filter out over-complicated

tables and take a subset of tables with less than 20 rows and 10 columns.

In this dataset, we start from 7 types of most commonly used logics [117] to describe

multi-row tables: count, superlative, comparative, aggregation, majority, unique,

and ordinal. For example, for logic type count, the definition is: counting some rows

in the table based on the values in one column, with the scope of all table rows or a

subset. Refer to D for the definitions of all logic types. Each description involves exactly

one type of logic. This matches the observation that humans generally do not describe

their interested information in tables with over-complicated logics. For logical forms, we

use a python-like program, and the function set is an extension of [117]. Refer to D for

definitions of all functions.

Our dataset is constructed in 3 stages: §5.3.1 Description composition and verifica-

tion, §5.3.2 Logical form annotation and derivation, §5.3.3 Logical form execution and

1http://websail-fe.cs.northwestern.edu/wikiTables/about/
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verification. We adopt the workflow of composing descriptions first and then deriving

the logical forms, because under such an order, the annotators can compose natural de-

scriptions based on the interesting facts in the table, which is hard to be achieved by

automatic enumeration of logical forms followed by template re-writing. For all crowd-

sourcing tasks we hire Amazon Mechanical Turkers2 (AMT) under three requirements:

(1) from English native countries (“US”,“CA”,“GB”, “AU”); (2) Approval rate higher

than 95% for all HITs; (3) More than 500 approved HITs. We follow the human subject

research protocols3 to pay the workers. We maintain strict high criterions for approval

and review at least 10 random samples for each worker to decide whether to approve or

reject all his/her HITs.

5.3.1 Description Composition & Verification

In this first stage, the human workers are asked to compose statements of a certain

logic type, that describe interesting facts in the table. It’s possible that some logic types

cannot be applied to certain tables. Therefore we design the following working procedure:

For each table, the 7 logic types are randomly put into three groups (with sizes 2, 2,

and 3). The worker is asked to choose one logic type from each group and compose a

description based on the chosen logic type. They must follow the requirements (1) try

to choose diversified logic types, (2) avoid template-like language and try to compose

natural and interesting descriptions, (3) include the information in table captions, so

as to compose comprehensive descriptions without unspecified pronouns. An example

of the workflow is shown in Figure 5.2. We provide the workers detailed explanations

for each logic type by their corresponding definitions, accompanied by examples. After

collecting the descriptions, we add a verification stage to filter out descriptions of low

2https://www.mturk.com/
3https://en.wikipedia.org/wiki/Minimum_wage_in_the_United_States
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quality. We redistribute the collected descriptions grouped by each logic type, then ask

three questions: Is this description (1) of the correct logic type presented? (2) factually

correct? (3) grammatically correct and fluent? We filter out the description if any

question receives a negative response.

5.3.2 Logical Form Annotation & Derivation

Q1: Is this statement describing superlative 
record on the scope of all table rows, or on a 
subset of all rows?
A1: Subset

Q2: The table column id for the superlative 
information?
A2: 4 (attendance)

Q3: Is the superlative action taking the numerical 
maximum, or minimum value in this column?
A3: maximum

Q4: The table row id of this superlative value?
A4: 3

Q5: Is this superlative value itself mentioned in 
the statement?
A5: Yes

Q6: On this row with the superlative value, what 
are the other column(s) mentioned (or n/a)? 
A6: 1 (date)

Scope annotation
Q1: The table column id to choose the subset?
A1: 3 (game site)

Q2: Select the criterion, based on which we filter 
the table values to select this subset. 
A2: equal

Q3: The value to be filtered for selection of this 
subset; 
A3: mile high satdium

logical form prototype for logic type superlative

and {
   # the superlative value
   max / min { scope ; column_superlative } = value ; 

   # other columns mentioned
   hop { row_superlative ; other_column_1 } = value_1 ;
   hop { row_superlative ; other_column_2 } = value_2 ;

…
}

Logic type: superlative

Statement: in the 1980 denver broncos season the highest attendance at the mile high 
satdium was 74970 on september 21st.

logical form annotation in a conversational setting

game 
siteall_rows mile high 

stadium

filter_eq

max argmax74970

equal

attendance

hop

date

equal

sep 21

and

logical form derivation

The derived logical form in a graph view

scope:
    filter_eq { all_rows ; game site ; mile high stadium }

row_superlative:
    argmax { scope ; attendance }

the superlative value ( maximum attendance ):
    max { scope ; attendance } = 74970

other columns mentioned ( date information ):
    hop { row_superlative ; date } = seq 21

the derived logical form:
and { 
     eq { max { filter_eq { all_rows ; game site ; mile 
high stadium } ; attendance } ; 74970 } ;
     eq { hop { argmax { filter_eq { all_rows ; game site 
; mile high stadium } ; attendance } ; date } ; sep 21 } 
} = True

1980 denver broncos season
date opponent game site attendance

sep 7 philadelphia eagles veteran 's stadium 70307

sep 14 dallas cowboys mile high stadium 74919

sep 21 san diego chargers mile high stadium 74970

sep 29 new england patriots schaefer stadium 60153

oct 5 cleveland browns municipal stadium 81065
... ... ... ...

Figure 5.3: logical form annotation & derivation: Note that in this example the
questions are all in concise forms. In the AMT interface shown to the workers, we
write instructions in a more casual and detailed manner, accompanied by several
examples.

As the core step of our dataset construction pipeline, we design a workflow to obtain

the semantic information via conversations with human workers, then use the information

to derive the logical forms. The questions in the conversation are specifically designed
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for each logic type. Here we go through the example of logic type superlative given in

Figure 5.3 to illustrate our annotation process.

The logical form structure prototype is shown in the right grey part, consisting the

description of the superlative value, and other mentioned columns on the row with the

superlative value. Then we ask the follow-up questions to derive the complete logical

form based on the prototype, shown on the left part of Figure 5.3: Q1. What is the

scope of the superlative operation? If the scope is a subset of all table rows, we perform

another round of conversation to annotate the scope. Q2. What is the table column of

the superlative operation? Q3. What is the specific type of the superlative operation:

maximum or minimum. Q4. What is the table row with the superlative value. Q5.

Is the superlative value itself mentioned in the description or not? Q6. What are the

other columns mentioned in the description? After collecting the answers of the above

questions, we can derive the logical form, as shown in the middle part of Figure 5.3.

We provide the workers with detailed explanations of the prototype for each logical

types, as well as several examples. Note that the prototype covers most, but not all of

the logical descriptions due to their diverse nature. Thus we also provide the option to

skip the example if it cannot be formulated by the given question set. Check D for the

annotation process of other logic types.

5.3.3 Logical Form Execution & Verification

After the collection of logical forms, we use the Stanford CoreNLP toolkits4 to tokenize

all text content (all table information, the descriptions, and the texts in the logical forms).

To remove incorrect logical forms, we execute the logical forms and perform another round

of semantic verification.

Logical Form Execution The functionality in our logical form is based on the ones

4https://stanfordnlp.github.io/CoreNLP/index.html
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used in [117]. We extend the function set to deal with semi-structured table cells (dates,

mixed numbers and strings, etc.). We execute all logical forms against the corresponding

table, and only keeps the ones that evaluate to True. This guarantees that the logical

forms in our dataset achieve 100% execution correctness.

Semantic Verification Note that execution correctness does not guarantee semantic

correctness. Therefore we perform another round of semantic verification. Since AMT

workers do not have experts knowledge to understand the logical forms, we convert

the logical form into natural language interpretation based on the operations of each

function. We then ask the workers to verify whether the interpretation correctly matches

the meaning of the description, with neither insufficient nor redundant information. Then

we remove the examples receiving negative responses.

Expert Evaluation To demonstrate the quality of our dataset, we employ two com-

puter science graduate students to conduct evaluations. We randomly sample 200 ex-

amples for each logic type to verify the semantic correctness. Each example is examined

by both students, and the decision is made after discussion. The result shows that each

logic type reaches a correct rate no less than 90%.

Tables 5,554
Examples 10,753
Vocabulary 14.0k
Avg. description length 16.77
Avg. # nodes in logical form 9.00
Avg. # function nodes in logical form 3.27
Avg. length of the linearized logical form 24.35

Table 5.1: General statistics of Logic2Text.
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Figure 5.5: The distribution of our dataset regarding the number of all nodes (Left)
and function nodes (Mid) in the logical form. Right: average number of all nodes and
function nodes in the logical forms for each logic type.

5.4 Dataset Statistics and Analysis

We follow a rough ratio of 8:1:1 to split our dataset into 8,566 for training, 1,095 for

development, and 1,092 for testing. The train, dev, and test sets have no overlap tables.

We show the statistics of the dataset in Table 5.1 and the distributions of 7 logic types

in Figure 5.4. Each table has 1-3 descriptions with different logic types. Since the logical

forms present graph structure nature, we analyze the complexity of the logical forms

based on the number of nodes in the graph, regarding the number of function nodes

(count, max, etc.) and the number of all nodes (both function nodes and text nodes),

respectively. As shown in Figure 5.5, the logical forms in Logic2Text have a minimum

of 5 nodes and maximum over 14 nodes. For different logic types, comparative has the

most number of nodes, because it involves the selection and operation for two table rows.

superlative, ordinal, and unqiue primarily focus on one table row, sometimes with
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scope
column

all_rows scope
value

filter_op

max / min
argmax / argmin

sup
value

equal

sup
column

hop

column_1

equal

value_1

and

scope
column

all_rows scope
value

filter_op

equal

subject
columnall_rows

subject
value

filter_eq

subject
column

subject
value

filter_eq

hop hop

column to
compare

compare_op

and

count
column

count
value

filter_op

count count
result

(a)  Logic type count (b)  Logic type superlative (c)  Logic type comparative

scope selection scope selection

other 
columns of 
the row

other 
columns 
of the 
row

other 
columns 
of the 
row

superlative
value

Figure 5.6: Overview of logical form structures for logic type count, superlative, and
comparative. (a) count: the structure in the green shadow is optional, representing
the scope of counting. It can be all table rows (a single text node) or a subset of
rows from a filter operation. (b) superlative: the structure in the orange shadow
is optional, depending on the presence of the max/minimum value in the description.
The structure in the yellow shadow appears 0 or more times.

the scope being a subset of all table rows, which makes the logical forms more complex.

count, majority, and aggregation are summarization based logic types on multiple

table rows. They are the three relatively simpler ones in terms of logical form structures.

Figure 5.6 gives the logical form structures for 3 example logic types.

5.5 Experiments

In this section we first describe the baseline models of our dataset in §5.5.1; Then we

conduct experiments in fully-supervised setting §5.5.2; We demonstrate the importance

of the logical form in §5.5.3 and perform ablation studies in §5.5.4; At last we carry out

experiments under few-shot setting §5.5.5.
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5.5.1 Baseline Models

Apart from the logical forms serving as the primary input to the generation model,

the table information is also crucial to provide context information. Following human’s

order to comprehend the table and produce descriptions, the input C is formulated as

the sequence of table captions, table headers, table content, and the logical form. The

goal is to generate a sequence w that maximize P (w | C):

w = argmax
∏

P (wt | w0:t−1, C) (5.1)

We employ the following models as our baselines for Logic2Text:

Template We manually craft generation templates for each logic type based on the

logical form.

