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Abstract— Subgraph querying has been applied in a variety
of emerging applications. Traditional subgraph querying based
on subgraph isomorphism requires identical label matching,
which is often too restrictive to capture the matches that are
semantically close to the query graphs. This paper extends
subgraph querying to identify semantically related matches by
leveraging ontology information. (1) We introduce the ontology-
based subgraph querying, which revises subgraph isomorphism
by mapping a query to semantically related subgraphs in terms
of a given ontology graph. We introduce a metric to measure
the similarity of the matches. Based on the metric, we introduce
an optimization problem to find top K best matches. (2) We
provide a filtering-and-verification framework to identify (top-K)
matches for ontology-based subgraph queries. The framework
efficiently extracts a small subgraph of the data graph from
an ontology index, and further computes the matches by only
accessing the extracted subgraph. (3) In addition, we show that
the ontology index can be efficiently updated upon the changes to
the data graphs, enabling the framework to cope with dynamic
data graphs. (4) We experimentally verify the effectiveness and
efficiency of our framework using both synthetic and real life
graphs, comparing with traditional subgraph querying methods.

I. INTRODUCTION

It is increasingly common to find large data modeled as
graphs, where each labeled node represents a real life entity
with attributes, and each edge denotes a relationship between
two entities [23]. With this comes the need for effective
subgraph querying [15], [32]. Given a query as a graph Q and
a data graph G, the subgraph querying is to find the subgraphs
of G as matches which are isomorphic to Q.

Traditional subgraph querying adopts identical label match-
ing, where a query node in Q can only be mapped to a node
in G with the same label. This is, however, an overkill in
identifying matches with similar interpretations to the query in
some domain of interest [15]. In such matches, a query node
may correspond to a data node in G which is semantically
related, instead of a node with an identical label. The need
for this is evident in querying social networks [9], biological
networks [31] and semantic Web [3], among others.

Example I.1: Consider the graph G shown in Fig. 1 which
depicts a fraction of a social travel network [2]. Each node
represents an entity of types such as tourist groups (Holiday
Tours (HT), Culture Tours (CT)), attractions (Disneyland, Royal
Gallery (RG)), leisure centers (Holiday Plaza (HP), Royal
Palace (RP)), or restaurants (Holiday Cafe (HC), riverside); and
each edge represents a relation between two entities, e.g., “has
guides for” (guide), or “recommend” (recom).

Consider a query Q given in Fig. 1 from a tourist. It is to find
some other tourists who (1) recommend museum tours with
guide services, and (2) favor a restaurant named “moonlight”,
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Fig. 1. Searching travel social network

which in turn is close to the museum. Traditional subgraph
isomorphism cannot identify any match for Q in G with
identical labels. Indeed, there is no node in G with the same,
or even textually similar labels for the labels in Q. However,
there are data nodes in G which are semantically close to
the query nodes, and thus should be considered as potential
matches. For example, node Royal Gallery in G is intuitively
a kind of museum in Q. Nevertheless, it is also difficult to
determine their closeness by using Q and G alone. 2

The above example illustrates the need to identify node
matches that are close to the query nodes, rather than those
with identical or similar labels. Several extensions for sub-
graph isomorphism have been proposed to identify matches
with node similarity [10], [14], [33], while assuming as input
the similarity information between query nodes and data
nodes. However, as observed in [11], users may not have the
full knowledge to provide such information.

To this end, we need to understand the semantic relation-
ships among the query nodes and data nodes, i.e., given the
label of a query node, which labels are semantically close
to the label, in terms of standard description of entities.
This is possible given the emerging development of ontology
graphs [7], [13], [31]. An ontology graph typically consists of
(1) a set of concepts or entities, and (2) a set of semantic
relationships among the nodes. The ontology graphs may
benefit the subgraph query evaluation by providing additional
information about the relationships and similarity among the
entities. Consider the following example.

Example I.2: Fig. 2 illustrates a travel ontology graph Og [9]
provided by a travel social network service, which illustrates
the relationships between the entities in G (Fig. 1). According
to Og , (a) RG is a kind of Museum, while Disneyland is not,
(b) riverside and moonlight refer to the same restaurant in
Og , while HC is a different restaurant, and (c) CT and HT
are both close to the term tourists. Given this, the subgraph
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Fig. 2. Ontology-based matching

G′ of G given in Fig. 2 should be a match close to Q.
Indeed, each edge of Q (e.g., (museum, tourist)) can be
mapped to an edge of G′ with highly related nodes (e.g.,
(Royal Gallery, Cultural Tour Community)).

On the other hand, consider the subgraph G′′ (not shown)
induced by Disneyland, Holiday Cafe and Holiday tours. Al-
though its three nodes are related with Museum, tourists and
moonlight, respectively, they are not as close as the nodes in
G′ according to Og . For example, Disneyland is more similar
to the term Park than Museum. Thus, G′ should be considered
as a better match for Q, according to Og . 2

The ontology information has been used in e.g., keyword
searching [18], semantic queries [13], [11], [19], and social
networks [9]. Nevertheless, little is known on how to exploit
ontology graphs for effective subgraph querying. Moreover, it
is important to develop efficient query evaluation techniques,
especially when a query may have multiple “interpretations”
and matches in terms of ontology-based similarity [18].

Contributions. In this paper we develop query evaluation
techniques to efficiently identify matches that are close to a
given query graph, by exploiting the ontology graphs.

(1) We propose ontology-based subgraph querying in Sec-
tion II. (a) Given a data graph G, a query graph Q, and
an ontology graph O which provides the semantic relation-
ships among different ontologies, the ontology-based subgraph
querying is to identify the matches for Q in G, where the
nodes in the matches and the query are semantically close
according to O. In contrast to subgraph isomorphism and its
extensions, ontology-based subgraph querying measures the
similarity of the nodes by exploiting the ontology graphs. (b)
We introduce a metric to rank the matches of Q, based on the
overall similarity of the labels between the query nodes and
their matches, in terms of the ontology graphs. The metric
gives rise to the the top K matches problem, which is to
identify the K closest matches of Q in G.

(2) Based on the metric, we propose a filtering-and-verification
framework for computing top-K matches (Section IV). (a)
We introduce an ontology index based on a set of concept
graphs, which are abstractions of the data graph G w.r.t. O. We
show that the index can be constructed in quadratic time, by
providing such an algorithm. (b) Using the index, we develop
a filtering strategy, which extracts a small subgraph of G as
a compact representation of the query results, in quadratic
time. The time complexity is determined only by the size
of the index and the query, rather than the size of entire

G. (c) We provide a query evaluation algorithm (Section III)
to compute the (top-K) matches following the filtering-and-
verification strategy, which computes matches directly from
the extracted subgraph without searching G.

(3) In addition, we provide techniques to incrementally main-
tain the ontology index (Section VI). Upon a set of updates to
a data graph, the ontology index can be updated in quadratic
time in terms of the size of the total changes in the data graph
and the index, following [27].

(4) We experimentally verify the effectiveness and efficiency
of our querying algorithms, using real-life data and synthetic
data. We find that the ontology-based subgraph querying
can identify much more meaningful matches than traditional
subgraph querying methods. Our query evaluation framework
is efficient, and scales well with the size of the data graphs,
queries and ontology graphs. For example, our evaluation algo-
rithm only takes up to 22% of the running time of a traditional
subgraph querying method over real life graphs with 7.7M
nodes and edges. Moreover, the construction and incremental
maintenance of the index is efficient. The incremental algo-
rithm outperforms the batch computation, and only takes up to
20% of the running time of batch computation in our tests.We
contend that the framework serves as a promising method for
subgraph querying using ontology graphs in practice.

