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Abstract—In the real world, various systems can be mod- Organization Network Team Selection Query
eled using heterogeneous networks which consist of entities <
of different types. Many problems on such networks can be iig ﬁ
mapped to an underlying critical problem of discovering top- [ 1 i B i —}
K subgraphs of entities with rare and surprising associations. % ‘ - &’
Answering such subgraph queries efficiently involves two main '5,‘5 ;\io@ \5«“ I \

challenges: (1) computing allmatching subgraphs which satisfy % y
the query and (2) ranking such results based on the rarity =™ o

and the interestingness of the associations among entities in %iw (i —
the subgraphs. Previous work on the matching problem can be ‘

harnessed for a néve ranking-after-matching solution. However,
for large graphs, subgraph queries may have enormous number Fig. 1.  Team Selection Problem (Interestingness = HigheistoHcal
of matches, and so it is inefficient to compute all matches Compatibility)

when only the top-K matches are desired. In this paper, we
address the two challenges of matching and ranking in tops’
subgraph discovery as follows. First, we introduce two index
structures for the network: topology index, and graph maximum
metapath weight index, which are both computed offline. Second,
we propose novel topK mechanisms to exploit these indexes
for answering interesting subgraph queries online efficiently.
Experimental results on several synthetic datasets and the DB
and Wikipedia datasets containing thousands of entities show
the efficiency and the effectiveness of the proposed approadh
computing interesting subgraphs.

Computer Network Attack Sub-network
Query

[

&

|. INTRODUCTION Fig. 2. Attack Localization Problem (Interestingness =gt Data Transfer

With the ever-increasing popularity of entity-centric &pp Rate)
cations, it becomes very important to study the interastion
between entities, which are captured using edges in thyentlinked objects. A manager in such an organization may have
relationship (or information) networks. Entity-relatiinip net- @ mission which can be defined by a query graph of objects
works with multiple types of entities are usually referred tand persons. For example, the left half of Figarehows an
as heterogeneous information networks. For example,dsibliorganization network while the right half of the figure shows
graphic networks capture associations like ‘an author evrod Sample mission query graph consisting of three persons and
a paper or ‘an author attended a conference’. Similarly, s8 laptop, a microscope and a gun. The network has edges with
cial networks, biological protein-enzyme networks, Wadie Weights such that a high weight implies higher compatipilit
entity network, etc. also capture a variety of rich assamist between the nodes connected by the edge. The manager is

In these applications, it is critical to detect novel connednterested in selecting a team to accomplish the missioh wit
tions or associations among objects based on some subgrighperson-person and person-object compatibilities as-sp
gueries. Two example problems are shown in Figuremd ified in the mission query. Using the historical compattiili
2, and are described as follows. based organization network, how can we find the best team
P1: Team Selection Organization networks consist of persorfor this mission?
and object nodes where two persons are connected if tHe¥: Attack Localization: Consider a computer network as
have worked together on a successful mission in the pasfiown in the left part of Figur@. It can consist of a large
and a person is linked to an object if the person hasnamber of components like database servers, hubs, swjtches
known expertise in using that object. For example, US arntdesktops, routers, VOIP phones, etc. Consider a simplekatta
network which consists of-2-3M persons and much moreon multiple web servers in such a network where the attack



script runs on a compromised web server. The script reads a Network G 12 21
of data from the database server (through the network hub) ¢

sends out spam emails through the email server. Such ak atl 6
leads to an increase in data transfer rate along the coonecti
in multiple “attack sub-networks” of the form as shown in ths
right part of the figure. Many such attacks follow the sam 10
pattern of increase in data transfer rates. How can a netw:

Query Q

administrator localize such attacks quickly and find theswor Fig. 3. Example of a Networks and a QueryQ
affected sub-networks given the observed data transfes rat
across all the links in the network? way: (1) computing all possible matching subgraphs from the

Both of these problems share a common underlying proetwork, and (2) computing interestingness score for each
lem: Given a heterogeneous netwdark a heterogeneous sub-match by aggregating the weights of each of its edges. To
graph queryQ, and an edge interestingness meadurehich Solve these problems, we present an efficient solution which
defines the edge weight, find the tép-matching subgraphs exploits two low-cost index structures (a graph topologjei
S with the highest interestingness. The two problems can Bed a maximum metapath weight (MMW) index) to perform
expressed in terms of the underlying problem as folldss.  top-K ranking while matching (RWM). Multiple applications
G = organization networkg) = mission query, = historical 0f the top# heuristic, a smart ordering of edges for query
compatibility, S = team.P2: G = computer network() = an processing, quick pruning of the edge lists using the tagpolo
“attack sub-network” query] = data transfer rate§ = critical index and the computation of tight upper bound scores using
sub-networks. Besides the two tasks, this proposed probléie MMW index contribute to the efficiency of the proposed
finds numerous other applications. For examplejiheresting  solution in answering the top- interesting subgraplojueries.
subgraphmatches can be useful in network bottleneck discossummary
ery based on link bandwidth on computer networks, suspiciou We make the following contributions in this paper.
relationship discovery in social networks, de-noising tla¢a  « We propose the problem of tafs- interesting subgraph

by identifying noisy associations in data integration eyss, discovery in information networks given a heterogeneous
etc. edge-weighted network and a heterogeneous unweighted
Comparison with Previous Work query.

The proposed problem falls into the category of the sub-e To solve this problem, we propose two low-cost indexes
graph matching problems. Subgraph matching has been stud- (a graph topology index and a maximum metapath weight
ied in the graph query processing literature with respect (MMW) index) which summarize the network topology
to approximate matchesl9], [25], [26], [30] and exact and provide an upper bound on maximum metapath
matches 18], [27], [31]. Subgraph match queries have also  weights separately.
been proposed for RDF grapht5], probabilistic graphs44] « Using these indexes, we provide a ranking while match-
and temporal graphd]. The proposed problem can be solved ing (RWM) algorithm with multiple applications of the
by first finding all matches for the query using the existing top-K heuristic to answeinteresting subgraplgueries
graph matching methods and then ranking the matches. The on large graphs efficiently.
cost of exhaustive enumeration for all the matches can bes Using extensive experiments on several synthetic datasets
prohibitive for large graphs. Hence, this paper proposesi@m we compare the efficiency of the proposed RWM method-
efficient solution to the togs subgraph matching problem ology with the simple ranking after matching (RAM)
which exploits novel graph indexes. Many different forms of  baseline. We also show effectiveness of RWM on two
top-K queries on graphs have been studied in the literafijre [ real datasets with detailed analysis.

