Transforming Agent-based Chatbots with
Declarative Programming

Sirui Zeng, Xifeng Yan
Computer Science
University of California at Santa Barbara
https://github.com/Mica-labs/MICA

https://github.com/Mica-labs/MICA
https://github.com/Mica-labs/MICA
https://github.com/Mica-labs/MICA

Write a customer service chatbot

swarm

101 Vv seat_booking_agent = Agent[AirlineAgentContext](

102 name="Seat Booking Agent",

103 handoff_description="A helpful agent that can update a seat on a flight.",

104 instructions=f"""{RECOMMENDED_PROMPT_PREFIX}

105 You are a seat booking agent. If you are speaking to a customer, you probably were transferred to from the triage agent
106 Use the following routine to support the customer.

107 # Routine

108 1. Ask for their confirmation number.

109 2. Ask the customer what their desired seat number is.

110 3. Use the update seat tool to update the seat on the flight.

111 If the customer asks a question that is not related to the routine, transfer back to the triage agent. """,
112 tools=[update_seat],

113)

114

115 Vv triage_agent = Agent[AirlineAgentContext](

116 name="Triage Agent",

117 handoff_description="A triage agent that can delegate a customer's request to the appropriate agent.",

118 instructions=(

119 " {RECOMMENDED_PROMPT_PREFIX} "

120 "You are a helpful triaging agent. You can use your tools to delegate questions to other appropriate agents.”
121 Y5

122 handoffs=[

123 faq_agent,

124 handoff(agent=seat_booking_agent, on_handoff=on_seat_booking_handoff),

125 1,

126)

127

128 faqg_agent.handoffs.append(triage_agent)

Write a customer service chatbot

swarm

101 v
102
103
104
105
106
107
108
109
110
111
112
113
114
115 v
116
117
118
119
120
121
122
123
124
125
126
127
128

name="Seat Booki
handoff_descript
instructions=f""
You are a seat b
Use the followin;
Routine

1. Ask for their
2. Ask the custol
3. Use the updat
If the customer

tools=[update_se

triage_agent = Agent

name="Triage Agel

handoff_descript

instructions=(
" {RECOMMEND
"You are a h

)s

handoffs=[
faq_agent,
handoff(agen

1,

rasa

seat_booking_agent = flOWSZ

block_card:

description: "Block or freeze a user's debit or credit card to prevent unauthorized
—» use, stop transactions, or report it lost, stolen, damaged, or misplaced
for added security"

name:
steps:

block a card

- action: utter_block_card_understand

- call:

select_card

collect: reason_for_blocking

description: |
The reason for freezing or blocking the card, described as lost, damaged,

— stolen, suspected of fraud, malfunctioning, or expired. The user may say
— they are traveling or moving, or they may say they want to temporarily
— freeze their card. For all other responses, set reason_for_blocking slot to
«— 'unknown'.

next:
- if: "slots.reason_for_blocking == 'damaged' or slots.reason_for_blocking ==
— 'expired'"

then: "acknowledge_reason_damaged_expired"

faqg_agent.handoffs.append(triage_agent)

Write a customer service chatbot

swarm rasa

101 Vv seat_booking_agent = flows:

botpress

- N Q@ s Share m e

102 name="Seat Bookii hyack card: e A s she baghaing o paw comersaton
103 handoff_descript = c 3 e et

.) descriptic
104 instructions=f
105 You are a seat b — use, =
106 Use the followin; fOI' added 0 End
107 # Routine name: bloc
108 1. Ask for their steps:
109 2. Ask th t .

s e custol - actior 2
110 3. Use the updat = call: : Start e
111 If the customer 28]
= COlle(Greetings il End
112 tools=[update_se
113) deSCI'j TS Aa Hey there! 'm Arti your Al chatbot. ...
114 'I’he workflow,AZ_response 4 A Generate Text
115 v triage_agent = Agent —s + Add Card
116 name="Triage Age ey
117 handoff_descript
—t

118 instructions=(
119 " {RECOMMEND s
120 "You are a h next:
121) - it
122 handoffs=[—r I
123 faq_agent, tr €n9990 n 8 conversation wih your
124 handoff(agen °
125 1,
126) Type here to chat with you c
127 L

128 faqg_agent.handoffs.append(triage_agent)

Write a customer service chatbot

swarm

101 Vv
102
103
104
105
106
107
108
109
110
111
112
113
114
115 v
116
117
118
119
120
121
122
123
124
125
126
127
128

name="Seat Booki
handoff_descript
instructions=f""
You are a seat b
Use the followin;
Routine

1. Ask for their
2. Ask the custol
3. Use the updat
If the customer

tools=[update_se

triage_agent = Agent

name="Triage Agel

handoff_descript

instructions=(
" {RECOMMEND
"You are a h

)s

handoffs=[
faq_agent,
handoff(agen

1

rasa

seat_booking_agent = flows:

block_card:

descriptic

— use,

for added
bloc¢

name:
steps:

- actior

- call:

- collec
descri
The

—

faqg_agent.handoffs.append(triage_agent)

botpress

Al Varisbles v

workflow,AI_response

Greetings i
A Hey there! I'm Arti your Al chatbot. ...
4 Al Generate Text

4 Add Card

Most of them are Program Centric,

Start

Thiis is the beginning of & new conversation

End

Emuator

Not Agent Centric! =~

ype here to chat with your chatbot

Make It Agent Centric!