Seq2seq+att We employ the seq2seq with an attention model from [138]. The

input sequence is formulated as the concatenation of the table caption, table headers,

the linearized table content, and the linearized logical form.

Pointer generator [112] adds the copy mechanism upon the seq2seq with an atten-

tion model, allowing the decoder to copy tokens from the input directly. Such a mech-

anism is known to be critical for fidelity-preserving generation with abundant entities,

numbers, etc.

Graph2seq+copy There is a line of research for graph neural network based en-

coders, such as [139, 140], etc. We employ one representative model, Graph2seq [140],

to encode the logical forms. The table caption and headers are first fed into a seq2seq,

followed by the graph encoder for the logical form. We also add the copy mechanism to

allow copying from the input.

Transformer+copy The popular Transformer model [83] has shown remarkable

progress in many tasks including NLG. In addition to the original Transformer struc-
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ture, we add the copy mechanism where the last hidden layer is used to calculate the

attention score and the copy switch. We also add segment embeddings for different input

components, similar as [39].

GPT-2 Generally, with Transformer based structures, recent large-scale pre-trained

models have achieved new SOTA results in a wide range of NLP tasks. A typical workflow

is to use the pre-trained model as initialization, then fine-tune the model on task-specific

data. In this work, we employ the generative pre-training model, GPT-2 [98], as one of

our baselines.

For all neural models we use Byte-Pair Encoding (BPE) [114] and the subword

vocabulary used in [98]. Refer to D for more implementation details.

5.5.2 Fully-Supervised Setting

For automatic evaluations, we employ BLEU-45 (B-4), ROUGE-1, 2, 4, and L (F

measure)6, noted as R-1, R-2, R-4, and R-L. The results for all baselines are presented

in Table 5.2.

For models without pre-training, the copy mechanism brings a significant improve-

ment, comparing pointer-generator and seq2seq. This is because the descriptions in our

dataset involve much factual information from the table and the logical form, e.g., en-

tity names, and numbers. However, the pre-trained language model GPT-2 can mostly

accurately produce these factual terms even without a copy mechanism, demonstrating

the powerful prior knowledge obtained from large-scale pre-training.

Compared to the pointer generator, which takes linearized logical form as input,

Graph2seq+copy directly models the graph structure and gets a slight improvement. The

Transformer+copy model obtains better performance than the Graph2seq+copy model,

5Standard script NIST mteval-v13a.pl
6rouge-1.5.5.
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Models B-4 R-1 R-2 R-4 R-L

Template 17.57 50.56 24.20 6.61 37.81

Seq2seq+att 12.46 36.22 15.91 4.49 31.03
Pointer generator 24.03 56.23 30.51 10.78 46.85
Graph2seq+copy 25.38 58.15 32.79 12.25 49.47
Transformer+copy 26.42 58.77 33.05 12.83 49.01
GPT-2 31.44 64.16 39.48 17.46 53.99

Table 5.2: Automatic evaluation results for all baseline models under fully-supervised setting.

as the Transformer architecture is indeed a graph neural network with self-attention

as aggregation function over the neighbors and regards the input as a fully-connected

graph. Recent works [141, 142, 143] have shown that Transformer-based structure can

capture hierarchical syntactic structures and graph representations. The GPT-2 model

obtains the best performance among all with a significantly larger improvement. As a

pre-trained language model with the Transformer structure, it combines the strength of

both structural modeling and language modeling prior. Some example generations are

provided in D.

Human Evaluation

Automatic scores are not sufficient for precise evaluation of factual and logical correct-

ness. Therefore we conduct human evaluations through (1) crowdsourcing on Amazon

Mechanical Turkers (AMT), and (2) human expert evaluations.

For human evaluations on AMT, we randomly sample 500 examples from each of the

top best-performing methods (GPT-2 and Transformer+copy), and the gold references.

The evaluations are conducted on two axes: factual correctness and language fluency.

For factual correctness, we ask the workers to verify whether the description is factually

supported by the table; For language fluency, we conduct pairwise comparisons between

different methods. For both evaluations, we distribute each task to 3 workers to eliminate
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human variance. The evaluation results of language fluency and factual correctness are

shown in Table 5.4 and the first row of Table 5.3, respectively. For more details of

the evaluation, check D. To conduct a precise evaluation of semantic correctness, i.e.,

Gold GPT-2 Transformer+copy

% factually correct 98.1 82.4 65.1
% semantically correct 92.0 73.0 43.0

Table 5.3: Human evaluation results of factual correctness (first row) and semantic
correctness (second row).

% win % loss % tie

GPT-2 vs Gold 35.6 43.3 21.1
GPT-2 vs Transformer+copy 54.0 25.3 20.7
Gold vs Transformer+copy 61.2 23.6 15.2

Table 5.4: Human evaluation results of language fluency.

whether the generation correctly matches the meaning of the logical form, we invite

human experts (two computer science graduate students) to perform the evaluation. We

sample 200 examples from each method and ask them to verify whether the description

correctly presents the meaning of the logic form. Each example is examined by both

students, and the decision is made after discussion. The second row of Table 5.3 shows

the evaluation results.

As we can observe from all evaluation results, the GPT-2 model gives big improve-

ments on both fidelity preserving and language fluency, but there’s still a gap, especially

on semantic correctness. We believe our dataset can serve as a valuable resource posing

such a challenge on high-fidelity generation with complex semantics.
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5.5.3 Importance of the Logical Form

We conduct experiments without using the logical form, i.e., to generate arbitrary

logically correct descriptions solely based on the table, which is the task setting of [127].

The generation is evaluated with all descriptions of the same table as multi-references, as

in their setting. The best performing model of [127] obtains a BLEU-4 score of 20.17 and a

factual correctness rate of 20.2% based on human evaluation of 500 samples. In contrast,

the generations of our best -performing baseline can obtain a factual correctness rate of

82.4% shown in Table 5.3, which demonstrates the great importance of the logical form

on high-fidelity generation. Note that the automatic scores are not directly comparable,

since, in our task setting, each generation maps to a unique logical form and is evaluated

with a single reference.

5.5.4 Component-Wise Ablation

Models B-4 R-1 R-2 R-4 R-L

GPT-2 31.44 64.16 39.48 17.46 53.99

-w/o caption 21.67 54.26 29.16 9.99 45.70
-w/o header 29.86 62.98 38.46 16.64 52.57
-w/o content 30.42 64.17 38.89 16.79 53.63

Table 5.5: Ablation study on other input components.

We perform ablation studies on other input components: the table caption, header,

and content, using the best-performing GPT-2 model. As shown in Table 5.5, both the

table caption and header provide strong context information for generation, and the table

content also brings a slight improvement.
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5.5.5 Few-Shot Setting

Considering that acquiring a large amount of (logical form, description) pairs in real-

world cases is expensive, we also include a few-shot learning task for our dataset, where

the model is only provided with hundreds of paired examples. Previous works have shown

that the pre-trained language models obtain strong NLG performance even with a handful

of fine-tuning instances [116]. Therefore we still use the best-performing GPT-2 model

for this study. In our dataset, the amount of unseen logical form structures increases

with the reduction of training instances. As shown in Table 5.6, while there’s still a gap

with the fully-supervised result, the result with 1,000 training instances using GPT-2 is

comparable to some other baselines with the full training data. This demonstrates the

potential of incorporating generative pre-training for the few-shot learning task.

# of examples B-4 R-1 R-2 R-4 R-L

Full 31.44 64.16 39.48 17.46 53.99

100 17.09 48.26 23.52 7.47 38.74
200 19.98 51.99 27.02 9.42 41.86
500 23.04 56.64 30.99 11.35 46.86
1000 24.57 57.81 32.64 12.21 47.67

Table 5.6: Results for few-shot learning setting with 100, 200, 500, and 1000 training
examples, using GPT-2.
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Chapter 6

Knowledge-Enriched Task-Oriented

Dialogue

6.1 Introduction

Dialogue systems have achieved substantial progress [144, 64, 145] due to recent suc-

cess in language model pre-training [98, 146, 147]. One major type of dialogue being

studied is task-oriented dialogue (TOD) [62, 63, 148, 64], where the system aims to

collect user intents/goals to complete certain tasks (e.g. restaurant-booking). In most

of TOD systems, the system responses are concise and templated, as we only focus on

the success of task completion but not providing a natural and engaging conversational

experience. The latter is the target of another kind of popularly studied dialogue -

knowledge-grounded chit-chat [86, 149, 150, 151]. Knowledge-grounded chit-chat enables

dialog systems to access external knowledge so that they can provide more engaging and

knowledgeable conversations and in the same time reduce hallucinations [152].

Existing studies mostly focus on one specific type of dialogue, either task-oriented

dialogue or knowledge-grounded chit-chat. However, the ultimate goal of Conversational
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AI is a human-like, unified system capable of conversing with the users naturally and

seamlessly among all kinds of dialogues. Current TOD systems can hardly make in-

teresting and engaging conversations only with templated functional responses. Few

previous works like ACCENTOR [153] have studied the combination of TOD and chit-

chat, but their chit-chat augmentation is largely limited to simple general responses like

‘you’re welcome’, ‘sounds good to me’. In this work, we propose to enrich TOD with

knowledge-grounded chit-chat, as one step further towards the ultimate goal of building

a human-like, unified system (See Figure 6.1 for an example). We believe that the pro-

posed knowledge-enriched TOD system can conduct more social, natural, and engaging

conversations.

I would like to see a Musical show. 
system

user

I would like to find an event around SD.

What type of event do you prefer?

KETOD

Alejandro Sanz is at Cal Coast Credit Union 
Amphitheater on March 7th at 7:30 pm. He 
is known for flamenco-influenced ballads, 
but experiments with other genres too,  it's 
sure to be a good show!

Knowledge from Wikipedia
Alejandro Sánchez Pizarro, better known as Alejandro Sanz 
born December 18, 1968), is a Spanish musician, singer and 
composer. … The singer is notable for his 
flamenco-influenced ballads, and has also experimented with 
several other genres including pop, rock, funk, R&B and jazz.

system

user

Figure 6.1: An example from the KETOD dataset: the green text is our enriched
chit-chat based on the entity knowledge of Alejandro Sanz in the original TOD. Such
knowledge-grounded chit-chat makes the dialogue more natural and engaging.

To this end, we propose a new dataset, KETOD (Knowledge-Enriched Task-Oriented

Dialogue). In order to obtain natural and high-quality knowledge-grounded chit-chat,

we design the dataset construction framework by augmenting existing TODs and us-

ing the relevant entity knowledge to make the chit-chat enrichment. Specifically, for a
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given TOD, 1) extracting the entities from the dialogue states and actions; 2) retrieving

the knowledge associated with the entities from external knowledge sources; 3) asking

the human annotators to enrich the system responses with chit-chat using the retrieved

knowledge. We demonstrate that the knowledge-enriched dialogues constructed with

the proposed framework are consistently preferred by human judges across all axes of

engagingness, interestingness, knowledge, and humanness.