[21], [23], [28], [30]. Gou et al. p] solve the problem only for  Qur paper is organized as follows. In Sectibn we de-

twig queries while we solve the problem for general subgsaphine thetop-K interesting subgraph discoveryroblem. The

Yan et al. P1] deal with the problem of finding toge highest proposed approach consists of two phases: an offline index
aggregate values over their h-hop neighbors, in which R@nstruction phase and an online query processing phase
subgraph queries are involved. Zhu et @8|[aim at finding which are detailed in SectionBl and IV respectively. In
top-K largest frequent patterns from a graph, which does ngection V, we discuss various general scenarios in which
involve a subgraph query either. Different from existing# the proposed approach can be applied. We present results
work, the proposed work deals with a novel definition of toppith detailed insights on several synthetic and real détase
K general subgraph match queries, which has a large numpeSectionVI. We discuss related work and summarize the

of practical applications as discussed above. paper in Section¥Il andVIIl respectively.
Brief Overview of Top-K Interesting Subgraph Discovery
Given a heterogeneous network containing entities of var- Il. PROBLEM DEFINITION

ious types, and a subgraph query, the aim is to find theln this section, we formalize the problem definition and
top-K matching subgraphs from the network. We study theresent an overview of the proposed system. We start with
following two aspects of this problem in a tightly integrdte an introduction to some preliminary concepts.
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Definition 1 (A Heterogeneous Network)A heterogeneous |  Network G ——>{ Breadth First Traversal Graph Offline Index

1

. . 1 . from each Node —> Topology : |

network is an undirected graplty = (Vg, Eq, typea, Distance D > 0 to Distance D i onstiuctionBil])
i wher [ finit t of verti representing !
wey_g_htg> eeV_G s a finite set of vertices (rep esenting! 7 !
entities) and .EG is a finite _set of e_dges ea(_:h bemg ar, Graph Maximum !
unordered pair of distinct verticesype is a function defined ! ) MetaPath Weight !
I Sorted Edge Lists Index 1

1

on the vertex set agpeq : Vo — Ta whereTg is the set  _ _ . _ o _ o o ____l__________
of entity types and7¢| = T. weight¢ is a function defined ;~ [~~~ | "
on the edge set ageighte : Eq — R € [0,1]. weightg(e) ;

represents the interestingness measure value associated \ Candidate Nodes
the edgee.

Query Q

1
: Top-K Computation | 2

¢ Online Query

For example, Figur@ shows a networkG with three types : Top-K Subgraphs Processing

of nodes.7¢ = {4, B,C}. |V|=13, and|E¢|=18. b e e e e mmm——— o ———— - =
Ta ={4,B,C}. [V g Fig. 4. Top# Interesting Subgraph Discovery System Diagram

Definition 2 (Subgraph Query on a NetworkA subgraph

query@ on a networkG is a graph consisting of node skt Baseline Method: Ranking After Matching (RAM)

and edge sef’p. Each node could be of any type frofa. A naive way to solve the togs interesting subgraph dis-
For example, Figur@ shows a queng with four nodes covery problem is to first perform matching to discover all
Vol=4. andlE ' —3 Th workG: and th h " the subgraph matches frofd, and then rank these matches.

_| Q|_ » an |_ o=3. The networ - and the query shown For example, for the querg) in Figure3, 9 matches can be

in Figure 3 will be used as a running example throughout th'@omputed as follows (10, 9, 8, 7), (2, 3, 4, 7), (4, 3, 2, 1), (10
paper. 9,5,6),(95,47),5,9,8,7),(8,9,5,6), (4 3,2, 7), and
Definition 3 (Subgraph IsomorphismA graphg = (V,, E,, (3, 4, 5, 6). Next, the interestingness score can be computed
typey) is subgraph isomorphic to another graph = (V,,, for each of the matches by adding up the edge weights as 1.4,
E,, typey ) if there exists a subgraph isomorphism frgno 1.6, 1.7, 1.8, 1.8, 2.0, 2.1, 2.2, and 2.2 respectively< 2,

¢'. A subgraph isomorphism is an injective functibh: V, — the matches (4, 3, 2, 7), and (3, 4, 5, 6) can be returned as
V, such that (1)vv € V,;, M (v) € V, and type,(v)=type,, the most interesting subgraphs for quépy

(M (v)), (2) Ve =(u,v) € E,, ¢ =(M(u), M(v))€ E,. However, since only the top 2 interesting subgraphs are
desired, this approach is not efficient especially for large
graphs for which the number of matches could be enormous
and hence computing all the matches could be very time
consuming. Hence, we propose a thp-approach which

The query Q can be answered by returning all exacperforms the interestingness score computation (and hence
matching subgraphs fror. For example, the subgraph offanking) while matching (RWM). For this approach we need
G induced by vertices (8, 9, 5, 6) is a match for the quef make use of a few index structures which are constructed
Q on networkG shown in Figure3. For sake of brevity, we offline. These index structures are then exploited to effttye
will use the vertex set (tuple notation) to refer to the salphr answer the queries online.

induced by the vertex set. System Overview
Figure 4 shows a broad overview of the proposed system.

Definition 5 (Interestingness ScoreJhe interestingness scoregiven a user query), the top half denotes the offline pre-
for a matchM for a query@ in a graph G is defined as the processing phase in which the two indexes are computed,
sum of its edge weights. while the lower half denotes the online processing phase in

For example, the interestingness score for the occurrgice Which the user query is processed using the two indexes. The
9, 5, 6} is 2.1. Though we use sum as an aggregation functififlex parameter, distanc@, controls the size and the index

here, any other monotonic aggregation function could atso Bonstruction time. We discuss the details of the offline inde
used. construction and the online query processing in Sectitins

. . ] andIV respectively.
Definition 6 (Top-K Interesting Subgraph Discovery Prob-

Definition 4 (Match). The query graphQ can be subgraph
isomorphic to multiple subgraphs ¢f. Each such subgraph
of G is called a match or a matching subgraph Gf

IIl. OFFLINE INDEX CONSTRUCTION

lem).

Givgn: A heterogeneous information network, a hetero- In this section, we will first discuss the details of the index
geneous unweighted query, and an edge interestingnessstructures in Sectiofll-A and then study their construction
measure. time and space in Sectidil-B .

Find: Top-K matching subgraphs with highest interestingnesg |ndex Structures

scores.

To support a ranking while matching (RWM) framework,

For example, (3, 4, 5, 6) and (4, 3, 2, 7) are the top twwe first propose two novel index structures in this sub-
matching subgraphs both with the score 2.2 for the qugry section. We will use these index structures to develop aifop-
on networkG in Figure 3. methodology in SectiotV.



