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Abstract—In the real world, various systems can be mod-
eled using heterogeneous networks which consist of entities
of different types. Many problems on such networks can be
mapped to an underlying critical problem of discovering top-
K subgraphs of entities with rare and surprising associations.
Answering such subgraph queries efficiently involves two main
challenges: (1) computing allmatching subgraphs which satisfy
the query and (2) ranking such results based on the rarity
and the interestingness of the associations among entities in
the subgraphs. Previous work on the matching problem can be
harnessed for a näıve ranking-after-matching solution. However,
for large graphs, subgraph queries may have enormous number
of matches, and so it is inefficient to compute all matches
when only the top-K matches are desired. In this paper, we
address the two challenges of matching and ranking in top-K
subgraph discovery as follows. First, we introduce two index
structures for the network: topology index, and graph maximum
metapath weight index, which are both computed offline. Second,
we propose novel top-K mechanisms to exploit these indexes
for answering interesting subgraph queries online efficiently.
Experimental results on several synthetic datasets and the DBLP
and Wikipedia datasets containing thousands of entities show
the efficiency and the effectiveness of the proposed approachin
computing interesting subgraphs.

I. I NTRODUCTION

With the ever-increasing popularity of entity-centric appli-
cations, it becomes very important to study the interactions
between entities, which are captured using edges in the entity-
relationship (or information) networks. Entity-relationship net-
works with multiple types of entities are usually referred to
as heterogeneous information networks. For example, biblio-
graphic networks capture associations like ‘an author wrote
a paper’ or ‘an author attended a conference’. Similarly, so-
cial networks, biological protein-enzyme networks, Wikipedia
entity network, etc. also capture a variety of rich associations.

In these applications, it is critical to detect novel connec-
tions or associations among objects based on some subgraph
queries. Two example problems are shown in Figures1 and
2, and are described as follows.
P1: Team Selection: Organization networks consist of person
and object nodes where two persons are connected if they
have worked together on a successful mission in the past,
and a person is linked to an object if the person has a
known expertise in using that object. For example, US army
network which consists of∼2-3M persons and much more
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Fig. 1. Team Selection Problem (Interestingness = Highest Historical
Compatibility)
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Fig. 2. Attack Localization Problem (Interestingness = Highest Data Transfer
Rate)

linked objects. A manager in such an organization may have
a mission which can be defined by a query graph of objects
and persons. For example, the left half of Figure1 shows an
organization network while the right half of the figure shows
a sample mission query graph consisting of three persons and
a laptop, a microscope and a gun. The network has edges with
weights such that a high weight implies higher compatibility
between the nodes connected by the edge. The manager is
interested in selecting a team to accomplish the mission with
the person-person and person-object compatibilities as spec-
ified in the mission query. Using the historical compatibility
based organization network, how can we find the best team
for this mission?
P2: Attack Localization: Consider a computer network as
shown in the left part of Figure2. It can consist of a large
number of components like database servers, hubs, switches,
desktops, routers, VOIP phones, etc. Consider a simple attack
on multiple web servers in such a network where the attack



script runs on a compromised web server. The script reads a lot
of data from the database server (through the network hub) and
sends out spam emails through the email server. Such an attack
leads to an increase in data transfer rate along the connections
in multiple “attack sub-networks” of the form as shown in the
right part of the figure. Many such attacks follow the same
pattern of increase in data transfer rates. How can a network
administrator localize such attacks quickly and find the worst
affected sub-networks given the observed data transfer rates
across all the links in the network?

Both of these problems share a common underlying prob-
lem: Given a heterogeneous networkG, a heterogeneous sub-
graph queryQ, and an edge interestingness measureI which
defines the edge weight, find the top-K matching subgraphs
S with the highest interestingness. The two problems can be
expressed in terms of the underlying problem as follows.P1:
G = organization network,Q = mission query,I = historical
compatibility,S = team.P2: G = computer network,Q = an
“attack sub-network” query,I = data transfer rate,S = critical
sub-networks. Besides the two tasks, this proposed problem
finds numerous other applications. For example, theinteresting
subgraphmatches can be useful in network bottleneck discov-
ery based on link bandwidth on computer networks, suspicious
relationship discovery in social networks, de-noising thedata
by identifying noisy associations in data integration systems,
etc.
Comparison with Previous Work

