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ABSTRACT
In the past, quite a few fast algorithms have been developed
to mine frequent patterns over graph data, with the large
spectrum covering many variants of the problem. However,
the real bottleneck for knowledge discovery on graphs is nei-
ther efficiency nor scalability, but the usability of patterns
that are mined out. Currently, what the state-of-art tech-
niques give is a lengthy list of exact patterns, which are
undesirable in the following two aspects: (1) on the micro
side, due to various inherent noises or data diversity, exact
patterns are usually not too useful in many real applications;
and (2) on the macro side, the rigid structural requirement
being posed often generates an excessive amount of patterns
that are only slightly different from each other, which easily
overwhelm the users.

In this paper, we study the presentation problem of graph
patterns, where structural representatives are deemed as the
key mechanism to make the whole strategy effective. As
a solution to fill the usability gap, we adopt a two-step
smoothing-clustering framework, with the first step adding
error tolerance to individual patterns (the micro side), and
the second step reducing output cardinality by collapsing
multiple structurally similar patterns into one representative
(the macro side). This novel, integrative approach is never
tried in previous studies, which essentially rolls-up our at-
tention to a more appropriate level that no longer looks into
every minute detail. The above framework is general, which
may apply under various settings and incorporate a lot of
extensions. Empirical studies indicate that a compact group
of informative delegates can be achieved on real datasets and
the proposed algorithms are both efficient and scalable.
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1. INTRODUCTION
Frequent graph pattern (subgraph) mining is an impor-

tant data mining task, due to the prevalence of graph data
in real applications (e.g., chemical compounds, XML and so-
cial networks), and also because graph is the most expressive
data structure for modeling purposes. Mining substructures
that frequently occur (for at least min sup times) can help
people get insight into the graphs, which has been used for
indexing [23], classification [5] and many other applications.
Recently, quite a few fast algorithms are developed to mine
frequent patterns over graph data, with the large spectrum
covering many variants of the problem. However, the real
bottleneck for knowledge discovery on graphs is neither ef-
ficiency nor scalability, but the usability of patterns that
are mined out, which hampers the deployment of effective
individual and global analysis.

There are two sources of issues that lead to the above
usability gap. First, on the micro side, due to various in-
herent noises or data diversity (e.g., data collection errors,
insertions, deletions and mutations as the data evolves), ex-
act patterns are usually not too useful in many real applica-
tions. Indeed, it is often crucial to allow imprecise matchings
so that all potentially interesting patterns can be captured.
For example, in biological networks, due to some underly-
ing process, occasionally we may observe two subnetworks
N1 and N2, which are quite similar in the sense that, after
proper correspondence, discernable resemblance can be ob-
served between respective vertices, e.g., with regard to their
molecular compositions, functions, etc., and the interactions
within N1 and N2 are nearly identical to each other. Exact
patterns certainly cannot fit into such scenarios.

Second, on the macro side, there are usually too many
number of patterns. Compared to less complicated data
structures, the curse of combinations is even worse for graphs.
Given a graph with n nodes, it has O(n2) possible edges,
where a difference of just one edge can make two patterns
not exactly matchable. Having such a large set of patterns
that are only slightly different from each other, the mining
result becomes lengthy but redundant, which easily over-
whelms the users.



If we take a closer look at the above two difficulties: the
limited expressiveness of individual patterns in a micro sense
and the huge volume of mining results in a macro sense, they
are actually both related to the same underlying problem,
that is, the level on which we perform analysis is too low.
The exact scheme treats a graph mining task with all struc-
tural details, which not only limits the amount of informa-
tion any single pattern can cover, but also makes the output
cardinality too big to be handled.

Thus, the solution we propose for this problem is to roll-up
our attention to a more appropriate level through structural
representatives, where two issues are simultaneously tack-
led. Following above discussions, it can be achieved by a
so-called smoothing-clustering framework, i.e., we may con-
sider working in both the micro direction and the macro
direction. Note that, this is in vivid contrast to some previ-
ous studies that only solve one side of the problem, but not
both (cf. related work in Section 2).

In the micro direction, based on graph structures, a given
pattern is usually very similar to quite a few look-alikes (e.g.,
they might be identical except δ edges). For many real ap-
plications, it is often unnecessary and sometimes even in-
appropriate to assume the restrictive exact setting: This
leads us to the introduction of an error tolerance δ, which
can help blur the rigid boundaries among individual pat-
terns. By such a smoothing procedure, patterns within the
δ threshold are now treated as being equivalent, whose sup-
ports can be further aggregated to reflect the approximation
thus achieved.

In the macro direction, we want to show as few patterns as
possible so that the users’ reviewing efforts are minimized.
As we blur the exact boundary in smoothing, it now becomes
very likely that structurally similar patterns will also have
substantial overlaps with regard to their smoothed supports,
an ideal property for cardinality reduction purposes. Now,
instead of displaying all patterns, we perform another clus-
tering step, so that the cluster centers are taken as structural
representatives for the others, while the support information
is also well-preserved.

The remainder of this paper is organized as follows. Re-
lated work is discussed in Section 2. Then, for ease of pre-
sentation, we start from a relatively simple and easy-to-
understand setting, where frequent induced subgraphs are
mined in the transaction database setting, to carefully study
the smoothing-clustering framework, with Section 3 focus-
ing on the smoothing step and Section 4 focusing on the
clustering step. After laying out major algorithms, we fur-
ther generalize our proposed methods to the non-induced
case, the single graph case and many other extensions in
Section 5. Experimental results are reported in Section 6,
and conclusions are given in Section 7.