Graph Topology Index AA BB cc AB AC BC
The graph topology index for a grap& captures the (5,9):0.9 (12,13)02] (2.7):07 | (312): 05| (7,11): 02

structure of the graph. It stores for every nadethe number

of d-hop neighbors of each type for all € {1,...,D} Bax08 (56):06 | (412):04] (11101

along a particular metapath corresponding to a path of kengt (4,5):0.8 (87):05 | (3,13): 04

d originating from noden, where a metapath is defined as (2,3):0.7 (2,1):0.2 | (2,13):03

follows. (8,9):0.6 (4,7):0.1

Definition 7 (Metapath) A pathu ~ «’ from a nodeu to (9,10):0.3

a nodeu’ in a graph G = (V, Eg, typeq, weights) is a Fig. 8. Sorted Edge Lists for Graph in Figuge

sequence€vy, v1, ..., vg) Of vertices such that = v, and

u’ = vy, and(v;_1,v;) € Eg. The length of a path is equal toto highly effective pruning of the partially grown candidat
the number of edges in the path). If the node type is used solutions.

instead of its id, for each node in the path, the path is calleSorted Edge Lists

a metapath. Thus, the corresponding metapattti®es (vo), Besides the above two indexes we also maintain sorted
typec(v1), ..., typeg(vg)). edge lists which capture the interestingness of the edges in
tlle graph. For each edge-type, all the edges of that type
aré stored in the non-ascending order of their interestsgn
values. Thus, the most interesting edges occur at the top of

whereT' is the number of types. . . .
Each column of a topology index corresponds to a metapa&'ﬂ(.a I|st§. Fllgures shows the sorted edge lists for the graph
hown in Figures.

Figure5 shows the graph topology index for the first 4 noded X _

of%he graph shown?n Ifigur&pFo?Zxample for node 2. there These edge lists are further indexed by nodes. For every
. . ' . edge list, a hash is maintained which maps each graph node

are two 2-hop neighbors of typé (4 and 8) reachable via theto the set of rows in the edge list which contain the graph

metapath(B, A). Hence the entryopology(2, (B, A))=2. A : .
blank entry in the index indicates that there is no node 5 de. For example, for the edge lidt— A, the node pointer

type ¢ at a distancel from noden along the corresponding rom node 4 points to edges (3, 4) and (4, 5) rgspectwely.
metapath. As we shall see in SectidA , the topology index Such pomters provide a fa_st access to the matching edges of
plays a crucial role in reducing the search space by pruniﬁgf)alrtICUIar type for a particular node.

away candidate graph nodes that cannot be instantiated faB.alndex Construction

given query node.

For example, the metapath corresponding to the path (5,
7)is (A, A, B). There arel’” distinct metapaths of length

We can compute both the index structures and the sorted
edge lists offline as follows. For constructing the graph

hi; ! 2 topology index and the maximum metapath weight index, a
T e o 2 breadth first traversal needs to be performed originatiogfr
1 /1] J1]1 1] 1111 3 each node of the graph. For each node, each ofi iteop
2 1({2]1f1]2]1 211)1 . .. . .
s Tl Bl 12 ST 13 " neighbors are visited up to a maximum distaree For the
4 J2fa]1]2]2]1]1 2|11 p graph topology index, the breadth first traversal maintties
Fig. 5. Graph Topology Index for the first s s current frontier of the visited nodes in a queue. After each
# Nodes > 5 hop of the traversal, the actual paths from the origin node
Nov.Ie als e laalsalcalaslealcalaclsclcc o are expresseq in tgrms of their corresponding metapath; and
"i 5 Toilos o Tosos _ | _ the topology index is updated based on the number of unique
2 Joso7loalLs 207 120903 glagt'e!i‘or ::éﬁ”gﬁ;ga,{l‘gge endpoints along a particular metapath. To update the MMW
oo oa ot T iao3led  (Filled Cells represent Fil-  index, the sum of edge weights is computed for each path and
Fig. 6. MMW Index for the first 4 Nodes tered Candidates) an entry in the MMW index is updatgd with the maximum
weight of any path for the corresponding metapath. Updating
Maximum Metapath Weight Index the MMW index needs exhaustive enumeration of all paths.

The maximum metapath weight (MMW) index has the santdowever, for small values oD, this is not very expensive.
size as the graph topology index. It stores the maximum suitso, note that the index construction needs to be done just
of weights to any node of typealong a particular metapathonce and is an offline task. IB is the average number of
of length d originating from the node:. Figure6 shows the neighbors for a node, the total numberdshop neighbors up
maximum metapath weight index for the first 4 nodes of the D is O(BP?). Thus, the computation of the MMW index and
graph shown in Figur@. For example, for node 2, there arehe topology index take®(|Vg|BP) time. The space required
two 2-hop neighbors of typel (4 and 8) reachable via theto store each of the two indexes@¥|Vs|T") whereT is the
metapath( B, A) with weights 0.8 and 1.2 respectively. Hencenumber of types.
the corresponding index enty/ MW (2, (B, A)) is 1.2. In As the number of types increases, the size of the two
SectionlV-C, we will show how the MMW index can be usedindexes can bloat very quickly. However, most of the prattic
for computation of tighter upper bound scores which leadieterogeneous information networks have few node typas, an



also follow a schema. The schema can itself restrict the mumlbeduces to those shown in Figure The nodes in red-filled

of edge types to a very few. Besides this, in Sectignwe cells can be filtered out.

will discuss various ways in which we can reduce the size of The potential candidates can be identified for a query node

these indexes without much losses in efficiency. q by first computing the topology structure fgr(similar to
The sorted edge lists are created by grouping edges by typeow in the graph topology index) and then verifying if the

and sorting the edges within each type in a non-ascendiggery topology for query node fits as a subgraph of the

order. If there arél’ types of nodes in the graph, the numbegraph topology with respect to a potential candidate noite

of types of edges i@. Time to sort an edge list of lengththe graph. This topology fit can be checked by considering

Lis O(LxlogL). Itis easy to see that the time to sé#5)  all the paths in the query with length from 1 t© (the

lists such that their total size B¢ is maximum when each index parameter) and verifying their presence in the graph.

list is of the size-2l£Z<L.. Hence, the overall time complexity Let us denote the topology index structure for the query by

T(T+1)
of computing the sorted edge Iistsdl;(|EG|log (ﬁ'ffb)). queryTopology.

The space required to store the index G§|E¢|). Also Algorithm 1 Candidate Node Filtering Algorithm
building the companion graph node pointers to rows in ed@@u: (1) Query Node ¢, (2) Graph Node p, (3) topologylpl, (4)
lists takesO(|E¢|) time and space. queryTopology[q], (5) Index ParameteD

Output: Is p a potential candidate node for query nag

IV. ToP-K INTERESTING SUBGRAPH QUERY PROCESSING 3 ' f‘irznllz;;?“_’f’Td o

Given a queryQ with node setV, and edge sefig, top- 2 T queryTopologyla]ld]lmp] > topology pl[dj[mp] then
K matching subgraphs are discovered by traversing the sortesd return True
edge lists in the top to bottom order with the following spaed
heuristics. First for each node Wy, a set of nodes from Candidate Node Filtering Algorithm
the graph that could be potential candidates for the queryThe proposed candidate node filtering approach is summa-
node, is identified using the topology index (Algorithi). rized in Algorithm 1. For each distance valug all possible
The edges in the sorted edge lists that contain nodes oth®stapaths of lengtl are checked. By comparing thepology
than the potential candidate nodes are marked as invaligk all metapaths with the correspondingieryTopology
This prunes away many edges and speeds up the edgewigities (StefB), it can be inferred whether the candidatés
traversal. The query) is then processed using these edggalid to be an instantiation of query nogefor some match.
lists in a way similar to the togs join query processing The time complexity isO(DTP+1).
(SectionlV-B) adapted significantly to handle network queries. Candidate pruning leads to shortening of the edge lists
The approach discussed in SectidB is further made faster associated with any of the query edges. For example, nodes
by the tighter upper bound scores computed using the MMW 8 and 10 get pruned for the query node. Thus, the
index (Algorithm 2). We will discuss these in detail in thisedge list corresponding to the query edgk (Qs) will have
section. the following AA edges marked as invalid: (2,3), (8,9) and
(10,9).

