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ABSTRACT
Traditional pattern mining methods usually work on single
data sources. However, in practice, there are often multiple
and heterogeneous information sources. They collectively
provide contextual information not available in any single
source alone describing the same set of objects, and are use-
ful for discovering hidden contextual patterns. One impor-
tant challenge is to provide a general methodology to mine
contextual patterns easily and efficiently. In this paper, we
propose a general framework to encode contextual informa-
tion from multiple sources into a coherent representation—
Contextual Information Graph (CIG). The complexity of
the encoding scheme is linear in both time and space. More
importantly, CIG can be handled by any single-source pat-
tern mining algorithms that accept taxonomies without any
modification. We demonstrate by three applications of the
contextual association rule, sequence and graph mining, that
contextual patterns providing rich and insightful knowledge
can be easily discovered by the proposed framework. It en-
ables Contextual Pattern Mining (CPM) by reusing single-
source methods, and is easy to deploy and use in real-world
systems.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining

Keywords
Heterogeneous sources, contextual pattern mining

1. INTRODUCTION
Today’s explosion in data does not only grow in the num-

ber of examples, but also grow in the number of available
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information sources describing related set of objects. Tradi-
tional frequent pattern mining methods for association rules
[1, 8], sequences [2, 19], and graphs [20, 11] usually work
on single information sources. The target objects of inter-
est are simply a set of transactions, sequences composed of
time-stamped elements, or labeled graphs. However, in re-
ality, there are usually multiple heterogeneous information
sources describing the contexts or related attributes of the
target objects. These sources provide important contextual
information not available from any single source alone, but
can be useful to understand the data and discover interesting
knowledge [13]. For example, in a crime scene analysis case,
on Mondays, vehicle thefts happened more frequently in ar-
eas with high population density. Interestingly, the same
type of crimes on Saturdays happened more frequently in
low population density areas. Here the contextual informa-
tion, i.e., the population density, from census data feeds but
not available in the crime database, played an important role
to extract useful crime patterns. Another example is that, in
the epidemic spread characterization scenario, the location
contexts such as the relative position to a river supplying
drinking water, can be extracted from the map data source.
Sequential patterns indicating that most people with diar-
rhea symptoms had visited downstream areas before getting
sick can be discovered. A probable water-borne transmission
and the source of contamination can therefore be inferred.
Such insightful patterns cannot be found only by analyzing
people’s symptoms without utilizing the location contextual
information of their movements. Most traditional data min-
ing methods do not consider the contextual information from
the heterogeneous sources, but focus on finding patterns ex-
plicitly appearing in a single source. Therefore, they are not
directly applicable to these problems.

However, simply joining multiple data sources into a single
dataset does not work either; it is well known that join-
ing multiple sources not only results in an unnecessarily
huge dataset but also leads to the loss of information at
the same time (the semantics represented by the linkages
between information sources) [5, 7]. Multi-relational data
mining (MRDM) [4, 5] can be applied to mine multiple
sources. However, in a real-world system, such as a modern
enterprise’s data analytics platform or a commercial busi-
ness intelligence product, it is usually expensive to deploy
a new set of algorithms, as it often involves intensive test-
ing and requires a lot of engineering effort. Yet, another
practitioners’ concern recently raised from real-world appli-
cations of mining multiple sources is the “ease of use” [14].



Figure 1: Star Schema of Information Sources

Figure 2: Contextual Pattern Mining

In this paper, we answer the question that: given a set of
traditional single-source pattern mining algorithms, how to
non-intrusively and maximally reuse them for discovering
insightful patterns across multiple heterogeneous sources?
In real-world applications, one of the most common ways
in which multiple information sources relate to each other
is the star schema, which consists of a target dataset and
a number of heterogeneous contextual information sources.
The target dataset is a main information source of objects
that are of primary interest, where the primary key identi-
fies the target objects (a target object can be a transaction,
a sequence, or a graph in the dataset), and several foreign
keys identify the identities inside a target object (an iden-
tity can be an item inside a transaction or sequence, or a
label of graph vertex or edge). The contextual information
sources provide auxiliary information about all or a subset
of objects in the target dataset, where the primary key is
linked to a foreign key (possibly via predicates, Section 2.3)
in the target dataset. These information sources contain the
features (either constant or dynamic over time) of the iden-
tities inside the target objects, which provides rich context
for mining insightful patterns of target objects. Figure 1 is
an example of star schema of a target dataset and four con-
textual information sources. We define patterns discovered
from such multiple sources as contextual patterns:

Definition 1 (Contextual Pattern). A pattern of
the target objects, which contains the information explicitly
appearing in the target dataset and the information implicitly
represented across the contextual information sources.

Apparently, contextual patterns can only be mined by
collectively considering the target dataset and the contex-
tual information sources. Figure 2 illustrates the flow of
the proposed Contextual Pattern Mining (CPM) concept.
As shown, the idea of CPM is quite different from the tradi-
tional MRDM approaches, although sharing the same objec-
tive. By solving the problem from a new perspective, CPM
outperforms the traditional MRDM approaches, in terms of
non-intrusiveness, ease of use, and efficiency. More details
can be found in Section 6. The main challenge of CPM is
how to effectively encode multiple sources of contextual in-
formation before running a traditional single-source pattern
mining method, so that contextual patterns can be easily
discovered. In this paper, we propose the Contextual In-
formation Graph (CIG) encoding framework to solve this
problem. An example of CIG in the crime analysis scenario
is given in Figure 3. It encodes the population densities
(POPDEN) as well as the ratios of male to female (RMF) of
census tracts where the crime had happened. With CIG, a

Figure 3: Contextual Information Graph (CIG)

single-source pattern mining algorithm accepting taxonomy
as an additional input can be applied to the target crime his-
tory dataset. We also show that simply joining contextual
information to the target dataset does not work, and can
result in a large number of redundant patterns (Section 5).
The advantages of the proposed CIG encoding framework
include: (1) Generality. CIG supports mining all the three
types of popular frequent patterns: itemset/association rule,
sequence, and graph. (2) Efficiency and scalability. With
the HashSet and HashMap data structure, both the time
and space complexities of CIG encoding are linear. The
Knowledge-to-Identity path query on CIG in pattern mining
stage (Section 2.2) is constant in time. (3) Robustness. CIG
is capable of handling missing values, dynamically changing
values, and multiple values on contextual features. (4) No
information loss. CIG encoding is a one-to-one mapping of
the contextual information sources.

2. ENCODING FRAMEWORK
In most cases, frequent pattern mining deals with discrete

features [7]. In this paper, we assume all the contextual in-
formation (including time information) is in discrete feature
values, or has been discretized according to some criterions.
To effectively conduct Contextual Pattern Mining (CPM),
we encode all available contextual information by a CIG,
which is a labeled DAG (Directed Acyclic Graph) with la-
bels associated only with its vertices. Let U denote the set
of contextual information, V denote the set of identities, and
E denote the set of linkages between U and V .