Related Work. We categorize the related work as follows.

Subgraph query evaluation. There have been many works on
subgraph queries evaluation [8], [25], [17], [32], [34], [35],
based on traditional subgraph isomorphism using identical
label matching (see [15] for a survey). These works develop
pruning rules to reduce search space [25], [32], construct
indexes based on graph features [8], [35], [34] i.e., frequent
substructures, or hierarchical graph containment relation [17],
[36]. In contrast, we develop querying and indexing techniques
to identify matches that are semantically close to the subgraph
queries, in terms of ontologies, where these techniques can
not be directly applied. The subgraph querying is extended
with node similarity in [10], [14], [33], [36]. A similarity
matrix between query nodes and data nodes are assumed as
input, and the data nodes dissimilar with the query nodes
are filtered according to a threshold. In contrast to these
works, (a) we study subgraph queries with node and edge
labels, which are ignored in most of these works; and (b) we
provide efficient indexing techniques exploiting the ontology
graphs, which can not be obtained from similarity matrix or
functions alone. Moreover, as verified in Section VII, our
query evaluation techniques always outperform the similarity
matrix based algorithms in our tests.

Ontology-based graph queries. The ontology information has
been used for pattern mining [6], keyword searching [18]
and the semantic Web [3], [11], [21]. The Ontogator [22]
exploits an ontology-based multi-facet search paradigm, which
links keyword queries to a set of entities in multiple distinct
ontology views, created via ontology projection. [6] proposes
techniques to mine the frequent patterns over graphs with



generalized labels in the input taxonomies. Classes hierarchy
are used to evaluate queries specified by a SPARQL-style
language over RDF graphs in [11], where approximate answers
are identified, measured by a distance metric. The template
matching with semantic similarity is discussed in [3], where
the matches are semantically similar entities. However, the
structure of the template is not preserved, i.e., the matches are
not isomorphic to the template. Our work differs from theirs
in the following. (a) We consider general ontology graphs
rather than hierarchical taxonomies or class lattice. (b) We
find matches for a given query graph, instead of discovering
frequent patterns in graphs as in [6]. (c) The queries in [11]
are defined in terms of a query language specified for semantic
Web. In contrast, we study general subgraph queries with
node and edge labels. Moreover, the queries in [11] are posed
over RDF graphs with predefined schema, where we consider
subgraph queries over general data graphs without any schema.
(d) The query evaluation is not discussed in [3], [11], [21].

Closer to our work is [21], which extends template graph
searching by interpolating ontologies to data graphs. The
data graphs are recursively extended by a set of ontologies
from ontology queries, and are then queried by a template
graph. Our work differs from theirs in (a) instead of merging
ontology graphs with data graphs, we leverage ontology graph
to develop filtering strategies to identify matches, and (b) we
provide query evaluation and indexing techniques, while [21]
focus on data fusion techniques. The incremental querying
techniques are also not addressed in [21].

Graph abstraction. The concepts of bisimulation [26] and
regular equivalence [5] are proposed to define the equivalent
graph nodes, which can be grouped to form abstracted graphs
as indexes [24]. In this work we use the similar idea to
construct the ontology index, by abstracting data graphs as
a set of concept graphs for efficient subgraph filtering and
querying. However, while the notions in [5], [26] are based on
label equality, a concept graph groups nodes in a data graph in
terms of an external ontology graph, thus unifies the ontology
similarity and graph abstraction, as discussed in Section IV.

II. ONTOLOGY-BASED SUBGRAPH QUERYING

Below we introduce data graphs and query graphs, as well
as the ontology graphs. We then introduce the notion of the
ontology-based subgraph querying.

A. Graphs, queries and ontology graphs

Data graph. A data graph is a directed graph G = (V, E, L),
where V is a finite set of data nodes, E is the edge set where
(u, u′) ∈ E denotes a data edge from node u to u′; and L is a
labeling function which assigns a label L(v) (resp. L(e)) to a
node v ∈ V (resp. an edge e ∈ E) In practice the function L
may specify (1) the node labels as the description of entities,
e.g., URL, location, name, job, age; and (2) the edge labels
as relationships between entities e.g., links, friendship, work,
advice, support, exchange, co-membership [23].
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Fig. 3. Data graph and ontology graph

Query graph. A query graph is a directed graph defined as
Q = (Vq, Eq, Lq), where (1) Vq and Eq are a set of query
nodes and query edges, respectively; and (2) Lq is a labeling
function such that for each node v ∈ Vq (resp. e ∈ Eq), Lq(u)
(resp. Lq(e)) is a node (resp. edge) label.

Ontology graph. In real life applications the ontologies and
their relationships can typically be represented as standardized
ontology graphs [4], [7], [13], [19]. An ontology graph O =
(Vr, Er) is an undirected graph, where (1) Vr is a node set,
where each node vr ∈ Vr is a label referring to an entity; and
(2) Er is a set of edges among the labels, where each edge
er ∈ Er represents a semantic relation (e.g., “refer to”, “is a”,
“specialization” [19]) between two nodes.

In addition, we denote as sim(vr1 , vr2) a similarity function,
which computes the similarity of two nodes vr1 and vr2

in O as a real value in [0, 1]. Following ontology-based
querying [19], (1) sim(vr1 , vr2) is a monotonically decreasing
function of the distance from vr1 to vr2 in O, and (2)
sim(vr1 , vr2) = sim(vr2 , vr1). Intuitively, the closer vr1 and
vr2 are in O, the more similar they are [11], [12], [19]. For
example, sim(vr1 , vr2) can be defined as 0.9dist(vr1 ,vr2 ), where
dist(vr1 , vr2) is the distance from vr1 to vr2 in O [19].

Remarks. In practice, the ontology graphs and sim () can
be obtained from e.g., semantic Web applications [13], Web
mining [20], or domain experts [4]. While proposing more
sophisticated models for ontologies and similarity functions
are beyond the scope of this paper, we focus on technique
that applies to a class of similarity functions sim (). Note that
sim () can also be revised for directed ontology graphs.

Example II.1: The graph Q (resp. G) in Fig. 1 depicts a
query graph (resp. a data graph). There are three types of
edge relations in both G and Q, i.e., recom, near, and guide.
All the other edges in G share a same type (not shown).
The ontology graph Og in Fig. 3 illustrates the relation-
ships among the entities in G, e.g.,moonlight is relocated as
riverside (edge e(moonlight, riverside)). A similarity function
sim(vr1 , vr2) for Og can be defined as 0.9dist(vr1 ,vr2 ). For
example, sim(museum, Disneyland) = 0.92 = 0.81.