2. RELATED WORK
There is a wealth of literature devoted to mining frequent

patterns over graph data, such as [11, 3, 16, 12]. Com-
pared to them, our major aim in this study is to enhance
the usability of patterns that are mined out. Previously,
there have been researches that either relax the rigid struc-
tural requirement or reduce output cardinality by exact rep-
resentatives (which are often associated with terminologies
such as mining approximate patterns or pattern compres-
sion/summarization); however, as far as we know, ours is
the first that considers the possibility of integrating both

aspects and conquering them at once.
Following similar concepts in frequent itemset mining [2,

17], the data mining community has proposed algorithms
to mine maximal [9] and closed [22] subgraphs from the
database. The notion of closeness is proposed to deliver all
information about the frequent patterns in a lossless way,
where both structure and support are fully preserved. In
contrast, motivated by Apriori, the maximal approach only
focuses on those biggest ones, because all other frequent pat-
terns must be contained by them. Apart from these two
extremes, [20, 13] suggest a road in the middle, which dif-
fers from the maximal scheme in that it incorporates sup-
port consideration, and also differs from the closed scheme
because sub-patterns and super-patterns are not required to
have exactly the same support so that they can be collapsed.
As we can see, there is one thing in common for all these
methods, i.e., the graph structures are taken as a bottom
line, which does not allow any relaxation. In this way, what
we get is just a compressed output, whose patterns are still
exact in the sense that no structural difference is tolerated.

On the other hand, especially in the area of Bioinformat-
ics where noises are inevitable in the analysis of biological
networks, algorithms [18, 4] have been proposed that are
able to find those patterns in data whose appearances can
be slightly different for each occurrence. They usually bear
the name of mining approximate patterns, but “the stone
only kills one bird”, because the result cardinality is not re-
duced: Users are still viewing a lengthy but redundant list,
except that each pattern is now supported by many impre-
cise matchings in the data.

There are other related studies that try to pick some (say
top-k) delegates from the mined patterns [6, 14, 21, 19].
However, either the selection criterion being applied is not
what we want [6, 14], e.g., [6] delivers the top-k frequent
patterns, or the scheme is specifically designed for simple
settings [21, 19], e.g., [21] assumes an independent “bag-
of-words” model and summarizes patterns in the form of
itemset profiles, which is hard, if not impossible, to be gen-
eralized to the graph scenario, without incurring a lot of
complicated dependence modeling. Recently, [7] designs a
randomized algorithm to mine maximal frequent subgraphs,
which are then compressed to a few orthogonal representa-
tives based on pattern structures. However, (1) it does not
consider support information like all maximal schemes, and
(2) the mining procedure still disables structural relaxation
(i.e., no smoothing is done, in the terminology of this paper),
a very important aspect as we observe.

3. THE SMOOTHING STEP
In this paper, we will use the following notations: For

a graph g, V (g) is its vertex set, E(g) ⊆ V (g) × V (g) is
its edge set, L is a function mapping a vertex to a label,
and I : V (g) × V (g) → {0, 1} is an indicator such that
I(v1, v2) = 1 if (v1, v2) ∈ E(g), and I(v1, v2) = 0 otherwise.
For now, there are no edge labels, i.e., an edge is just a plain
connection; further extensions will be included in Section 5.

How to specify structural matchings between graphs is a
core concept for knowledge discovery on graphs. Given a
pattern graph p and a data graph d, the central theme of
graph mining is to find out whether there is a subgraph of
d that can be matched with p, and if the matching exists,
where does it happen. As we discussed in above, previous
methodologies usually make the assumption that an exact



match must be established between p and d so that it can
be identified, which is inevitably restricted in many real ap-
plications. Now, by Definition 1, we can relax this rigid
constraint up to a δ-threshold so that as long as there are
no more than δ interconnections among vertices (i.e., one
has the edge while the other does not) that differ between p
and d, the small error is neglected.

Definition 1. (Approximate Graph Isomorphism). For
two graphs g′ and g, we say that g′ and g are approximately
isomorphic if there exists a bijective mapping f : V (g′) ↔
V (g), s.t.,: first, ∀v′ ∈ V (g′), L′(v′) = L(f(v′)); and second,
the following symmetric difference:

X

v′

1
,v′

2
∈V (g′)

˛̨
I ′(v′

1, v
′
2) − I(f(v′

1), f(v′
2))

˛̨

is less than or equal to δ. Here, L′/I ′ and L/I are the
label/indicator functions of g′ and g, respectively, while δ is
a predetermined error tolerance parameter.

There are three things we want to emphasize. First, g′

and g must have the same number of vertices (through bi-
jective mapping), because we are defining approximate graph
isomorphism here. When it comes to approximate subgraph
isomorphism, which is defined in Section 4, the vertex set
cardinalities can be different.

Second, the vertex labels of g′ and g are exactly identical
under the correspondence f (first condition), i.e., labels are
characteristic values, which cannot be substituted. We will
discuss further extensions in Section 5, which tries to remove
this constraint.

Third, the symmetric difference of corresponding indica-
tor functions is bounded by δ (second condition). Actually,
for two graphs g′ and g, there might be multiple bijective
mappings that are also label-preserving. Let these mappings
comprise a set F(g′, g), then we can define the structural dif-
ference between g′ and g to be:

min
f∈F(g′,g)

 X

v′

1
,v′

2
∈V (g′)

˛̨
I ′(v′

1, v
′
2) − I(f(v′

1), f(v′
2))

˛̨ff
,

which is denoted as diff(g′, g), with a special case of

diff(g′, g) = +∞ for F(g′, g) = ∅,

i.e., when the vertex labels of g′ and g cannot be matched.
Being a useful reminder, it is easy to verify that the approx-
imate graph isomorphism concept we just gave is equivalent
to diff(g′, g) ≤ δ.

Definition 2. (Smoothed Support). Given a set of n fre-
quent patterns that are mined from the graph database D:
P = {p1, p2, . . . , pn}, pi’s original supporting transaction

set D̂pi
includes every d ∈ D such that pi is an induced

subgraph of d. Due to the δ error tolerance that was intro-
duced in above, the smoothed supporting transaction set of
pi is defined as:

Dpi
=

[

pj∈P,|V (pi)|=|V (pj)|,diff(pi,pj)≤δ

D̂pj
.