Definition 2 (Contextual Information Graph). A
Contextual Information Graph (CIG) is a labeled bipartite
directed graph G = (U, V,E), s.t. (1) ∀u, v ∈ U ∪ V, ℓ(u) ∕=
ℓ(v) if u ∕= v, and (2) ∀ edge (u, v) ∈ E, u ∈ U, v ∈ V , where
ℓ is the label function of the vertices in G.

An example is given in Figure 3. Available contextual in-
formation collected from census data feeds consists of two
features (POPDEN and RMF) for each identity (census tract).
Here U is the set of all possible combinations of a feature
and its value (vertices in the upper half of the CIG), where
one vertex stands for a combination. V is the set of all
identities (vertices in the lower half of the CIG), where one
vertex stands for an identity. The meaning of a vertex is
shown by its label displayed aside. The directed edges from
a vertex in U to a vertex in V denote the linkages between
the identities and the feature values, which constitute set
E. As can be seen, the first condition in Definition 2 means
that in a CIG G = (U, V,E), the label of a vertex is unique
that only one vertex in U stands for a specific feature value
and only one vertex in V stands for a specific identity. The
second condition means that the linkages exist only between
the identities and the feature values, and are represented by
directed edges from a feature value to an identity.

2.1 Encoding Algorithm
Algorithm 1 summarizes the CIG encoding procedure. For

some applications, contextual information is not fixed, and



Algorithm 1 CIG Encoding

Input: A set of contextual information sources S.
Output: A CIG G = (U, V,E).
1: U ← ∅;V ← ∅;E ← ∅;
2: foreach contextual information source s ∈ S
3: foreach state of identity i at time t, it ∈ s
4: insert a vertex v to V , ℓ(v)← it;
5: foreach combination of feature F and its value X,

(F = X) ∈ it
6: vertex u← search in U with ℓ(u) = (F = X);
7: if u is not found then
8: insert a vertex u to U , ℓ(u)← (F = X);
9: insert a directed edge (u, v) to E;
10: return G = (U, V,E);

Figure 4: CIG of Fixed Contextual Information

can be changing over time. For example, temperature of an
outdoor location varies over time, and traffic flow of a road
may change between working hours and midnight. There-
fore, on line 3, if the features of an identity change over
time, a vertex indicating the state at a specific discrete time
frame will be created. In reality, multiple values for one
feature can exist. In this case, the algorithm reads every
possible combination of the feature and its values, and cre-
ates separate vertices. Figure 4 is an example of encoding
fixed contextual information from one source into a CIG.
ID indicates the identities. F1 and F2 are two multi-valued
features. The labels of vertices are shown inside. Figure 5
encodes dynamic contextual information from one source.
The only difference in the CIG is that an identity state ver-
tex is defined by its ID together with a time stamp. When
encoding multiple sources, the resulting CIG is the union of
several small CIGs, each is constructed from one source.

2.2 Contextual Pattern Mining
As shown in Figure 2, we propose to perform Contextual

Pattern Mining in two steps: (1) construct a CIG from the
contextual information sources, and (2) apply a single-source
pattern mining algorithm to discover contextual patterns.
The single-source pattern mining algorithm can be imple-
mented based on an existing Generalized Pattern Mining
(GPM) algorithm [16, 6, 17, 9, 3] with only minor modifi-
cation or even no change at all. GPM algorithms accept a
taxonomy of the identities besides reading a target dataset as
primary input, and can mine generalized patterns across dif-
ferent levels of the taxonomy. A taxonomy describes the con-
cept hierarchies (ontologies) of identities, typically appear-
ing as a tree with great depth or forest structures. In most
cases, a taxonomy is defined by human knowledge and con-
structed manually. Figure 6 is an example of a taxonomy of
items. In a taxonomy, all the leaf nodes are specific identities
appearing in target objects. The non-leaf nodes are virtual
concepts defined by human knowledge. A directed edge from
a higher level concept to a lower level concept, or from a con-
cept to an identity indicates the conceptual generalization,
i.e., reversely is-a semantics. For instance, in Figure 6, con-
cept Outerwear generalizes identities Jacket and Ski Pants,
thus Jacket is-a Outerwear, and Ski Pants is-a Outerwear.
With this taxonomy, generalized association rule mining [16,
6] can discover rules like“Outerwear⇒ Hiking Boots”from a

Figure 5: CIG of Dynamic Contextual Information

Figure 6: Taxonomy of Items (adopted from [16])

dataset of item purchase transactions, meaning that the cus-
tomers bought Outerwear also bought Hiking Boots. How-
ever, specialized rules only at identity (item) level, such as
“Jacket ⇒ Hiking Boots” and “Ski Pants ⇒ Hiking Boots”,
may not be frequent or confident. Generalized sequential
pattern mining [17] and generalized graph mining [9, 3] work
in similar ways.

CIG is different from taxonomy in the following aspects:
(1) A CIG can be automatically constructed with Algo-
rithm 1, whereas defining a taxonomy heavily requires in-
volving human knowledge in most cases. (2) In a CIG
G = (U, V,E), there is no edge connecting two vertices in U ,
i.e., no linkage exists between the vertices representing con-
textual information. However, in a taxonomy, such linkages
define relationships between two concepts. (3) In a typi-
cal taxonomy of a tree (or forest) structure, vertices repre-
senting identities have in-degree = 1. Whereas in a CIG
G = (U, V,E), vertices in V representing identities have 1≤
in-degree ≤ ∣U ∣. (4) We can regard both contextual infor-
mation and concepts as knowledge. It can be proven that if
a path exists in a CIG that starts from a vertex represent-
ing knowledge and ends at a vertex representing an identity,
it always contains only one edge. But in a taxonomy, such
paths can contain multiple edges. Generally, we call such a
path the Knowledge-to-Identity (KI) path.

Definition 3 (Knowledge-to-Identity (KI) Path).
Given a CIG G = (U, V,E), a KI path exists from knowl-
edge (F = X) to identity i iff. ∃(u, v) ∈ E, s.t. ℓ(u) = (F =
X), ℓ(v) = i, u ∈ U, v ∈ V . We denote it by (F = X) ⊳ i.

In existing GPM algorithms, the KI path is usually re-
ferred as the antecedent-descendant relationship on a taxon-
omy. In most cases, the KI path query is the only necessary
interface that a GPM algorithm interacts with a taxonomy
[16, 6, 17, 9, 3]. To be specific, a GPM algorithm only needs
to know the followings to mine generalized patterns, all of
which are essentially KI path queries: (1) Given an identity,
identify all the antecedents, i.e., concepts generalizing the
identity. (2) Given a concept, identify all the descendants,
i.e., lower level concepts and identities specializing the con-
cept. (3) Given a concept and an identity, check if there
exits a path connecting them. We can see that as long as
these KI path queries can be done on CIG, a GPM algorithm
can accept a CIG by blindly treating it as a taxonomy, and
the output will be contextual patterns.

