
Using Data Mining for Discovering Patterns in Autonomic
Storage Systems

Zhenmin Li, Sudarshan M. Srinivasan, Zhifeng Chen, Yuanyuan Zhou,
Peter Tzvetkov, Xifeng Yan, and Jiawei Han

Department of Computer Science, University of Illinois at Urbana-Champaign

ABSTRACT
In order to be self-tuning, self-managing, self-healing and self-
protecting, a storage system needs to be able to automatically char-
acterize access patterns. This paper proposes an approach that uses
data mining techniques to systematically mine access sequences in
a storage system to characterize storage behaviors. More specif-
ically, we use frequent sequence mining algorithms to find block
access correlations which can be used to improve the effectiveness
of subsystems such as storage caching and disk scheduling, and for
disk power management. This paper reports our preliminary results
of discovering block correlations from storage access sequences us-
ing a recently proposed data mining algorithm called CloSpan.

1. INTRODUCTION
Enterprise-scale storage systems are becoming increasingly com-

plex, and the cost of maintaining these systems is a significant part
of the total cost of ownership (TCO). Managing and tuning such
systems according to workload characteristics for providing high
performance, reliability, availability and scalability demanded by
enterprise customers is a non-trivial task. To maintain a storage
system, skilled administrator involvement is required, and the tasks
are time-consuming, effort-consuming and error-prone.

To address this problem, it is desirable to build storage systems
that can be self-managing, self-tuning and self-protecting. To pro-
vide these autonomic capabilities, a system needs to automatically
capture and characterize the existing storage access behavior based
on which it can change its control policies or configurations to
adapt to application workloads. However, without proper analysis
tools, these behaviors such as temporal and spatial locality, block
correlations and access frequencies are difficult to characterize, es-
pecially for workloads whose behaviors change dynamically from
one time period to another.

Statistical methods have previously been used in storage access
pattern analysis [2]. These techniques are very useful for captur-
ing some simple system behavior. Several recent studies, such
as [1] have examined the I/O patterns for commercial applications
or desktop environments. Researchers have attempted to charac-
terize different aspects of application I/O, such as burstiness, inter-
arrival time and location in order to generate meaningful traces that
reflect access patterns [3, 4].

However, these methods cannot detect complex access behav-
iors such as correlations of blocks that are not contiguous in disks.
Block correlations occur commonly in many applications, but their
presence is not evident at the level of the storage system because
the system only exports block interfaces. It is difficult to extend the
block I/O interface to allow upper levels to inform a storage system
about block correlations that may be application-specific, such as
the correlation between the access of an inode block of a file and

the corresponding data blocks. Exploring these correlations is very
useful for improving the effectiveness of storage caching, prefetch-
ing, data layout, disk scheduling, etc [6].

This paper investigates an approach that uses data mining tech-
niques to systematically mine access sequences in a storage system
to characterize storage access patterns which the system can use
for configuring itself. More specifically, we use frequent sequence
mining algorithms to find correlations among blocks. In this paper,
we report our preliminary results of using a data mining algorithm
called CloSpan [7] to find block correlations among several storage
traces.

2. ARCHITECTURE
Figure 1 shows an example architecture of an autonomic storage

system with self-tuning and self-managing capabilities.
The system monitor collects access information and passes it to

the data mining engine. The data mining engine runs in the back-
ground on the same or different machine and generates access pat-
terns. These patterns are stored in a pattern repository and read by
different modules in the storage system to adapt their policies or
algorithms using the patterns to improve performance.

The data mining engine is responsible for maintaining the repos-
itory; it inserts new patterns and purges obsolete ones. It also main-
tains the age of each pattern, allowing newer patterns to carry more
weight than old ones. The data mining engine can use several algo-
rithms, each performing different types of analysis.

The core component is the storage system, which is comprised
of a number of subsystems. Some subsystems, such as the cache
subsystem, data layout module and the disk scheduling module can
be tuned by modifying parameters according to the workload to
improve system performance. To reduce overheads for accessing
the pattern repository, many frequently and recently used patterns
can be stored in a memory buffer associated with each module.
This buffer is called pattern cache.

Monitor Monitor

Subsystem Subsystem Subsystem

Cache Cache Cache

Database

Data Mining
Engine

Client

Runtime System

Figure 1: An example architecture

3. BLOCK CORRELATIONS
Block correlations commonly exist in many storage system work-

loads. Block � and
�

are correlated if after a block � is accessed,
block

�
is very likely to be accessed in a near future. The spa-

tial locality is a simple case of block correlations. In a complex
block correlation, the correlated blocks may not be contiguous in
locations. For example, in a B-tree layout that is commonly used
by databases, a node is correlated to its parent node or an ancestor
node. But this node may not be allocated in disk close to the parent
node or the ancestor nodes. In a file system, a file block is corre-
lated to its inode. But in most of file system layout, file blocks are
allocated separately from inode blocks.

Exploiting these block correlations can improve the storage sys-
tem performance. For example, if a strong correlation exists among
blocks ��� � ��� , these blocks can be fetched together from disks when-
ever one of them is accessed. The disk read-ahead optimization is
an example of exploring the simple sequential block correlations
by prefetching subsequent disk blocks ahead of time. Several stud-
ies [2, 5] have shown that exploring even these simple correlations
can significantly improve the storage system performance.

