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Abstract

The existing factoid QA systems often
lack a post-inspection component that can
help models recover from their own mis-
takes. In this work, we propose to cross-
check the corresponding KB relations be-
hind the predicted answers and identify
potential inconsistencies. Instead of devel-
oping a new model that accepts evidences
collected from these relations, we choose
to plug them back to the original questions
directly and check if the revised question
makes sense or not. A bidirectional LSTM
is applied to encode revised questions. We
develop a scoring mechanism over the re-
vised question encodings to refine the pre-
dictions of a base QA system. This ap-
proach can improve the F1 score of STAGG

(Yih et al., 2015), one of the leading QA
systems, from 52.5% to 53.9% on WE-
BQUESTIONS data.

1 Introduction

With the recent advances in building large scale
knowledge bases (KB) like Freebase (Bollacker
et al., 2008), DBpedia (Auer et al., 2007), and
YAGO (Suchanek et al., 2007) that contain the
world’s factual information, KB-based question
answering receives attention of research efforts in
this area. Traditional semantic parsing is one of
the most promising approaches that tackles this
problem by mapping questions onto logical forms
using logical languages CCG (Kwiatkowski et al.,
2013; Reddy et al., 2014; Choi et al., 2015; Reddy
et al., 2016), DCS (Berant et al., 2013; Berant and
Liang, 2014, 2015), or directly query graphs (Yih
et al., 2015) with predicates closely related to KB
schema. Recently, neural network based models
have been applied to question answering (Bordes

Figure 1: Sketch of our approach. Elements in solid round
rectangles are KB relation labels. Relation on the left is cor-
rect, but the base QA system predicts the one on the right.
Dotted rectangles represent revised questions with relation
labels plugged in. The left revised question looks semanti-
cally closer to the original question and itself is more consis-
tent. Hence, it shall be ranked higher than the right one.

et al., 2015; Yih et al., 2015; Xu et al., 2016a,b).
While these approaches yielded successful re-

sults, they often lack a post-inspection component
that can help models recover from their own mis-
takes. Table 1 shows the potential improvement
we can achieve if such a component exists. Can
we leverage textual evidences related to the pre-
dicted answers to recover from a prediction error?
In this work, we show it is possible.

Our strategy is to cross-check the correspond-
ing KB relations behind the predicted answers and
identify potential inconsistencies. As an interme-
diate step, we define question revision as a tai-
lored transformation of the original question using
textual evidences collected from these relations in
a knowledge base, and check if the revised ques-
tions make sense or not. Figure 1 illustrates the
idea over an example question “what did Mary
Wollstonecraft fight for?”. Obviously, “what [area
of activism] did [activist] fight for?” looks more
consistent over “what [profession] did [person]
fight for?”. We shall build a model that prefers
the former one. This model shall be specialized
for comparing the revised questions and checking
which one makes better sense, not for answering
the revised questions. This strategy differentiates



Refinement F1 # Refined Qs

STAGG 52.5 -
w/ Best Alternative 58.9 639

Table 1: What if we know the questions on which the sys-
tem makes mistakes? Best alternative is computed by re-
placing the predictions of incorrectly answered questions
by STAGG with its second top-ranked candidate.

our work from many existing QA studies.
Given a question, we first create its revisions

with respect to candidate KB relations. We encode
question revisions using a bidirectional LSTM. A
scoring mechanism over these encodings is jointly
trained with LSTM parameters with the objective
that the question revised by a correct KB relation
has higher score than that of other candidate KB
relations by a certain confidence margin. We eval-
uate our method using STAGG (Yih et al., 2015)
as the base question answering system. Our ap-
proach is able to improve the F1 performance of
STAGG (Yih et al., 2015) from 52.5% to 53.9%
on a benchmark dataset WEBQUESTIONS (Berant
et al., 2013). Certainly, one can develop special-
ized LSTMs that directly accommodate text evi-
dences without revising questions. We have modi-
fied QA-LSTM and ATTENTIVE-LSTM (Tan et al.,
2016) accordingly (See Section 4). However, so
far the performance is not as good as the question
revision approach.