A. Candidate Node Filtering using Topology Index

Here, we will discuss a methodology to reduce the candidae Top-K Match Computation
search space by pruning away candidate graph nodes that ca
not be instantiated for a given query node, using the togolo

index. The topK query processing involves traversing th he algorithm is based on the following key idea. A tap-

edge lists from top to bottom. During this traversal, the-top heap is maintained which stores the bstanswers seen so

pruning can improve if some edge entries in the edge lists c, DT .
. : . . X . r li re traver from m.

be marked as invalid thereby reducing the effective sizénef t]% e sorted edge lists are traversed from top to botto

dae list Each time an edge with maximum edge weight from any of
edge 1ISts. the lists is picked and all possible size-1 matches in which
Pruning Example : :
g . that edge can occur are computed. Candidate size-1 matches
In Figure 3, the query consists of four nodes: : . :
g ; are grown one edge at a time till they grow to the size of
Q1,Q2,Q3,Q4. The matching candidate graph node . . )
. e query. Partially grown candidate matches can be disdard
with respect to the node type are as follows. (2, 3, 4, 5, 8,
IT’the upper bound score of these matches falls below the
91 lo) forQla (21 31 41 51 81 91 10) foQQv (21 31 41 51 81 91 Hs H H H
10) for Q5. and (1, 6. 7) forQ,. In the query, we see that TinIMuUm element in the tog€ heap. The algorithm terminates
3 T 4 query, when no subgraph using the remaining edges can result into

Sgwl%i?%%ésrg\?vngsr?eid ;?.;nnofoefhgfﬁéﬁihgliéagfg L. a candidate match with upper bound score greater than the
. P 9 POIOGY  inimum element in the tops heap. We discuss the details

index indicates that there is just one neighbor of typeat clow

distance 1. Thus, node 2 cannot be an instantiation of the ~

query node@- in any of the matches. Similarly, we observeDefinition 8 (Valid Edge) A valid edgee with respect to a
that the nodes 8 and 10 also cannot be potential candidajeery edge;F is a graph edge such that both of its endpoints
for the query nod&),. Thus, the set of potential candidatesre contained in the potential candidate set for the corcesp

W this sub-section, we describe the tép-algorithm to
erform interestingness scoring and matching simultasigou




ing query nodes i E. Recall that the potential candidate set For each fully computed match @urrCandidates, if the

for each query node is computed using Algorithm score for the candidate is greater than the minimum element

The sorted edge lists are quite similar to the lists in FesginIn the_ heap, the new_candldate is added to the heap and
. the minimum element is removed from the heap. Also, after

TA [4]. To traverse the edge lists in the top to bottom ordetr e processing for all query edges QueryEdges has been

a pointer is maintained with every edge list. The pointers arﬁg' ished, the pointer is moved to the next valid edge in the

initialized to point o the topmost graph edge in the Sorteedge list of typeE'T'. Before proceeding to the next valid edge

edge list, which is valid for at least one query edge. As the : -
pointers move down the lists, they move to the next valid ed%c(:a be processed, an upper bound of any possible candidate

rather than moving to the next edge in the list (as in Fagin’satch IS computed_by simply summing up the upper bound
TA). score for all edges in the query. If the upper bound score for

any potential candidate is less than the minimum element in
Definition 9 (Sizec candidate match)A sizee candidate the heap (which we refer to as the global thpeuit check),
match is a partially grown match such thatof its edges the algorithm terminates. At this point, the heap containes t
have been instantiated using the matching graph edges. desired topX matches for the querg).

Generating Size-1 Candidate Matches For example, after procgssing the eddes), _the heap con-
The processing starts by picking the edge type pointing {8/nS two elgments both with score 2.2. At this stage, theedg

the edge with the maximum score in the edge list&@s The  Peinters point to the edge, 3) and (2,7). The maximum

graph edge: (with the max score) is then instantiated for allPPer bound score now is 0.7 (due to eddg3))+0.6 (due to

query edges of typeeT to form multiple size-1 candidate ©d9€(8,9))+0.7 (due to edg¢2, 7))=2.0 which is< 2.2 and

matches. Size-1 candidate matches are gradually grown"@Ce processing can be stopped.

a larger size match containing more edge instantiations, on

edge at a time. Note that if the edge typd" has both end C. Faster Query Processing using Graph Maximum Metapath

points of the same node type, then the graph edgeuld Weight Index

match the query edggF in 2 ways. This case is hence handled In SectionlV-B, the upper bound score for partially instan-

by creating another new candidate with the reversed graf?gted candidates is computed by summing up the actual score
edgereverse(le).. ation of ed o s for the considered edges and the upper bounds for the non-
. tFofr examp el’ mstggltla:tlon ot re] ge (5’5) 'g Flgl&?ees5u ts considered edges. Is it possible to have a tighter bound for
into four size-1 candidate matches):(—9 — 5~ Q4), (0 = e non-considered edges? A tighter bound will help in more
9— Q3 —Qa), Q1 —5-9—Q4), and § -5 — Qs — Q). aggressive pruning of the candidate matches and therebg mak
Actual Score and Upper Bound Score (UBScore) of ;
2 Candidate Match the topf_( query processing quter.

Given a size= candidate match, it can either be pruned©@MPuting Upper Bounds using Paths rather than
off because its upper bound score is less than the lekdoes
element in the top< heap or it can be grown further or Consider the query)’ as shown in Figur®. The top right
put into the heap. To make this decision, the upper bouR@'t shows the size-1 candidate match where a graph edge
score needs to be computed. At any point during the proce¥&s used to instantiate the query edgg, @)2). So, the actual
ing, CurrCandidates contains the candidate matches eac$fFore of the candidate is simply the edge weight correspgndi
of which contains instantiated edges listed in a set calléd the instantiation. In Sectiohv-B, the upper bound score
ConsideredEdges. The actual score of each such candidai@s computed as the sum of the actual score for the edge
match is simply the sum of the weights of all the instantiategPrresponding tqQ1, ¢)2) and the upper bound scores each
edges. The upper bound score of the candidate is its acti@il the edges(Q1,Qs), (@3, Q4), (Q4,Q5) and (Q2,Qs).
score plus the upper bound score of each of its non-instadtiaHowever, a stricter upper bound can be obtained if we could
edges. Further, the upper bound score of a non-instantiaf@npute the upper bound score as the sum of the actual score
query edge;E of type (t1,t,) is computed as the maximumfor the edge corresponding t@),,Q») and the upper bound
score of any graph edge of tyge,, ,) compatible with the Scores for the path&):, Qs, @4, Q5) and (Qz, Qs).
current edges in the candidate match and lying below theThis results into the following two problems. (1) How do
current pointer position in the edge ligh , t5). we split the set of the non-considered query edges into paths