As another example, consider the data graph Gc and an
ontology graph Ogc given in Fig. 3. The nodes in Gc are la-
beled with colors (e.g., blue). All the edges in Gc indicates the
relationship “similar with”, e.g., the edge (red, rose) indicates
that red is close to rose. Similarly, we define sim(vr1 , vr2) as
0.9dist(vr1 ,vr2 ) for nodes vr1 and vr2 in Ogc

. 2



B. Ontology-based Subgraph Querying

We next introduce the ontology-based subgraph querying.
Given a query graph Q = (Vq, Eq, Lq), an ontology graph

O, a data graph G = (V, E, L), a similarity function sim()
and a similarity threshold θ, the ontology-based querying
is to find the subgraphs G′ = (V ′, E′, L′) of G, such that
there is a bijective function h from Vq to V ′ where (a)
sim(L(h(u)), Lq(u)) ≥ θ, and (b) (u, u′) is a query edge if
and only if(h(u), h(u′)) is a data edge, and they have the same
edge label. We refer to G′ as a match of Q in G induced by the
mapping h, and denote all the matches in G for Q as Q(G).
In addition, the candidate set for a query node u as the set of
nodes v where sim(u, v) ≥ θ. Here we assume w.l.o.g. that all
the node labels in G are from O.

Top-K subgraph querying. In practice one often wants to
identify the matches that are semantically “closest” to a query.
We present a quantitative metric for the overall similarity
between a query graph Q and its match G′ induced by a
mapping h, defined by a function C as follows.

C(h) =
∑

sim(Lq(u), L(h(u))), u ∈ Vq.

The metric favors the matches that are semantically close
to the query: the larger the similarity score C(h) is, the better
the mapping is. On the other hand, if a subgraph G′ matches
Q with identical node labels, i.e., via a subgraph isomorphism
mapping h, C(h) has the maximum value. Indeed, traditional
subgraph isomorphism is a special case of the ontology-based
subgraph querying, when the similarity threshold θ = 1.

The metric naturally gives rise to an optimization problem.
Given Q, G, O and an integer K, the top K matches problem
is to identify K matches for Q in G with the largest similarity.

Example II.2: Recall the query Q, the data graph
G in Fig. 1 and the ontology graph Og in Fig. 2.
Assume the similarity threshold θ = 0.9. One may
verify that the candidate set of query node museum
can(museum) = {Royal Gallery,attractions, park}, and sim-
ilarly, can(moonlight) = {riverside, Holiday Cafe, Holiday
Plaza}. The match G′ for Q in G has the maximum similar-
ity sim(museum, Royal Gallery) + sim(tourists, Culture Tour
Community) + sim(moonlight, riverside) = 0.9 ∗ 3 = 2.7. 2

One may verify that the top K matches problem is NP-hard.
Indeed, the traditional subgraph isomorphism is a special case
of the problem, which is known to be NP-complete [33]. We
next provide a query evaluation framework for the problem.

III. QUERYING FRAMEWORK

Traditional ontology-based querying, by and large, relies on
query rewriting techniques [6], which replaces query nodes
with its candidates and may yield an exponential number of
queries. These queries are then evaluated to produce all the
results. This may not be practical for ontology-based subgraph
querying. Alternatively, a similarity matrix can be computed,
where each entry records the similarity between the query
nodes and its candidates. Nevertheless, (1) the matrix incurs
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high space and construction cost (O(|Q||G|)), and needs to
be computed upon each query, and (2) the time complexity is
relatively high for both the exact algorithms (e.g., [33]) and
approximation algorithms [14] over the entire data graph.

Using ontology graphs, we can do better. Since it is hard
to reduce the complexity of the isomorphism test, we develop
a filtering-and-verification framework to reduce the input of
the ontology-based querying. Upon receiving a query, the
framework evaluates the query as follows. (1) During the
filtering phase, the framework uses an ontology index to either
extract a small subgraph of the data graph that contains all
the matches, or determine the nonexistence of the match, in
polynomial time; and (2) during the verification phase, the
framework extracts the best matches from the small subgraph
in (1), without searching the entire data graph.

Overview of the framework. The framework has three
components, as illustrated in Fig. 4. The ontology index is
constructed once for all in the first phase, while the query is
evaluated via the filtering and verification phases.

Index construction. The framework first constructs an ontology
index for a data graph G, as a set of concept graphs. Each
concept graph is an abstraction of G by merging the nodes with
similar labels in the ontology graph. The index is precomputed
once, and is dynamically maintained upon changes to G.

Filtering. Upon receiving a query Q, the framework extracts a
small subgraph as a compact representation of all the matches
that are similar to Q, by visiting the concept graphs iteratively.
If such a subgraph is empty, the framework determines that Q
has no match in G. Otherwise, the matches can be extracted
from the subgraph directly without accessing G.

Verification. The framework then performs isomorphism
checking between the query and the extracted subgraph to
extract the (top K) matches for Q.

We next provide the details of each phase of the framework.

IV. ONTOLOGY-BASED INDEXING

In this section we introduce the indexing and filtering
phases of the ontology-based subgraph querying framework.
We introduce the ontology index in Section IV-A, and present
the filtering phase in Section IV-B based on the index.

A. Ontology Index

The ontology index consists of a set of abstractions of a
data graph G. Each abstraction, denoted as a concept graph,
is constructed by grouping and merging the nodes in G, which
all have a label similar to a label in the ontology graph O.
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Given a data graph G = (V, E, L) and an ontology graph O
(with similarity function sim), as well as a similarity threshold
β, a concept graph Go = (Vo, Eo, Lo) is a directed graph where
(1) Vo is a partition of V , where each vo ∈ Vo is a set of data
nodes, (2) each vo has a label Lo(vo) from O, such that for any
data node v ∈ vo and its label L(v), sim(L(v), Lo(vo)) ≥ β,
and (3) (vo1 , vo2) is an edge in Eo if and only if for each node
v1 in vo1 (resp. v2 in vo2), there is a node v2 in vo2 (resp. v1

in vo1), such that (v1, v2) (resp. (v2, v1)) is an edge in G. We
refer the set of the labels Lo(vo) to as concept labels.

Intuitively, a concept graph provides a “perspective” of the
data graph in terms of several concept labels from the ontology
graph. (1) Each node in the concept graph represents a group
of nodes that are all similar to (extended from) a same label as
a “concept” [19]. (2) Each edge in the concept graph represents
a set of edges connecting the nodes in the two groups of nodes
corresponding to two concepts. Hence, a concept graph is an
abstraction of a data graph, by capturing both the semantics
of its node labels as well as its topology.

Remarks. The abstraction of a graph is typically constructed
by grouping a set of similar or equivalent nodes. Bisimula-
tion [26] and regular equivalence [5] are used to generate
abstract views of graphs [24], where two nodes are equivalent
if they have a set of equivalent children with the same set
of labels. In contrast, the nodes in a concept graph contains
the nodes that are similar to a same label in a given ontology
graphs, even they themselves may not have the same label.

Based on the concept graphs, an ontology index I of
G is a set of concept graphs {Go1 , . . . , Gom}, where each
concept graph Goi has distinct concept label set and similarity
threshold β. Note that we distinguish the similarity threshold
β for generating concept graphs from the threshold θ for the
queries (Section II), although they may have the same value.

Example IV.1: Consider the data graph Gc and the ontology
graph Ogc

in Fig. 3. Fixing a similarity threshold β = 0.81,
and setting Σ = {red, blue, green} in Ogc

as concept labels,
a concept graph G′c w.r.t. Σ is as shown in Fig 5. Each
node in G′c represents a set of nodes with labels similar to
a concept label, e.g., the node red is a set {rose, pink}, where
sim(red, rose) and sim(red, pink) are both 0.9 (as defined in
Example II.1). On the other hand, although the node violet is
similar to a concept label blue, it is not grouped with the node
sky in G′c. Indeed, while violet has a parent olive similar with
the concept label green, the node sky has no such parent.