The proposed problem falls into the category of the sub-
graph matching problems. Subgraph matching has been stud-
ied in the graph query processing literature with respect
to approximate matches [19], [25], [26], [30] and exact
matches [18], [27], [31]. Subgraph match queries have also
been proposed for RDF graphs [15], probabilistic graphs [24]
and temporal graphs [1]. The proposed problem can be solved
by first finding all matches for the query using the existing
graph matching methods and then ranking the matches. The
cost of exhaustive enumeration for all the matches can be
prohibitive for large graphs. Hence, this paper proposes a more
efficient solution to the top-K subgraph matching problem
which exploits novel graph indexes. Many different forms of
top-K queries on graphs have been studied in the literature [5],
[21], [23], [28], [30]. Gou et al. [5] solve the problem only for
twig queries while we solve the problem for general subgraphs.
Yan et al. [21] deal with the problem of finding top-K highest
aggregate values over their h-hop neighbors, in which no
subgraph queries are involved. Zhu et al. [28] aim at finding
top-K largest frequent patterns from a graph, which does not
involve a subgraph query either. Different from existing top-K
work, the proposed work deals with a novel definition of top-
K general subgraph match queries, which has a large number
of practical applications as discussed above.
Brief Overview of Top-K Interesting Subgraph Discovery

Given a heterogeneous network containing entities of var-
ious types, and a subgraph query, the aim is to find the
top-K matching subgraphs from the network. We study the
following two aspects of this problem in a tightly integrated
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Fig. 3. Example of a NetworkG and a QueryQ

way: (1) computing all possible matching subgraphs from the
network, and (2) computing interestingness score for each
match by aggregating the weights of each of its edges. To
solve these problems, we present an efficient solution which
exploits two low-cost index structures (a graph topology index
and a maximum metapath weight (MMW) index) to perform
top-K ranking while matching (RWM). Multiple applications
of the top-K heuristic, a smart ordering of edges for query
processing, quick pruning of the edge lists using the topology
index and the computation of tight upper bound scores using
the MMW index contribute to the efficiency of the proposed
solution in answering the top-K interesting subgraphqueries.
Summary

We make the following contributions in this paper.

• We propose the problem of top-K interesting subgraph
discovery in information networks given a heterogeneous
edge-weighted network and a heterogeneous unweighted
query.

• To solve this problem, we propose two low-cost indexes
(a graph topology index and a maximum metapath weight
(MMW) index) which summarize the network topology
and provide an upper bound on maximum metapath
weights separately.

• Using these indexes, we provide a ranking while match-
ing (RWM) algorithm with multiple applications of the
top-K heuristic to answerinteresting subgraphqueries
on large graphs efficiently.

• Using extensive experiments on several synthetic datasets,
we compare the efficiency of the proposed RWM method-
ology with the simple ranking after matching (RAM)
baseline. We also show effectiveness of RWM on two
real datasets with detailed analysis.

Our paper is organized as follows. In SectionII , we de-
fine the top-K interesting subgraph discoveryproblem. The
proposed approach consists of two phases: an offline index
construction phase and an online query processing phase
which are detailed in SectionsIII and IV respectively. In
Section V, we discuss various general scenarios in which
the proposed approach can be applied. We present results
with detailed insights on several synthetic and real datasets
in SectionVI . We discuss related work and summarize the
paper in SectionsVII andVIII respectively.

II. PROBLEM DEFINITION

In this section, we formalize the problem definition and
present an overview of the proposed system. We start with
an introduction to some preliminary concepts.



Definition 1 (A Heterogeneous Network). A heterogeneous
network is an undirected graphG = 〈VG, EG, typeG,
weightG〉 whereVG is a finite set of vertices (representing
entities) andEG is a finite set of edges each being an
unordered pair of distinct vertices.typeG is a function defined
on the vertex set astypeG : VG → TG whereTG is the set
of entity types and|TG| = T . weightG is a function defined
on the edge set asweightG : EG → R ∈ [0, 1]. weightG(e)
represents the interestingness measure value associated with
the edgee.