We propose two models, and study the challenges and insights of our new dataset.

The first model is an end-to-end language model that jointly learns and generates both

the TOD results (dialogue states and actions) and the knowledge-enriched responses.

The second model is a pipeline that first generates the TOD results, then uses another

response generation model to generate the knowledge-enriched responses. We run com-

prehensive experiments to demonstrate the improvement over the baselines, and show

that our models can generate better knowledge-enriched responses while maintaining

competitive performance on the TOD tasks. To summarize, we make the following ma-

jor contributions:

• We propose the task of combining TOD and knowledge-grounded chit-chat.

• We construct a new large-scale dataset, KETOD, with high-quality, manually anno-

tated dialogue responses enriched with knowledge-grounded chit-chat. The dataset

is publically available.

• We propose two models for our dataset, and carry comprehensive experiments to

study the challenges and insights. We believe our dataset should be a valuable

resource for building a human-like conversational assistant.
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6.2 Related Work

Task-oriented dialogue. Task-oriented dialogue (TOD) has been one of the most

popular types of dialogue in the research community. There have been many works

on building each component of the TOD system, such as dialogue state tracking, action

prediction, and response generation [75, 154, 155, 20, 21, 156, 72, 157]. Later works begin

to investigate building end-to-end systems [158, 156, 159, 160]. Most recent works on

TOD also apply such language model pre-training style methods on building end-to-end

systems [64, 161, 162], achieving top performances on various datasets. Popular datasets

in TOD include the DSTC challenge series [163], MultiWOZ [63], SGD [148], etc. As

the primary goal of TOD is the successful completion of the functional tasks, the system

responses are mostly concise and templated.

Chit-chat dialogue. Another type of popular studied dialogue is chit-chat, with the

goal of making a natural and engaging conversation. Apart from the ‘pure’ simple chit-

chat that mostly covers plain and general responses, more works focus on knowledge

groundings to achieve better specificity and engagingness, such as using user profiles [149],

social media contexts [164], or knowledge graphs [150, 165], etc. In this work, our en-

riched chit-chat is grounded on open-domain knowledge, similar as the Topical-Chat [166]

and the WOW dataset [151], where the system converses with the users about certain

topics involving entity knowledge in an open-ended setting. In contrast, their datasets

specifically focus on knowledge-grounded chit-chat, while our dataset combines TOD and

such chit-chat.

Combination of task-oriented dialogue and chit-chat. ACCENTOR [153] pro-

poses to combine TOD with chit-chat by prepending or appending chit-chat to the TOD

system responses. But their chit-chat is mostly general responses like ’sounds good!’,

’you’re welcome’. FusedChat [167] proposes to insert chit-chat turns into TOD as well
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as re-writing TOD turns, but their chit-chat is still mostly general responses or based

on commonsense knowledge. Kim et al. [168] propose to insert additional turns into

TOD, where the system needs to respond based on the knowledge from domain FAQs.

The DSTC10 task 2 [169] is based on the dataset from [168] with a similar focus. Hy-

Know [170] also proposes to insert turns into TOD grounded on knowledge from un-

structured documents. These datasets focus on the challenge of detecting those turns

requiring external knowledge and selecting the knowledge to generate the responses. In

contrast, our dataset focuses on injecting knowledge-grounded chit-chats into the origi-

nal TOD responses, to make the dialogue more natural and engaging. Our dataset poses

more challenges in selecting knowledge based on the dialogue context and generating the

responses with both the correct TOD information and the chit-chat seamlessly.

6.3 The KETOD Dataset

6.3.1 Dataset Construction

In this section, we describe our framework to construct the KETOD dataset. We start

from existing TOD datasets and employ human annotators to augment the functional

system responses with knowledge-grounded chit-chat. The proposed approach is demon-

strated to give natural, contextual-relevant knowledge enrichment, and meanwhile easy

to scale to different datasets. Figure 6.2 gives an overview of the dataset construction

pipeline.

Data preparation. We build upon the SGD dataset [148], with TOD spanning 16

domains, such as Restaurant, Wheather, etc. Given each TOD, to obtain the knowledge

relevant to the dialogue context, we first extract all the entities from the dialogue states

and actions. We exclude the domains Alarm, Banks, and Payment as there are mostly
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Task-oriented dialogue

User: Can you find me some 
songs? Any album is fine

System: A: How does A Little Bit 
Stronger by Sara Evans in the 
album Stronger sound? 

…

Song name: 
A Little Bit Stronger

Singer: 
Sara Evans

Album: 
Stronger

Dialogue states/actions

A Little Bit Stronger: "A Little Bit 
Stronger"  … is a mid-tempo country 
ballad, backed by mandolin, steel 
guitar, piano, and percussion. The 
song's female narrator describes 
going through her daily routine and 
being constantly reminded of her 
former love interest ...

User: Can you find me some songs? Any 
album is fine

System: How does A Little Bit Stronger 
sound? A mid-tempo country ballad, with 
the female narrator telling the pain of her 
former love. It’s by Sara Evans in the 
album Stronger.

Knowledge source Knowledge-enriched 
Task-oriented dialogue

Figure 6.2: The pipeline of dataset construction: for each task-oriented dialogue, we
first extract all the entities from the dialogue states and actions. Then we retrieve the
knowledge associated with each entity from external knowledge sources (Wikipedia).
At last, we ask human annotators to enrich the TOD system responses with chit-chat
grounded on the retrieved knowledge.

no entities involved in these domains; Also, to simplify the human annotation process in

the next step, we remove the dialogues with over 10 entities involved.

Knowledge retrieval. For each entity, we use the concatenation of the domain name

and entity name as the query to retrieve Wikipedia articles. We use the DrQA re-

triever [171] to retrieve the top 2 Wikipedia articles and take the first 2 paragraphs of

each article as the knowledge candidates associated with each entity. Then we break the

retrieved articles into sentences, with each sentence as one knowledge snippet.

Response enrichment. In this step, we employ human annotators to enrich the system

responses in the original TOD based on the dialogue context and the retrieved knowledge.

For each TOD, we present to the annotators the full dialogue, as well as all the knowledge

snippets associated with the entities in the dialogue. The annotators can click on each

entity name to see the associated knowledge snippets in an expanded textbox. See E for

our annotation interface.

The annotation process is as follows: 1) Read the full dialog first to have an overall

story in mind, as well as the relevant knowledge snippets, then to decide how many turns

to enrich with chit-chat and which turn(s) to enrich; If there is no way to make a natural

chit-chat enrichment, skip the example. 2) After deciding the turn(s) to enrich with the

chit-chat, select the knowledge snippets used to make the enrichment (at most 3 snippets
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for each turn); 3) Rewrite the system response to enrich with chit-chat grounded on the

selected knowledge snippets; The functional information in the original response should

be maintained, while may be rephrased to make the enriched response more natural.

To ensure the dataset quality, we first interview the annotators to select the appro-

priate hires through a few test examples. Then we launch a training session for all the

annotators to learn the task and the annotation interface. We launch the official batches

after the annotators can well-master the task. During annotation, we specifically empha-

size the contextualization of the knowledge-grounded chit-chat - the enrichment should

be contextualized closely on the dialogue context, but not a plain restatement of the

knowledge snippets.

6.3.2 Dataset Statistics and Analysis

We end up with 5,324 dialogues with enriched system responses. We make the split

of 4,247/545/532 as the train/dev/test set. Table 6.1 shows the statistics of the KETOD

dataset. Around 12.1% of the turns (which indicates mostly 1 or 2 turns in one dialogue)

are enriched with knowledge-grounded chit-chat. This intuitively complies with our goal

of making the whole dialogue natural and engaging, since too frequent chit-chat may

result in redundancy and unnaturalness.

Quality assessment of the annotation. During the annotation process, around 12%

of the dialogues cannot be enriched with any turns and thus discarded. It takes around

100 seconds for the annotators to finish each dialogue. To assess the quality of the

annotation, we sample 5% of the annotated dialogues and distribute them to linguistics

to check: 1) If the chit-chat enrichment is relevant and natural; 2) If the knowledge

snippets are accurately selected corresponding to the enrichment. We end up with a

correct rate of 87.0%.
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Dialogues 5,324
Vocabulary 27k
All turns 52,063
Turns enriched with chit-chat 6,302
All entities 4,639
All knowledge snippets 33,761
Avg. # turns per dialogue 9.78
Avg. # tokens in enriched responses 28.07
Avg. # entities per dialogue 4.98
Avg. # knowledge snippets per dialogue 70.50

Table 6.1: General statistics of KETOD.

Justification of the chit-chat enrichment. To demonstrate that our proposed knowledge-

enriched TOD can be more natural and engaging, we conduct human evaluations to com-

pare KETOD dialogues and their corresponding original TOD dialogues without chit-chat

enrichment (SGD). We follow [172] to make pairwise comparisons of the full dialogues

over the following four axes: engagingness, interestingness, knowledge, and humanness.

The results in Figure 6.3 show the superiority of KETOD over all axes.

Figure 6.3: Results of pairwise comparison of KETOD vs SGD.
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6.4 Approaches

In this section, we will describe the proposed two models for the KETOD dataset.

6.4.1 Overview and Formulations

For each dialogue turn, denote the dialogue context (history) as C, belief states as

B, database search results as D, actions as A, the knowledge snippets used for chit-chat

enrichment as K, the response as T . Then we formulate the problem as: given the

dialogue context C and a knowledge source (Wikipedia in this dataset), the target is to

generate the belief states B, actions A, and the response T , which may be enriched with

chit-chat grounded on the knowledge based on the context. The goal of the optimization

on KETOD is two-folded: 1) Optimizing the generation of knowledge-enriched responses;

2) Maintaining the task performances;

In this work, we propose the following modeling framework on KETOD: 1) given

the dialogue context, generate the belief states and actions; 2) extract the entities in the

belief states and actions, then use these entities to retrieve knowledge candidates (similar

as in the dataset construction process); 3) conditioned on the dialogue context, use a

knowledge selection model to select knowledge snippets from the knowledge candidates

retrieved; 4) generate the knowledge-enriched response conditioned on both the dialogue

context and the selected knowledge snippets.

Based on the above general framework, we propose two architectural approaches,

SimpleToDPlus and Combiner, respectively in §6.4.3 and §6.4.4.