Fig. 5 illustrates two concept graphs Go1 and Go2 for the

Input: Ontology graph O, a data graph G,
similarity threshold β, integer N ;

Output: Ontology index I.
1. I := ∅;
2. generate N distinct concept label sets {C1, . . . , CN};
3. for each Ci do
4. I := I ∪CGraph(β, Ci, O, G);
5. return I;

Procedure CGraph
Input: Ontology graph O, data graph G = (V, E, L), threshold β,

concept label set C = {l1, . . . , lm}.
Output: a concept graph Go = (Vo, Eo, Lo).
1. construct partition Vo of V as {V1, . . . , Vm},

where Lo(Vi) := li, Vi = {v|sim(L(v), li) ≥ β};
2. set Eo := {(V1, V2)|(v1, v2 ∈ E), v1 ∈ V1, v2 ∈ V2};
3. while there is change in Vo do
4. if there is an edge (vo1 , vo2)

where v1 ∈ vo1 has no child in vo2

(resp. v2 ∈ vo2 has no parent in vo1 ) then
5. SplitMerge(vo1 , Go) (resp. SplitMerge(vo2 , Go));
6. update Go;
7. return Go := (Vo, Eo, Lo);

Fig. 6. Algorithm OntoIdx

data graph G in Fig. 1, where the similarity threshold β is 0.81.
The concept graphs Go1 and Go2 are constructed in terms
of two sets of concept labels {museum,tourists,moonlight,
leisure center}, and {park,,riverside, leisure center}, respec-
tively. An ontology index I is the set {Go1 , Go2}. 2

Index construction. We next present an algorithm to construct
the ontology index for a given data graph, in quadratic time.

Proposition 4.1: Given a data graph G(V, E, L), an ontology
index can be constructed in O(|E| log |V |) time. 2

The algorithm, denoted as OntoIdx, takes as input the
graphs G and O, a similarity threshold β, and an integer N as
the number of the concept graphs to be generated. As shown
in Fig. 6, the algorithm first initializes a set I as the ontology
index (line 1). It then performs the following two steps.

Concept labels selection (line 2). OntoIdx uses the following
strategy to generate concept label sets by exploiting the
partition techniques. For a given similarity threshold β, (1)
it partitions O via graph clustering or ontology partitioning
techniques [1], [30], [28], where the nodes in O are parti-
tioned into several clusters, and (2) for each cluster, OntoIdx
iteratively selects a label l and add it into a set C, and removes
all the labels l′ where sim(l, l′) ≥ β in the cluster. The process
repeats until there is no label remains in the cluster, and the
set C is returned after all the clusters are processed in O. One
may verify that the strategy produces a set of concept labels
C, such that for any label in a data graph l′, there exists a
concept label l ∈ C where sim(l, l′) ≥ β. OntoIdx uses the
strategy to generate N distinct sets of concept labels (line 2).

Concept graph construction (lines 3-5). After the concept
labels are selected, OntoIdx then invokes procedure CGraph
to compute a concept graph and extend I (lines 3-4) for each
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concept label set Ci, until all Ci are processed (line 5).
Procedure CGraph constructs a concept graph Go as fol-

lows. It constructs the node set Vo as a node partition of the
data graph G, where each node of Vo consists of the nodes with
similarity to a concept label bounded by β (line 1). The edge
set Eo is also constructed accordingly (line 2). It then checks
the condition that whether for each edge (vo1 , vo2) of Go, each
node in vo1 (resp. vo2) has a child in vo2 (resp. parent in vo1)
(line 4). If not, it invokes a procedure SplitMerge (omitted) to
refine Vo by splitting and merging the node vo1 (resp. vo2) to
make the condition satisfied (line 5). The graph Go is updated
accordingly with the new node and edge set (line 6). The
refinement process repeats until a fixpoint is reached, and Go

is returned as a concept graph (line 7).

Example IV.2: Recall the data graph Gc and ontology graph
Ogc

in Fig. 3. To compute a concept graph of Gc, The
algorithm OntoIdx first generates a set of concept labels as
{red, blue, green} (line 2). It then invokes CGraph to construct
a node partition of G as the node set of Gc (line 4), and
generates Gc0 as shown in Fig. 7. Each node and edge
is refined according to the definition of the concept graph
(lines 3-6). For example, the node (green, lime, olive) labeled
with green is split into two nodes (green, lime) and olive
by invoking procedure SplitMerge (line 5), which updates
Gc0 to Gc1 (Fig 7). Similarly, CGraph (1) splits the node
(blue, sky, violet) into (blue, sky) and violet, and updates Gc1

to Gc2 , and (2) splits the node (pink, rose, flame) to produce
G′c (Fig. 5) as the final concept graph. 2

Correctness and Complexity. The algorithm CGraph correctly
computes a set of concept graphs as the ontology index. For the
complexity, (a) the concept labels can be selected in O(|O|)
time; (b) the time complexity of SplitMerge and CGraph is
O(|V |+|E|) and O(|E| log |V |), respectively; and (c) the pro-
cedure CGraph is invoked at most N times (lines 4-5). Thus,
the total time complexity of OntoIdx is O(N ∗ |E| log |V |).
As N is typically small comparing with |V | and |E|, the
overall complexity of OntoIdx is thus O(|E| log |V |). The
above analysis also completes the proof of Proposition 4.1.

B. Ontology-based filtering

In this section, we illustrate the filtering phase of the
query evaluation framework based on the ontology index. As
remarked earlier, instead of performing subgraph isomorphism
directly over the data graph G, we extract a (typically small)
subgraph of G that contains all the matches of the query.

Ideally, one wants to identify the minimum subgraph which is
simply the union of all its matches. Nevertheless, to find such
an optimal subgraph is already NP-complete [16].

Instead, we use ontology index to efficiently reduce the
nodes and edges that are not in any matches as much as
possible, and extract a subgraph Gv of G, which is induced by
a relation M between the query nodes in a query Q and the
nodes in a concept graphs Gc. The relation M is a relaxation
of the subgraph isomorphism which guarantees the following
condition: (1) for each query node u in Q and its matches v
(if any), v is in a node M(u) in Gc, (2) for each query node
u and each edge (u, u1) (resp. (u2, u)) in Q, (M(u),M(u1))
(resp. (M(u2),M(u)) is an edge in Gc. The subgraph Gv

is extracted from Gc by “collapsing” M(u) for each query
node u to a set of corresponding data nodes in G. If multiple
matching relations are computed from a set of concept graphs
in I, for each query node u, M(u) is refined as

⋂
Mi(u),

where Mi(u) is collected from Gci in the ontology index.
The following result shows the relationship between the

subgraph Gv and ontology index.

Proposition 4.2: Given an ontology index I, a query graph
Q and a data graph G, if the subgraph Gv is empty, then
Q(G) is empty; otherwise, Q(G) = Q(Gv), and (2) Gv can
be computed in O(|Q||I|) time, where |I| (resp. |Q|) is the
total number of nodes and edges in I (resp. |Q|). 2

To see Proposition 4.2 (1), observe that if Q has a match G′

induced by an ontology-based isomorphism mapping h, then
a relation M can be constructed such that for any query node
u, h(u) ∈ M(u). Thus, Gv contains all the matches of Q, and
Q(G) = Q(Gv). On the other hand, if Gv is empty, then no
match exists in G for Q and Q(G) is empty, since no relation
M exists even as a relaxation of subgraph isomorphism.