2 Question Revisions

We formalize three kinds of question revi-
sions, namely entity-centric, answer-centric, and
relation-centric that revise the question with re-
spect to evidences from topic entity type, answer
type, and relation description. As illustrated in
Figure 2, we design revisions to capture general-
izations at different granularities while preserving
the question structure.

Let sr (e.g., Activist) and or (e.g.,
ActivismIssue) denote the subject
and object types of a KB relation r (e.g.,
AreaOfActivism), respectively. Let α
(type.object.name) denote a function
returning the textual description of a KB element
(e.g., relation, entity, or type). Assuming that a
candidate answer set is retrieved by executing a
KB relation r from a topic entity in question, we
can uniquely identify the types of topic entity and
answer for the hypothesis by sr and or, respec-
tively. It is also possible that a chain of relations
r = r1r2 . . . rk is used to retrieve an answer set

Figure 2: Illustration of different question revision
strategies on the running example w.r.t KB relation
activism.activist.area of activism.

from a topic entity. When k = 2, by abuse of
notation, we define sr1r2 = sr1 , or1r2 = or2 , and
α(r1r2) = concat(α(r1), α(r2)).

Let m : (q, r) 7→ q′ denote a mapping from
a given question q = [w1, w2, . . . , wL] and a KB
relation r to revised question q′. We denote the
index span of wh-words (e.g., “what”) and topic
entity (e.g., “Mary Wollstonecraft”) by [is, ie] and
[js, je].
Entity-Centric (EC). Entity-centric question re-
vision aims a generalization at the entity level.
We construct it by replacing topic entity tokens
with its type. For the running example, it be-
comes “what did [activist] fight for”. Formally,
mEC(q, r) = [w[1:js−1];α(sr);w[je+1:L]].
Answer-Centric (AC). It is constructed by aug-
menting the wh-words of entity-centric question
revision with the answer type. The running ex-
ample is revised to “[what activism issue] did
[activist] fight for”. Formally, we define it as
mAC(q, r) = [w′[1:ie−1];α(or);w

′
[ie+1:L]], where

w′i’s are the tokens of entity-centric revised ques-
tion.
Relation-Centric (RC). Here we augment the wh-
words with the relation description instead. This
form of question revision has the most expressive
power in distinguishing between the KB relations
in question context, but it can suffer more from the
training data sparsity. For the running example,
it maps to “[what area of activism] did [activist]
fight for”. Formally, it is defined as mRC(q, r) =
[w′[1:ie−1];α(r);w

′
[ie+1:L]].

3 Model

3.1 Task Formulation
Given a question q, we first run an existing QA
system to answer q. Suppose it returns r as the
top predicted relation and r′ is a candidate relation
that is ranked lower. Our objective is to decide if



there is a need to replace r with r′. We formulate
this task as finding a scoring function s(q, r) and
a confidence margin threshold t,

replace(r, r′, q)=

{
1, if s(q, r′)− s(q, r) ≥ t
0, otherwise,

(1)

which makes the replacement decision.

3.2 Encoding Question Revisions

Let q′ = (w′1, w
′
2, . . . , w

′
l) denote a question re-

vision. We first encode all the words into a d-
dimensional vector space using an embedding ma-
trix. Let ei denote the embedding of word w′i. To
obtain the contextual embeddings for words, we
use bi-directional LSTM

−→
h i = LSTMfwd(

−→
h i−1, ei) (2)

←−
h i = LSTMbwd(

←−
h i+1, ei) (3)

with
−→
h 0 = 0 and

←−
h l+1 = 0. We combine

forward and backward contextual embeddings by
hi = concat(

−→
h i,
←−
h i). We then generate the fi-

nal encoding of revised question q′ by enc(q′) =
concat(h1,hl).