6.4.2 Knowledge Selection

After the generation of belief states and actions, we retrieve the knowledge snippet

candidates from Wikipedia using the entities in the belief states and actions. The average
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SimpleToD

db result knowledge snippets response

Knowledge 
retrieval

Knowledge 
selection

Inference

SimpleToD

context belief db result action

Task-oriented dialogue model

GPT-2

context

Response generation model

action knowledge snippets

response

Knowledge 
retrieval

Knowledge 
selection

Inference

context belief action

Figure 6.4: Illustration of the models. Left : the SimpleToDPlus model; Right : the
Combiner model;

number of knowledge snippets candidates retrieved for each dialogue is around 70. It

is impractical to input all of them into the models due to the large amount. As we

have the annotation for the ground truth knowledge snippets used for each chit-chat

enrichment, we train a knowledge selection model to select the top knowledge snippets

most appropriate for chit-chat enrichment. Specifically, we concatenate the dialogue

context with each knowledge snippet as the input. Then we use BERT [39] to train a

simple classifier to rank all the knowledge snippets candidates. We take the top 3 ones

as the knowledge selection results. We use the same knowledge selection model for both

architectures.

6.4.3 SimpleToDPlus

SimpleToD [173] is a recent popular approach on TOD, which uses one single language

model to sequentially generate the belief states, actions, and responses. It has achieved

strong performances in all the above functional tasks. In this work, we propose its

extension, SimpleToDPlus, to generate knowledge-enriched responses for TOD. The

left part of Figure 6.4 shows the overview of SimpleToDPlus. We formulate the training

sequence as:

[C,B,D,A,K, ¡chitchat¿, T ] (6.1)
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Where ¡chitchat¿ is a tag to indicate the decision of whether to enrich the response with

knowledge grounded chit-chat or not. If the response is not enriched, we insert the tag

¡nochitchat¿. Since the number of the gold knowledge snippets varies from 1 to 3 (as

in the dataset construction), to be compatible with inference time, here we first run the

knowledge selection model on all training instances. Then we construct the knowledge

snippets K as the merge of the gold knowledge snippets and the knowledge selection

model results, truncated to 3 ones. If the response is not enriched with chit-chat, i.e.,

no gold knowledge snippets, we still put 3 snippets from the knowledge selection model

ranking results here during training.

In the inference time, we first sequentially generate the belief states and actions.

Then we extract the entities from the generated belief states and actions, and apply

the same process of knowledge retrieval as in dataset construction. Next, we run the

knowledge selection model on the retrieved knowledge candidates and take the top 3

knowledge snippets as the model input followed by the generated actions. At last, the

model generates the decision to make chit-chat enrichment or not, followed by the final

response.

Since the knowledge-enriched response is conditioned on the entity knowledge from

the belief states and actions, we need to directly include the entities in the actions and

responses during generation, instead of generating a delexicalized result first and then

lexicalizing in the post-process as in the original SimpleToD. To simplify, we use the

oracle database search results for all the experiments.

6.4.4 Combiner

SimpleToDPlus models all the generations in an end-to-end manner. In Combiner,

we use a pipeline of a TOD model followed by a response generation model to separate the
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Models Joint GA Avg GA Act-Slot F1 BLEU-4aug BLEU-4orig BLEU-4all

SimpleToD-ref 27.6 54.2 67.6 - - -

SimpleToD 23.7 50.1 62.7 4.8 10.7 10.0
SimpleToDPlus 28.6 52.2 66.9 6.3 11.7 11.0
Combiner 24.5 51.5 64.5 6.5 9.9 9.5

Table 6.2: Main experiment results: Both SimpleToDPlus and Combiner outperform
the baseline. Overall SimpleToDPlus obtains better response generation performance
while maintaining competitive TOD performance.

TOD part (belief states, actions) with the generation of knowledge-enriched responses.

The goal is to study whether an independent model can better learn each task with less

interference from the other. The overview of the architecture is shown on the right of

Figure 6.4.

For the TOD model, we use SimpleToD to generate the belief states and actions, with

the training sequence as:

[C,B,D,A] (6.2)

We find that including the knowledge-enriched responses during training degrades the

task performance, indicating the disturbance from the ungrounded knowledge in the

responses.

For the response generation model, we use GPT-2 [98] with the concatenation of the

dialogue context, actions, and the knowledge snippets as the prompt:

T = GPT-2(C,A,K) (6.3)

We use the same way of constructing the merged knowledge snippets during training,

and the same process of knowledge retrieval and selection during inference as in Simple-

ToDPlus.
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6.5 Experiments

Baseline model. We use SimpleToD [173] as our baseline model, i.e., with the training

sequence as [ C,B,D,A, T ], without the injection of knowledge snippets. Therefore the

knowledge-grounded chit-chat in the responses T do not have any knowledge groundings

- we aim to show the necessity of knowledge grounding for our task, as well as the

effectiveness of our proposed models to incorporate knowledge.

Experimental setups and evaluations. Check E for details of model training and

parameter settings. For the TOD performances, we evaluate the belief states with joint

goal accuracy (Joint GA) and average goal accuracy (Avg GA), and the actions with act-

slot F1, same as [153]. For the automatic evaluations of response generation, we use three

BLEU-4 scores: BLEU-4aug for evaluating the responses enriched with knowledge; BLEU-

4orig for evaluating the responses not enriched with knowledge; BLEU-4all for evaluating

all responses;

6.5.1 Main Results

Performance on response generation. Table 6.2 shows our main experiment re-

sults. For the performances on response generation, we can see that both of our pro-

posed models, SimpleToDPlus and Combiner, improve on the knowledge-enriched re-

sponse generation (BLEU-4aug) over the SimpleToD baseline. Since in the baseline, we

do not include the knowledge snippets in the input, the generated responses are mostly

enriched with random knowledge or frequent knowledge in the training data. The im-

provements demonstrate the necessity of knowledge grounding and the effectiveness of

the proposed knowledge enrichment methods. Combiner performs slightly better on

knowledge-enriched responses than SimpleToDPlus but falls short on the responses with-

out knowledge-enrichment (i.e., original TOD responses). This is partially because of
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its pipeline nature - a separated response generation module can better learn the knowl-

edge enrichment without the disturbance of other tasks, but the error cascading from the

generated actions degrades the performance of the TOD responses part.

Performances on belief states and actions. To better study how the knowledge

enrichment affects the TOD performances, we first train SimpleToD on our dataset with-

out the knowledge enrichment, i.e., replace all the knowledge-enriched responses with the

original responses in SGD. We name it as SimpleToD-ref in Table 6.2, serving as a refer-

ence of the original TOD performances. The SimpleToD baseline gives largely degraded

performances due to the disturbance from the ungrounded knowledge in the responses

during training. Therefore in Combiner, we do not include the responses in the train-

ing sequences of the TOD model (specified in section 6.4.4), and obtain better scores.

SimpleToDPlus achieves the best TOD performances, which are nearly competitive with

SimpleToD-ref. This is partially due to the enhancement of language modeling ability

brought by the training on the responses grounded on the input knowledge.

Human evaluations. In order to get the more comprehensive measure of the response

generation performances, we conduct human evaluations for both dialogue-level pairwise

comparison and turn-level factualness evaluation. For dialogue-level pairwise compari-

son, we randomly sample 200 dialogues from the test set and apply the same process

as in dataset evaluation (6.3.2). For each model, we construct the full dialogue results

by concatenating the generated response for each turn given the gold dialogue context.

Table 6.3 shows the results of pairwise comparison between the SimpleToDPlus model

and the Combiner model, demonstrating SimpleToDPlus is more performant. Table 6.4

shows the results of pairwise comparison between SimpleToDPlus and the gold reference,

indicating there is still a large room for further improvements. See E for the human

evaluation results of comparing both methods to the baseline. For turn-level factualness

evaluation, we randomly sample one turn with chit-chat enrichment from each dialogue,
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Metrics
SimpleToDPlus win

(%)
Combiner win

(%)
Tied
(%)

Engagingness 47.8 24.5 27.8
Interestingness 34.5 19.0 46.5
Knowledge 29.5 26.3 44.3
Humanness 43.3 23.8 33.0

Table 6.3: Human evaluation of SimpleToDPlus vs. Combiner.

Metrics
SimpleToDPlus win

(%)
Gold win

(%)
Tied
(%)

Engagingness 16.8 60.5 22.8
Interestingness 12.0 51.0 37.0
Knowledge 14.5 44.8 40.8
Humanness 17.3 58.0 24.8

Table 6.4: Human evaluation of SimpleToDPlus vs. Gold.

and present both the generated response and the selected knowledge snippets to the an-

notators. The annotators are asked to check whether the chit-chat in the responses are

factually correct based on the knowledge snippets. SimpleToDPlus and Combiner obtain

the factualness correct rate of 64.2% and 66.1%, respectively. In summary, Combiner

achieves better factualness of knowledge enrichment since its independent response gen-

eration model can better focus on the learning of knowledge groundings. But its error

cascading due to the pipeline nature may degrade the overall consistency and human-

likeness of the generated dialogue.

As we have two optimization goals on KETOD 1) Optimizing the generation of

knowledge-enriched responses; 2) Maintaining the task performances, we consider Sim-

pleToDPlus as a better model regarding the overall performances. We will use the results

of SimpleToDPlus for the ablations and other analyses in the rest of the experiments.
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BLEU-4aug BLEU-4all

Given gold TOD results, decision, and knowledge

SimpleToD 6.5 13.1
SimpleToDPlus 9.7 14.6
Combiner 14.6 15.1

Given gold TOD results

SimpleToD 6.3 12.8
SimpleToDPlus 7.4 14.0
Combiner 9.6 13.9

Table 6.5: Analysis of different inference stages: we provide the models with gold
results up to certain stages, and investigate the performances for the inferences on
following stages.

BLEU-4aug BLEU-4all
Knowledge selection

recall (%)

Gold 9.7 14.6 100.0
BERT selection 7.8 14.4 52.7
TF-IDF selection 6.6 13.7 14.1

Table 6.6: SimpleToDPlus response generation performance with varying knowledge
selection strategies.

6.5.2 Ablations and Analysis

Analysis of different inference stages. There are several inference stages for this task

- the TOD results (belief states and actions), the selection of knowledge snippets, and the

final response generation, where each stage is conditioned on previous results. Therefore

the errors accumulate through all the stages leading to the final performances. Here we

run another two sets of experiments to study such error accumulations and compare the

two models. Specifically, first, we feed the models with the gold TOD results, chit-chat

decisions, and knowledge snippets, to solely test the abilities to generate the knowledge-

enriched responses; Second, we feed the models with the gold TOD results to test the

following stages of knowledge selection and the response generation. The results are

shown in Table 6.5. Compared with the full inference results in Table 6.2, we can see
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BLEU-4aug BLEU-4all
Enrichment decision

F1 (%)

Gold decision 9.7 14.6 100.0
Predicted decision 8.0 14.1 58.7

Table 6.7: SimpleToDPlus response generation performance using (1) the gold set of
turns to enrich with chit-chat, and (2) the predicted set of turns.

All Hotels Movies Restaurant Music

BLEU-4aug 6.3 7.1 5.2 5.1 7.7
BLEU-4all 11.0 10.3 12.2 14.0 12.3

Table 6.8: Domain breakdown of SimpleToDPlus response generation performances.

that the Combiner model largely outperforms SimpleToDPlus if provided with more

gold results for previous stages. However, it gradually falls behind SimpleToDPlus when

moving to fully end-to-end inference due to the error cascading of its pipeline nature.