Here, |D̂p| is called the original support of p, and is denoted
as dsup(p) (of course, we have dsup(pi) ≥ min sup, since pi

is frequent); while |Dp| is called the smoothed support of p,
and is denoted as sup(p).

The core concept of smoothing is to blur the exact bound-
aries among individual patterns, which is done by aggregat-
ing respective supporting transactions. Based on the pat-
tern set P got from graph mining algorithms, we identify
all patterns that are structurally similar to pi, i.e., all pj ’s
such that diff (pi, pj) is less than or equal to δ, and combine

corresponding D̂pj
’s into Dpi

. By doing this, the support
of each frequent pattern is further enhanced by those of its
approximately isomorphic counterparts.

Based on the idea of smoothing, Definition 2 augments the
support concept of traditional graph mining technologies,
which is no longer subject to precise matches. However, as
careful readers might already notice, we did emphasize the
phrase“induced graph”in above descriptions, which is due to
the reason that: Throughout Definition 1, when calculating
the structural difference of g′ and g, all edges among a given
set of vertices are taken into consideration – Such semantics
is directly related to the induced notion of graph theory,
which we formally give in below.

Definition 3. (Induced Subgraph). For two graphs g′

and g, g′ is said to be an induced subgraph of g if there
exists an injective mapping f : V (g′) → V (g), s.t.,: first,
∀v′ ∈ V (g′), L′(v′) = L(f(v′)); and second, ∀(v′

1, v
′
2) ∈

E(g′), (f(v′
1), f(v′

2)) ∈ E(g), and vice versa.

The purpose of choosing induced subgraphs is to make
Definition 1 (calculation of structural difference) and Defini-
tion 2 (decision of smoothed support) consistent. By writing
the first definition, we are imposing the following opinion re-
garding whether two graphs are look-alikes or not, i.e., we
will only deem them as similar if the two sets of nodes are
interacting in nearly the same way as each other. This re-
quires us to extract all edges among a given set of vertices,
which conforms to the induced scenario. However, whether
to stick with such an induced scheme does depend on real
applications. For some cases, where we are not necessar-
ily interested in every interconnection in between, the non-
induced setting might be more appropriate, because it does
not require the pattern as a subgraph to cover every edge
that appears in its data graph counterpart. Fortunately,
despite all these considerations with respect to user inten-
tions, the methodology we propose in this paper is general
enough to handle both cases, which will be further discussed
in Section 5.

Example 1 Suppose we have a graph transaction database
as depicted in the top part of Fig.1, i.e., there are 10, 2, 2,
2 copies of d1, d2, d3 and d4, respectively. Set min sup=2,
we can find 7 frequent induced subgraphs, with their original
supports listed in the second row of Fig.2. When δ is 1, i.e.,
any one-edge difference is gracefully tolerated, the smoothed
supports of the same set of patterns are shown in the third
row of Fig.2. For example, p1 can absorb the supporting
transactions of p2, p3, p4 and essentially enhance its support
to 10+2+2+2=16.

4. THE CLUSTERING STEP
After examining the micro aspect, where smoothing is ap-

plied to resolve the structural restrictiveness of exact pat-
terns, we now turn to the macro aspect of the problem.
Unfortunately, even though a pattern’s support is no longer
confined to the number of times it precisely appears in the



data, there are yet too many number of patterns. Interest-
ingly, if we think from the following perspective, the smooth-
ing step actually hints a way for us to cut down result car-
dinality in this section: The fundamental basis for us to
introduce some structural tolerance is that, by specifying a
parameter δ, users are indeed willing to accept all minor
variations within this threshold, i.e., they essentially treat
two patterns p1, p2 as “equivalent” if diff(p1, p2) ≤ δ; now,
based on the same rationale, since p1, p2 are deemed as in-
terchangeable, can we just retain one of them in the final
output and remove the other? Our answer to this question
is yes, which leads to the clustering step we are going to
elaborate.
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Figure 1: Example Graph Database and Patterns

pattern pi p1 p2 p3 p4 p5 p6 p7

original support dsup(pi) 10 2 2 2 14 14 14

smoothed support sup(pi) 16 12 12 12 14 14 14

Figure 2: Original and Smoothed Supports

Example 2 Still looking at Fig.1 and Fig.2, the struc-
tures of p2, p3, p4 are quite similar to that of p1 (within a
δ of 1), where p5, p6, p7’s structures can also be represented
by p1 because p1 contains them. Meanwhile, as we can see,
p2, p3, . . . , p7’s smoothed supports are all very close to p1’s.
All these lead us to propose {p1: sup(p1) =16} as an effec-
tive presentation for the whole set of 7 patterns. Note that,
without the smoothing step, the original supports of p2, p3, p4

are far away from that of p1, and thus in the exact sense, it
will be better to add these patterns as three additional repre-
sentatives.

From the above example, we can see that, there is possibil-
ity for us to represent a pattern p1 by another pattern p2, so
that the whole pattern set can be shrunk to a small group of
delegates. Towards this objective, we will take a clustering
approach. As one might expect, some qualifying conditions
need to be satisfied, which justify a good presentation of p1

by p2. In this sense, we can cast the degree of such good-
ness to a distance function d(p1, p2), and produce a much
less number of clusters according to the patterns’ mutual
distances. Then, as a result of this processing, the cluster
centers will be taken as final representatives and passed on
to the users.

Considering that patterns produced by graph mining al-
gorithms are indeed a combined list of topological structures
and enumerated supports, in order to delegate p1 by p2 so

that p1 can be removed from the final output, conditions
from the following two aspects must be satisfied.

• Structure Representability: In terms of graph topology, we
must have p1’s structure well reflected by that of p2.

• Support Preservation: In terms of significance measure,
we must have p1’s support very close to that of p2.