Growing the Candidate Matches (2) How do we compute the upper bound scores for these
If the heap contains at leasf elements, and if the upperpaths?

bound score of a candidate match is less than the minimunifo answer the second question, consider a path (vq,
element in the heap, the candidate match is pruned off. The ..., v,) of lengthn in the query. Let the corresponding
next query edge to be instantiated;’, for all the candidates metapath beé = (¢4, ¢, ..., t,). Suppose that the query edge
in any iteration should be selected such that it does nonigelo(vy, v2) has been instantiated with the graph edge, us).

to the set ofConsideredEdges but is linked to some edge inWe can estimate the upper bound score for the path in
ConsideredEdges. the partial candidate match as the actual edge weight of
Maintaining the Top-K Heap (w1, ug)+M MW us][ts, ta, ..., t,]. Thus, the upper bound




score of a path can be computed using the maximum metapatbre paths left inAilPaths, the upper bound score of the
weight index. candidate match is updated by adding the upper bound score
To answer the first question, the query needs to be split intbthe query edges not yet covered (Ste).

paths which satisfy the following criteria.
« The path must originate from an instantiated node. This!'@-3 4 s 1 ! 5 !
is necessary because we can use the MMW index only i, 5 0 ,
the origin of the path has been instantiated. 2 .
g < Partial
Instantiation

« The paths should not overlap with each other or with the g ery o’
already instantiated edges so as to obtain a stricter upp:

Partial Instantiation

bound. OG- 4_ s ‘@
« The length of each path should be less than the inde 000 3 6l 7
parameterD. 3 2 ot d C
. Paths to cover aths to cover ges to
Greedy I_Dath Set Selectlon 2@/0 Non-Considered Non-Considered  Consider
A partial instantiated match consists of instantiated sdge Edges Edges Separately

IE, instantiated nodes N which is the set of nodes coveredrig. 9.  Estimating Upper Bound Fig. 10. Estimating Upper Bound
by the instantiated edges, and a set of non-instantiateesed 3'”gspgéczrgog'cpoﬁgefed Q“e“‘éﬂr‘gspgg:z rg'\:jort‘)'cggst'ﬁsff‘faegd‘?é‘zfrg
The method starts by first enumerating all possible pat s Y Edges) Y
that can cover the non-instantiated edges originating from
nodes [N and satisfying the above criteria. The union of _
all such paths across all instantiated query nodes is calldigorithm 2 Path Based Upper Bound Score Computation
AllPaths. Though we can design more principled benefitnputiwl(i}%Ufgxé& ((Zg)?Stinge; EggetSEv (3) Instantiated Graph NoddsV, (4)
' ) orte eL1sts
cost based method to select the set of paths fldidPaths, ouput:  Upper Bound Scoré/ B e
we resort to a greedy method for the sake of efficiency. Thu%i gﬁgc%e — Yicerp weighta (ie).
the paths are selected one by one from this set of paths iN3& 1o each i;staaniated hode € IN do
greedy manner such the longest path is selected at each stép. AlllPatﬂ}E S Ald“;athbt' U F;ths Ig qu'Efry %aph originating from
. . . n, lengtns an 0 Not contain edges 1rol .

After selecting a path, the set of available paHi#Paﬁw IS 5. while 3 a query edge not yet covered al Paths % ¢ do
updated by removing all the paths that overlap with the diyea s: maz Path +Compute path with maximum length fromll Paths.

: : Add edges frommax Path to TE.
selected paths. The algorithm stops wheliPaths becomes  g'  /pciore  UBSeoret Score ofmaz Path using M MW
empty. 9: Remove paths fromill Paths containing edges imaz Path.

However such a greedy selection of paths does not guarant@e U BScore « UBScore+ UBScore for edges Q but ¢ 1.

that all non-instantiated edges will get covered. For eXamp
in Figure10 (with D:4),_the edgeQs, Q>) is already inst_anti- Claim 1. Pruning using the maximum metapath weight
ated. Next the processing selects the longest path (wnjthenﬁJMMW) index is more effective compared to the pruning using

< MMW index 'parameter) originatiqg from the in'stantia.te st the sorted edge lists.

nodes such that it does not overlap with any of the instadia

edges or other paths. Hence, the paih, Qs, Q4, Q5, Q7) is When computing the upper bound using the sorted edge
chosen and then the pathy., Q3). Now, the edge$Q4,Qs) lists, the upper bound for a non-instantiated edge can ke arb
and (Qs,Q7) need to be considered separately since th#grily high if there is any unprocessed valid edge anywlirere
cannot be covered by any of the paths originating from ttibe entire network with a high weight. However, because ef th
instantiated nodes. Thus, the query is actually split inte¢ MMW index, the upper bound score for the non-instantiated
disjoint sets: (1) already instantiated edges, (2) edgethen edges gets restricted to the local neighborhood of the gyjrea
selected paths, and (3) extra edges not covered by (1) or (Pxtantiated edges thereby restricting the overall uppend
Path Based Upper Bound Score Computation score, which in turn results in more effective pruning.

The approach is summarized in Algorithtn The upper  The MMW index can indeed help prune candidate matches
bound score of the candidate is initialized to the sum of tivhich cannot be pruned using the sorted edge lists. For
edge weights for all instantiated edges. For each instadtiaexample, consider the candidate € 5 — Q3 — Q4) and
node, the set of all paths originating from this node igecall that the heap contains the two elements with scores
computed (Stepl). This set excludes any path that containg.1 and 2.0 at this stage. Now, the upper bound score for this
any of the already instantiated edges. Until all the quegesd candidate match using the edge lists is 0.9+0.8+0.7=2.4 and
are not covered, the longest pattuxz Path is chosen from since2.4 > 2.0 it cannot be pruned off. On the other hand,
AllPaths (Step6). Edges from thenaxPath are added to the upper bound score using the MMW index is 0.9+MMW(5,
the set of instantiated edges (Stépand the upper bound (A, B))=0.9+0.9=1.8 and sinceé8 < 2.0 the candidate match
score is updated with the upper bound scorenafzPath can be pruned off.
by looking up the appropriate entry from the MMW indexTime Considerations
(Step8). AllPaths is updated by removing all the paths that Though the computation of the upper bound score using
overlap withmaxzPath (Step9). Finally when there are nothe MMW index results into a stricter upper bound, the