This is a favorable characteristic: We can conduct CPM
by non-intrusively leveraging traditional GPM algorithms,
with an appropriate way of encoding new information that
GPM algorithms cannot directly handle. And indeed, per-
forming the KI path queries on CIG is straightforward (Sec-
tion 2.4). We can find that CPM can be done with a rela-



Table 1: Dataset Relating Contexts via Predicates
F1

TargetObj1 p1(ID1)
TargetObj2 p1(ID1), p2(ID2)
. . . . . .

tively small cost. With the CIG encoding, existing single-
source GPM algorithms can be reused to the maximum level.
One thing should be noticed is that, if the GPM algorithm
applied only accepts tree (or forest) structured taxonomies,
it may need minor changes so that a general DAG structured
CIG can be processed. In this case, the time complexity
bounds of a GPM algorithm [16, 6, 17, 9, 3] does not change
if replacing a taxonomy input by a CIG. This is because in a
general sense, KI path query on either a taxonomy or a CIG
shares the same time complexity if the taxonomy and the
CIG are isomorphic. Besides, since CIG is a bipartite graph,
KI path queries on it can be highly efficient (Section 2.4).
It is also feasible to combine a taxonomy to a CIG, so that
the algorithm can discover contextual patterns and tradi-
tional generalized patterns simultaneously. However in this
case, KI path queries are essentially done on a DAG not
necessarily being bipartite. Such KI path queries become
the general graph reachability queries. Labeling and index-
ing methods [18] can be employed to accelerate the queries.
Specific CPM algorithms for mining contextual association
rules, sequences, and graphs will be presented in Section 4.

2.3 Indirect Contextual Information
In some cases, contextual information may not be directly

linked to identities, but via predicates. Take the crime scene
analysis as example. To study the factors contributing to
crime, contextual information such as location features, need
to be considered. The location of a crime is usually repre-
sented by GPS coordinate in IT systems of police depart-
ments. However, environmental contexts, such as popula-
tion densities of the communities and types of the buildings
nearby, do not directly relate to the GPS location. In this
case, a predicate defining a relationship between two iden-
tities is needed to correlate available information. Specifi-
cally, in the crime example, spatial predicates (e.g., within,
close to) [10] can define spatial relationships between a GPS
location identity and the contextual identities (community,
building, etc.). The computation of predicates is usually
done externally (e.g., by a computation engine or a lookup
table), but a predicate itself can still be directly represented
in the target dataset. Table 1 illustrates an example of a tar-
get dataset relating to contextual identities via predicates.
Consider each target object has a feature F1. The values of
F1 include predicates p1(⋅) and p2(⋅). Using the crime exam-
ple, F1 could denote the spatial features derived from GPS
coordinates, and p1 and p2 may stand for within and close to
relationships, respectively. ID1 and ID2 that relate to tar-
get objects via p1 and p2 could stand for a community and a
building, respectively. CPM treats an instantiated predicate
(in the above example, p1(ID1) or p2(ID2)) as a whole to be
one item. It works by simply defining the following.

Definition 4. Given a CIG G and a predicate p(⋅), p(F =
X) ⊳ p(i) on G iff. (F = X) ⊳ i on G.

For example, given the CIG in Figure 4 and the dataset in
Table 1, we have p1(F1=a) ⊳ p1(ID1), p1(F2=x) ⊳ p1(ID1),
p2(F1=b)⊳ p2(ID2), and p2(F2=x)⊳ p2(ID2). By doing so,
CPM can deal with predicates as well as ordinary identities.

2.4 Implementation & Complexity Analyses

Figure 7: HashSet of Capacity 8. Keys {8, 56, 11, 73}
stored with hash function x mod 8. 56 and 11 collide.

In our implementation, a HashSet is used to store the
vertices U ∪ V given a CIG G = (U, V,E). One HashMap
is used to store the directed edges E, where each key is a
vertex u ∈ U , and its mapped value is a HashSet of all
its descendant vertices on G, defined by {v∣v ∈ V, (u, v) ∈
E}. Another HashMap representing the reverse edges is
also maintained, where each key is a vertex v ∈ V , and its
mapped value is a HashSet of all its antecedents, defined
by {u∣u ∈ U, (u, v) ∈ E}. These two HashMaps are built
simultaneously on line 9 in Algorithm 1.

Time Complexities: On HashSet/HashMap, it is known
that any insertion or search operation is O(1) asymptot-
ically, assuming there is no collision. In practice, this is
usually true, especially when sufficiently large capacity of
the HashSet/HashMap is available as compared to the to-
tal number of elements (keys) to be stored. In this case, in
Algorithm 1, line 4 (vertex insertion), line 6 (vertex search)
and line 9 (edge insertion) are all constant in time. The time
complexity of Algorithm 1 is thusO(

∑
∀s∈S

∑
∀it∈s

∑
∀(F=X)∈it

1) =

O(∣E∣), linear to the amount of information encoded1. The
worst case of HashSet/HashMap operations is O(n) only if,
in the extreme case, that all hashes collide for the total n
elements in the HashSet/HashMap. Figure 7 demonstrates
a simple example of Hash collision. Therefore, in most cases,
the time complexity of CIG encoding is linear. Only once
scanning of all the contextual information is sufficient to
construct CIG. Because CIG is always a bipartite graph, KI
path query is equivalent to edge search. Given a constructed
CIG, assuming no collision, searching all descendants or an-
tecedents of a vertex and searching an edge defined by two
specified vertices in the HashMaps, are all constant in time.
Similarly, the worst cases are O(∣U ∣), O(∣V ∣), and O(∣U ∣+d),
respectively, where d is the max degree of vertices in U . In
a word, any KI path query on CIG is constant in time in
most cases, where there is no hash collision.

Space Complexities: A HashSet/HashMap typically
has space complexity of O(n), where n is the number of
elements stored. In our case, the HashSet for vertices has
O(∣U ∪V ∣) = O(∣U ∣+ ∣V ∣) space complexity. We can also in-
fer that the two HashMaps haveO(∣U ∣+∣E∣) andO(∣V ∣+∣E∣)
space complexities, respectively. Therefore, the overall space
complexity of a CIG is O(∣U ∣+ ∣V ∣+ ∣E∣).

3. EXPERIMENTS
In this section, we experimentally validate the linear time

and space complexities of CIG encoding and the constant
time complexity of KI path query. All the experiments are
done on a machine with Intel Core2 2.66GHz CPU and 2GB
memory, using Java programming with the initial capacity
of 16 and the load factor of 0.75 for HashSet/HashMap.
The results are shown in Table 2 and Figure 8, which are
obtained on the contextual information used in Section 4.