For example, Figure3 shows a networkG with three types
of nodes.TG = {A,B,C}. |VG|=13, and|EG|=18.

Definition 2 (Subgraph Query on a Network). A subgraph
queryQ on a networkG is a graph consisting of node setVQ

and edge setEQ. Each node could be of any type fromTG.

For example, Figure3 shows a queryQ with four nodes.
|VQ|=4, and|EQ|=3. The networkG and the queryQ shown
in Figure3 will be used as a running example throughout this
paper.

Definition 3 (Subgraph Isomorphism). A graphg = 〈Vg, Eg,
typeg〉 is subgraph isomorphic to another graphg′ = 〈Vg′ ,
Eg′ , typeg′〉 if there exists a subgraph isomorphism fromg to
g′. A subgraph isomorphism is an injective functionM : Vg →
Vg′ such that (1)∀v ∈ Vg, M(v) ∈ Vg′ and typeg(v)=typeg′

(M(v)), (2) ∀e =(u, v) ∈ Eg, e′ =(M(u), M(v))∈ Eg′ .

Definition 4 (Match). The query graphQ can be subgraph
isomorphic to multiple subgraphs ofG. Each such subgraph
of G is called a match or a matching subgraph ofG.

The query Q can be answered by returning all exact
matching subgraphs fromG. For example, the subgraph of
G induced by vertices (8, 9, 5, 6) is a match for the query
Q on networkG shown in Figure3. For sake of brevity, we
will use the vertex set (tuple notation) to refer to the subgraph
induced by the vertex set.

Definition 5 (Interestingness Score). The interestingness score
for a matchM for a queryQ in a graphG is defined as the
sum of its edge weights.

For example, the interestingness score for the occurrence{8,
9, 5, 6} is 2.1. Though we use sum as an aggregation function
here, any other monotonic aggregation function could also be
used.

Definition 6 (Top-K Interesting Subgraph Discovery Prob-
lem).
Given: A heterogeneous information networkG, a hetero-
geneous unweighted queryQ, and an edge interestingness
measure.
Find: Top-K matching subgraphs with highest interestingness
scores.

For example, (3, 4, 5, 6) and (4, 3, 2, 7) are the top two
matching subgraphs both with the score 2.2 for the queryQ

on networkG in Figure3.
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Fig. 4. Top-K Interesting Subgraph Discovery System Diagram

Baseline Method: Ranking After Matching (RAM)
A näıve way to solve the top-K interesting subgraph dis-

covery problem is to first perform matching to discover all
the subgraph matches fromG, and then rank these matches.
For example, for the queryQ in Figure 3, 9 matches can be
computed as follows (10, 9, 8, 7), (2, 3, 4, 7), (4, 3, 2, 1), (10,
9, 5, 6), (9, 5, 4, 7), (5, 9, 8, 7), (8, 9, 5, 6), (4, 3, 2, 7), and
(3, 4, 5, 6). Next, the interestingness score can be computed
for each of the matches by adding up the edge weights as 1.4,
1.6, 1.7, 1.8, 1.8, 2.0, 2.1, 2.2, and 2.2 respectively. IfK=2,
the matches (4, 3, 2, 7), and (3, 4, 5, 6) can be returned as
the most interesting subgraphs for queryQ.

However, since only the top 2 interesting subgraphs are
desired, this approach is not efficient especially for large
graphs for which the number of matches could be enormous
and hence computing all the matches could be very time
consuming. Hence, we propose a top-K approach which
performs the interestingness score computation (and hence
ranking) while matching (RWM). For this approach we need
to make use of a few index structures which are constructed
offline. These index structures are then exploited to efficiently
answer the queries online.
System Overview

Figure 4 shows a broad overview of the proposed system.
Given a user queryQ, the top half denotes the offline pre-
processing phase in which the two indexes are computed,
while the lower half denotes the online processing phase in
which the user query is processed using the two indexes. The
index parameter, distanceD, controls the size and the index
construction time. We discuss the details of the offline index
construction and the online query processing in SectionsIII
and IV respectively.

III. O FFLINE INDEX CONSTRUCTION

In this section, we will first discuss the details of the index
structures in SectionIII-A and then study their construction
time and space in SectionIII-B .