computation may itself consume a lot of time. Hence, thiseights when computing the interestingness scores. Nate th
optimization needs to be used sparingly. The maximum benéét both the cases discussed above, the MMW index cannot be
of such an optimization occurs when the candidate size i smased as the path scores cannot be estimated any more because
(e.g., only one edge). Hence, the upper bound for only thige edge interestingness is now defined based on the query.
size-1 candidates is computed using this path-based metif@dter Computations versus Index Size
while the edge-based method (SectidhB) is still used for If the number of types is high and the graph is very
other cases. After computing the path based UBScore, itdense, the size of the topology and the MMW index could
compared with the edge based UBScore and the one whigbat quickly with increasingD. Even with smallD storing
represents a tighter upper bound is used. the metapaths improves the pruning capability but consumes
memory. Various schemes could be used to serve as a trade
off between the index size and the pruning capability (and
In this section, we discuss various general scenarios hance computational efficiency) achievable due to indegeisa
which the proposed approach can be applied. One approach is to index only the destination node of the
Queries with Multiple Edge Semantics metapaths rather than the actual metapath itself. Thiscesdu
In this paper, we considered queries such that the interetbte index size fronO(|V|T?) to O(|Vg|T D). However, the
ingness of every edge in the query carries the same semantitgning capability reduces too due to looser upper bounds on
However, we might need to address the cases where thterestingness scores. A mix of the two schemes could also
semantics are very different across the different edgeken te used where the path level information is storedifer 1 to
query and the graph. For example, consider a query: Fidd= Dy and then only the destination node level information
an interesting combination of a movie and 2 persons whegestored ford = Dy +1to d = D where D is decided based
the first person is the director of the movie and the second a memory-vs-efficiency trade off. We plan to explore this
person is an actor in the movie. Now, the query consists oftade off further as part of future work.
edges: both are movie-person edges, however the relaifionsh Another way of reducing the size of the topology and the
for the first edge is “director” while for the second edgdyYIMW indexes is by storing only a selective few metapaths
the relationship is “actor”. Such queries can still be ansde rather than storing columns for every metapath. One scheme
using the proposed system by defining metapaths in termscotild be to store only the columns corresponding to the
edge labels rather than node types. most frequent metapaths in the entire network. Most freguen
Directed and Homogeneous Graphs metapaths can be identified when performing breadth first
We presented the ideas based on undirected graphs tragersal (for MMW index construction) itself. The intwiti
undirected queries. However, the approach is general énoig that if a metapath is rare and if the query contains that
to work with directed graphs and directed queries. Trivial u metapath, then the number of matches would be low too,
dates are needed for the index construction and the cardicnd then the togs algorithm may not be efficient anyway.
match growth to make them direction sensitive. Also, whe@n the other hand, further flexibility can be obtained by
T=1, the system conforms to the setting of homogeneostoring information for different metapaths for differemides,
networks. In the case of homogeneous networks, there wi., store information for node-wise most frequent mettapa
be a single edge list, if all the relationships have the sarfiguitively, a nodewise scheme could provide a better size
semantics. versus efficiency tradeoff compared to the reduced columns
Weighted Query Edges scheme.
Weighted query edges can have two semantics. Weights
can be assigned to a query to signify the expected amount
of interestingness on each edge. The interestingness store We perform experiments on multiple synthetic datasets each
an instantiated edge with weight w for a query edge;EZ  of which simulates power law graphs. We evaluate the results
with weight ¢ can then be computed as some function afn the real datasets using case studies. We perform a compre-
w and ¢, e.g., the squared errofw — ¢W)?2. Such edge- hensive analysis of the objects in the top subgraphs redurne
weighted queries can still be handled by the proposed systbynthe proposed algorithm to justify their interestingnéata
as long as the function is a monotonic function and has a waltd code is available dittp://dais.cs.uiuc.edu/manish/RWM/
defined upper bound. Another semantics of edge weights is )
to specify how much importance an edge carries in the quefy. Synthetic Datasets
Thus, a user can specify that the interestingness with cetpe  We construct 4 synthetic graphs using the R-MAT graph
say the edgd@i,Q2) is more than the interestingness wittgenerator in GT-Graph softwarg]{ G1, G2, G3 andG4 with
respect to the edgéQ,, Q3) in Figure 3. In that case, the 103, 10%, 105, and 10° nodes respectively. Each graph has a
interestingness of a subgraph can be computedwasighted number of edges equal to 10 times the number of nodes. Thus,
sum of the interestingness of its edges rather than simgly the consider graphs with exponential increase in graph size.
sum of interestingness of its edges. Again, this can beyeadlach node is assigned a random type from 1 to 5. Also, each
implemented in the proposed framework by multiplying thedge is assigned a weight chosen uniformly randomly between
edge interestingness scores with the appropriate useifisge 0 and 1. All the experiments were performed on an Intel Xeon

V. DISCUSSIONS

VI. EXPERIMENTS
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10000 +4=Topology+MMW (D=2) g 1E+8 —o—Edge Lists l [ [Vol=2 [ [Vol=3 [ Vol=4 [ [Vol=5 l
—~1E+6 =
3 ~*Topology (D=3) RWMI | 19 3% 98 178

100 £ —CMMW (D=2) RWMZ | 20 40 442 6887

S1E+4 —“=MMW (D=3) RWM3 218 1733 2337 3933

10 T Bius ' ~e-SPath (D=2) RWM4 18 34 a2 118
1 T

: V| £ 1E42 SPath (D=3)
' Graph Size TABLE |
1E+3 1E+4 1E+5 1E+6 1E+1

Time (sec)

QUERY EXECUTION TIME (MSEC) FOR PATH QUERIES (GRAPH G2 AND

(B) 143 1E4a 1E‘+5 1E+6 VI INDEXES WITH D=2)
Fig. 11. (A) Index Construction Times (B) Size Comparison ofiMas
Indexes
. , l [ [Vol=2 [ [Vo[=8 | [Vol=4 [ [Vol=5 ]

CPU X5650 4-Core 2.67GHz machine with 24GB memory RAM 144 8698 | 34630 | 174992
running Linux 3.2.0. The code is written in Java. The diséanc RWMO 10 375 14689 | 229136

. . RWM1 13 446 16754 200065
parametetD for the indexes is set to 2 for both the proposed W2 o 562 19088 | 201708
approachRWM (Ranking While Matching) and the baseline RWM3 | 156 2277 | 17182 | 161533
RAM (Ranking After Matching), unless specified explicitly. Rwma | 1 346 | 13547 | 19916
Also unless specified explicitly, we are interested in cotimgu TABLE II

QUERY EXECUTION TIME (MSEC) FOR CLIQUE QUERIES(GRAPH G2 AND

top 10 interesting subgraph& €10) and the execution times INDEXES WITH D=2)

mentioned in the tables and the plots are obtained by rejgeati
the experiments 10 times.