A challenging question is how to explore more complex corre-
lations such as tree-like accesses or striped accesses that are com-
monly exhibited in databases or file system metadata. We propose
an approach that uses data mining to capture block correlations as
an example to show how data mining can be used in the architecture
described in Section 2.

Frequent sequence mining can be used to discover block corre-
lations in a storage access sequence. In our experiment, we use a re-
cently proposed frequent sequence mining algorithm called CloSpan
(Closed Sequential Pattern mining) [7].

4. EXPERIMENTAL RESULTS
To show the effectiveness of using CloSpan for discovering block

correlations, we conduct experiments on two types of I/O traces:
the synthetic traces including loop-sequential trace, loop-striped
trace, and B-tree trace, and the real system traces including HP
Cello trace and MS-SQL TPC-C trace. The goal is to evaluate
whether the CloSpan algorithm can capture interesting block cor-
relations, and how efficient it is. Due to the space limitation, we
only show the results for loop-striped and Cello traces.

(A) Loop-striped (���
	 requests)
min sup #patterns time(sec)
50 10195 21.250
100 3302 5.063
200 25 0.234

(B) Cello (�� ��������	 requests)
min sup #patterns time(sec)
50 18840 39.343
200 2863 4.578
1000 399 0.844

Table 1: Overall results

Table 1 shows the number of patterns and running time of CloSpan
with different minimum support constraints. The results demon-
strate that data mining algorithms such as CloSpan are efficient and
practical for analyzing the I/O traces. For example, it takes about
5 seconds to discover 2863 patterns with support greater than 200
from the Cello trace that contains a full-day’s disk requests.

Figure 2 shows the block access correlations. We plot the pat-
terns with length of 2. The � -axis represents the prefix of a pattern,
and the � -axis represents the suffix. Any point ��� � ��� indicates a
correlation between blocks � and � , that is, if block � is accessed,
then block � is likely to be accessed very soon.

Various types of patterns can be figured out from these graphs:
Temporal locality can be represented by patterns �
� � ��� , which

means that if � is accessed, it will be accessed again soon. There-
fore, the points standing showing temporal locality are located on
the diagonal line ����� in the graphs as shown in figure 2(b).

Spatial locality can be represented by patterns �
� � ��� �!� where
� is a small number, which means that if � is accessed, its neighbor
blocks are likely to be accessed soon. Hence, the points standing
showing spatial locality are located around the diagonal line �����
in the graphs as shown in figure 2(b).

Striped access patterns have a fixed striped distance � , so they
can be represented by ��� � ��� � � where � is a constant number.
Hence, the points showing striped access patterns constitute a line
���"�#� � as shown in figure 2(a).

Some other more complex patterns are very common and use-
ful, such as B-Tree layout access pattern, and the correlation be-
tween metadata (e.g, inode) and user data (e.g, file blocks). Fig-
ure 2(b) contains many points that are distributed over the whole
block address space, which demonstrates that data mining algo-
rithms can find such complex patterns.

0 5000 10000 15000
0

2000

4000

6000

8000

10000

12000

14000

16000

0 5 10 15

x 10
5

0

5

10

15
x 10

5

(a) Loop-striped trace (b) Cello trace
Figure 2: Block access correlations

5. CONCLUSIONS
This paper proposes a novel approach that uses data mining tech-

niques to systematically mine access sequence in a storage sys-
tem to characterize storage behaviors. More specifically, we use
frequent sequence mining algorithms to find correlations among
blocks. We have reported our preliminary results of using a re-
cently proposed data mining algorithm called CloSpan to find block
correlations from storage access sequences.

6. REFERENCES
[1] G. Alvarez, K. Keeton, E. Riedel, and M. Uysal. Characterizing

data-intensive workloads on modern disk arrays. In Workshop on
Computer Architecture Evaluation using Commercial Workloads
(CAECW’01), January 2001.

[2] J. Choi, S. H. Noh, S. L. Min, and Y. Cho. Towards
application/file-level characterization of block references: a case for
fine-grained buffer management. In Proceedings of the 2000 ACM
SIGMETRICS international conference on Measurement and
modeling of computer systems, 2000.

[3] M. Gomez and V. Santonja. Self-similarity in I/O workload: Analysis
and modeling. In Workshop on Workload Characterization, 1998.

[4] S. D. Gribble, G. S. Manku, D. Roselli, E. A. Brewer, T. J. Gibson,
and E. L. Miller. Self-similarity in file systems. In Proc. ACM
SIGMETRICS’98, pages 141–150, Madison, USA, June 1998.

[5] J. Kim, J. Choi, J. Kim, S. Noh, S. Min, Y. Cho, and C. Kim. A
low-overhead high-performance unified buffer management scheme
that exploits sequential and looping references. In Proceedings of the
4th Symposium on Operating Systems Design and Implementation
(OSDI), pages 119–134, San Diego, CA, Oct. 2000.

[6] M. Sivathanu, V. Prabhakaran, F. Popovici, T. E. Denehy, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Semantically-smart disk
systems. In Proceedings of the Second USENIX Conference on File
and Storage Technologies (FAST’03), pages 73–88, San Fransisco,
CA, March 2003.

[7] X. Yan, J. Han, and R. Afshar. CloSpan: Mining closed sequential
patterns in large datasets. In Proc. 2003 SIAM Int. Conf. Data Mining
(SDM’03), San Fransisco, CA, May 2003.