To prove Proposition 4.2 (2), we introduce an algorithm,
denoted as Gview, to generate Gv from I in O(|Q||I|) time.

Algorithm. The algorithm Gview is illustrated in Fig. 8, which
takes as input a query Q, data graph G and a user-defined
similarity threshold θ. It has the following three steps.

Initialization (lines 1-2). For each query node vq, it initializes
a match set mat(vq), to record the final matches identified by
the matching relation M (as remarked earlier), as well as the
candidate set can(vq) (line 2) to keep track of the matches
when a single concept graph is processed.

Matching and refinement (lines 3-10). Gview computes the
relation M as follows. It first initializes the candidate set
can(vq) for each query node vq, using a “lazy” strategy (as will
be discussed) (line 4). It then conducts a fixpoint computation
(lines 5-7), by checking if there exists a query edge (vq1 , vq2),
such that there is a node vo1 ∈ can(vq1) which has no child
in can(vq2). If so, vq1 (and all the data nodes contained in
it) is no longer a candidate for vq. Gview thus removes vq1

from can(vq1) (line 6). If can(vq1) is empty, then query node
q1 has no valid candidate in some concept graph, and Gview
returns ∅ (line 7). Otherwise, mat(vq1) is refined by can(vq1):
if mat(vq1) is empty, it is initialized with can(vq1) (line 8);



Input: query Q = (Vq, Eq, Lq), ontology index I,
similarity threshold θ;

Output: a subgraph Gv .
1. set Vqv := ∅, Eqv := ∅;
2. for each vq ∈ Vq do set mat(vq) := ∅; can(vq) := ∅;
3. for each Go ∈ I do
4. for each vq ∈ Vq do compute can(vq) with lazy strategy;
5. while there is an edge (vq1 , vq2) ∈ Eq and vo1 ∈ can(vq1)

such that C(vo1, Go) ∩ can(vq2) = ∅ then
6. can(vq1) := can(vq1) \ {vo1};
7. if can(vq1) = ∅ then return ∅;
8. if mat(vq) = ∅ then mat(vq) := can(vq);
9. else mat(vq) := mat(vq) ∩ can(vq);
10. if mat(vq) = ∅ then return ∅;
11. for each vq ∈ Vq do
12. construct Vqv and Eqv with mat(vq) and Go;
13. construct Gv:= (Vqv , Eqv , Lqv );
14. return Gv;

Fig. 8. Algorithm Gview

otherwise, mat(vq1) only keeps those candidates that are in
can(vq1) (line 9). If mat(vq1) becomes empty, no candidate
can be find in G for vq1 , and Gview returns ∅ (line 10).

Gv construction (lines 11-14). After all the concept graphs
in I are processed, Gview constructs Gv with a node set Vqv ,
which contains a node for each match set, and a corresponding
edge set Eqv

(lines 11-13). Gv is then returned (lines 14).
It is costly to identify the candidates for the query nodes in

Q by accessing the ontology graph O and G, which may take
up to O(|Q||G|) time. Instead of identifying the candidates
for a query node vq and the user-defined similarity threshold
θ, a “lazy” strategy (line 4) only identifies a set of nodes (as
can(vq)) in the concept graph Go, such that the candidates
of vq are contained in these nodes. To this end, it simply
selects the nodes in Go labeled with the concept labels l,
where the distance of l and the label of vq in O is less
than sim−1(θ) + sim−1(β). Here β is the similarity threshold
adopted to generate Go. One may verify that each candidate of
vq w.r.t. the similarity threshold θ is in one of such nodes, since
the similarity function sim() is a monotonically decreasing
function of the label distances in O (Section II). Moreover,
the total candidate selection time is reduced to as O(|Q||O|).
Note that |Q| and |O| are typically small comparing to |G|.
Example IV.3: Recall the query Q in Example. I.1. Us-
ing the ontology index I = { Go1 Go2 } (Fig. 5), Gview
extracts Gv as follows. (1) Using Go1 , Gview initializes
can(moonlight) with the node moonlight in Go1 , and sim-
ilarly initializes can(museum) and can(tourists) (line 4).
For e.g., query edge {tourist, moonlight}, Gview refines
can(tourists) by checking if every node in can(tourists)
has a child in can(moonlight) (line 5-10). After the refine-
ment, mat(moonlight) = {HC, riverside}, mat(museum) =
{Disneyland, RG} and mat(tourists) = {HT, CT}. (2) Using
Go2 , Gview identifies that can(tourists) = {CT}, can(museum)
= {RG}, and can(moonlight) = {riverside, RP}. (3) Putting
these together, the final match sets mat(moonlight) =
{riverside}, mat(tourists) = {CT} ∩{HT, CT} = CT, and

tourists

HT

CT

museum

Disneyland

RG

HC riverside

moonlight

RP
riverside

RG CT

Gv

park park

riverside

Fig. 9. Generating subgraph Gv . The small subgraph Gv is constructed
by iteratively computing and intersecting the corresponding nodes in concept
graphs for each query node.

mat(museum) = {RG} ∩{Disneyland, RG} = {RG}. Gv (as
shown in Fig. 9) is then constructed as the subgraph of G
induced by the nodes riverside, CT, and RG (lines 11-14). 2

Correctness and complexity. The algorithm Gview correctly
computes a subgraph Gv . To see this, observe that (1) Gv

is initialized using the lazy strategy contains all the possible
matches (line 4); (2) for each query edge (vq1 , vq2), Gview
uses can(vq2) to refine can(vq1) in each concept graph, and
only removes those nodes that are not matches (non-matches)
for vq1 (lines 5-6); and (3) if can(vq) is empty when processing
a concept graph, then there is no match in G for vq (line 7,10).
Since if there indeed exists a data node v that can match
vq, then for every query edge (vq, v

′
q), there must exist

a corresponding edge (vo, v
′
o) (v ∈ vo) in every concept

graph. Thus, Gview only removes non-matches of Q from the
initialized Gv . The correctness of Gview thus follows.

For the complexity, (1) it takes O(|Vq||C|) to identify the
candidates for the query nodes (lines 3-4) using lazy strategy,
where |C| is the total number of concept labels . The filtering
process (lines 5-10) can be implemented in time O(|Eq||I|).
The construction of Gv is in time O(|I|). Putting these
together, the total time of Gview is in O(|Eq||I|). In practice
|Eq| is typically small, and the complexity of Gview can be
considered as near-linear w.r.t. |I|.

V. SUBGRAPH QUERY PROCESSING

In the verification phase, the framework performs the sub-
graph isomorphism tests over the subgraph extracted from the
ontology index. We provide a global ontology-based subgraph
querying algorithm for the top K matches problem. The
algorithm, denoted as KMatch, is as shown in Fig. 10.

Algorithm. Upon receiving a query Q, the algorithm KMatch
first extracts the subgraph Gv by invoking the procedure Gview
(line 3) (see Section IV), For each query node vq, it constructs
a candidate list L(vq), sorted in the descending order of
the similarity (line 6-7). KMatch then iteratively constructs
a subgraph Gs using the candidates with the largest similarity
from the candidate lists, and if Gs is a match, it inserts Gs

to a heap H (lines 10-12). The above process repeats until
all such Gs is processed (line 10), or H contains the top K
matches with maximum similarity scores (line 8).

It takes O(|Q||I|) time to compute Gv (line 3), as remarked
earlier. The total time of KMatch is thus in (|Q||I| + |Gv

||Vq|). As verified in our experiment, in practice Gv is signif-
icantly smaller than G (see Section VII).