Importance of knowledge selection strategies. To demonstrate the importance

of the knowledge selection strategies (and their subsequent recall performance), we run

SimpleToDPlus with 1) gold knowledge snippets; 2) predicted knowledge snippets (with

BERT); 3) knowledge snippets selected by heuristics (we use TF-IDF matching between

the current dialogue turn and the knowledge snippets). To eliminate the influences

brought by other inference stages, we feed the model with gold TOD results (dialogue

states and actions). The results are shown in Table 6.6. There exists a certain level of

variance for knowledge selection, e.g., when recommending a song for the user, you may

talk about its genre, its singer, or the album.

Learning when to inject knowledge-enriched chit-chat. In all models, we use the

special token ‘¡chitchat¿’ and ‘¡nochitchat¿’ to indicate the decision to inject knowledge

enrichment for the responses. To study the effect of the chit-chat injection decision-

making accuracy on the overall dialogue tasks, we run SimpleToDPlus (1) with the
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User: Sure, that sounds right. Could you help me find 
some songs?
System: I found 10 songs for you. One song is Supercut 
by Lorde from the album Melodrama.

User: What other songs did you have? I like Battle Beast.
System: They're quite a well-known power metal band. I 
found 1 song for you. It is called Eden by Battle Beast from 
the album No More Hollywood Endings?

User: Sure, that sounds right. Could you help me find 
some songs?
System: I have 10 songs for you. Would you like to listen 
to Supercut by Lorde from the album Melodrama?

User: What other songs did you have? I like Battle Beast.
System: I found 1 song by Battle Beast from the album No 
More Hollywood Endings. It is a metal song by Battle 
Beast.

Battle Beast
Battle Beast is a 
Finnish heavy/power 
metal band 
established in Helsinki 
in 2005. The initial 
line-up consisted of 
guitarists…

Battle Beast
Battle Beast is a 
Finnish heavy/power 
metal band 
established in Helsinki 
in 2005. The initial 
line-up consisted of 
guitarists…

Gold PredictedKnowledge snippets Knowledge snippets

User: I would like to find an event around SD.
System: What type of event do you prefer?

User: I would like to see a Musical shows.
System: Alejandro Sanz is at Cal Coast Credit Union 
Amphitheater on March 7th at 7:30 pm. He is known for 
flamenco-influenced ballads, but experiments with other 
genres too, so it's sure to be a good show!

User: I would like to find an event around SD.
System: What type of event would you like? Music, 
Sports, or something else?

User: I would like to see a Musical shows.
System: I have 10 events that you might like. One is 
Alejandro Sanz at Cal Coast Credit Union Amphitheater. 
He is a Spanish singer-songwriter and musician.

Alejandro Sánchez 
Pizarro…  The singer 
is notable for his 
flamenco-influenced 
ballads, and has also 
experimented with 
several other genres 
including pop, rock, 
funk, R&B and jazz.

Alejandro Sánchez 
Pizarro, is a Spanish 
musician, singer and 
composer…

Figure 6.5: Case studies: two examples of comparing the generation from Simple-
ToDPlus (right) with the gold reference (left), together with the knowledge snippets
selected. Overall our model can mostly generate reasonable knowledge enrichment,
but still falls short on engagingness and consistency compared to the gold references.

ground-truth information of turns to enrich with chit-chat, and (2) with the predicted

decisions, using the gold TOD results. Table 6.7 shows the performance gap, which

highlights the importance of knowing when to inject knowledge-enriched chit-chat. While

such decisions are conditioned on the dialogue history, e.g., we may tend to not enrich

a turn if many of the previous turns are enriched to avoid redundancy, there also exists

some variance. In a real system, we may consider specifying the turns to make the

chit-chat enrichment instead of letting the model make the decision.

Domain analysis. We investigate the model performance for each domain in Table 6.8.

We observe that the performance differences may depend on the variance of the enriched

knowledge. Domains with larger variance on selected knowledge tend to have lower

automatic scores. For example, in Hotels domain, mostly the chit-chat is about the

locations since there are mostly location entities involved in this domain. But for the

restaurants domain, the enriched knowledge can be about the food, the restaurant, as

well as the location. The selected knowledge shows more diversity and variance.
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We provide case studies in Figure 6.5 to compare the predicted results with the gold

references.
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Chapter 7

Conclusion and Future Work

In this thesis, I elaborated on my work throughout my Ph.D. study toward the goal of

building an advanced, human-like AI assistant. Specifically, I contributed in both the

directions of natural language understanding and natural language generation. In this

chapter, I will make conclusions and summarize future directions for each division.

7.1 Natural Language Understanding

First, in [18], we introduce FinQA, a new expert-annotated QA dataset that aims

to tackle numerical reasoning over real-world financial data. The questions in FinQA

pose great challenge for existing models to resolve domain-specific knowledge, as well

as to acquire complex numerical reasoning abilities. We propose baseline frameworks

and conduct comprehensive experiments and analysis. The results show that current

large pre-trained models still fall far behind the human expert performance. We believe

FinQA should serve as a valuable resource for the research community. This encourages

potential future work on for such realistic, complex application domains:

• How to develop pre-training tasks to improve numerical reasoning abilities of lan-
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guage models still remains a challenging problem.

• Recent prompting-based methods demonstrate the potential to improve numerical

reasoning by proper prompt design of large language models. It is also an inter-

esting direction to explore what is the principle way to model numerical reasoning

problems, the symbolic-based approaches or prompting large language models.

Second, in [29], we investigate task-oriented dialogue and take the first step toward

building the user-centric dialogue system. We propose a new representation to model

fine-grained user preferences, and build a new dataset using our proposed representation.

sStarting from our dataset, NUANCED, we believe the user-centric dialogue system is

an open-ended problem and the following directions are worth pursuing:

• Preliminary experimental results indicate that to improve performance, it is promis-

ing to incorporate external domain texts into pre-trained models, for example, pre-

training the model on domain corpora like restaurant descriptions and reviews.

• Although our dataset collects a large set of domain entity knowledge, we still cannot

guarantee that it will cover the vast amount of unknown entities in the future. One

idea is to incorporate a knowledge base (KB) in the form of data augmentation or

modeling.

• Through our large-scale dataset, although one can learn a general agreement of

estimated distributions from the crowds, a more user-specific distribution would

be more desirable. We believe providing a personalized solution is another proper

next step to consider.
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7.2 Natural Language Generation

First, in [30], we propose the new research problem of few-shot natural language gen-

eration. Our approach is simple, easy to implement, while achieving strong performance

on various domains. Our basic idea of acquiring language modeling prior can be poten-

tially extended to a broader scope of generation tasks, based on various input structured

data, such as knowledge graphs, SQL queries, etc. The deduction of manual data cu-

ration efforts for such tasks is of great potential and importance for many real-world

applications.

Second, in [31], we study natural language generation with logical inferences. We

formulate the problem of logical-level NLG as generation from logical forms in order

to obtain controllable and high-fidelity generations. We propose a new dataset named

Logic2Text. Potential future directions include the followings:

• Among the baselines, pre-trained language model obtains the best result but still

brings factual and logical errors. It’s a challenging task for the neural models to

understand and generalize on such semantic forms.

• Human evaluations are precise but expensive. Our dataset can be used in the

reverse direction to train a semantic parser, to assist parsing-based evaluations.

• In this work, we primarily focus on the step to generate descriptions based on the

logical form. In a real-world NLG system, the logical forms should be produced

based on the end applications and user interests. Another potential future direction

could be the content selections, i.e., how to select and organize the logical forms to

construct a discourse plan based on user interests.

At last, in [32], we dive into the real application of dialogue assistants. We propose to

combine task-oriented dialogue with knowledge-grounded chit-chat, and construct a new
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dataset named KETOD, with manually composed knowledge-enriched system responses.

We conduct comprehensive experiments on our new dataset to study the insights and

challenges. We believe that our proposed task is an important step towards the ulti-

mate goal to build a unified, human-like conversational AI. Our new dataset KETOD,

annotated by experts, will greatly facilitate the research in this direction. In real-world

conversations, there are many ways that different kinds of dialogues are fused together.

In this work, we start from the more straightforward type of directly enriching the TOD

responses with knowledge-grounded chit-chat. Potential future works could be:

• Investigating other fusion strategies to combine the two kinds of dialogues, for

example, interleaving TOD dialogue turns with chit-chat turns, or integrating mul-

tiple fusion strategies.

• Investigating multiple kinds of dialogues, for example, chit-chat grounded on multi-

ple types of knowledge sources, or multi-modality knowledge sources, interactions,

etc.

7.3 Summary

My long-term research goal is to build an advanced AI assistant that can conduct

conversations and complete tasks like human beings. There are still many open problems

to be addressed by the research community, given the current research progress. Here I

emphasize two of them to be pursued next:

The Complex Reasoning Tasks We anticipate that the tasks requiring complex

reasoning beyond surface semantic understanding should be the next research focus. The

recent rapid advancement in large pre-trained language models has achieved near-human

performances in many traditional NLP tasks that mostly focus on language patterns or
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simple semantic understanding. It is becoming the major trend to train bigger language

models to capture stronger language patterns from massive corpus to provide solutions to

such traditional NLP tasks. However, when considering tasks requiring complex cognitive

reasoning, large language models often show a flat learning curve with the model size. Our

work also demonstrates such challenges. One direction for reasoning tasks is the neural

symbolic reasoning approach, as commonly studied by the community. In the other

direction, with the development of large language models these years, the prompting-

based approach also shows great potential. In the future, I am interested in studying the

principle way of imitation for human reasoning ability.

The Realization of Abstract Problems For many research problems, the research

community mostly studies abstract problem settings that extract a representative chal-

lenge aspect from the real-world problems, and formulate it into an abstract problem.

But when building real-world systems, we need to consider integration, realization, and

all kinds of constraints to bring together such abstract problems. This is one of the

most important challenges toward the ultimate goal of building a human-like assistant.

In this thesis, we take some preliminary steps to study the realistic settings of the re-

search problems, such as the new representations for fine-grained user preferences, the

new model with fewer training data, and the combination of task-oriented dialogue and

knowledge-grounded chitchat. In the future, I will keep working on bridging the gap

between abstract problems and real-world applications.
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Appendix A

FinQA: A Dataset of Numerical

Reasoning over Financial Data

A.1 Operation Definitions

We describe all the operations in Table A.1.

Name Arguments Output Description

add number1, number2 number add two numbers: number1 + number2

subtract number1, number2 number subtract two numbers: number1− number2

multiply number1, number2 number multiply two numbers: number1 · number2

divide number1, number2 number multiply two numbers: number1/number2

exp number1, number2 number exponential: number1number2

greater number1, number2 bool comparison: number1 > number2

table-sum table header number the summation of one table row

table-average table header number the average of one table row

table-max table header number the maximum number of one table row

table-min table header number the minimum number of one table row

Table A.1: Definitions of all operations
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A.2 Experiment Details

All the validation results of the baselines are shown in Table A.2. The trainings

of all models are conducted on TITAN RTX GPUs. All the implementation and pre-

trained models are based on the huggingface transformers library. We use the Adam

optimizer [61]. The parameter settings are the following:

Retriever The learning rate is set as 3e-5, with batch size of 16.