1
When the information source is a typical flat table of M rows and

N columns, this complexity is O(M ⋅N), and ∣E∣ = M ⋅N .



Table 2: Results of Time and Space Complexities
∣U∣ ∣V ∣ ∣E∣ CIG encoding CIG memory KI path query

CPU time (ms) usage (KB) CPU time (ms)*

7 10 20 0.99 1.832 23.82
10 14 28 1.14 1.844 23.86
9 237 237 4.39 10.465 17.11
13 298 298 5.20 13.324 23.40
15 400 400 6.95 17.9 16.26
15 269 430 7.15 14.116 18.71
14 459 459 7.51 20.472 17.19
15 347 592 9.32 18.758 26.16
16 479 853 10.65 26.56 21.27
16 572 1043 13.63 32.082 19.31

*Total CPU time of 10,000 random KI path queries.

0 200 400 600 800 1000 1200
0

2

4

6

8

10

12

14

|E|

C
P

U
 T

im
e 

(m
s)

 

 

Sample
y = 0.012*x + 1.4701
R2 = 0.9732

(a) Time Complexity

0 500 1000 1500 2000
0

5

10

15

20

25

30

35

|U|+|V|+|E|

M
em

or
y 

(K
B

)

 

 

Sample
y = 0.0191*x + 1.2754
R2 = 0.9941

(b) Space Complexity

Figure 8: Linear Complexities of CIG Encoding

The contextual data is represented by the integer type to
eliminate the effects of varying hash code calculation time
and storage size caused by data types like string. We can
find that the CPU time of CIG encoding is linear to ∣E∣,
and the storage (space) of CIG is linear to (∣U ∣+ ∣V ∣+ ∣E∣).
Two linear equations fitting the samples are also shown in
Figure 8. Both have the R square highly close to 1, indicat-
ing the linearities. To verify the constant time complexity
of KI path queries, in each test, we randomly generate KI
path queries 104 times and report the total CPU time. It is
shown from Table 2 that the KI path query is efficient and
only costs nearly constant time in the order of 20ms across
all tests, in spite of the data change. In summary, all the
results are consistent with the analyses in Section 2.4.

4. CASE STUDIES
Applications of specific contextual pattern mining algo-

rithms to three case studies are given in this section.

4.1 Contextual Association Rule Mining
Data Overview: The first case study is on the real crime

history of the City of Spokane, WA, USA. Contextual as-
sociation rule mining is conducted to find crime patterns.
Totally 816 crime incidents of 3 general types, Drugs (167
incidents), Vehicle Theft (552 incidents), and Robbery (97
incidents), reported in the northeast city (covering 10 census
tracts) during Jan 2009 to Mar 2010, constitute the target
dataset. The day of week on which the incident happened
and its general type are included in pattern mining as nor-
mal attributes. The geometries of the census tracts and 23
major streets in the area are also used to derive spatial fea-
tures for each incident, including within a tract and close to
a street (distance < 500 feet). A sample of the target dataset
in transaction format is given in Table 3 (tid indicates id of
transaction/incident). Figure 9 is a map overview of the
data. The US Census Bureau data is involved as a contex-
tual information source. Population density (per sq mi) and
ratio of male to female are considered as contexts. Because
these two features, according to the domain knowledge, can
influence the distribution of crime occurrences. The tracts’
features are summarized in Table 4. A CIG that encodes the
POPDEN and RMF is constructed for CPM. A portion of
the CIG is shown in Figure 3. A simple taxonomy of “every
street is-a Road” is also combined as part of the CIG.

Table 3: Sample Crime Target Dataset
tid items

4 Wednesday, Drugs, within(Tract26), close to(Trent Av)

251 Thursday, Robbery, within(Tract16), close to(Garland Av)

266 Friday, Vehicle Theft, within(Tract1), close to(Freya St),
close to(Wellesley Av)
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Figure 9: Map Overview of Crime Dataset

Contextual Association Rule Mining: The contex-
tual association rule mining is summarized in Algorithm 2.
As in the generalized association rule mining [16], first the
transactions are expanded with the contextual information
related to items using KI path queries on the CIG, where an
item can be a predicate or an identity. Duplicate features ex-
panded, if any, are removed. For example, after expansion,
Table 3 will become Table 5. Then frequent itemsets are enu-
merated and pruned as in typical generalized association rule
mining. Any itemsets containing an item ⊳ the other are
pruned to prevent generating itemsets like {within(Tract26),
within(POPDEN=Low)} and {close to(Trent Av), close to(Road)}.
Such itemsets indicate the correlation between an item and
its context, which can be frequent but provide redundant
knowledge already represented in the CIG. It can be proven
that only pruning 2-itemsets is sufficient (Lemmas 1 and 2
in [16]) to eliminate such redundant patterns.

Algorithm 2 Contextual Association Rule Mining

Input: Target transactions D; CIG G; Minimum support
(min sup ); Minimum confidence (min conf ).

Output: Contextual association rule set C.
1: foreach item i in each row of D
2: expand the row with all the contexts ⊳i on G, removing

any duplicates, to construct D′;
3: find all candidate 2-itemsets from D′;
4: foreach candidate 2-itemset {i1, i2}
5: if i1 ⊳ i2 or i2 ⊳ i1 then prune this 2-itemset;
7: continue to find all frequent itemsets using min sup ;
8: C ← find all confident association rules using min conf ;
9: return C;

Results: We use min sup = 2% and min conf = 80%.
No pattern about Robbery can be found, which indicates
the randomness of these crimes. If only the crime target
dataset is regarded as input without other information, only
12 rules including the following two can be found (support
and confidence are shown in brackets, ∧ indicates “AND”):

within(Tract18) ∧ close to(Upriver Dr)⇒ Vehicle Theft (2.2%, 90%)

within(Tract68)⇒ Vehicle Theft (6.4%, 88.1%)

If the taxonomy of streets is further involved, 20 rules
(including the above 12) can be found, corresponding to the
output of typical generalized association rule mining. Below
list two new rules. Both can be verified in Figure 9.

within(Tract79)⇒ close to(Road) (2.3%, 86.4%)

Drugs⇒ close to(Road) (16.5%, 80.8%)

If the CIG encoding POPDEN and RMF features is fur-
ther involved for CPM, 212 rules (including the above 20)
can be found, including the followings.



Table 4: Features of Census Tracts
ID POPDENSITY* RATIO MF* POPDEN RMF

1 954.447 1.02 Low Avg
2 6381.73 0.96 VeryHigh Avg
16 4715.44 0.88 High Low
17 2879.07 0.96 Avg Avg
18 4426.01 0.88 High Low
25 6027.64 0.98 VeryHigh Avg
26 569.551 1.10 Low High
31 1060.55 1.17 Low High
68 717.115 0.95 Low Avg
79 543.256 1.10 Low High

*Original numerical data. Discretized POPDEN & RMF are used for CPM.