3.3 Training Objective

Score Function. Given a question revision map-
ping m, a question q, and a relation r, our scoring
function is defined as s(q, r) = wTenc(m(q, r))
wherew is a model parameter that is jointly learnt
with the LSTM parameters.
Loss Function. Let T = {(q, aq)} denote a set
of training questions paired with their true answer
set. Let U(q) denote the set of all candidate KB
relations for question q. Let f(q, r) denote the F1

value of an answer set obtained by relation r when
compared to aq. For each candidate relation r ∈
U(q) with a positive F1 value, we define

N(q, r) = {r′ ∈ U(q) : f(q, r) > f(q, r′)} (4)

as the set of its negative relations for question q.
Similar to a hinge-loss in (Bordes et al., 2014), we
define the objective function J(θ,w,E) as∑

(q,r,r′)

max(0, δλ(q, r, r
′)− (s(q, r)− s(q, r′))) (5)

where the sum is taken over all valid {(q, r, r′)}
triplets and the penalty margin is defined as
δλ(q, r, r

′) = λ(f(q, r)− f(q, r′)).

We use this loss function because: i) it allows us
to exploit partially correct answers via F1 scores,
and ii) training with it updates the model param-
eters towards putting a large margin between the
scores of correct (r) and incorrect (r′) relations,
which is naturally aligned with our prediction re-
finement objective defined in Equation 1.

4 Alternative Solutions

Our approach directly integrates additional textual
evidences with the question itself, which can be
processed by any sequence oriented model, and
benefit from its future updates without signifi-
cant modification. However, we could also design
models taking these textual evidences into specific
consideration, without even appealing to question
revision. We have explored this option and tried
two methods that closely follow QA-LSTM and
ATTENTIVE-LSTM (Tan et al., 2016). The lat-
ter model achieves the state-of-the-art for passage-
level question answer matching. Unlike our ap-
proach, they encode questions and evidences for
candidate answers in parallel, and measure the se-
mantic similarity between them using cosine dis-
tance. The effectiveness of these architectures has
been shown in other studies (Neculoiu et al., 2016;
Hermann et al., 2015; Chen et al., 2016; Mueller
and Thyagarajan, 2016) as well.

We adopt these models in our setting as fol-
lows: (1) Textual evidences α(sr) (equiv. of EC
revision), α(or) (equiv. of AC revision) or α(r)
(equiv. of RC revision) of a candidate KB relation
r is used in place of a candidate answer a in the
original model, (2) We replace the entity mention
with a universal #entity# token as in (Yih et al.,
2015) because individual entities are rare and un-
informative for semantic similarity, (3) We train
the score function sim(q, r) using the objective
defined in Eq. 5. Further details of the alternative
solutions can be found in Appendix.

5 Experiments

Datasets. For evaluation, we use the WEBQUES-
TIONS (Berant et al., 2013), a benchmark dataset
for QA on Freebase. It contains 5,810 questions
whose answers are annotated from Freebase us-
ing Amazon Mechanical Turk. We also use SIM-
PLEQUESTIONS (Bordes et al., 2015), a collection
of 108,442 question/Freebase-fact pairs, for train-
ing data augmentation in some of our experiments,
which is denoted by +SimpleQ. in results.



Method F1

(Berant et al., 2013) 35.7
(Yao and Van Durme, 2014) 33.0
(Berant and Liang, 2014) 39.9
(Bao et al., 2014) 37.5
(Bordes et al., 2014) 39.2
(Yang et al., 2014) 41.3
(Dong et al., 2015) 40.8
(Yao, 2015) 44.3
(Berant and Liang, 2015) 49.7
STAGG (Yih et al., 2015) 52.5
(Reddy et al., 2016) 50.3
(Xu et al., 2016b) 53.3
(Xu et al., 2016a) 53.8
QUESREV on STAGG 53.9

Ensemble
STAGG-RANK (Yavuz et al., 2016) 54.0
QUESREV on STAGG-RANK 54.3

Table 2: Comparison of our question revision approach
(QUESREV) on STAGG with variety of recent KB-QA works.