In the first place, let us look at structure representability.
As we motivated in Example 2, there are two cases here: (1)
If two patterns g′, g comprise the same set of labeled ver-
tices, and their mutual interactions are nearly identical to
each other, i.e., the structural difference given in Definition
1 turns out to be less than δ, then we can use one of g′, g to
represent the other; and (2) Different from the circumstance
in (1), if pattern g has more vertices than pattern g′, a natu-
ral consideration is that g can represent g′ if g′ is “contained”
in g, because the structure of g gives us full information
about the structure of g′. According to Definition 3, this
means that g′ is an induced subgraph of g, and some previ-
ous works have also leveraged such subpattern-superpattern
relationships in compressing/summarizing itemset patterns
[20, 21]. Finally, these two cases can be unified, which gener-
alize to a new concept: approximate subgraph isomorphism.

Definition 4. (Approximate Subgraph Isomorphism). For
two graphs g′ and g, we say that g′ is an approximate sub-
graph of g if there exists an induced subgraph g′′ of g such
that diff(g′, g′′) ≤ δ, i.e., g′ and g′′ are approximately iso-
morphic to each other.

For the rest of this paper, we will write g′ ⊆induce
δ g if

g′ is an approximate subgraph of g in the induced sense.
Obviously, g′ ⊆induce

0 g (i.e., no tolerance) degenerates to
the simple rigid case of exact induced subgraph.

Looking at Definition 4, for any two graphs g′ and g (with-
out loss of generality, suppose |V (g′)| < |V (g)|), if there ex-
ists a bijective, label-preserving mapping f between V (g′)
and a subset of V (g), then the mutual relationship between
g′ and g can always be decomposed into: (1) a structural dif-
ference part between g′ and g′′, and (2) a subgraph contain-
ment part between g′′ and g. Now, since containment-based
representation is not subject to any further conditions, we
can disregard the second part from structure representabil-
ity considerations, i.e., as long as the first part is bounded
by a user-acceptable level δ, there would be no problem to
represent g′ by g in terms of graph topology.

Definition 5. (Structure Representable). For two graphs
g′ and g, the structural representability of g in place of g′

(i.e., use g as the delegate for g′) is defined as:

RS(g′, g) = min
|V (g′)|=|V (g′′)|,g′′⊆induce

0
g

diff(g′, g′′),

where |V (g′)| = |V (g′′)| means that g′ and g′′ have the same
number of vertices, g′′ ⊆induce

0 g means that g′′ is an in-
duced subgraph of g, and RS stands for representability on
structure. We say that g′ is structure representable by g
if RS(g′, g) is less than or equal to the predetermined error
tolerance δ.

In above, g′′, as an induced subgraph of g, is specifically
chosen so that the structural difference diff (g′, g′′) is mini-
mized. This in fact suggests the most efficient way of editing
(i.e., through edge insertions/deletions) g′ to make it become
an induced subgraph of g.



We now move on to support preservation, which is a bit
more straightforward. Depending on different user inten-
tions, i.e., what kind of information is expected to be con-
veyed by support, we have multiple choices here. Note that,
all support mentioned here has already been smoothed.

First, if support is simply treated as a number that quan-
tifies pattern frequencies in the dataset, then we do not need
to worry much except the support itself. We can say that
g′’s support is well-preserved by g if

PS(g′, g) =
|sup(g)− sup(g′)|

max{sup(g), sup(g′)}
≤ ǫ,

where PS stands for preservation on support, and ǫ is an-
other tolerance parameter, whose function is comparable to
that of δ.

Second, as one might think, other than purely numeric
frequencies, pattern mining results are usually associated
with a set of occurrence lists, which link each pattern to
those places where it appears in the data. In the scenario
of graph transaction databases, this means that people may
often want a pattern’s support to be conveyed in the sense
of its supporting transactions. Having this in mind, we can
lay down another definition and prescribe that g′’s support
is well-preserved by g if

PS(g′, g) = 1 −
|Dg′ ∩ Dg|

|Dg′ ∪ Dg|
≤ ǫ.

Here, PS(g′, g) takes the form of a Jaccard distance between
the supporting transactions of g′ and g.

Interestingly, if we ignore different transaction IDs and
treat Dg′/Dg as a set of sup(g)/sup(g′) ones: {1, 1, . . . , 1},
which essentially means that users are not concerned about
the specific locations where the pattern occurs, then

1 −
|Dg′ ∩ Dg |

|Dg′ ∪ Dg |
=

|sup(g) − sup(g′)|

max{sup(g), sup(g′)}
,

indicating that the above two definitions can indeed be con-
solidated under the same framework.

Example 3 Let us consider a variation of Examples 1-2,
which is depicted in Fig.3: Now, instead of 10, 2, 2, 2 copies
of d1, d2, d3, d4, we have 10, 10, 10, 10 of them respectively.
Based on the second option in above, i.e., support preser-
vation is calculated based on supporting transactions, Fig.4
shows PS(pj , pi) for each pair of patterns in a symmetric
matrix. Compared to the previous situation, it now becomes
less desirable to delegate p2, p3, p4 by p1 because of their dif-
ferences on support: Looking at corresponding entries in the
matrix, PS(p2, p1) = PS(p3, p1) = PS(p4, p1) = 0.5 is no
longer a small number. In this sense, we choose to present
the whole set of 7 patterns by

{ p1 : sup(p1) = 40, p2 : sup(p2) = 20,

p3 : sup(p3) = 20, p4 : sup(p4) = 20 },

where p5, p6, p7 are still delegated by p1, after introducing
p2, p3, p4 as three additional representatives.