Input: query Q = (Vq, Eq, Lq), ontology graph O,
ontology index I, data graph G;

Output: a set of top-K matches for Q in G w.r.t. O.
1. set Match = ∅;
2. /* filtering */
3. extract a subgraph Gv:= Gview(Q, I);
4. /* verification */
5. heap H = ∅;
6. for each vq ∈ Vq do
7. construct a sorted candidate node list L(vq) in Gv;
8. while |H| ≤ K do
9. construct a distinct node list L′ with L() maximizing

the overall similarity;
10. if L′ = ∅ then break ;
11. construct Gs induced by the data nodes in L′;
12. if Gs is a match of Q then insert Gs to H;
13. return H;

Fig. 10. Algorithm KMatch

Remarks. The ontology-based subgraph querying framework
can be easily adapted to support traditional subgraph isomor-
phism. Indeed, when the user-defined similarity threshold is
1.0, (1) the ontology index can be used to extract a subgraph
Gv , which only contains the candidate nodes with identical
labels for the query nodes, and (2) any match extracted from
Gv is a subgraph isomorphic to Q in terms of identical
subgraph isomorphism.

VI. ONTOLOGY INDEX MAINTENANCE

The ontology-based subgraph querying framework can ef-
ficiently extracts a compact subgraph of a data graph from
the ontology index, which is then queried for verification and
results generation. In practice the data graphs are changing
frequently over time. In this section we investigate the in-
cremental maintenance of the ontology index, which further
enables the ontology-based subgraph querying to cope with
dynamic data graphs. Indeed, a dynamic subgraph querying
framework can be readily developed by incrementally updat-
ing the ontology index, and then performs the filtering and
verification phases to compute the new matches.

Given a set of updates ∆G to the data graph G, and an
ontology index I, the index maintenance is to update I to an
ontology index for the updated data graph G ⊕ ∆G. Instead
of recomputing the concept graphs from scratch each time the
data graph is updated, we show that the index I can be directly
updated by only accessing ∆G.

As observed in [27], it is no longer adequate to measure the
complexity of incremental algorithms by using the traditional
complexity analysis for batch algorithms. Following [27], we
characterize the complexity of an incremental graph algorithm
in terms of the size of the affected area (AFF), which indicates
the changes in the input ∆G and the ∆I, i.e., |AFF| = |∆G|
+ |∆I|. Specifically, ∆I contains the nodes and edges that
are not shared by I and I ′ as the updated I.

Proposition 6.1: Given a data graph G and a set of updates
∆G (edge insertions and deletions), the ontology index I can
be maintained in O(|AFF|2 + |I|) time. 2

Input: A graph G, ontology index I, batch updates ∆G;
Output: An updated I.
1. for each e ∈ ∆G and each Go ∈ I do
2. if e = (u, v) is an edge insertion then
3. incIdx+(e, Go);
4. else incIdx−(e, Go);
5. return I;

Procedure incIdx+

Input: a concept graph Go = (Vo, Eo, fo), an edge insertion (u′, u),
Output: An updated Go.
1. set AFF = ∅;
2. find vo′u and vou , where u′ ∈ vo′u and u ∈ vou ;
3. split vou to vou1 := vou \ {u} and vou2 := {u};
4. split vov to vov1 and vov2 similarity; update AFF;
5. if mCondition then
6. merge vou2 and vov2 ; update AFF;
7. for each vo ∈ AFF do
8. propUp(vo, Go); propDown(vo, Go);
9. return Go;

Fig. 11. Algorithm incIdx

We next present an algorithm, denoted as incIdx, to update
the ontology index upon changes to the data graph G.

Algorithm. The algorithm incIdx is shown in Fig. 11. Given
a set of updates ∆G (edge insertions and deletions), the
algorithm processes each update e ∈ ∆G for each Go ∈ I.
If e is an edge insertion, incIdx invokes procedure incIdx+ to
update Go (line 3); otherwise, it invokes incIdx− to process
e (line 4). After all the updates are processed in each concept
graph Go, it returns the updated index I.

Edge insertions. Procedure incIdx+ takes as input a concept
graph Go and an edge insertion (u′, u), and update Go by
taking a split-merge-propagation strategy as follows. It first
initializes a set AFF to record the nodes and edges that need
to be updated (line 1), and identifies vo′u and vou

in Go

that contains u′ and u, respectively (line 2). It then separates
u′ from vo′u , and splits vou

similarly (lines 3-4), since vo′u
and vou

violates the structural constraints of a concept graph
due to the insertion. The set AFF is updated accordingly by
adding the newly formed nodes (line 4). It then checks if the
nodes u′ and u can be merged with other nodes in Go, due
to sharing the common children and parents, i.e., the merge
condition mCondition, and if so, merges u′ or u with other
nodes and update AFF (lines 5-6). For each affected node in
AFF, incIdx+ then propagates the changes to its ancestors and
descendants, by invoking procedures propUp and propDown
(omitted), following the same split-merge strategy until AFF
is empty (lines 7-8). It finally returns the updated Go (line 9).

Edge deletions. Procedure incIdx− (not shown) processes edge
deletion and updates the index similar as incIdx+. After
processing the changes directly caused by the edge deletion,
it propagates the changes, following the same split-merge-
propagation strategy.

Example VI.1: Consider the data graph G and the ontology
index I = {Go1 , Go2} in Fig. 1 and Fig. 3. Suppose the edges
e1 = (HC, riverside) is inserted to G. Upon the insertions of



e1, incIdx splits the node {HC, riverside} into {HC} and
{riverside}, which are added to AFF (lines 3-4). It then
propagates the changes and splits the node {HP, RP} in Go1 .
The updated concept graph G′o1

contains six nodes, with two
newly separated nodes as remarked earlier. On the other hand,
no change is incurred to Go2 . The updated I thus contains G′o1

and Go2 . The total AFF includes the nodes {HC, riverside},
{HP, RP} in Go1 , and the newly separated nodes in G′o1

.
Now suppose edge e2 = (HT, riverside) is inserted into

G. Similarly, one may verify that the insertion of e2, while
does not affect Go1 , changes Go2 by splitting its node
{RP, riverside}. The affected area AFF includes the node
{RP, riverside} and the two nodes RP and riverside. 2

Analysis. One may verify that both incIdx+ and incIdx− pre-
serve the following invariants: each split, merge and propagate
operation do not introduce nodes and edges that violates the
node and topological constraints of concept graphs. The
correctness of incIdx thus follows. The complexity of incIdx
is in O(|AFF|2 + |I|). To see this, for incIdx+, it takes O(|I|)
time to perform the split and merge operation, and the propaga-
tion propUp and propDown takes O(|AFF|2) time as fixpoint
computation. Similarly, the complexity of procedureincIdx−

is in O(|AFF|2 + |I|). Thus, the total complexity of incIdx is
in O(|AFF|2 + |I|). As verified in our experiments, |AFF| is
typically small and the index can be efficiently updated.

VII. EXPERIMENTAL EVALUATION

We next present an experimental study using both real-life
and synthetic data. We conducted three sets of experiments to
evaluate: (1) the effectiveness of the ontology-based subgraph
querying, (2) the efficiency of the query evaluation framework,
and (3) the performance and cost of the ontology index.

Datasets. We used the following datasets.