Training Data Preparation. WEBQUESTIONS

only provides question-answer pairs along with
annotated topic entities. We generate candidates
U(q) for each question q by retrieving 1-hop and
2-hop KB relations r from annotated topic entity e
in Freebase. For each relation r, we query (e, r, ?)
against Freebase and retrieve the candidate an-
swers ra. Then, we compute f(q, r) by comparing
the answer set ra with the annotated answers.

5.1 Implementation Details

Word embeddings are initialized with pretrained
GloVe (Pennington et al., 2014) vectors1, and up-
dated during the training. We take the dimen-
sion of word embeddings and the size of LSTM
hidden layer equal and experiment with values in
{50, 100, 200, 300}. We apply dropout regulariza-
tion on both input and output of LSTM encoder
with probability 0.5. We hand tuned penalty mar-
gin scalar λ as 1. The model parameters are op-
timized using Adam (Kingma and Ba, 2015) with
batch size of 32. We implemented our models in
tensorflow (Abadi et al., 2016).

To refine predictions of a base QA system, we
take its second top ranked prediction as the refine-
ment candidate r′ and employ the decision mecha-
nism in Equation 1. Confidence margin threshold
t is tuned by grid search on the training data af-
ter the score function is trained. QUESREV-AC
+ RC model is obtained by a linear combina-
tion of QUESREV-AC and QUESREV-RC mod-
els, which is formally defined in Appendix B. To
evaluate the alternative solutions for prediction re-

1http://nlp.stanford.edu/projects/glove/

Refinement Model WebQ. + SimpleQ.

QA-LSTM-(equiv EC) 51.9 52.5
QA-LSTM-(equiv AC) 52.4 52.9
QA-LSTM-(equiv RC) 52.6 53.0
ATTENTIVE-LSTM-(equiv EC) 52.2 52.6
ATTENTIVE-LSTM-(equiv AC) 52.7 53.0
ATTENTIVE-LSTM-(equiv RC) 52.9 53.1
QUESREV-EC 52.9 52.8
QUESREV-AC 53.5 53.6
QUESREV-RC 53.2 53.8
QUESREV-AC + RC 53.3 53.9

Table 3: F1 performance of variants of our model QUESREV
and alternative solutions on base QA system STAGG.

finement, we apply the same decision mechanism
replace(r, r′, q) with the trained sim(q, r) in Sec-
tion 4 as the score function.

We use a dictionary2 to identify wh-words in a
question. We find topic entity spans using Stan-
ford NER tagger (Manning et al., 2014). If there
are multiple matches, we use the first matching
span for both.

5.2 Results
Table 2 presents the main result of our prediction
refinement model using STAGG’s results. Our ap-
proach improves the performance of a strong base
QA system by 1.4% and achieves 53.9% in F1

measure, which is slightly better than the state-of-
the-art KB-QA system (Xu et al., 2016a). How-
ever, it is important to note here that Xu et al.
(2016a) uses DBPedia knowledge base in addition
to Freebase and the Wikipedia corpus that we do
not utilize. Moreover, applying our approach on
the STAGG predictions reranked by (Yavuz et al.,
2016), referred as STAGG-RANK in Table 2, leads
to a further improvement over a strong ensem-
ble baseline. These suggest that our system cap-
tures orthogonal signals to the ones exploited in
the base QA models. Improvements of QUESREV

over both STAGG and STAGG-RANK are statisti-
cally significant.

In Table 3, we present variants of our approach.
We observe that AC model yields to best refine-
ment results when trained only on WEBQUES-
TIONS data (e.g., WebQ. column). This empirical
observation is intuitively expected because it has
more generalization power than RC, which might
make AC more robust to the training data sparsity.
This intuition is further justified by observing that
augmenting the training data with SIMPLEQUES-
TIONS improves the performance of RC model
most as it has more expressive power.