Baseline: Ranking After Matching (RAM) for the Edge lists, the MMW index and the topology index,
The problem of finding the matches of a quefyin a the increase in SPath index size is humongous.
heterogeneous network has been studied earlie2(], [27]. Query Execution Time
In [27], the authors present an index structure called SPathWe experiment with three types of queries: path, clique
SPath stores for every node, a list of its typed-neighbors and general subgraphs, of sizes from 2 to 5. We present a
a distanced for 1 < d < D. SPath index is then used tocomparison of different techniques for the gragh using the
efficiently find matches for a query in a path-at-a-time wayndexes withD=2. The tables$- Il show the average execution
the query is first decomposed into a set of shortest paths dimdes for an average of 10 queries per experimental setting
then the matches are generated one path at a time. This metbach repeated 10 times. The six different techniques are as
is used as a baseline. follows: RAM (the ranking after matching baseline), RWMO
Index Construction Time (without using the candidate node filtering), RWM1 (without
. . . . using the MMW index), RWM2 (same as RWM1 without
Figure 11 (A) shows the index construction times for th%he pruning any partially grown candidates), RWM3 (same as

various indexes. Generating the sorted edge lists is vesty f . .
Even for the largest graph with a million nodes, the sortegbedaRWyV\l”\‘/'lvlltm?; :Ez l(‘\:]/lll(\)/lki/?ll itno dd;()q%ﬁece:?;k%; AT/IV\/tlr\:l/lljeésrirSsh

li reation takes around 4 nds. The Topology+MM S .
sts creation takes around 40 seconds. The Topology onger execution times for all types of queries. We observed

(D=2) and SPath [p=2) curves show the time required for )
construction of these indexes, for various graph sizes.Xhethat the larger the number of candidate matches, the more

axis denotes the number of nodes in the synthetic graphs g execution time gap between the RAM method and the

theY axis shows the index construction time in seconds. Note M methods. An interesting case [feg|=5 for the cI!que
the Y axis is plotted using a log scale gueries. Actually there are very few (less than 10) cliques o

) o , ) size 5 of a particular type in the graph. Hence, we can see

The index construction time rises linearly as the graph sigga¢ aimost all the approaches take almost the same time. In
grows. Also, as expected the index construction time rises ;g case, the tofs computation overheads associated with
D increases. the RWM approaches and lack of pruning result in relatively
Index Size lower execution time for RAM.

Figure 11 (B) shows the size of each index for different Next, note that RWM4 usually performs faster than RWM1.
values of D. The X axis plots the number of nodes in theThe time savings are higher for the path queries compared
synthetic graphs and thE axis plots the size of the indexto the subgraph or clique queries. This is expected because
(in KBs) using a logarithmic scale. Different curves ploeththe upper bound scores computed in RWM4 are tighter only
sizes of various indexes, and the graph. Note that the sizeifofnost of the query structure can be covered by the non-
the topology index and the MMW index fdb=2 is actually overlapping paths. Also, RWMO performs slightly better than
smaller than the size of the graph. Even when the ind®&WM4 for smaller query sizes, but candidate node filtering
parameter is increased #0=3, the topology and the MMW helps significantly as query size increases.
indexes remain much smaller than the SPath indexife®. TablelV shows the time split between the candidate filtering
For D=3, the SPath index grows very fast as the size of tlsep and the actual to- execution. Note that the candidate
graph increases. As expected as the graph size increasesfiltiering takes a very small fraction of the total query exemu
size of each index increases. While the increase is manageaiohe.




l [ Vol=2 [ [VQI=3 [ [Vq[=4 | [VqQ[=5] l [ Vql=2 [ [VQI=38 | [Vql=4 | VoI5 |

RAM 158 3186 39294 | 469962 #Size-1 Candidate§  9.54 7.86 438 1.63

RWMO 10 165 824 4660 #Size-2 Candidateq 28.28 18.31 7.94

RWM1 12 195 1022 5891 #Size-3 Candidatey 24.42 255

RWM2 12 212 3135 27363 #Size-4 Candidatey 13.61

RWM3 111 1486 3978 9972

RWM4 2 165 791 2518 TABLE VI

NUMBER OF CANDIDATES AS PERCENTAGE OFTOTAL MATCHES FOR
TABLE Il DIFFERENT QUERY SIZES AND CANDIDATE SIZES

QUERY EXECUTION TIME (MSEC) FOR SUBGRAPH QUERIES(GRAPH G2
AND INDEXES WITH D=2)

[ [ DBLP [ Wikipedia |

_ Number of Nodes 138K 670K
QuerySize— | [Vgo[=2 [ [Vg|=8 [ [Vg[=4 [ [Vgl|=5 Number of Edges 1.6M 4IM
QueryType| [CFT[TET [CFT[TET|CFT| TET |CFT| TET | Number of Types 3 10

Path 8§ [ 10 10 [ 24 [ 10 | 32 | 12 | 106 Sorted Edge List Index Size 50 MB 261 MB

Clique 5 6 8 |338| 9 [13538] 9 |199608 Topology Index Size 5.8 MB 148 MB
Subgraph | 6 6 9 [156] 10 | 781 | 12 | 4506 MMW Index Size 11.4 MB | 249 MB

SPath Index Size 43 GB 13.7 GB

TABLE IV Sorted Edge List Construction Timg 12 sec 23 sec
RUNNING TIME (MSEC) SPLIT BETWEEN CANDIDATE FILTERING (CFT) Topology+MMW Construction Time| 461 min | 1094 min
AND ToP-K EXECUTION (TET) FOR GRAPHG2 (D=2) Average Query Time 100 sec 72 sec

TABLE VI

DATASET AND INDEX DETAILS

[Vo|=2[VQ|=3[Ve|=4[Va|=5[ [Va|=6] [Vo|=7

[VI=10°[ 5 18 | 77 | 382 | 1870 | 7656
V] = 107 10 90 407 2267 | 12366 | 87657
[VI=10°] 52 [ 396 | 2794 | 18412] 131256|1006773 TableVI shows the percentage of candidates of different sizes

=10°] 362 4907 | 28600 | 1845231216893 9786327 .
Vi =10 with respect to the total number of matches. The results show
TABLE V

in this table are obtained by running the algorithm for the
RUNNING TIME (MSEC) FOR DIFFERENTQUERY SIZES AND GRAPH SIZES .
(D=2) 20 path and subgraph queries on graph. We removed
the clique queries because the number of cliques of size 5
matching such queries is less than 10 and hence no pruning
10000 T o B K=20 m K=50 ® K=100 occurs. Note that on an average, the number of candidates

is around 14% of the total number of matches. Clearly, for
1000 . . ) .

subgraph queries there are candidates of higher sizes also,
100 - but the number of such candidates is much smaklerl {%)

compared to the number of matches, and so we do not show
them here.

Time (msec)

=
o
I

Average Query Execution

B. Real Datasets

lal=2 |al=3 lal=4 |ql=5 . .
Size of the Query We experiment with two real datasets: DBLP and

Fig. 12. Query Execution Time for Different Values &f Wikipedia, and obtain some interesting results.