Table 5: Samples of Expanded Crime Target Dataset
tid items

4 Wednesday, Drugs, within(Tract26), close to(Trent Av),
within(RMF=High), within(POPDEN=Low), close to(Road)

251 Thursday, Robbery, within(Tract16), close to(Garland Av),
within(RMF=Low), within(POPDEN=High), close to(Road)

266 Friday, Vehicle Theft, within(Tract1), close to(Freya St),
close to(Wellesley Av), within(RMF=Avg), within(POPDEN=Low),
close to(Road)

Saturday ∧ within(POPDEN=Low) ∧ within(RMF=High)

⇒ Vehicle Theft (3.7%, 81.1%)

Monday ∧ within(POPDEN=VeryHigh)⇒ Vehicle Theft (2.5%, 80%)

Drugs ∧ within(RMF=High)⇒ close to(Road) (4.3%, 83.3%)

Drugs ∧ within(RMF=Low)⇒ close to(Road) (5.3%, 89.6%)

These results show that, on Saturdays, Vehicle Theft crimes
are more probable to occur in tracts with POPDEN=Low
and RMF=High. However, on Mondays, tracts with POP-
DEN=VeryHigh have more chance to report such type of
crimes. For Drugs crimes, RMF=High or Low can increase
the probability of reporting the incidents near a road. Mean-
while, no pattern of Drugs and RMF=Avg can be discov-
ered. The detected rules reveal the hidden patterns of the
crimes and provide extra insights.

4.2 Contextual Sequential Pattern Mining
Data Overview: The dataset is from the IEEE VAST

Challenge 2011 Mini-Challenge 1. It contains 1,023,077 mi-
croblogs collected during Apr 30–May 20, 2011 (21 days),
each has GPS coordinates, date, and author id. With text
analysis, each microblog is tagged with 34 candidate epi-
demic keywords as its features, include: fever, diarrhea,
cough, ache, etc. Among all, two keywords, fever and di-
arrhea, are used to derive two sequence datasets. The fever
dataset consists of all microblogs from authors who sent at
least one message tagged by fever. The diarrhea dataset
consists of all microblogs from authors who sent at least one
message tagged by diarrhea. There are 40,472 microblogs
sent by 2,786 authors in the fever dataset, and 16,353 mi-
croblogs sent by 1,196 authors in the diarrhea dataset. For
each author, a sequence of microblogs s/he sent is constructed.
Each microblog is an element (itemset) of a sequence. The
statistics of lengths and number of distinct dates of sequences
in the two datasets are summarized in Table 6. It can be seen
that in both datasets, on average, an author sent at least one
microblog every two days. We can say that the sequences
reflect the general movements of the people. Studying these
sequences can help conduct some reasonable characteriza-
tion on the spreads of fever and diarrhea.

Figure 11 shows the city map, which serves as the con-
textual information source for this case study. There are 13
districts, 6 water bodies (a river and 5 lakes) and 13 hospi-
tals in the city. The river flowing from north to southwest,
is known as part of the drinking water supply system. Using
the map, the spatial features within(⋅) and close to(⋅) (dis-
tance < 1km) are derived for microblogs. A sample sequence
in the fever dataset is shown in Tables 7. Sequences in
the diarrhea dataset are similar and omitted. Importantly,

Table 6: Statistics of Sequences in The Two Datasets
Sequence Length Fever Diarrhea #Distinct Date Fever Diarrhea

Range [10, 18] [9, 15] Range [7, 15] [6, 14]
Mean 14.527 13.673 Mean 10.528 10.299

Table 7: A Sample Sequence in Fever Dataset
author date items

42 2011-4-30 within(Lakeside)
42 2011-5-3 within(Uptown)

. . . . . .
42 2011-5-18 within(Downtown), close to(Vastopolis City Hospital)
42 2011-5-19 fever, within(Eastside)

. . . . . .

features of the districts including their relative orientations
to the river (up/mid/downstream) and to the entire region
(north/south/east/west/center) (Table 8), are involved as
contextual information and encoded by a CIG (Figure 10).
A taxonomy indicating that “every hospital is-a Hospital” is
also combined as part of the CIG.

Contextual Sequential Pattern Mining: The con-
textual sequential pattern mining is summarized in Algo-
rithm 3. With the same CIG, we apply Algorithm 3 once to
the fever dataset and once to the diarrhea dataset, to find
unique patterns for each. Similar to the contextual associ-
ation rule mining, first the sequences are expanded via KI
path queries on the CIG. Redundant patterns here refer to
those sequences with an element (itemset) containing both
an item and its contexts. Such an element rephrases the link-
age information already represented the CIG, but provides
nothing useful for new pattern discovery. Patterns with such
elements are pruned during mining the sequences. Three
additional time constraints are implemented: window-size,
min-gap, and max-gap [16]. Explicitly, we set windows-size
= 0 day, enforcing that all the items in an element must oc-
cur within the same day, but not necessarily from the same
microblog. Min-gap and max-gap determine the minimum
and the maximum time difference between two consecutive
elements, respectively. We set min-gap = 0 day. Consider-
ing the frequency of people sending microblogs and the intu-
ition that short term activities affect people’s health more,
we set max-gap = 2 days. It indicates that an element can
occur at most 2 days before the next element. The dates of
microblogs are also regarded as items in pattern mining.

Algorithm 3 Contextual Sequential Pattern Mining

Input: Target sequences D; CIG G; min sup .
Output: Contextual sequential pattern set C.
1: foreach item i in each element of each sequence in D
2: expand the element with all the contexts ⊳i on G,

removing any duplicates, to construct D′;
3: C ← find frequent sequences from D′ using min sup , pruning

any sequences with an element containing items i1 and i2, s.t.
i1 ⊳ i2 or i2 ⊳ i1;

4: return C;

Results on Fever Dataset: We use min sup = 40%.
Since we are interested in knowing where the people visited
before they mentioned fever, sequences ending with fever are
selected and analyzed. Without the contextual information,
traditional sequence mining only finds four patterns as below
(support shown in brackets):

2011-05-18 ∧ fever (49.0%) (1)

2011-05-19 ∧ fever (44.1%) (2)

2011-05-18→ fever (51.9%) (3)

within(Downtown)→ fever (48.0%) (4)

Patterns (1) and (2) are sequences of only one element (a
2-itemset). Patterns (1)–(3) indicate that people mentioned
fever mostly on May 18 and 19. These imply the fever out-
break may start from May 18. Pattern (4) implies that the



Table 8: Features of Districts
District ID Relative Orientation (RO)

