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GRAPHS ARE EVERYWHERE

from H. Jeong et al Nature 411, 41 (2001)
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GRAPH DATA

0 Chem-informatics: chemical compounds

0 Bioinformatics: protein structures,
protein interaction networks, biological
pathways, metabolic networks, ...

0 Computer Vision: object models

0 Software: program dependency graph,
flow graph,...

0O Social network
O Workflow



GRAPH INFORMATION SYSTEM

Applications

e Characterize graph objects

e Build indices for graph search

e Extract biologically conserved modules
e Discriminate drug complexes

e Classify protein structures

e Cluster gene networks

e Detect anomaly in program flows

e Graph registration system

finding hidden patterns| | processing graph queries




GRAPH SEARCH

« Chemical Compounds
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VARIETY OF GRAPH SEARCH

0 Full structure search

0 Substructure search [Shasha et al.
PODS’02, Yan et al. SIGMOD'04]

0 Approximate substructure search [Yan et
al. SIGMOD'05]

0O Substructure search with constraints

m Superimposed distance [this work,
ICDE'06]

m Other varieties




SUPERIMPOSED DISTANCE

Same Topological Structure
But different Labels
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SUPERIMPOSED DISTANCE

« Chemical Compounds
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MINIMUM SUPERIMPOSED DISTANCE

Given two graphs, Q and G, let M be the
set of subgraphs in G that are isomorphic
to Q. The minimum superimposed distance
between Q and G is the minimum distance
between Q and Q' in M.

AQ,G) = min d(Q, Q",

where d(Q, Q') is a distance function of two
isomorphic graphs @Q and Q’.



SUBSTRUCTURE SEARCH WITH
SUPERIMPOSED DISTANCE (SSSD)

Given a set of graphs D={G,, G,, ..., G}
and a query graph Q,
SSSD is to find all G; in D such that

d(Q,G;) <o

10



INDEXING GRAPHS

0 Indexing is crucial

without index
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FEATURE-BASED INDEX

Feature:
1. Paths (Shasha et al. PODS’02)
2. Discriminative Frequent Substructures
(Yan et al. SIGMOD’04)
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STRUCTURAL EQUIVALENCE CLASS

0 Graphs G and G’ belong to the same
ence class if and only if G is

equiva
Isomor
equiva

bhic to G’.

he structural

ence class of G is written [G]
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THE INDEX STRUCTURE
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INDEX CONSTRUCTION

select a zet of structures (T)
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PARTITION-BASED SEARCH

0 We partition a query graph Q into non-
overlapping indexed features f,, f,, ...,
f,,, and use them to do pruning. If the
distance function satisfies the following
inequality,

S d(f,,G) < d(0,G)

1=1

we can get the lower bound of the
superimposed distance between Q and G
by adding up the superimposed distance
between f; and G.

16



MULTIPLE PARTITIONS

Target graph G Query graph Q

Partition |

Partition Il

Pentagon + Path
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OVERLAPPING RELATION GRAPH

Query graph Q

node: feature
edge: overlapping

node weight: minimum
distance between f, and

G, d(f?,a G)
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SEARCH OPTIMIZATION

Given a graph Q=(V, E), a partition of G
is a set of subgraphs {f, f,, ..., f,}
such that

V(i) CVand V(f;) NV (f;) =0
for any il=j.

GIVEN A GRAPH G, OPTIMIZE

m
Popt(Q,G) = drgd mgx Zl d(fi, G)
=

19



FROM ONE TO MULTIPLE

GIVEN A GRAPH G, OPTIMIZE

m

Popt(Q,c) = arg max Zl d(fi, @)
1=

For one graph G, select one partition

For another graph G’, select another partition?
GIVEN A SET OF GRAPHS , OPTIMIZE

n m
Popt(Q,G) = arg mjé‘x Y: : d(fian)

j=1i=1
n

™m
—arg max » | ) d( fi, G;)
P | &
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ACROSS MULTIPLE GRAPHS

node weight is redefined

Using average minimum distance between
a feature f and the graphs G; in the database,

written as

mn

w(f) =
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MAXIMUM WEIGHTED INDEPENDENT SET

[THEOREM]
Index-based Partition Optimization is NP-hard.
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GREEDY SOLUTION




Experiment Dataset

0 The real dataset is from an AIDS antiviral
screen database containing the structures
of chemical compounds.

0 This dataset is available on the website of
the Developmental Therapeutics Program

(NCI/NIH).
0 In this dataset, thousands of compounds
have been checked for evidence of anti-HIV

activity. The dataset has around 44,000
structures.
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Experiment Setting

O

We build topoPrune and PIS based on the
glndex (SIGMOD’04). gIndex first mines
frequent structures and then retains
discriminative ones as indexing features.

topoPrune and PIS are implemented in C++
with standard template library.

All of the experiments are done on a
2.5GHZ, 1GB memory, Intel Xeon PC
running Fedora 2.0.
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Pruning Efficiency
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Efficiency vs. Fragment Size

reduction ratio

107

10

PIS size=4 ——
PISSize=5 ----x---
PISsize=6 -----x---

*
ANt ettt X
<300 750 1.5k 3k 5k >5k
Q Q
? ? guery su(b?set

27



CONCLUSIONS

0 A substructure search problem with
additional similarity requirements

0 A problem as a component in our graph
information system

0 Approach: feature-based index and
partition-based search

0 HIGHLIGHT: select “discriminative”
features in a query space for search
efficiency
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