TF-IDF + Single Op We use the TF-IDF from the Scikit-learn library.

FinQANet The learning rate is set as 1e-5. For Bert-base, Roberta-base, and finBert

we use batch size of 32; For Bert-large and RoBerta-large we use batch size of 16 due to

GPU memory constraints.

Retriever + Seq2seq A bidirectional LSTM is used for encoding the input, then an

LSTM is used for decoding with attention. Learning rate is set as 1e-3, hidden size as

100.

Retriever + NeRd The parameter settings are the same as FinQANet.

Pre-Trained Longformer We truncate the maximum input length as 2,000. The learn-

ing rate is set as 2e-5, with batch size of 16 due to GPU memory constraints.

For more modeling details refer to our released code.

A.3 Case Studies

Here we provide more case studies with the full input reports. For all the examples

the gold evidence is highlighted in blue.
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Baselines
Execution
Accuracy (%)

Program
Accuracy (%)

TF-IDF + Single Op 1.65 1.65

Retriever +
Direct Generation

0.87 -

Pre-Trained
Longformer (base)

23.83 22.56

Retriever + Seq2seq 18.76 17.52

Retriever +
NeRd (BERT-base)

47.53 45.37

FinQANet (FinBert) 46.64 44.11

FinQANet (BERT-base) 49.91 47.15

FinQANet (BERT-large) 53.86 50.95

FinQANet (RoBerta-base) 56.27 53.49

FinQANet (RoBerta-large) 61.22 58.05

Table A.2: Results on validation set

A.4 Annotation Interface

We use Turkle1 to build our annotation platform, which is a Django-based web ap-

plication that can run in a local server. Figure A.3 and Figure A.4 show our annotation

interface. After the annotators finish one example, they will use the validation check

button to automatically check the validity of their inputs.

1https://github.com/hltcoe/turkle
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Input Report AWK/2014/page_121.pdf
… (abbreviate 20 sentences)...  the ppaca effectively changes the tax treatment of federal subsidies paid to sponsors of retiree health benefit plans that provide a benefit 
that is at least actuarially equivalent to the benefits under medicare part d . the acts effectively make the subsidy payments taxable in tax years beginning after december 
31 , 2012 and as a result , the company followed its original accounting for the underfunded status of the other postretirement benefits for the medicare part d adjustment 
and recorded a reduction in deferred tax assets and an increase in its regulatory assets amounting to $ 6348 and $ 6241 at december 31 , 2014 and 2013 , respectively . 
the following table summarizes the changes in the company 2019s gross liability , excluding interest and penalties , for unrecognized tax benefits: .        

balance at january 1 2013 $ 180993

increases in current period tax position 27229

decreases in prior period measurement of tax positions -30275 ( 30275 )

balance at december 31 2013 $ 177947

increases in current period tax positions 53818

decreases in prior period measurement of tax positions -36528 ( 36528 )

balance at december 31 2014 $ 195237

the total balance in the table above does not include interest and penalties of $ 157 and $ 242 as of december 31 , 2014 and 2013 , respectively , which is recorded as a 
component of income tax expense .

Question: what was the net change in tax positions in 2014?
Gold program: add(53818, -36528), add(#0, 157)

Retrieved evidence:
[1] table row: increases in current period tax positions: 27229 ;
[2] table row: increases in current period tax positions: 53818 ;
[3] table row: balance at december 31 2014:  $ 195237 ;
Predicted program: 
subtract(27229, 53818)

Figure A.1: Error case study 1: The net change in the tax position is the sum of the
increase and the decrease plus the penalties and interest. The model lacks this finance
knowledge, thus the retriever fails to retrieve the correct table rows and sentences.
Another challenging point is the table understanding, since in this case, it’s hard to
distinguish the retrieved two table rows for the year 2013 or 2014, using our method
that regards each table row as basic unit. The model needs to look at the full table
to get this global information.

Input Report K/2013/page_23.pdf-1
… (abbreviate 12 sentences)... underlying gross margin declined by 180 basis points in 2012 as a result of cost inflation , net of cost savings , and the lower margin 
structure of the pringles business . underlying sga% ( sga % ) was consistent with 2011 . our underlying gross profit , underlying sga , and underlying operating profit 
measures are reconciled to the most comparable gaap measure as follows: 

( dollars in millions ) 2013 2012 2011

reported gross profit ( a ) $ 6103 $ 5434 $ 5152

… abbreviate 10 rows ...

underlying operating profit ( d ) $ 2098 $ 2014 $ 2109

Question: if 2014 underlying operating profit increases at the same pace as 2013 , what would it be , in millions?
Gold program: divide(2098, 2014), multiply(2098, #0)

Retrieved evidence:
[1] underlying gross margin declined by 110 basis points in 2013 due to the impact of inflation , net of productivity savings , lower operating leverage due to lower sales 
volume , and the impact of the lower margin structure of the pringles business 
[2] table row: ( dollars in millions ) The underlying operating profit ( d ) of 2013 is $ 2098 ; The underlying operating profit ( d ) of 2012 is $ 2014 ; The underlying operating 
profit ( d ) of 2011 is $ 2109 ;
[3] during 2013 , we recorded $ 42 million of charges associated with cost reduction initiatives .
Predicted program: 
divide(2098, 2098), multiply(2098, #0)

Figure A.2: Error case study 2: Complex numerical reasoning.
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Figure A.3: Annotation interface: Display report.

Figure A.4: Annotation interface: Annotator input fields.
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Appendix B

NUANCED: Natural Utterance

Annotation for Nuanced

Conversation with Estimated

Distributions

B.1 Model Implementation and Training Details

Figure B.1 presents the architecture of the BERT baseline. For each turn, we con-

catenate each slot with the current turn and the dialogue context as the input. On the

[CLS] output, we add one head for slot prediction as binary classification, i.e., whether

the input slot is updated in the current turn. For each slot, we add a specific head for

value prediction. We use cross entropy loss for slot prediction, and mean squared loss

for value distribution prediction. The overall loss is a weighted combination of the two

losses. We set the weight for value prediction as 20.0. The threshold for value prediction

in NUANCED-reduced is set as 0.5. We use BERT-base uncased model from the official
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BERT

slot name
price, category, attire, ... 

CLS

slot 
prediction

{ update, none }

{ nightlife, bbq, … }

{ cheap, affordable, … }

slot: category

slot: price

...current turn
System: any preference on attire?

User: I’d like to wear my jeans 

dialog history
User: hi, i’d like to find a place to eat

System: sure, …
...

slot: attire
{ casual, dressy, … }

Figure B.1: Illustration of the BERT baseline

release1 with 110M parameters; The learning rate is set as 3e-5, batch size as 32. We take

the results based on the performance on validation set. For NUANCED-reduced, the

training takes around 25,000 gradient steps; For NUANCED, the training takes around

40,000 steps. For the transformer model, to achieve best performance we use 6 layers

and hidden size 300. All training is done on a single NVIDIA TESLA M40 card with

11G memory.

Note that for the slot “food category”, some values are commonly observed in the

dataset such as “American food”, “nightlife”, while some others are less frequently such

as ”Thai”. During training we employ up-sampling for the less frequent ones.

In the construction of NUANCED, we sample a subset of the user history and

aggregate to get the ground truth preference distributions. Because the number of viable

values of each slot is different, for those slots with relatively more values the distribution

generally presents ‘long tail’, we only take the top 3 value distributions for each slot.

Correspondingly, during the model evaluation, we also take the top 3 predicted value

distributions to calculate the MAE.

1https://github.com/google-research/bert
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B.2 Analysis on Slots

We also study how the model performs on each slot in the domain, shown in Table B.1.

Generally, slots that may involve more factoid knowledge or more choices of values are

harder to learn, such as food category, parking. These may require learning long-tailed

knowledge from external data.

Slot food category price parking noise

Mean MAE(1e-2) 15.48 15.29 16.94 13.34

Slot ambience alcohol wifi attire

Mean MAE(1e-2) 15.04 13.88 12.30 8.95

Table B.1: Performance for each slot of our dataset.

B.3 Case Studies

Table B.2 provides some case studies with ground truth and the BERT model pre-

dictions.
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Dialogue Turns NUANCED-reduced NUANCED

Assistant: any preference on attire?
User: I like shorts and a loose tee shirt
in this heat.

Gold labels:
Attire ( casual= 1, dressy= 0, formal= 0 )

Gold Distributions:
Attire ( casual= 1.00, dressy= 0.00, formal= 0.00 )

BERT predictions:
Attire ( casual= 1, dressy= 0, formal= 0 )

BERT predictions:
Attire ( casual= 0.99, dressy= 0.01, formal= 0 )

Assistant: what type of food would you
like?
User: Ribs would be perfect.

Gold labels:
Category ( traditional american= 1.0, bbq= 1.0,
nightlife= 0.0 )

Gold Distributions:
Category ( traditional american= 0.50, bbq= 0.50,
nightlife= 0.00 )

BERT predictions:
category ( traditional american= 1.0, nightlife= 1.0,
new american= 0.0 )

BERT predictions:
Category ( traditional american= 0.20, nightlife= 0.08,
new american= 0.09 )

Assistant: any preference on alcohol?
User: I really want a G&T or a Riesling,
but I could also have a tonic water.

Gold labels:
alcohol ( full bar= 1.0, beer and wine= 1.0,
don’t serve= 1.0 )

Gold Distributions:
alcohol ( full bar= 0.78, beer and wine= 0.33,
don’t serve= 0.11 )

BERT predictions:
alcohol ( full bar= 1.0, beer and wine= 1.0,
don’t serve= 1.0 )

BERT predictions:
alcohol ( full bar= 0.55, beer and wine= 0.47,
don’t serve= 0.09 )

Assistant: what parking option would
you like?
User: I need something fuss-free and
out of the rain for my car, Also, I really
want a gin and tonic, but it’s not a
complete deal-breaker if I can’t have it.

(after some turns)

Assistant: here’re the recommendations.
User: You know what, if it’s going to be
a fancier place then I don’t mind dealing
with more complicated parking after all.