2what, who, where, which, when, how



Example Predictions and Replacements
1. What position did vince lombardi play in college?
STAGG: person.(education).institution
- what position did person play in college
QUESREV-EC: football player.position s
- what position did american football player play in college
2. What did mary wollstonecraft fight for ?
STAGG: person.profession
- what profession did person fight for
QUESREV-AC: activist.area of activism
- what activism issue did activist fight for
3. Where does the zambezi river start ?
STAGG: river.mouth
- where mouth does the river start
QUESREV-RC: river.origin
- where origin does the river start
4. Where was anne boleyn executed?
STAGG: person.place of birth
- where place of birth was person executed
QUESREV-RC: deceased person.place of death
- where place of death was deceased person executed

Table 4: Example questions and corresponding predic-
tions of STAGG (Yih et al., 2015) before and after us-
ing replacements proposed by QUESREV. The colors red
and blue indicate wrong and correct, respectively. Do-
main names of KB relations are dropped for brevity.
person.(education).institution is used as a
shorthand for the 2-hop relation person.education-
education.institution in Example 1.

Although both QA-LSTM and ATTENTIVE-
LSTM lead to successful prediction refinements on
STAGG, question revision approach consistently
outperforms both of the alternative solutions. This
suggests that our way of incorporating the new
textual evidences by naturally blending them in
the question context leads to a better mechanism
for checking the consistency of KB relations with
the question. It is possible to argue that part of the
improvements of refinement models over STAGG

in Table 3 may be due to model ensembling. How-
ever, the performance gap between QUESREV and
the alternative solutions enables us to isolate this
effect for query revision approach.

6 Related Work

One of the promising approaches for KB-QA is se-
mantic parsing, which uses logical language CCG
(Kwiatkowski et al., 2013; Reddy et al., 2014;
Choi et al., 2015) or DCS (Berant et al., 2013;
Berant and Liang, 2014, 2015) for finding the
right grounding of the natural language on knowl-
edge base. Another major line of work (Bordes
et al., 2014; Yih et al., 2015; Xu et al., 2016b) ex-
ploit vector space embedding approach in differ-

ent ways to directly measure the semantic similar-
ity between questions and candidate answer sub-
graphs in KB. In this work, we propose a post-
inspection step that can help existing KB-QA sys-
tems recover from answer prediction errors.

Our work is conceptually related to query ex-
pansion, a well-explored technique (Qiu and Frei,
1993; Navigli and Velardi, 2003; Riezler et al.,
2007; Fang, 2008; Sordoni et al., 2014; Almasri
et al., 2016; Diaz et al., 2016) in information re-
trieval area. High-level idea behind query expan-
sion is to reformulate the original query to improve
retrieval performance. Our approach, on the other
hand, reformulates questions using candidate an-
swers and exploits the revised questions to mea-
sure the quality of answers. Hence, it should be
treated rather as a post-processing component.

7 Conclusion

We present a prediction refinement approach for
question answering over knowledge bases. We in-
troduce question revision as a tailored augmenta-
tion of the question via various textual evidences
from KB relations. We exploit revised questions
as a way to reexamine the consistency of candi-
date KB relations with the question itself. We
show that our method improves the quality of an-
swers produced by STAGG on the WEBQUES-
TIONS dataset.
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Siva Reddy, Oscar Täckström, Michael Collins, Tom
Kwiatkowski, Dipanjan Das, Mark Steedman, and
Mirella Lapata. 2016. Transforming Dependency
Structures to Logical Forms for Semantic Parsing.
Transactions of the Association for Computational
Linguistics (TACL) .

Stefan Riezler, Alexander Vasserman, Ioannis
Tsochantaridis, Vibhu Mittal, and Yi Liu. 2007.
Statistical machine translation for query expansion
in answer retrieval. In Annual Meeting of the
Association for Computational Linguistics (ACL).

Alessandro Sordoni, Yoshua Bengio, and Jian-Yun Nie.
2014. Learning concept embeddings for query ex-
pansion by quantum entropy minimization. In AAAI
Conference on Artificial Intelligence (AAAI).

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: A core of semantic knowl-
edge. In World Wide Web (WWW).

Ming Tan, Cicero dos Santos, Bing Xiang, and Bowen
Zhou. 2016. Improved representation learning for
question answer matching. In Annual Meeting of the
Association for Computational Linguistics (ACL).

Alberto Téllez-Valero, Manuel Montes-y Gómez, Luis
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