We may interpret this result as follows. If we denote la-
bel a as “UIUC”, label b as “IBM Research” and label c as
“Northwestern”, while each of d1, d2, d3, d4 corresponds to a
sample of three researchers taken from these three institu-
tions, then an edge between two vertices can be thought as
an indication of close collaborating relationship. For exam-
ple, 10 copies of d4 in Fig.3 means that there are 10 samples

out of 40 where the UIUC person and the Northwestern per-
son both work closely with the IBM person, though they do
not collaborate much with each other. For the case of Ex-
amples 1-2, the majority of samples from three institutions
have pairwise research connections among them (correspond-
ing to pattern p1). In comparison, the situation is much
more diverse here, and intuitively this will necessitate more
representatives.
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pattern pi p1 p2 p3 p4 p5 p6 p7

original support dsup(pi) 10 10 10 10 30 30 30

smoothed support sup(pi) 40 20 20 20 30 30 30

Figure 3: A Variation of Examples 1-2

p1 p2 p3 p4 p5 p6 p7

p1 0.00

p2 0.50 0.00

p3 0.50 0.67 0.00

p4 0.50 0.67 0.67 0.00

p5 0.25 0.75 0.33 0.33 0.00

p6 0.25 0.33 0.33 0.75 0.50 0.00

p7 0.25 0.33 0.75 0.33 0.50 0.50 0.00

Figure 4: The Matrix of PS(pj , pi)

Now, we are ready to formalize the problem of present-
ing graph patterns through structural representatives, which
is stated in Definition 6. Intuitively, clustering is a nat-
ural choice for such representative selection tasks: Based
on aforementioned structure representability and support
preservation, which are formulated as distance functions,
we can partition all patterns into a bunch of clusters and
pick their centers to approximately delegate the rest. Here,
structural tolerance δ, number of clusters k, and support
preservation threshold ǫ are all user-set parameters, which
can control the clustering process and in turn reflect the
amount of approximation that is desired.

Definition 6. (Presenting Graph Patterns through Struc-
tural Representatives). Given a set of n frequent patterns
that are mined from the graph database D: P = {p1, p2, . . . , pn}
and their associated supports, find a subset of representatives
R ⊆ P such that for each p ∈ P, there exists at least one
pattern r ∈ R satisfying: first, p is structure-representable
by r; and second, p’s support is well-preserved by r.

In below, we will focus on actual implementations of the
clustering step. Given the pattern set {pi} and their smoothed
supporting transactions {Dpi

}, we develop two algorithms to



partition P , which are constructed from different perspec-
tives. The first one is called ǫ-bounded clustering, it inherits
bottom-up ideas and uses a parameter ǫ to control the local
tightness of each cluster. The second one applies k-medoids
clustering, it has top-down properties and uses a parameter
k to control the global number of clusters.

4.1 ǫ-bounded Clustering
As we suggested in above, in order to guarantee tight-

ness, a parameter ǫ can be put on the clustering’s local side,
which directly bounds the maximal “radius” of each clus-
ter. Intuitively, the larger ǫ is and the more amount of ap-
proximations that are allowed, the less number of clusters.
Now, with fixed threshold ǫ, we say that a pattern pj can
be delegated by another pattern pi, if: (1) pj is structure
representable by pi (see Definition 5), and (2) pj ’s support
is well-preserved by pi, i.e., PS(pj , pi) ≤ ǫ.

When these two conditions are satisfied, pi is a qualified
structural representative for pj , which essentially creates an
ǫ-cluster C(pi) centered at pi:

C(pi) = {pj |pj ∈ P , PS(pj, pi) ≤ ǫ,

and pj is structure representable by pi}.

C(pi) covers all instances in P that can be removed from the
pattern set as long as pi itself is retained, while the degree
of information loss for doing so is upperbounded by ǫ.

At this stage, having n ǫ-clusters C(pi) for each pattern
pi ∈ P , our task is transformed into the selection of n′ < n
ǫ-clusters so that these n′ cluster centers can represent the
whole pattern set. Obviously, each pi ∈ P is contained in
at least one cluster C(pi), while it might also exist in some
other clusters. Now, in order to promote result cardinality
reduction and thus expose users to the least amount of in-
formation under a specific approximation level ǫ, we want to
choose as few ǫ-clusters as possible, if they can fully cover
all the patterns in P .

Treating the total number of n patterns as a universal
collection and each ǫ-cluster as a set that contains several
elements, we resort to set cover for the implementation of
ǫ-bounded clustering. As a classical NP-Complete problem
[8], a well-known approximation algorithm for set cover is
to greedily choose a set that contains the largest number of
uncovered elements at each stage. Algorithm 1 transfers this
strategy to our scenario here.

Algorithm 1 The ǫ-bounded Clustering

Input: the pattern set P , the ǫ-clusters {C(pi)}.
Output: picked cluster centers R.

1: Pr = P ;
2: R = ∅;
3: while Pr 6= ∅ do

4: select the ǫ-cluster C(pi) that currently contains
the most number of patterns in Pr;

5: R = R∪ {pi};
6: Pr = Pr − C(pi);
7: return R;

4.2 k-medoids Clustering
In ǫ-bounded clustering, a pattern can exist in multiple

clusters and thus be delegated by more than one structural

representative that is selected; meanwhile, sometimes users
may also feel difficult to specify an appropriate tightness
ǫ, if they are not so familiar with the data. Thus, as an
alternative method, we develop the k-medoids clustering al-
gorithm, which is comparable to its counterpart in general
unsupervised analysis, where users only need to designate
the number of representatives k they want to see, and each
pattern is assigned to only one cluster.

Define a distance function d(pi, pj) between two patterns
pi, pj ∈ P as

d(pi, pj) =


PS(pj , pi) if pj is structure representable by pi

+∞ otherwise

we have the k-medoids clustering strategy described in Al-
gorithm 2. At first, k patterns M = {m1, m2, . . . , mk} are
randomly selected from P to act as the initial medoids; and
then in each step, one medoid pattern is swapped with an-
other non-medoid pattern, which aims to reduce the follow-
ing distance-to-medoids:

D(M) =
X

p∈P

ˆ
min

i
d(mi, p)

˜2
.