Villa north, west, south
Westside downstream, north, west, south
Riverside upstream, north
Suburbia north, east
Smogtown downstream, south, west
Plainville downstream, midstream, south, west
Downtown midstream, center
Uptown upstream, center
Southville south
Lakeside south, east
Cornertown north, west
Northville midstream, north
Eastside east

Figure 10: CIG Encoding Contexts from Table 8

ground zero location for fever could be Downtown because
people mentioned fever just after they visited Downtown in
the last two days. However, as shown below, this is far from
the whole picture. CPM with the contextual information
of districts’ features finds four additional patterns (“RO=”
omitted in within(⋅)):

within(midstream)→ fever (55.5%) (5)

within(center)→ fever (62.6%) (6)

2011-05-18 ∧ within(center)→ fever (41.2%) (7)

within(midstream) ∧ within(center)→ fever (49.1%) (8)

These imply that not just the people who visited Down-
town, but more precisely, the ones who visited the central
and midstream areas would mention fever. CPM also finds
patterns that start with fever and end with close to(Hospital):

fever→ close to(Hospital) (47.2%) (9)

fever→ 2011-05-20 ∧ close to(Hospital) (41.1%) (10)

fever ∧ within(center)→ close to(Hospital) (40.0%) (11)

It is revealed that, after the people got fever (especially
in the city center), they went to hospitals on May 20. These
additional insights can be vital for government and medical
agency. They could collect relevant information from the
hospitals to understand the medical nature of the epidemic,
and take actions to control the disease spread.

Results on Diarrhea Dataset: We use a larger min sup
= 80%, as it is observed that people’s movements in this
dataset are not as random as in the fever dataset. Similarly,
sequences ending with diarrhea are analyzed. Traditional
sequence mining without the contextual information cannot
find any pattern. In contrast, CPM finds the followings (only
closed patterns [19] are shown here to save space):

within(west) ∧ within(south)→ diarrhea (88.0%) (12)

2011-05-19 ∧ within(west) ∧ within(south)→ diarrhea (85.8%)
(13)

within(downstream) ∧ within(west) ∧ within(south)

→ diarrhea (83.9%) (14)

2011-05-19 ∧ within(downstream) ∧ within(west) ∧ within(south)

→ diarrhea (82.0%) (15)

These imply that people mentioned diarrhea mostly after
visiting the southwest and downstream areas on May 19.
If instead using min sup = 40% as on the fever dataset, a
pattern indicating the diarrhea outbreak started and lasted
after May 18, i.e., on May 19–20, can also be found:

2011-05-18→ diarrhea (44.1%) (16)

However, still no pattern like“diarrhea→ close to(Hospital)”
is detected, suggesting the patients with diarrhea did not go
to hospitals for treatment although they felt sick.

Figure 11: Ground Truth of Epidemic Spreads

Ground Truth: The ground truth provided by the Chal-
lenge committees is summarized in Figure 11. The ground
zero location is a bridge over the river at the joint of mid-
stream and downstream. On May 17, a truck carrying food
contaminated by harmful spores had an accident there. The
spores were dispersed into the air and the river, spread
through wind and water current, and led to the outbreaks of
inhalation and gastrointestinal diseases. Fever and diarrhea
are two major symptoms, respectively. Due to the different
incubation periods, the inhalation disease first outbreak on
May 18 in Downtown, Uptown, and part of Plainville (re-
vealed by patterns (5)–(8)). The disease also dispersed to
the wide east on May 19–20 by west wind, but with much
lower density. The gastrointestinal disease then outbreak on
May 19 in downstream/southwest areas (revealed by pat-
terns (12)–(15)). Unlike the diarrhea microblogs, the fever
microblogs were collected in almost everywhere of the city,
which makes the movement pattern noisy. Many people with
the inhalation disease went to different hospitals on May 20
(revealed by patterns (9)–(11)). But people with the gas-
trointestinal disease never did, which is also verified by our
results. In conclusion, CPM draws a complete and accurate
picture of the epidemic outbreaks, and provides useful clues
to infer the correct ground zero location.

4.3 Contextual Graph Mining
Data Overview: The dataset comes from the IEEE Info-

Vis 2007 Contest. It contains 20,204 US movies (2000–2006).
For each movie, at least one director, one cinematographer
and the first ten billed actors and actresses (at most 20 act-
ing persons) are given with names. Movies are classified
into 20 genres. Multiple genres are allowed. On average,
one movie has 1.75 genres. IMDB and Netflix ratings, in-
cluding the average rating score and the number of votes
are also available. The movie collaboration graph is defined
as such: a vertex represents a person, and an edge between
two persons indicates they collaborate in at least one movie.
We create two collaboration graph series: (1) by movie re-
lease year, and (2) by movie genre. Frequent subgraphs are
mined on the two series, respectively. As graph mining can-
not be done on the entire collaboration graph with up to
50,000 vertices and a million edges, we truncate the graphs
by only considering the most popular (POP) and the best
rated (BEST) movies, and also the persons that perform at
least a certain number of movies. For example, in the Ac-
tion movies, only the top 10 movies in the number of user
ratings ranking (POP) and the top 10 movies in the aver-
age rating score ranking (BEST) are selected, respectively.
The resulting four series of collaboration graphs are listed
in Tables 9–10. Sample graph data is shown in Figure 12.
Contextual information is defined over vertices (persons) by
their acting preferences. For each person, all genres of the



Figure 12: POP Drama Movies & CPM Result

Table 9: Movie Collaboration Graphs by Year
Year Type #vertex #edge Year Type #vertex #edge

2000&
2001

POP 503 7299
2000&
2001

BEST 205 1790

2002&
2003

POP 546 10697
2002&
2003

BEST 357 5725

2004&
2005

POP 465 9509 2004 BEST 255 2108

2005 BEST 428 8126

movies s/he has performed are collected. The top genres
determined by either a large count or a large relative ratio
are chosen as the person’s acting genres. A CIG encoding
the genre features of persons is shown in Figure 13.

Contextual Graph Mining: First we define the contex-
tual subgraph isomorphism by conceptually extending the
generalized subgraph isomorphism [9, 3]. We denote the
vertex set of a graph g by V (g), and the edge set by E(g).
A graph g is a contextual subgraph of another graph g′ if
there exits a contextual subgraph isomorphism from g to g′.

Definition 5 (Contextual Subgraph Isomorphism).
Given a CIG G, a contextual subgraph isomorphism is an in-
jective function � : V (g)→ V (g′), s.t. (1) ∀u ∈ V (g), ℓ(u) =
ℓ′(�(u)) or ℓ(u) ⊳ ℓ′(�(u)) on G, and (2) ∀(u, v) ∈ E(g),
(�(u), �(v)) ∈ E(g′), ℓ(u, v) = ℓ′(�(u), �(v)) or ℓ(u, v) ⊳

ℓ′(�(u), �(v)) on G, where ℓ and ℓ′ are the label functions of
g and g′, respectively.