(1) Real-life graphs. We used the following two real-life
datasets, each consists of a data graph and an ontology
graph. (a) CrossDomain is taken from a benchmark suite
FebBench [29], which consists of (i) an RDF data graph with
1.07M nodes and 3.86M edges where nodes represent entities
from different domains (e.g., Wikipedia, locations, biology,
music, newspapers), and edges represent the relationship be-
tween the entities (e.g., born in, locate at, favors); and (ii) an
ontology graph with 1.44M concepts and 5.30M relations. The
data graph takes in total 150Mb physical memory. (b) Flickr
contains a data graph taken from http://press.liacs.
nl/mirflickr/ with 1.3M nodes and 6.42M edges, where
the nodes represent images, tags, users or locations, and edges
represent their relationship. It also contains an ontology graph
from DBpedia (http://dbpedia.org) with more than
3.64 million entities. The data graph takes in total 194Mb
physical memory. In our experiments, we employ the ontology
graph to describe the tags in Flickr.

(2) Synthetic data. We designed a graph generator to produce
randomly generated synthetic graphs, which was controlled
by three parameters: the number of nodes |V |, the number

of edges |E|, and the size |L| of the node label set. We
also generate ontology graphs for the set of synthetic graphs
sharing the same set of label L, controlled by the same set
of parameters. We use (|V |, |E|) to denote the size of a data
graph, and the ontology graph.

Following [19], we set the similarity function as sim(l′, l)
= 0.9dist(l′,l) for all the ontology graphs O, where dist(l′, l) is
the distance between two nodes l′ and l in O. For example, if
a label l is 2 hops away from l′ in O, sim(l′, l) = 0.81.

Implementation. We implemented the following algorithms
in C++: (1) algorithm OntoIdx; (2) algorithm KMatch; (3)
SubIso, the subgraph isomorphism algorithm in [32], which
identifies the matches using identical label matching; (4)
SubIsor, which, as a comparison to KMatch, is revised
from [32] that rewrites the query graph, and directly computes
all the matches and select the best ones; (4) VF2, which
computes the minimum weighted matches, by exploiting a
similarity matrix between the query label and all the labels
in the data nodes; (4) our incremental algorithm incIdx.

To favor VF2, we precomputed a similarity matrix, where
each entry records sim(u, v) as the similarity between a query
node u and a data node v w.r.t. the ontology graph O. We
also optimized VF2 such that it terminates as soon as the top
K matches are identified. The time cost of computing the
similarity matrix is not counted for VF2.

We used a machine powered by an Intel(R) Core 2.8GHz
CPU and 8GB of RAM, using Ubuntu 10.10. Each experiment
was run 5 times and the average is reported here.

Experimental results. We next present our findings.

Exp-1: Effectiveness and flexibility. In this set of ex-
periments, we first evaluated the effectiveness of KMatch
and SubIso. We generated 5 query templates for CrossDomain,
and 4 query templates for Flickr. We use (|Vp|, |Ep|, |Lp|) to
denote the size of a query Q(Vp, Ep, Lp). For CrossDomain,
(1) QT1 is a tree of size (4, 3, 3) searching for movies, directors
and distributors, and QT2 of size (4, 4, 3) is a cycle obtained
by inserting an edge to QT1 ; (2) QT3 of size (4, 6, 4) is to
search pop stars, record companies, albums and songs, and
Q4 is obtained by only “generalizing” the query label of QT3 ,
e.g., from “Green Record Company” to “Record Company”;
and (3) QT5 of size (5, 6, 4) is to identify the soccer stars,
clubs and their teammates. Similarly, for Flickr the 4 queries
QT6 to QT9 are to identify photos of animals taken at specified
locations. Each template QTi

is populated as a query set of
100 queries (also denoted as QTi

) by varying the node labels
only. For ontology index, we employ the graph partitioning
algorithm in [28] to generate concept labels with similarity
threshold β = 0.8, unless otherwise specified.

Effectiveness. We first compared the number of matches found
by SubIso and KMatch over CrossDomain and Flickr, as
shown in Table I. Fixing card I = 1, i.e., the ontology index
(I) contains a single concept graph, we varied the similarity
threshold of the queries from 1.0 to 0.8, and identify all the
matches. For all the queries over CrossDomain, SubIso only



CrossDomainQuery
θ=1θ=0.9 θ=0.8

QT1 1 2,687 9,099
QT2 0 24 271
QT3 1 170 342
QT4 0 405 991
QT5 0 30,854 48,225

FlickrQuery
θ=1θ=0.9θ=0.8

QT6 2 6 307
QT7 0 177 2,160
QT8 0 448 6,028
QT9 0 799 15,052

TABLE I
EFFECTIVENESS OVER REAL LIFE GRAPHS

finds in average 1 exact match for query set QT1 and QT3 , and
no match for all other queries. In contrast, KMatch identifies
much more matches that are semantically close to the query
according to our observation. It also finds more meaningful
matches than SubIso over Flickr.

Two sample patterns and their closest matches are shown in
Fig. 13. (1) Query Q2 in QT2 (Fig. 13(a)) over CrossDomain is
to find two movies distributed by Walt Disney and directed by
James Cameron, where one is screened out of competition at
Cannes Film Festival, and the other is related with Aliens. The
closest match is shown in Fig. 13(b) where Aliens is matched
to the movie Aliens of the Deep, and Cannes Film Festival has
a match Ghosts of the Abyss. (2) Query Q3 (Fig. 13(c)) of
Flickr is to identify two photos both related with “Flamingo”
with color “Pink”, and one is taken in San Diego while the other
in Miami. The closest match is given in Fig. 13(d) where Miami
is matched to “Seaworld” in Florida.

The algorithm VF2, via carefully processed similarity ma-
trix, identifies the same set of matches as KMatch (thus is not
shown) with much more running time, as will be shown.

Query flexibility. As shown in Table I, (a) for all the queries,
the match number increases when the similarity threshold θ
decreases, since more data nodes become candidates and more
subgraphs become matches; (b) fixing node number and labels,
the insertion of edges increases the topological complexity
of the query, e.g., from Q1 to Q2, and thus, reduces the
number of matches; and (c) fixing the structure, the query label
generalization (from e.g., Q3 to Q4) increases the candidates
of the query nodes, which in turn increases the match number.

Exp-2: Efficiency and scalability. We evaluated the perfor-
mance of KMatch, SubIsor and VF2 using real-life datasets
and synthetic data, and their scalability using synthetic data.
In these experiments, the indexes were precomputed, and thus
their construction time were not counted.

Real life graphs. Fig. 12(a) and Fig. 12(b) (both in log scale)
show the running time of KMatch and VF2 for evaluating QT1

to QT5 over CrossDomain in Table I. The results tells us the
following. (1) KMatch always outperform VF2. For example,
KMatch takes only 1% of the running time of VF2 to evaluate
QT2 . When θ = 0.9 (resp. θ = 0.8), KMatch takes 30% (resp.
22%) of the running time of VF2 in average for all the queries.
(2) When θ decreases, both algorithms takes more time due to
more candidates. In addition, KMatch improves the efficiency
of VF2 better for larger θ due to the filtering power of the
ontology index even with only a single concept graph.