DBLP Dataset

Scalability Results :
) The DBLP network consists of authord); keywords )
We run the 20 path and general subgraph queries (eacha}% conferences({). We considered a temporal subset of

times) over all the 4 synthetic graphs using RWM4 and Presglk) pi for 2001-2010. We obtained a list of conferences from
the results in Tabl&/. The table shows that the execution tim‘?he Wikipedia Computer Science Conferences paghich
increases linearly with the graph size, and exponentialty Wcategorizes conferences into 14 research areas (or commu-
%ies). By associating keywords from these conferencéls wi
'the research areas, we obtained the keyword priors whica wer
used as input foNetClug[17] to perform community detection
on DBLP. The interestingness of an edge is then defined as
the KL-divergence between the community distributionstsf i
end points.
Results on the DBLP Dataset

IDetails of the dataset and the index are shown in Tsfble
f%te that, compared to the topology and the MMW index,
the SPath index for RAM actually takes 4.3GB space. The
The time efficiency of the RWM algorithm is mainlynumber of edges of different types are as followtst — 288K,

attributed to the way it leverages the tépframework. The AC — 608K, AK — 392K, CK — 211K, KK — 87K. On an
algorithm starts with the size-1 candidates which are grown 1, mww.informatik uni-trier.detley/dbs
one edge at a time till they grow up {&¢| or get pruned. Zhttp:/fen.wikipedia.org/wiki/Listof_computerscienceconferences

in query size, (1) that is the case with most subgraph magch
algorithms, and (2) intuitive user queries are limited inesi
by limits of human interpretability for most applications.
Effect of Varying the K

Figure 12 shows the effect of varyind( on 20 path and
general subgraph queries on grapi2 using RWM4. As
expected, the query execution time increasegaiscreases.
However, the increase in execution time is reasonably sm
enough making the system usable even for larger valués. of
Pruning Power of Top-K
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Keyword Person Company Settlement
3 3
Qi1 Q2 Q3 Q4

Fig. 13. Two Queries for the DBLP Dataset Fig. 14. Two Queries for the Wikipedia Dataset

average, query execution time is 100 seconds on the DBW@ aggregate the cluster labels of all the attribute neighbd
network usingD=2. We present two case studies for thi&n entity to get its soft cluster distribution. The intereghess
dataset corresponding to the two queries shown in Fig@re of an edge is then defined as the KL-divergence between the
Case Study 1For the query@Ql shown in Figurel3, the community distributions of its end points.

top subgraph turns out to be (1: Rohit Gupta, 2: BICoB, &esults on the Wikipedia Dataset

Vipin Kumar). The three entities were linked because of the Details of the dataset and the index are shown in Tltle
paper “Rohit Gupta, Smita Agrawal, Navneet Rao, Ze Tialote that, compared to the topology and the MMW index,
Rui Kuang, Vipin Kumar: Integrative Biomarker Discovenjthe SPath index for RAM actually takes 13.7GB space. On an
for Breast Cancer Metastasis from Gene Expression adderage, query execution time is 42 seconds on the Wikipedia
Protein Interaction Data Using Error-tolerant Pattern iMi  network using D=2. Again, we present two case studies
at BICoB 2010. This case is interesting mainly because far this dataset corresponding to the two queries shown in
represents an interesting collaboration of people frontipial Figure 14.

areas. Rohit Gupta primarily works in computer networkingzase Study 1For the query@3 shown in Figurel4, the
Vipin Kumar is known for his work in Data and Informationtop subgraph turns out to be (1: Stacy Keach, 2: The Biggest
Systems. BICoB (International Conference on Bioinforemti Battle, 3: John Huston). The Biggest Battle is an lItalian
and Computational Biology) is a conference focused on biblacaroni war movie (1978) in which Stacy Keach and John
informatics. Huston starred. There are multiple ways in which these con-
Case Study 2For the queryQ2 shown in Figurel3, the nections are unusual. Stacy Keach is an American actor and
top subgraph turns out to be (1: Jimeng Sun, 2: Operatingrrator. Usually, American actors used to act in American
Systems Review (SIGOPS), 3: Christos Faloutsos, 4: mining)ovies in those years. Also, Stacy has has done narration
The four entities are linked because of the paper “Evan Hok&ork in educational programming on PBS and the Discovery
Jimeng Sun, John D. Strunk, Gregory R. Ganger, Christeé$annel, as well as some comedy and musical roles, which are
Faloutsos: InteMon: continuous mining of sensor data Ruite different from this war movie. Again, John has worked
large-scale self-infrastructures.” at Operating Syst&egiew mostly in US movies, rather than Italian ones. Also, John
(SIGOPS) in 2006. Again, this case represents an integestiias an American film director, screenwriter and actor who
collaboration of people from multiple areas. Jimeng Sun at¢prked mostly for drama, documentary, adventure and comedy
Christos Faloutsos are mainly focused on Data and Informi@ovies, and not war movies.

tion Systems. Also, “mining” is a keyword which is frequantl Case Study 2For the queryQ4 shown in Figurel4, the
associated with the Data and Information Systems communigp subgraph turns out to be (1. Medha Patkar, 2: BBC,
On the other hand, “Operating Systems Review (SIGOPS3” Felix D’Alviella, 4: Mogilino). The British Broadcastm

can be considered to belong to the areas of Operating systefgrporation (BBC) is a British public service broadcasting
and Computer architecture which are completely differeaprporation. Medha Patkar is an Indian social activist ad i
from the research areas associated with the other entities. linked to BBC because she won the Best International Palitic
Wikipedia Dataset Campaigner by BBC. Felix D’Alviella is a Belgian actor best

We generate a network using Wikipedia Infobox pages ¥§own for his character Rico Da Silva in the BBC soap
follows. For an entitye, an edge was created from to Opera Doctors. Mogilino is a village in Bulgaria. In 2007,
the entity ¢’ in the entity relationship network, if the entitythe BBC showed the film “Bulgaria’s Abandoned Children”
¢’ appears in the Wikipedia page fer and the Wikipedia Which became quite popular. This combination of entities is
pages for both the entities have Infoboxes. We restrict o8irprising in multiple ways. It is rare for a British compatay
Study to the entities of top ten types (f||m’ person, Comparfﬁward an Indian woman. Slmllarly, it is rare for a British
football biography, nrhp, television, album, settlememsical company to be linked to a place in Bulgaria or a person
artist, single). This ten-type network covers about 45%hef t from Belgium. Thus, each of these links to BBC are quite
Wikipedia Infobox entities (1.7 million). We use the Wikiia rare causing the entire combination to be reported as the top
Infobox data as entity attributes. On an average, eachyentitteresting subgraph.
has 28 attributes. We augment the original network of etiti
with the categorical and the sets-of-strings attributei@slof
the entities as nodes. Entity nodes are linked to each of thei The network (graph) query problem can be formulated as a
attribute nodes. Attribute nodes within the same set ohgsri selection operator on graph databases and has been studied
are linked to each other. We use METI®[ to compute the first in the theory literature as the subgraph isomorphism
hard partitions (K=20) on such an augmented network. Fyrthproblem B], [14], [20]. One way of answering network queries

VIl. RELATED WORK



is to store the underlying graph structure in relationaldgab [2] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-mat: A reigersnodel
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