Gold labels:
parking ( garage= 1.0, valet= 0.0, validated= 0.0 )
alcohol ( full bar= 1.0, beer and wine= 1.0,
don’t serve= 1.0 )

Gold Distributions:
parking ( garage= 0.86, valet= 0.00, validated= 0.00 )
alcohol ( full bar= 0.93, beer and wine= 0.21,
don’t serve= 0.14 )

BERT predictions:
parking ( garage= 1.0, valet= 1.0, lot= 1.0 )
alcohol ( full bar= 1.0, beer and wine= 1.0,
don’t serve= 1.0 )

BERT predictions:
parking ( garage= 0.78, valet= 0.41, lot= 0.34 )
alcohol ( full bar= 0.79, beer and wine= 0.17,
don’t serve= 0.12 )

Gold labels:
parking ( garage= 1.0, valet= 1.0, validated= 1.0 )

Gold Distributions:
parking ( garage= 0.86, valet= 0.64, validated= 0.21 )

BERT predictions:
parking ( garage= 1.0, lot= 1.0, validated= 1.0 )

BERT predictions:
parking ( garage= 0.67, valet= 0.48, lot= 0.40 )

Table B.2: Some case studies. the last example shows two turns in a dialogue and
corresponding distributions for each turn. The user updates the preference in a later
turn based on a previous turn.
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Appendix C

Few-Shot NLG with Pre-Trained

Language Model

C.1 Implementation Details

We use the Adam optimizer [61] with learning rate set to 0.0003. The mini-batch size

is set to 40 and the weight λ of the copy loss term to 0.7. The dimension of the position

embedding is set to 5. For attribute name with multiple words, we average their word

embeddings as the attribute name embedding. Refer to our released code and data at

https://github.com/czyssrs/Few-Shot-NLG for more details.

C.2 ROUGE-4 Results

Following previous work [26], we conduct automatic evaluations using BLEU-4 and

ROUGE-4 (F-measure)1. Table C.1, C.2 and C.3 show the ROUGE-4 results for three

domains Humans, Books and Songs, respectively.

1We use standard scripts NIST mteval-v13a.pl (for BLEU), and rouge-1.5.5 (for ROUGE)
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Domain Humans
# of training instances - 50 100 200 500

Template 5.1 - - - -

Base-original - 0.1 0.4 0.5 0.6
Base - 0.1 0.4 0.8 1.5

Base+switch - 4.9 6.3 9.8 12.5
Base+switch+LM-scratch - 1.0 2.8 4.7 7.1
Base+switch+LM (Ours) - 14.1 16.2 22.1 28.3

Table C.1: ROUGE-4 results on Humans domain

Domain Books
# of training instances - 50 100 200 500

Template 15.0 - - - -

Base-original - 1.1 1.6 2.1 1.5
Base - 1.7 1.5 2.1 2.4

Base+switch - 12.8 15.0 18.1 20.7
Base+switch+LM-scratch - 2.4 4.2 6.5 10.7
Base+switch+LM (Ours) - 22.5 23.1 25.0 27.6

Table C.2: ROUGE-4 results on Books domain

Domain Songs
# of training instances - 50 100 200 500

Template 24.5 - - - -

Base-original - 3.4 4.2 4.7 4.8
Base - 4.1 5.1 4.7 5.8

Base+switch - 20.2 21.7 23.2 24.8
Base+switch+LM-scratch - 5.4 8.0 12.0 15.0
Base+switch+LM (Ours) - 26.2 28.6 30.1 32.6

Table C.3: ROUGE-4 results on Songs domain
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C.3 Human Evaluation Details

We conduct human evaluation studies using Amazon Mechanical Turk, based on two

aspects: Factual correctness and Language naturalness. For both studies, we evaluate

the results trained with 200 training instances of Humans domain. We randomly sample

500 instances from the test set, together with the texts generated with different methods.

Each evaluation unit is assigned to 3 workers to eliminate human variance.

The first study attempts to evaluate how well a generated text can correctly convey

information in the table. Each worker is present with both the input table and a generated

text, and asked to count how many facts in the generated text are supported by the table,

and how many are contradicting with or missing from the table, similar as in [95]. The we

calculate the average number of supporting and contradicting facts for the texts generated

by each method.

The second study aims to evaluate whether the generated text is grammatically cor-

rect and fluent in terms of language, regardless of factual correctness. Each worker is

present with a pair of texts generated from the same input table, by two different meth-

ods, then asked to select the better one only according to language naturalness, or “Tied”

if the two texts are of equal quality. The input table is not shown to the workers. Each

time a generated text is chosen as the better one, we assign score of 1.0. If two texts

are tied, we assign 0.5 for each. We then calculate the average score for the texts gen-

erated by each method, indicating its superiority in pairwise comparisons with all other

methods.

The significance test is conducted respectively on all three measures: number of

supporting facts and number of contradicting facts for the first study; the assigned score

for the second study. We use the Tukey HSD post-hoc analysis of an ANOVA with the

worker’s response as the dependent variable, the method and worker id as independent
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variables.
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Appendix D

Logic2Text: High-Fidelity Natural

Language Generation from Logical

Forms

D.1 Logic Type Definitions & Logical Form Annota-

tion

D.1.1 Logic Type Definitions

We define all 7 logic types in our dataset and provide examples based on the following

table in Figure D.1.

Count: counting some rows in the table based on the values in one column, with the

scope of all table rows or a subset of rows.

Example descriptions: “in opec 2012, there were 4 countries from africa.”, “in opec

2012, among the countries from africa, 2 of them joined after 1970.”, etc.
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country region
joined 
opec

population 
(july 2012)

area (km 
square)

algeria africa 1969 37367226 2381740

angola africa 2007 18056072 1246700

iraq middle east 1960 31129225 437072

kuwait middle east 1960 2646314 17820

libya africa 1962 5613380 1759540

nigeria africa 1971 170123740 923768

qatar middle east 1961 1951591 11437

saudi arabia middle east 1960 26534504 2149690

united arab 
emirates middle east 1967 5314317 83600

venezuela south america 1960 28047938 912050

table caption: opec

Figure D.1: Example table

Superlative: Describing the maximum or minimum value in a column, with the scope

of all table rows or a subset of rows. You may also talk about other columns on this row

with the superlative value.

Example descriptions: “in opec in 2012, angola, from africa, was the latest country

to join.”, “among the member countries in opec in 2012 from the middle east, qatar was

the smallest in area.”, etc.

Ordinal: Describing the n-th maximum or minimum value in a column, with the scope

of all table rows or a subset of rows. You may also talk about other columns on this row

with the n-th maximum or minimum value.

Example descriptions: “in opec in 2012, qatar was the 5th country to join.”, “Among

the africa member countries, algeria was the 2nd earliest to join.”, etc.

Comparative: Comparing two rows in the table, regarding their values in one column.

You may also talk about other columns on these two rows.

Example descriptions: “in opec in 2012, libiya joined 2 years later than kuwait.”, “in

opec in 2012, algeria, from africa, had a larger population than iraq from the middle east.”

105



Logic2Text: High-Fidelity Natural Language Generation from Logical Forms Chapter D

Aggregation: Describing the sum or average value over a column, with the scope of all

table rows or a subset of rows.

Example descriptions: “in opec 2012, the countries from africa had an average popu-

lation of around 57,800,000.”, etc.

Unique: Describing one unique row, regarding one column, with the scope of all table

rows or a subset of rows. You may also talk about other columns on this unique row.

Example descriptions: “in opec 2012, angola was the only country to join after 2000.”,

“in 2012, among the member countries from africa, the only one to join opec after 2000

is angola.”, etc.

Majority: Describing the majority values (most or all) over one column, with the scope

of all table rows or a subset of rows.

Example descriptions: “in opec 2012, most countries joined before 2000.”, “in opec

2012, all of the africa member countries had an area larger than 900,000.”, etc.

Logical Form Annotation

Here we provide the question sets for annotating each logical type.

Count: (1). Choose whether the counting is performed on the scope of all table rows,

or on a subset of all rows. (2). Select the table column that the counting is performed

on. (3). Select the criterion, based on which we filter the table records to be counted.

Here we consider the following criterion: ”equal”, ”not equal”, ”less than”, ”less than or

equal to”, ”greater than”, ”greater than or equal to”, ”fuzzily match”, ”all” (or ”other”

if none of the above is correct). (4). Based on the selected criterion, write the value to
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be filtered for counting. (5). Write down the result of the counting.

Superlative: (1). Is the superlative action performed on the scope of all table rows,

or on a subset of all rows? (2). What is the table column that the superlative action is

performed on? (3). Is the superlative action taking the numerical maximum, or minimum

value among the records? (4). What is the table row containing this superlative value?

(5). On this row with the superlative value, what are the other column(s) mentioned?

If not any other column is mentioned, write ’n/a’. (6). Is this superlative value itself

mentioned in the statement?

Aggregation: (1). Choose whether the aggregation is performed on the scope of all table

rows, or on a subset of all rows. (2). Select the table column that the aggregation is

performed on. (3). What is the type of this aggregation, sum or average? (4). What is

the result of this aggregation?

Comparative: (1). Which column is the statement comparing? (2). What is the first

row to be compared? (3). What is the second row to be compared? (4). What is the

relationship comparing the records numerically in the first row with the second? (choose

from ”greater”, ”less”, ”equal”, ”not equal”, ”difference value”, or ”other” if not any of

the above. Here we consider the relationship between actual numerical values between

two records, NOT the relationship expressed in the statement ) (5). Is the compared

records itself mentioned in the statement? (6). What are the other column(s) of these

two rows mentioned in the statement?

Majority: (1). What is the scope of this majority? (2). Which column the statement

is describing? (3). Is the statement describing all the records or most frequent records

within the scope? (4). Select the criterion, based on which we filter records to describe

the majority. Here we consider the following criterion: ”equal”, ”not equal”, ”less than”,

”less than or equal to”, ”greater than”, ”greater than or equal to”, ”fuzzily match” (or

”other” if none of the above is correct). (5). Based on the selected criterion, write the
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value to be filtered for describing the majority.

Ordinal: (1). What is the scope that the ordinal description is performed on? (all rows

or a subset of rows) (2). What is the table column that the ordinal description is based

on? (3). Is the ordinal description based on a numerically max to min or min to max

ranking of the column records? (4). What is the order described in the statement, based

on this ranking? (5). What is the table row containing this n-th record ? (6). On this

row, what are the other column(s) mentioned? If not any other column is mentioned,

write ’n/a’. (7). Is this n-th record itself mentioned in the statement?

Unique: (1). What is the scope of this statement describing unique row? (2). What is

this unique row? (3). Write the table column that shows the uniqueness of this row (4).

Select the criterion, based on which we filter records in this column to find the unique

row. Here we consider the following criterion: ”equal”, ”not equal”, ”less than”, ”greater

than”, ”fuzzily match” (or ”other” if none of the above is correct). (5). Based on the

selected criterion, write the value to be filtered for the unqiue row. (6). On this unique

row, what are the other column(s) mentioned (except the column describing the scope)?

If not any other column is mentioned, write ’n/a’.

D.2 Function Definitions

Here we list the function definitions and descriptions for our logical form in table D.1.