The above procedure is iteratively continued, until reaching
a local minimum of D(M). Previously proposed k-medoids
algorithms mainly differ in the way they perform swaps be-
tween steps: PAM [10] picks a pair reducing D(M) the most
at each step, which includes an extensive examination of ev-
ery possible swapping; CLARANS [15] refuses to do this, it
will continue as soon as it finds something that can decrease
the objective function. We will follow CLARANS’s idea in
this paper, because it has been shown that the method gives
similar clustering quality but is far more efficient than PAM
due to its randomized search, which is ideal for large-scale
applications.

Algorithm 2 The k-medoids Clustering

Input: the pattern set P , the number of clusters k,
and the distance function d(·, ·);
a repetition parameter maxtocheck.

Output: k cluster medoids M = {m1, m2, . . . , mk}.

1: start from k patterns in P to initialize M ;
2: j = 0;
3: consider a random pair m ∈ M and p 6∈ M to be swapped,

let M ′ = M ∪ {p} − {m};
4: if D(M ′) < D(M) then

5: M = M ′, goto step 2;
6: else

7: j = j + 1;
8: if j < maxtocheck then goto step 3; else return M ;

5. DISCUSSIONS
In this section, we discuss some variants and extensions of

the smoothing-clustering framework that has been proposed.

5.1 The Non-Induced Case
Our previous discussions have been using Definition 1 to

quantify the structural difference diff(g′, g) between two pat-
terns g′ and g. Since all edges among a set of vertices are
taken into consideration, it actually corresponds to the in-
duced notion of graph theory. However, as we mentioned



in Section 3, for some application scenarios, it might not
be appropriate to stick with this setting if the users are ac-
tually expecting some non-induced scheme, which has been
followed by quite a few knowledge discovery tasks on graphs.

In a similar fashion, we can define approximate subgraph
isomorphism for the non-induced scenario. For two graphs
g′ and g, we say that g′ is an approximate subgraph of g
in the non-induced sense if there exists an injective, label-
preserving mapping f : V (g′) → V (g) such that the follow-
ing asymmetric difference:

X

v′

1
,v′

2
∈V (g′)

max
˘
0, I ′(v′

1, v
′
2) − I(f(v′

1), f(v′
2))

¯

is less than or equal to δ.
Due to the non-induced nature, the above asymmetric dif-

ference only considers edges that are present in g′ but not
in g, i.e., I ′(v′

1, v
′
2) = 1 and I(f(v′

1), f(v′
2)) = 0, which is in

evident distinction with respect to the induced scenario. Ac-
tually, if there are no such edges, then the calculated asym-
metric difference would be 0 – consistent with the fact that
g′ is now an exact non-induced subgraph of g. Under this ex-
treme case, the dissimilarities between g′ and g are reflected
through support, but not through structure (g have some ad-
ditional vertices/edges compared to g′, but they belong to
the containment part and are thus not treated as structural
differences): In fact, if their supports also coincide, then g
can well represent g′ without losing any information, which
corresponds to the concept of closeness in mining theory.

Compared to g′ ⊆induce
δ g, we can write g′ ⊆δ g if g′ is an

approximate subgraph of g in the non-induced sense. For
the smoothing step, we need to enhance each pj ’s support
by that of pi if pi ⊆δ pj and |V (pi)| = |V (pj)|; while for the
clustering step, g′ is said to be structure representable by g
if g′ ⊆δ g. These are all we need to modify in the original
framework.

5.2 The Single Graph Case
Conceptually, there are no difficulties to extend our frame-

work to the single graph case, because its starting point is a
set of patterns plus their supports, which are given by mining
algorithms in both scenarios: We can still get these raw pat-
terns, compute the smoothed supports and perform cluster-
ing. There is only one complication: Unlike the transaction
database setting, where support equals the number of graph
transactions that contain some pattern, a common strategy
adopted here is to count the maximal number of edge-disjoint
embeddings [12], i.e., different occurrences must not overlap,
so that the anti-monotonicity is still guaranteed. Now, as
we work with support preservation, it could be complex to
adopt the second option, which relies on well-defined sup-
porting transactions; while for the first option that reflects
numeric supports, PS(g′, g) takes the form of

|a · sup(g) − sup(g′)|

max{a · sup(g), sup(g′)}
,

where a is an adjusting factor equivalent to g′’s support in g:
Since a pattern can appear multiple times in a single graph,
it is straightforward to imagine that g′’s support would be
around a times sup(g) if we use g to delegate g′.

5.3 Size-Increasing Structural Tolerance
In above, we have been using a uniform structural toler-

ance δ in all situations. However, intuitively, shall we allow

a greater tolerance for larger patterns than for smaller pat-
terns? For example, in a graph with 4 edges, a difference
of 2 edges means 50% approximation; while in a graph with
20 edges, it is only 10%. To reflect this idea, when consid-
ering approximate subgraph isomorphisms g′ ⊆induce

δ g and
g′ ⊆δ g in either the smoothing step or the clustering step,
instead of a constant, we can let δ be an increasing function
of g′’s size, i.e.,

δ = δ(|V (g′)|) or δ = δ(|E(g′)|),

which is called a size-increasing structural tolerance. Here,
two interesting choices could be δ1 = α|V (g′)| and δ2 =
α|E(g′)|, where α is a percentage constant, with δ1 being
tolerance proportional to the number of vertices and δ2 being
tolerance proportional to the number of edges.