Agent Declarative Language (ADL) puts all the domain specific knowledge and business logic
in one agent centric file: Describe what agents can do and their relationship

>

Do we really need it?

developer

guardrail:

description: I can check if the user's input is
relevant to the bookstore.

args: ["is relevant"]

prompt: |

Determine whether the user’s message is highly

unrelated to a typical bookstore customer. It is
acceptable for the customer to send messages such as
“Hi,” “OK,” or other conversational responses.
However, if the message is non-conversational, it
must still be at least somewhat related to books.
Return is_relevant = True if it is, otherwise return
False.

triage:

ensemble agent
de tion: Select an agent to respond to users.
arg "book"]
contains:

- guardrail

- store policy kb

- book_recommendation:

args:
book_wanted: ref book
- order:

ks: ref book

steps
- bot: "Hi, I'm your bookstore assistant. How
can I help you?"
policy: Call the guardrail first each time, and
decide whether to proceed with the conversation
based on its output.
exit: default

Make it declarative
(no vendor lock-in)

chatbot
2 =)
| I

ADL program

Multiagent System
(MAS)
Orchestrate Method
LLM Model Selection
Memory Management

Separate logic
and optimization

\

AutoGen

while True:

user = input("User: ").strip()
msg = TextMessage(content=user,
source="user")
rsp = await agent.on_messages([msg])
intent = rsp.chat_message.content
if intent == " e
print("Bot: Continue...")
else:
print("Bot: Sorry...")

ADL

- user
- if: the user claims "..."

then:
- bot: "Continue..."

Natural language
programming

ADL simplifies chatbot maintenance and updates

For example, revise the ordering process so that when users ask about a discount,
they are informed that a special discount is available.

1
| o
| intent_classifier = Agent(I
! instruction="...When the user's I
! Iintent is related to asking about
! a discount, output |
! ‘ask_for_discount'...", |
: <« I...}
| A e N !
1
1
1 TEEE NN S S S S S S S S S S S - - -
' I elif intent == "ask_for_discount": |
______________ - | while True:)
| - : the user asks for an ! | int(" ' i i l
' : Y I H print("Here's a special discount

I discount ' | for you") I
1

I ' . l | e # I

- : "Here's a special discount : ! | if :

| for you..." ! I Break |

1
I |
B e = | b e e e e e e e e e - - -

ADL facilitates debugging

Infinite loop discovery Swarm
TRANSFER_MONEY_POLICY = """... enter the[add payee]
ADL agent .z "0
ADD_PAYEE = """... Ask the user if they need to
add_payee: -
prompt: | make a t:ﬁnsfer, if so, enter the|transfer_money
. Ask the user if they need to make a agent. ..
transfer; if so, enter the|[transfer money agent| ... add_payee = Agent(
instructions=ADD_PAYEE_PROMPT,
transfer_money: functions=transfer_to_triage,
prompt: |)

...enter the|add_payee agent]...

transfer_money = Agent(
instructions=TRANSFER_MONEY_POLICY,
functions=transfer_to_triage,

)
Is there any infinite loop in this chatbot?

Loops can happen with any

Q Yes. transfer_money —
add_payee — transfer_money agent -that calls- :
- N - transfer_to_triage and is itself

v callable from triage_agent. X

Infinite loops are just one common type of development error; other types of errors also warrant further investigation.

Where does ADL sit?

tools:

import json o1 tnpleny

from swarm import Agent weather_agent:

type: 1lm agent
description: You are an agent for weather query
prompt: >
1. Get the current weather in a given location. Location MUST be a city.

def get_weather(location, time="now"):
"""Get the current weather in a given location. Location MUST be a city."""

return json.dumps({"location": location, "temperature": "65", "time": time}) 2. send an email to user. collect recipient, subject and body.
3. call "send_email" function
args:
def send_email(recipient, subject, body): - location
print("Sending email...") - recipient
print(f"To: {recipient}") - subject
print(f"Subject: {subject}") - body
print(f"Body: {body}") uses:
return "Sent!" - send_email
main:
weather_agent = Agent(type: flow agent
name="Weather Agent", steps:
instructions="You are a helpful agent.", - call: weather_agent

) functions=[get_weather, send_email], PythOn Hybrld ADL

N

I
| Natural

deeest Language
: Programming

AquGen qurrﬁ

LangChnin;'ﬁquon MAO

/

|

!
sESES SISO RBAtRe "'r =%

!

\

Ours

- e e e == =

/
The existing hybrid programming frameworks

Thank you

https://github.com/Mica-labs/MICA

)y

https://github.com/Mica-labs/MICA
https://github.com/Mica-labs/MICA
https://github.com/Mica-labs/MICA

Four types of agents collectively form an ADL chatbot

. . . : <string> .
e Retrieves information and - <sting> : Encodes domain knowledge
answers questions. : - <sting> through prompt programming.
- (: <string> :
Powers tasks like retrieval- : <string> - <step> Enables task-specific reasoning and
augmented generation (RAG) constraint handling.
and FAQ response. Common Attributes
KB agent o e LLM agent
: <string>
: <array>
Flow agent : <string | agent> Ensemble agent
: <string | agent>
[PrOVideS fine—gl‘ained a.nd pl‘eCise ﬂOW ContrOI. PY Coordinates agent responses based on context.
Supports complex dialogue flows similar to traditional Orchestrates multi-:agent interaction using user input and

programs.

_ <string> dialogue state.

= =step= : <string>

- <step> - <step>