To evaluate the scalability with card(I), i.e., the number of
concept graphs, we used CrossDomain, varied card(I) from 1

(c) Query: Q3
San Diego Miami

(d) An answer

Flamingo

Pink San Diego Seaworld 
(Florida)
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Picture Picture
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James Cameron

“Aliens”Cannes Festival

Walt Disney Pictures

James Cameron

“Ghosts of 
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Fig. 13. Sample queries and matches

to 7, and tested the cases where θ is 0.9 and 0.8, respectively.
The results, shown in Fig. 12(c), tells us that the running time
of KMatch, decreases while card(I) increases. Specifically,
when θ = 0.8, the verification (resp. filtering) time decreases
(resp. increases) from 396 (resp. 2) seconds to 110 (resp. 30)
seconds when card(I) increases from 1 to 4, and the total
time decreases from 398 seconds to 168 seconds. The total
time increases when card(I) is increased from 4 to 7. This
is because (a) more concept graphs effectively filter more
candidates, and reduce the verification time, and (b) when
card(I) > 4, while the index spends more time in filtering
phase, it cannot further reduce the verification time, thus the
total time increases. Similarly, the running time of KMatch
decreases when θ= 0.9 and card(I) < 3.

The efficiency of KMatch and VF2 over Flickr is given in
Fig. 12(d), Fig. 12(e), and Fig. 12(f), which verify the results
of their CrossDomain counterparts Fig. 12(a), Fig. 12(b),
and Fig. 12(c), respectively. In average, the running time of
KMatch is 30% of that of VF2 over Flickr when θ = 0.9.
When θ = 0.8, VF2 does not run to complete for QT4 .

To evaluate the impact of K in finding the top K matches,
We evaluated the efficiency of KMatch and VF2 by varying
K from 50 to 250, and used query set QT2 over Flickr. The
result is as shown in Fig. 12(g). It takes more time for KMatch
and VF2 to identify K best matches when K is increasing,
as expected. Moreover, the performance of KMatch is less
sensitive than that of VF2. This is because KMatch extracts all
the matches from a small subgraph after filtering phase, while
VF2 needs to run isomorphism test over G to identify each
new match. The tests with other queries verify our observation.

The algorithm SubIsor does not scale even over small
queries such as QT2 , thus its result is not reported.

Synthetic graphs. Using synthetic graphs, we provide an in-
depth analysis of the efficiency and scalability of KMatch
and VF2. We fixed card(I) = 1, the user-defined similarity
threshold θ = 0.8, and the similarity threshold β = 0.8. We
construct random query templates populated with 100 queries,
and the average result is reported.

We first evaluate the scalability of KMatch and VF2
with |G|. Fixing the size of an ontology graph |O| as
(2K, 12K, 2K), and query size |Q| = (5, 8, 5), we varied
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Fig. 12. Ontology-based subgraph querying: performance evaluation

|G| from (1M, 1.5M, 2K) to (1M, 5M, 2K), corresponding
to (1, 1.5) to (1, 5) in Fig. 12(h). Fig. 12(h) tells us that
(a) both algorithms takes more time when |G| increases, (b)
KMatchalways outperforms VF2: it takes running time up to
25% of that of VF2, over all the data graphs, and takes less
than 14 seconds to identify all the matches in G with size
(1M, 5M, 2K); and (c) KMatch is less sensitive than VF2.

To evaluate the impact of query size on the performance of
KMatch, we varied |Q| from (5, 5, 5) to (5, 11, 5), while fixing
|G| = (1M, 3.5M, 2K) and |O| = (2K, 12K, 2K). Fig. 12(i)
shows that (a) both algorithm take less time for larger queries,
since for both algorithms, the more complex the queries are,
the better their filtering strategies work, and (b) KMatch is less
sensitive. This is because for queries with more edges, KMatch
takes more time in filtering but less time in verification.

To evaluate the scalability with the size of O, we varied |O|
from (2K, 6K, 2K) to (2K, 18K, 2K), by inserting edges in
2K increments, while fixing |G| = (1M, 3.5M, 2K) and |Q|
= (5, 8, 5). Fig. 12(j) shows that both KMatch and VF2 take
more time for larger O. This is because the average candidate
numbers are increased due to larger ontology graphs.

Exp-3: Effectiveness of ontology index. Using real life
data, we next investigate (1) ctime, i.e., the running time
of algorithm OntoIdx; (2) the compression rate cr = |Eo|

|E| ,
where |Eo| is the average edge size in I, and |E| is the
edge size of the data graph, (3) the memory reduction mr
= |Mo|

|M | , where |Mo| and M are the physical memory cost

of I and the data graph, respectively; and (4) the filtering
rate fr = |Gv|

|Gsub| , where |Gv | is the average size of the
induced subgraphs Gv in filtering phase, and |Gsub| is the
size of all the nodes and edges visited by VF2. We fixed
card I = 1, and β = 0.8. The result is shown below.

Dataset ctime cr mr fr

CrossDomain 694s 0.43 0.51 0.06
Flickr 383.83s 0.71 0.52 0.24

The above results tell us the following. (1) For both data
sets, the efficiency of OntoIdx is comparable to that of VF2
for processing a single query (see Exp-2). (2) I contains much
less nodes and edges over the data graph, and takes only half
of of its physical memory cost. (3) Even when only a single
concept graph is used, the index effectively filters the search
space. Indeed, the size of Gv for verification is only 6% and
24% of |Gsub| over CrossDomain and Flickr, respectively.

Concept label selection. We compared the performance of
KMatch over CrossDomain using different concept label se-
lection strategies. Fixing |I| = 1, we generated concept labels
by varying β from 0.8 to 0.4, and by using (a) partitioning
strategy, and (b) random selection without partitioning. The
results are as shown in Fig. 12(k), which tell us (1) KMatch
takes more time when β decreases, due to that the concept
graphs are too “abstract” to perform effective filtering with less
concept labels, since more candidates are merged as a single
node; and (2) the partitioning strategy improves the efficiency
of KMatch by up to 70% due to a better filtering process. The
results using other queries also verify our observation.



Efficiency of incremental maintenance. We finally compare the
performance of incIdx and OntoIdx upon data graph changes,
where OntoIdx recomputes the index from scratch. Fixing β =
0.8, |O| =(2K, 12K, 2K), and |V | = 1M , we varied |E| from
2M to 5M by inserting edges in 0.5M increments. Fig. 12(l)
tells us that incIdx greatly outperforms OntoIdx. The running
time of incIdx is only 20% of that of OntoIdx even when |E|
is increased from 2M to 5M in a single batch of updates.

Summary. We find the following. (1) The ontology-based sub-
graph querying can efficiently identify more matches that are
semantically close to the query, comparing with the traditional
subgraph isomorphism. (2) Our query evaluation framework is
more efficient than conventional subgraph querying, e.g.,VF2.
(3) The ontology index improves the performance of ontology-
based subgraph querying. Better still, it can be efficiently
updated upon data graph changes.

VIII. CONCLUSION

We have proposed the ontology-based subgraph querying,
based on a quantitative metric for the matches. These notions
support finding matches that are semantically close to the
query graphs. We have proposed a framework for finding the
(top K) closest matches, via a filtering and verification strategy
using ontology index. In addition, we have proposed an incre-
mental algorithm to update indexes upon data graph changes.
Our experimental study have verified that the framework is
able to efficiently identify the matches, which cannot be found
by conventional subgraph isomorphism and its extensions.

This work is a first step for subgraph querying with ontolo-
gies. We are evaluating our techniques over various real graphs
with different ontology similarity metrics. Another topic is to
extend the techniques for other types of graph queries.
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