5.4 More Complex Approximate Matchings
Remember that, when two graphs g′ and g’s structural dif-

ference was characterized in Definition 1, the configuration
is restricted in the following two senses. First, we stipu-
late that, even for two graphs to be approximately isomor-
phic, their vertex labels should still match exactly, which
was meant to focus our discussions on the difference with
regard to interconnecting topology. This is plausible if the
label, as a categorical attribute, represents a strict classifi-
cation of node entities, where two classes are not compatible
to each other at all. However, based on different application
scenarios, the above setting might be too rigid, e.g., in a pro-
tein network, though protein A is not identical to protein B,
mutual substitutions can still happen between them under
certain situations. Second, concerning edges, we have only
differentiated two possibilities, i.e., there is an edge or not.
In general, edges are also associated with labels, which in-
corporate relevant information, e.g., there could be le types
of edges and le+1 different cases: type-1, type-2, . . ., type-le
plus null, where null means no edge exists.

Formally, we can define two distance matrices: (1) distv[i, j],
an lv × lv matrix, with lv being the number of different
vertex labels, and (2) diste[i, j], an (le + 1) × (le + 1) ma-
trix. These two matrices are symmetric, have zero diagonals,
whose (i, j)th entry is a quantification of the dissimilarity be-
tween the ith and jth vertex/edge label. In practice, they
can be determined by domain experts, reflecting their knowl-
edge on the difficulty of having a corresponding replacement:
For example, it might be easier for an edge with label 1 to
change its label to 2 than to null, which means to completely
diminish that edge; and this will result in a smaller penalty
score for diste[1, 2] than for diste[1, null ] in the matrix.

With all above preparations, we can rewrite the formula
in Definition 1 as:

diff(g′, g) = min
∀f :V (g′)↔V (g)

 X

v′∈V (g′)

distv

ˆ
L′(v′), L(f(v′))

˜
+

X

v′

1
,v′

2
∈V (g′)

diste

ˆ
L′(v′

1, v
′
2), L(f(v′

1), f(v′
2))

˜ff
,

where the label function L′/L is now applied on both ver-
tices and edges. More clearly, for an edge between u and v,
its label is L(u, v), with L(u, v) = null if there is no edge.
This new way of modeling structural difference can be easily
inserted into our current framework, which is also straight-
forward to be extended to the non-induced case.



6. EXPERIMENTAL RESULTS
In this section, we provide empirical evaluations on our

algorithm of presenting graph patterns through structural
representatives. We use two kinds of datasets in this study,
one real dataset and one synthetic dataset. All experiments
are done on a Microsoft Windows XP machine with a 3GHz
Pentium IV CPU and 1GB main memory. Programs are
compiled by Visual C++.

6.1 Real Dataset
Chemical Compounds. The first, AIDS anti-viral screen
dataset contains the graph structures of chemical compounds,
which is publicly available on the Developmental Therapeu-
tics Program’s website. It consists of more than 40,000
molecules, and has been used as an important benchmark
for various knowledge discovery tasks on graphs. In this
data, vertices are labeled with Carbon (C), Hydrogen (H),
Oxygen (O), etc.; while an edge exists if there is a corre-
sponding chemical bond. Based on the state-of-art graph
mining tools, we use a minimum support of 8% and gener-
ate 5,304 frequent non-induced subgraphs, which are taken
as the input P for our smoothing-clustering framework.

Experiment Settings. Clearly, given such a large amount
of patterns that are nonetheless redundant, it is very hard for
any users to make sense of them. To maintain consistency
with the mining algorithm, we adopt the non-induced setting
to characterize structural differences (see Section 5.1), while
support preservation is computed based on supporting trans-
actions (instead of pure frequency numbers), which are well-
defined here. Note that, when performing the smoothing
and clustering steps, we have to compare each pair of pat-
terns so that structure representability and support preser-
vation can be decided, especially for the smoothing step,
where the determination of approximate subgraph isomor-
phism is somehow costly. We implement a few heuristics to
accelerate this. First, we make sure that pj ’s vertex label set
is contained in that of pi before any real matching is done,
because otherwise pj will not be structure representable by
pi anyway. Second, in computing diff(g′, g), which is the
sum over a series of non-negative numbers, we designate an
upperbound of δmax and stop whenever the addition reaches
this value; the result thus achieved can be reused for many
rounds of clustering as long as the approximation parameter
δ is less than δmax.

Figure 5: Sample Representatives

Fig.5 gives some sample representatives we get from this
dataset, which are shown on the right-hand side; on the left-
hand side, it lists a few original patterns that are delegated
by them. In order to make the whole picture easy to read,
we omit all Hydrogens from the drawing, while a vertex
without label is by default a Carbon, e.g., the “O” with one

edge is in fact an “OH”, and the (unmarked) “C” with two
edges is in fact a “CH2”. There are some chemical properties
associated with each cluster, which are further epitomized
by the corresponding representative: The hexagon shape of
patterns on the first row is typical of hexose (e.g., glucose,
galactose belong to this category), while the pentagon shape
of patterns on the second row is typical of pentose (e.g.,
ribose, desoxyribose belong to this category).

Fig.6 is an examination on the effect of smoothing. Here,
patterns are grouped into bins based on their number of
edges, which is shown on the x-axis; meanwhile, we plot the
average support of patterns within each bin, which is shown
on the y-axis. Clearly, δ = 0 corresponds to the original
supports that are not smoothed. As we can see, even using
δ = 1 will largely boost the curve, which means that the
pattern set is highly redundant where a lot of frequent sub-
graphs are so similar to each other (the difference is only one
edge). In comparison, the gap between δ = 1 and δ = 2 is
much smaller, hinting that δ∗ = 1 could be a reasonable set-
ting for the chemical compound dataset. To this extent, we
will focus more on the δ = 1 case for the rest of Section 6.1.
There is only one thing that might seem counter-intuitive:
For δ = 1 and δ = 2, sometimes the support slightly goes
up as the pattern size increases. Actually, this can happen
after smoothing: An easy-to-think example is Fig.1, where
p5 is an induced subgraph of p1, but sup(p1) > sup(p5).
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Figure 6: Effect of Smoothing