Note that since the tables in WikiTables are not standard database table, but semi-

structured tables, the cell values are often not well-formatted with a lot of mixed strings

and numbers, dates in different formats, etc. Therefore for some functions involving

arithmetic operations on table cell values, we only specify a coarse “object” type for the

arguments, and then parse the numerical or date type values in the function implemen-

tations. Refer to our released code for detailed implementations.
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Name Arguments Output Description

count view number returns the number of rows in the view

only view bool returns whether there is exactly one row in the view

hop row, header string object returns the value under the header column of the row

and bool, bool bool returns the boolean operation result of two arguments

max/min/avg/sum view, header string number returns the max/min/average/sum of the values under the header column
nth max/nth min view, header string number returns the n-th max/n-th min of the values under the header column

argmax/argmin view, header string row returns the row with the max/min value in header column
nth argmax/nth argmin view, header string row returns the row with the n-th max/min value in header column

eq/not eq object, object bool returns if the two arguments are equal
round eq object, object bool returns if the two arguments are roughly equal under certain tolerance
greater/less object, object bool returns if argument 1 is greater/less than argument 2

diff object, object object returns the difference between two arguments

filter eq/not eq view, header string, object view returns the subview whose values under the header column is equal/not equal to argument 3
filter greater/less view, header string, object view returns the subview whose values under the header column is greater/less than argument 3
filter greater eq /less eq view, header string, object view returns the subview whose values under the header column is greater/less or equal than argument 3
filter all view, header string view returns the view itself for the case of describing the whole table

all eq/not eq view, header string, object bool returns whether all the values under the header column are equal/not equal to argument 3
all greater/less view, header string, object bool returns whether all the values under the header column are greater/less than argument 3
all greater eq/less eq view, header string, object bool returns whether all the values under the header column are greater/less or equal to argument 3

most eq/not eq view, header string, object bool returns whether most of the values under the header column are equal/not equal to argument 3
most greater/less view, header string, object bool returns whether most of the values under the header column are greater/less than argument 3
most greater eq/less eq view, header string, object bool returns whether most of the values under the header column are greater/less or equal to argument 3

Table D.1: Function definitions

D.3 Model Implementation Details

Here we provide some implementation details of the baseline models.

Template Some example templates are listed below. Texts in braces is optional depend-

ing on the logical form.

count:

in [table caption], (among the ones whose [scope column] are [equal to/greater than/...]

[scope value]), there are [result] ones whose [column name] are [equal to/greater than/...]

[value] .

superlative:

in [table caption], (among the ones whose [scope column] are [equal to/greater than/...]

[scope value]), the [max/minimum] [column name] is [value].

in [table caption], (among the ones whose [scope column] are [equal to/greater than/...]

[scope value]), [subject], with ([other col1] [other val];...), has the [max/minimum] [col-

umn name], ([value]).
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ordinal:

similar as superlative, replace max/minimum as n-th max/minimum.

comparative:

in [table caption], [subject1] has [greater/less/...] [column name] than [subject2].

in [table caption], [subject1] has [diff value] [column name] [greater/less/...] than

[subject2].

in [table caption], [subject1], with ([other col1] [other val];...), has [greater/less/...]

[column name] than [subject2], with ([other col1] [other val];...).

unique:

in [table caption], (among the ones whose [scope column] are [equal to/greater than/...]

[scope value]), there is only one of them whose [column name] is [greater/less /...] than

[value].

in [table caption], (among the ones whose [scope column] are [equal to/greater than/...]

[scope value]), the only one whose [column name] is [greater/less/...] than [value] is for

[subject], with ([other col1] [other val];...).

aggregation:

in [table caption], (among the ones whose [scope column] are [equal to/greater than/...]

[scope value]), the [average/sum] of [column name] is [result].

majority:

in [table caption], (among the ones whose [scope column] are [equal to/greater than/...]

[scope value]), [most/all] of them has [column name] [equal to/greater than/ ...] [major-

ity value].

For all neural models we use Byte-Pair Encoding (BPE) [114] and the subword vo-

cabulary used in [98]. We use the pre-trained word embeddings from [98] and project to

certain smaller dimensions (300) as the word embeddings. The batch size of all models
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are set to 32. The beam size is set to 3. As the table content only serves as context

information for generation, to save GPU memory we set the maximum length of the table

content as 200. The hyperparameters are chosen based on manual tuning regarding the

BLEU score on the validation set.

Seq2seq+att & pointer-generator The learning rate is set to 0.001. For seq2seq, the

training takes around 16000 gradient steps. For pointer generator, training takes around

5000 steps.

Graph2seq+copy we reuse the code skeleton from the released code from [140]. The

table caption and header are first fed into a seq2seq, then the final hidden state is used

to initialize the nodes of the graph encoder. When applying attention and copy, for

graph nodes, we concatenate the token embedding and the embedding of its node as the

embedding for the token. The learning rate is set to 0.0005. Training takes around 11000

steps.

Transformer+copy we mostly follow the structure setting in the original Transformer

model [83]. We use 4 attention heads and 6 layers. The final hidden layer is used for

calculating the attention score and the copy switch. We also add the segment embeddings

for different input components similar as [39]. The learning rate is set to 0.0005. training

takes around 32000 steps.

GPT-2 We use the GPT-2 small 117M model from the released code and pre-trained

model from [98]. Word embeddings are fixed during training. The learning rate is set to

0.0003. The training takes around 500 steps to converge.

All the experiments are run on GeForce GTX 1080Ti GPU. Table D.2 shows the

validation performance of different baselines.
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Models B-4 R-1 R-2 R-4 R-L

Template 17.81 51.16 24.89 6.68 38.12

Seq2seq+att 12.26 35.44 15.68 4.81 30.36
Pointer generator 25.43 57.35 31.97 12.33 48.11
Graph2seq+copy 25.65 57.65 31.98 12.29 48.28
Transformer+copy 27.20 59.70 34.06 14.03 48.71
GPT-2 32.98 64.86 40.02 18.38 54.59

Table D.2: Automatic evaluation results for validation set.

D.4 Human Evaluation Details

Human Evaluations on AMT We randomly sample 500 examples from the top two

best performing methods (GPT-2 and Transformer+copy), and the gold references. The

evaluations are conducted on two axes: factual correctness and language fluency. For

factual correctness, we provide the workers with both the table and the description, and

ask them to verify whether the description is factually correct based on the table. If the

description contains too many grammar errors to be readable, the worker is instructed

to select ”incorrect”. Minor grammar errors can be accepted, as long as the worker can

understand the meanings. For language fluency, we conduct pairwise comparison between

the three methods. For this evaluation we only present the pair of descriptions to the

worker, and ask them to select a better one only based on language fluency (a better

description should be fluent, coherent, and free of grammar errors), or select ”Tied” if

the two descriptions are of similar quality. For both evaluations we distribute each task

to 3 workers to eliminate human variance.

Human Expert Evaluation To conduct precise evaluation of semantic correctness,

i.e., whether the generation correctly matches the meaning of the logical form, we invite

human experts (two computer science graduate students) to perform the evaluation. We

sample 200 examples from each method and ask them to verify whether the description

correctly presents the meaning of the logic form, with neither insufficient nor redundant

information. The description should also be fluent and free of grammar errors. Therefore
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this evaluation can be seen as a comprehensive evaluation of the generation quality. Each

example is examined by both students and the decision is made after discussion.

D.5 Generation Examples

We provide 2 examples of generations in Figure D.2 and Figure D.3.

east coast conference

institution nickname location founded type enrollment joined

university of 
bridgeport

purple 
knights bridgeport , connecticut 1927 private 4018 2000

daemen college wildcats amherst , new york 1947 private ( nonsectarian ) 2100 2013

university of the 
district of 
columbia firebirds washington , dc 1851 public 5471 2011

dowling college
golden 
lions oakdale , new york 1963 private 7000 1989

mercy college mavericks dobbs ferry , new york 1950 private 10000 1989

molloy college lions rockville centre , new york 1955 private 3533 1989

new york institute 
of technology bears old westbury , new york 1955 private 12755 1989

queens college knights flushing , new york 1937 public 17639 1989

roberts wesleyan 
college redhawks chili , new york 1866 private ( free methodist ) 2000 2012

Logical form: greater { hop { filter_eq { all_rows ; institution ; mercy college } ; enrollment } ; hop { filter_eq { all_rows 
; institution ; dowling college } ; enrollment } } = true

Gold: in the east coast conference , more people attended school at mercy college than at dowling college .
GPT-2: in the east coast conference , mercy college has a greater enrollment than dowling college .
Transformer+copy: more people attend the enrollment in the north coast conference than dowling college .

Figure D.2: Example generations.
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rank s wicket player matches average

1 513 clarrie grimmett (vic / sa) 79 25.29

2 441 michael kasprowicz (qld) 101 24.56

3 430 andy bichel (qld) 89 23.24

4 419 jo angel (wa) 105 24.86

5 384 terry alderman (wa) 97 24.21

Logical form: and { eq { max { all_rows ; average } ; 25.29 } ; eq { hop { argmax { all_rows ; average } 
; player } ; clarrie grimmett ( vic / sa ) } } = true

Gold: clarrie grimmett had the highest average in the sheffield shield , 25.29 .
GPT-2: clarkrie grimmett was the player with the highest average in the sheffield shield .
Transformer+copy: in the player that had 25.29 , the highest number of average average average 
attendance for the player who had 25.29 .

sheffield shield

Figure D.3: Example generations.
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Appendix E

KETOD: Knowledge-Enriched

Task-Oriented Dialogue

E.1 Dataset Construction

Figure E.1 shows our annotation interface to add knowledge-grounded chit-chat to

TOD. The left part shows the full dialogue, where the annotators can click and expand

each turn to make the chit-chat enrichment. The right part shows all the entities with the

associated knowledge snippets. The annotators can click on each entity name to expand

the textbox to see the knowledge snippets. We add index number to each knowledge

snippet (shown in green brackets), and the annotators are asked to write down the

indexes of the knowledge snippets they used for writing the knowledge grounded chit-

chat. Figure E.2 shows one example annotation turn using our interface.
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Figure E.1: Our annotation interface example 1.

E.2 Model and Training Details

All the implementations are based on the Huggingface Transformers library1. For

all models, we use the Adam optimizer [61]. For the knowledge selection model, we use

BERT-base with learning rate of 3e-5 and batch size of 16. For the baseline SimpleToD

model, SimpleToDPlus model, and Combiner model, we all use learning rate of 1e-4 and

batch size of 16. All the experiments are done using TESLA M40 GPU cards.

1https://github.com/huggingface/transformers
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Figure E.2: Our annotation interface example 2.

Metrics
SimpleToDPlus win

(%)
SimpleToD win

(%)
Tied
(%)

Engagingness 40.0 30.3 29.8
Interestingness 31.8 19.5 48.8
Knowledge 38.0 18.3 43.8
Humanness 38.3 26.8 35.0

Table E.1: Human evaluation of SimpleToDPlus vs. SimpleToD.

E.3 Evaluation Details

Table E.1 and E.2 show the human evaluation results of SimpleToDPlus vs. Simple-

ToD, and Combiner vs. SimpleToD, respectively.
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Metrics
Combiner win

(%)
SimpleToD win

(%)
Tied
(%)

Engagingness 34.8 33.5 31.8
Interestingness 27.0 22.5 50.5
Knowledge 32.5 23.0 44.5
Humanness 27.8 32.5 39.8

Table E.2: Human evaluation of Combiner vs. SimpleToD.
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