The contextual graph mining is shown in Algorithm 4.
Similar to the contextual association rule and sequence min-
ing, here the over-generalized graph patterns [9, 3] need to
be pruned: If a graph pattern gp is a contextual subgraph
of a graph pattern gp′ (gp ∕= gp′) and their supports are
identical, then gp is an over-generalized pattern.

Algorithm 4 Contextual Graph Mining

Input: Target graphs D; CIG G; min sup .
Output: Contextual graph pattern set C.
1: find frequent contextual graphs with single vertex in D;
2: expand the graphs by adding vertices or edges (labels can be

contexts encoded in G) to generate new patterns;
3: insert those frequent (using min sup ) and non over-generalized

patterns to C;
4: return C;

Results: We apply a traditional graph mining algorithm,
gSpan [20], a generalized graph mining algorithm, Taxo-
gram [3], and CPM (Algorithm 4) to the movie graphs using
min sup = 100%: gSpan runs without any additional infor-
mation, thus only finds subgraphs consisting of specific per-
sons; Taxogram runs with a taxonomy that, for each person,

Table 10: Movie Collaboration Graphs by Genre
POP.Genre #vertex #edge BEST.Genre #vertex #edge

Action 91 561 Action 70 432

Animation 63 223 Adventure 60 339

Comedy 77 396 Animation 35 115

Drama 94 482 Comedy 94 484

Horror 83 395 Crime 95 618

Musical 70 316 Documentary 60 416

Mystery 103 595 Drama 80 416

Romance 90 500 Fantasy 72 385

Sci-Fi 123 1240 Family 48 169

Thriller 101 632 Mystery 134 1078

War 97 607 Romance 84 461

Sci-Fi 99 717

Thriller 89 595

War 80 485

Figure 13: CIG Encoding Persons’ Genre Contexts

a concept defined by his/her primary genre (with the largest
relative ratio) is associated; CPM runs with the CIG in Fig-
ure 13. Results are summarized in Table 11. On the four
graph series, gSpan only finds two subgraphs in total, sug-
gesting that there is few consistent collaboration patterns at
specific person level. By generalizing persons with the pri-
mary genre, Taxogram finds more patterns. With more con-
textual information available, CPM achieves the best results
in name of the patterns discovered. It finds patterns more
than 10 times of Taxogram in almost all graph series includ-
ing several interesting ones: First, POP movies tends to have
more common collaboration patterns than BEST movies in
either the temporal investigation or the horizontal by-genre
comparison. This suggests that there exists some common
actor “flavor ingredient” to attract audience through adver-
tising, across the years and the genres. In contrast, there
are fewer common patterns for BEST movies. Every top-
ranked movie may has its own reason for success. We fur-
ther checked the discovered patterns among POP movies of
different genres. In the 66 subgraphs with the largest size
of 6, most are with the mixed person genre of Drama, Com-
edy and Thriller (Figure 12). This suggests that to produce
a popular movie, there should at least have movie stars in
these three genres to play to the gallery.

5. DISCUSSIONS
One may ask why simply joining the contextual informa-

tion to the target dataset and then running a traditional
single-source pattern mining algorithm does not work for
CPM. The reason is two-fold: (1) The join can generate
replicated contextual features for one target object, which
makes the joined dataset contain redundancy and can result
in meaningless patterns. For example, in Section 4.1, di-
rectly joining the Road information to the third row (tid=266)
of Table 3 can generate two close to(Road) predicates. If
this occurs frequently in the crime target dataset, itemsets
like {close to(Road), close to(Road)} can become frequent.
But such patterns are meaningless. (2) The join will cause
information loss that, the linkages between identities and the
contextual information are removed. Again, take the case
study in Section 4.1 as an example. Even if with removing
the data redundancy caused by the join and Table 5 is ob-
tained, itemsets like {within(Tract26), within(POPDEN=Low)}
and {close to(Trent Av), close to(Road)} can be generated
and frequent. However, such patterns reveals nothing new



Table 11: Collaboration Graph Mining Results
Graph
Series

Type Algorithm
#Patterns by Subgraph Size

2 3 4 5 6

By Year

POP
gSpan 2 0 0 0 0

Taxogram 6 18 41 7 12
CPM 49 497 3807 OoM* OoM*

BEST
gSpan 0 0 0 0 0

Taxogram 2 7 35 272 1497
CPM 27 187 966 OoM* OoM*

By Genre

POP
gSpan 0 0 0 0 0

Taxogram 3 4 4 1 0
CPM 10 44 121 152 66

BEST
gSpan 0 0 0 0 0

Taxogram 3 8 6 0 0
CPM 7 20 44 77 0

*Out of memory due to too many patterns discovered

Table 12: CPM vs. “Simple Join”
Dataset Algorithm CPU time (s) #itemsets #rules

crime CPM 13.891 431 212
Simple Join 14.016 822 1563

Dataset Algorithm CPU Total #patterns end
time (s) #patterns with symptom

fever with CPM 152.672 659 9
min sup =40% Simple Join 175.828 1334 12

diarrhea with CPM 14.266 537 15
min sup =80% Simple Join 14.422 543 15

diarrhea with CPM 190.938 6877 68
min sup =40% Simple Join 367.422 12932 76

but the known correlation between an item and its related
feature, which is already represented in the CIG. It is a
common issue among association rule, sequence, and graph
mining. It is known that, if a small pattern, e.g., a mean-
ingless 2-itemset in the above two cases, is frequent, it is
bound to enlarge the search space by growing to larger pat-
terns [16, 17, 9, 3], which inevitably leads to the generation
of a huge number of redundant or over-generalized patterns.
A feasible way to handle this is to post-process all the pat-
terns after they are generated, by filtering the result with
additional information. However, one may need to enumer-
ate nearly all possible patterns due to its NP-completeness,
which makes it intractable, especially when min sup is small.
Previous study [16] has shown that, not generating useless
patterns in the earliest stage can make the algorithm 100
times faster than post-processing. On the other hand, the
proposed CPM approach can avoid all these issues.

Table 12 shows the comparisons between CPM and run-
ning traditional pattern mining on the datasets simply joined
with the contextual information (denoted by “Simple Join”).
We can see that, with same parameters, “Simple Join” al-
ways costs more CPU time and finds a lot more patterns.
However, none of the extra patterns is useful or provides new
insight. The larger the dataset is and the smaller min sup
is, the more obvious that CPM is advantageous. In the case
study of Section 4.3, graph mining without pruning over-
generalized patterns yields little difference and thus is not
shown here. Because the CIG is bipartite, a large number
of over-generalized patterns can exist only when there are
many specified patterns. However, from Table 11 we can
see that, with min sup = 100%, only 2 specified subgraph
patterns, both of which contain 2 vertices, can be found (the
first row, gSpan result). The largest possible number of over-
generalized patterns of the two 2-vertex subgraphs is: (the
number of contexts of one vertex)× (the number of contexts
of the other)− 1. In this specific case study, this number is
small. Therefore, no significant difference can be observed
between CPM and “Simple Join” here. However, we should
keep in mind that, generally, pruning over-generalized con-
textual graph patterns is needed, especially when the num-
ber of specialized patterns is large.