Fig.7 depicts ǫ-bounded clustering. It is easy to imagine
that, as the threshold ǫ becomes larger, less and less cluster
centers will suffice to represent the whole pattern set. Also,
the large gap between δ = 1 and δ = 0 indicates that struc-
tural relaxation and thus structural representative is a nec-
essary mechanism to achieve effective pattern presentation.
Empirically, ǫ∗ = 0.15 or 0.2 could be a suitable parameter
to work with, because from 0 to ǫ∗, the number of clusters
reduces significantly, while beyond that range, the gain to
further increase ǫ is less obvious.
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Fig.8 depicts k-mediods clustering, where maxtocheck is



set as 2000. Similar to tests on ǫ-bounded clustering, we
want to examine the relationship between number of clusters
k and clustering quality, which is reflected by the following
measure of average error:

E =
1

|P|
D(M) =

1

|P|

X

p∈P

ˆ
min

i
d(mi, p)

˜2
,

where M is the final set of medoids. The general trend
is quite similar to Fig.7 (suggesting k∗ = 300 as a suit-
able parameter setting), except that the support preserva-
tion threshold there bounds on the maximal distance from
each pattern to its cluster center, while the error E defined
here calculates an average, which is somehow smaller. We
decide to omit the δ = 0 curve, because for such a zero struc-
tural difference case, k on the x-axis must be set very large
so that each pattern is structure representable by at least
one medoid, and this will dwarf the more interesting δ = 1
curve.
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Fig.9 draws two distributions for the original patterns P
and final representatives R, respectively. Like in Fig.6, pat-
terns are binned based on their number of edges, with its
y-axis now showing the number of patterns for each bin. ǫ-
bounded clustering with δ = 1 and ǫ = 0.15 is applied. The
downward tendency of R with respect to P is very clear.
Moreover, an interesting observation is that, the degree of
descending is even bigger for the curve’s mid-part, which
corresponds to the high-frequency area if we look at the dis-
tribution of P . This demonstrates the effectiveness of our
algorithm in the dense region of data.
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Fig.10 describes what happens when a size-increasing struc-
tural tolerance is used. Based on Section 5.3, we adopt the
following function:

δ = round(α|E(g′)|),

where α is set at 0.125. ǫ-bounded clustering is tested. Due
to the rounding that is applied, δ starts from 0 for one-edge

patterns and gradually augments to 1 (at 4-edge), 2 (at 12-
edge), and so on. Looking at Fig.9, the fraction of patterns
with less than 4 edges is pretty small, which means that in
overall, the constraint imposed by the scheme here is less
rigid than that of a uniform δ = 1. This might explain the
non-uniform curve’s lower position in Fig.10.
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6.2 Synthetic Dataset
Generator Description. The synthetic graph generator
follows a similar mechanism as that was used to generate
transaction itemset data [1], where we can set the number
of graphs (D), average size of graphs (T ), number of seed
patterns (L), average size of seed patterns (I), and number
of distinct vertex/edge labels (V/E). First, a set of L seed
patterns are generated randomly, whose size is determined
by a Poisson distribution with mean I ; then, seed patterns
are randomly selected and inserted into a graph one by one
until the graph reaches its size, which is the realization of a
Poisson random variable with mean T . Due to lack of space,
readers are referred to [11] for further simulation details.

The data set we take is D10kT20L200I10V(lv)E1, i.e.,
10,000 graphs with 20 vertices on average, which are gen-
erated by 200 seed patterns of average size 10; the number
of possible vertex and edge labels are set to lv and 1, re-
spectively. Other experiment settings are as same as those
in Section 6.1. We vary lv from 6, 8, 10, 12, up to 15, and
use a fixed min sup = 6% to mine frequent subgraphs from
these five datasets, which are further processed by smooth-
ing and ǫ-bounded clustering (use ǫ = 0.2). The result is de-
picted in Fig.11, where in order to account for the fact that
the original pattern set’s cardinality |P| is different for each
dataset, we normalize the number of final representatives |R|
by dividing |P|, which is called reduction ratio and shown on
the y-axis. Based on the upward trend of curves, it can be
seen that the benefit achieved by our algorithm shrinks as
lv becomes larger, which is natural, because in the normal
case, vertex labels must be exactly matched (even increasing
the error tolerance δ cannot change this), and more labels
will surely increase the diversity of data. Section 5.4 offers
a solution to alleviate this effect, if distinct labels are not
absolutely non-substitutable.

Taking D(|D|)T20L200I10V10E1, we also tested the effi-
ciency of our algorithms over five synthetic datasets by vary-
ing the number of transactions |D| from 5,000, 10,000, up to
25,000, which is shown in Fig.12. Here, a fixed min sup =
6% is used and around 1,500 frequent subgraphs are gener-
ated for each dataset. The total running time is composed
of two parts: (1) the smoothing time (use δ = 1), which
enhances the support of each pattern by those of its look-
alikes, and (2) the clustering time (use ǫ = 0.2 for ǫ-bounded
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clustering and k = 500, maxtocheck = 2000 for k-medoids
clustering) that produces a bunch of final representatives.
It can be seen that the implementation is highly efficient,
which can finish in tens of seconds, while both of our algo-
rithms are linearly scalable.
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Figure 12: Scalability Tests

7. CONCLUSIONS
We examine the presentation problem of graph patterns

and solve the usability issue raised at the beginning of this
paper. Instead of too many exact patterns that are not so
meaningful, a compact group of informative delegates are
generated and shown to the users. Structural representa-
tives play a key role in this novel, integrative approach,
which essentially rolls-up our attention to a more appropri-
ate level that no longer looks into every minute detail. The
smoothing-clustering framework is nearly universal, which
can handle many variants of the problem (induced/non-
induced, transaction database/single graph) and incorporate
other extensions as well. Finally, empirical studies confirm
the effectiveness and efficiency of our proposed algorithms.
As a promising future direction, since the method described
here belongs to the post-processing category, we are now
working on advanced algorithms that can directly mine such
representative patterns from data.
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