There are two ways of handling missing values in CPM.
Suppose feature F to be encoded has missing value. One

way is to insert a vertex with label (F = null) to the CIG
and CPM works. This may make (F = null) appear in
the final patterns, which makes sense and is needed in some
cases. The other way is to ignore all missing values when
constructing the CIG, then they will not be considered in
pattern mining. It is possible that the identities are not the
same among different contextual information sources, which
is not a problem for CIG encoding. As can be seen in Al-
gorithm 1, CIG encoding can also be done incrementally.
Whenever new contextual information sources are available,
given a previously constructed CIG, new information can
be encoded without re-encoding the previous information
sources. The effects of different discretization methods to
CIG encoding include the followings. Given a fixed size of
identities ∣V ∣, a fine granularity of feature discretization can
increase ∣U ∣ and ∣E∣ of a CIG G = (U, V,E), which can en-
large the search space for pattern mining because the num-
ber of frequent combinations can increase, and vice versa.
Nonetheless, the linear time and space complexities of CIG
encoding do not change at all.

6. RELATED WORK
Previous studies on frequent pattern mining mainly fo-

cus on mining from a single source. The most typical pat-
tern mining methods include itemset/association rule min-
ing [1, 8], sequential pattern mining [2, 19], and graph min-
ing [20, 11]. In this paper, we propose the CPM approach
that appropriately utilizes available contextual information
from multiple sources for pattern discovery. The goals of
CPM and multi-relational data mining (MRDM) approaches
proposed to discover patterns involving multiple tables (re-
lations) [4, 5] are similar, but they have different focuses:
(1) CPM addresses to involve contextual information by
non-intrusively utilizing existing single-source pattern min-
ing methods, i.e., with a two-step “CIG encoding + pattern
mining”. The CIG encoding works with different types of
pattern mining methods (itemset/associaiton rule, sequence,
and graph), and can be seen as a unified pre-processing
step, given that the contextual information sources link to
the target dataset in a star schema. Because the encod-
ing is efficient, with an efficient single-source pattern mining
method implementation, the two-step strategy of CPM can
be efficient and implemented with limited effort. This is
especially meaningful for systems that already have a suite
of single-source pattern mining algorithms seeking a quick
and cheap enabling technique to collectively mine new in-
formation sources. On the other hand, implementing and
deploying new algorithms is usually far more expensive in
real-world systems. (2) Typical MRDM approaches solves
the similar problem but in an intrusive way. To be spe-
cific, implementing MRDM approaches usually cannot reuse
existing single-source pattern mining algorithms, especially
when joining multiple tables is not considered a good solu-
tion. MRDM approaches based on inductive logic program-
ming (ILP) [12, 4] can be applied to a general class of data
mining problems and do not restrict to star schema of tables.
Nonetheless, due to the generality, ILP based approaches
can often be far less efficient in specific tasks compared with
CPM. For example, WARMR [4] can be seen as a generalized
algorithm for mining itemsets and sequences. Previous work
[5] has pointed out that due to its general-purpose nature,
WARMR does not fully exploit the properties of the specific
patterns compared with traditional itemset and sequence



mining algorithms [1, 2] and their GPM versions [16, 17].
On the other hand, CPM based on the proposed CIG en-
coding framework works directly with the GPM algorithms
designed for specific tasks, including association rule mining
(Section 4.1), sequence mining (Section 4.2), and graph min-
ing (Section 4.3). Therefore, we can infer that in most cases,
the proposed CPM approach can have better efficiency than
ILP based approaches when solving a same problem.

A different MRDM approach recently proposed is RMiner
[15]. It is designed to mine the MCCS (Maximal Connected
Complete Subgraph) pattern in the K-partite graph repre-
sentation of a MRD (multi-relational database). First, mul-
tiple (say, K) tables in a MRD is converted into a K-partite
graph. Then RMiner runs on the graph to find patterns in
the form of MCCS. The differences between the proposed
CPM approach and RMiner include: (1) CPM searches pat-
terns of classical forms (itemset/association rule, sequence,
and subgraph) in a space defined by the CIG and the tar-
get dataset (of transactions, sequences and graphs). RMiner
searches MCCS patterns which is far different from classi-
cal forms, and on the K-partite graph defining its search
space. (2) The proposed CIG encoding only encodes con-
textual information into a graph, which is always bipartite.
The target dataset of transactions, sequences, or graphs is
not changed a bit. In contrast, RMiner runs on the K-
partite graph which actually encodes the entire MRD of all
the K tables. Although both CPM and RMiner work with
graph representations of information, they are significantly
different. More fundamentally, RMiner has a different ob-
jective with traditional MRDM approaches that it finds in-
teresting (defined by the maximum entropy model) pattern
of co-occurring attributes [15], whereas CPM finds similar
patterns to traditional MRDM approaches.

To obtain contextual patterns, other alternatives may also
exist to the proposed CPM approach. However, they require
either significant intrusive modifications to the pattern min-
ing algorithms or the development of new algorithms, so
that the contextual information can be handled appropri-
ately. The CPM approach proposed in this paper, i.e., “CIG
encoding + pattern mining”, is the shortest path and the
cheapest way so far we can find. As long as the applied
GPM algorithms accept a general DAG structured CIG, no
modification is required and CPM can be done transparently
to the end users. This makes the system much easier to use,
and little engineering effort is required.

7. CONCLUSIONS
With a growing number of information sources describing

properties of related objects in today’s big data challenge, we
propose a general framework to encode contextual informa-
tion from multiple sources via the Contextual Information
Graph (CIG) for Contextual Pattern Mining (CPM). The
main objective is the capability to reuse the existing single-
source pattern methods without any modification and with
high efficiency and ease. The proposed approach discov-
ers more predictive, insightful, and interesting patterns that
traditional pattern mining algorithms cannot find. The CIG
encoding does not introduce any additional computational
cost to the pattern mining process, except the pre-processing
of the contextual data, which has linear time and space com-
plexities. Missing values, multiple values, and dynamically
changing contextual information can also be handled. We
demonstrate through case studies that, the mining of all the

three major types of contextual patterns, i.e., association
rule, sequence, and graph, are well supported by our frame-
work. Experiments and case studies on real-world datasets
demonstrate that contextual patterns containing richer in-
formation and more useful insights are discovered by CPM,
which is both efficient and easy to use; on the other hand,
traditional methods cannot discover most of these interest-
ing patterns.
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