A. Index Structures

To support a ranking while matching (RWM) framework,
we first propose two novel index structures in this sub-
section. We will use these index structures to develop a top-K

methodology in SectionIV.



Graph Topology Index
The graph topology index for a graphG captures the

structure of the graph. It stores for every noden, the number
of d-hop neighbors of each type for alld ∈ {1, . . . , D}
along a particular metapath corresponding to a path of length
d originating from noden, where a metapath is defined as
follows.

Definition 7 (Metapath). A path u  u′ from a nodeu to
a nodeu′ in a graphG = 〈VG, EG, typeG, weightG〉 is a
sequence(v0, v1, . . ., vk) of vertices such thatu = v0 and
u′ = vk, and(vi−1, vi) ∈ EG. The length of a path is equal to
the number of edges in the path(k). If the node type is used
instead of its id, for each node in the path, the path is called
a metapath. Thus, the corresponding metapath is(typeG(v0),
typeG(v1), . . ., typeG(vk)).

For example, the metapath corresponding to the path (5, 4,
7) is (A,A,B). There areTD distinct metapaths of lengthD
whereT is the number of types.

Each column of a topology index corresponds to a metapath.
Figure5 shows the graph topology index for the first 4 nodes
of the graph shown in Figure3. For example, for node 2, there
are two 2-hop neighbors of typeA (4 and 8) reachable via the
metapath(B,A). Hence the entrytopology(2, (B,A))=2. A
blank entry in the index indicates that there is no node of
type t at a distanced from noden along the corresponding
metapath. As we shall see in SectionIV-A , the topology index
plays a crucial role in reducing the search space by pruning
away candidate graph nodes that cannot be instantiated for a
given query node.

d→ 1 2

Node 

Id↓
A B C AABACAABBBCBACBCCC

1 1 1 1 1 1 1

2 1 2 1 1 2 1 2 1 1

3 2 2 1 2 2 2 2

4 2 1 1 2 2 1 1 2 1 1

5 2 1 3 1 1Fig. 5. Graph Topology Index for the first
4 Nodes

d→ 1 2

Node 

Id↓
A B C AA BA CA AB BB CB AC BC CC

1 0.2 0.1 0.9 0.9 0.3 0.5

2 0.7 0.7 0.3 1.5 1.2 0.7 1.2 0.9 0.5

3 0.8 0.5 1.6 0.9 1.4 1.2 0.7

4 0.8 0.1 0.4 1.7 0.8 0.9 1.4 1.3 0.3 0.6

5 0.9 0.6 1.6 0.9 1.2Fig. 6. MMW Index for the first 4 Nodes
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Maximum Metapath Weight Index
The maximum metapath weight (MMW) index has the same

size as the graph topology index. It stores the maximum sum
of weights to any node of typet along a particular metapath
of length d originating from the noden. Figure6 shows the
maximum metapath weight index for the first 4 nodes of the
graph shown in Figure3. For example, for node 2, there are
two 2-hop neighbors of typeA (4 and 8) reachable via the
metapath(B,A) with weights 0.8 and 1.2 respectively. Hence,
the corresponding index entryMMW (2, (B,A)) is 1.2. In
SectionIV-C, we will show how the MMW index can be used
for computation of tighter upper bound scores which leads

AA BB CC AB AC BC

(5,9):0.9 (12,13):0.2 (2,7): 0.7 (3,12): 0.5 (7,11): 0.2

(3,4):0.8 (5,6): 0.6 (4,12): 0.4 (1,11): 0.1

(4,5):0.8 (8,7): 0.5 (3,13): 0.4

(2,3):0.7 (2,1): 0.2 (2,13): 0.3

(8,9):0.6 (4,7): 0.1

(9,10):0.3

Fig. 8. Sorted Edge Lists for Graph in Figure3

to highly effective pruning of the partially grown candidate
solutions.
Sorted Edge Lists

Besides the above two indexes we also maintain sorted
edge lists which capture the interestingness of the edges in
the graph. For each edge-type, all the edges of that type
are stored in the non-ascending order of their interestingness
values. Thus, the most interesting edges occur at the top of
the lists. Figure8 shows the sorted edge lists for the graph
shown in Figure3.

These edge lists are further indexed by nodes. For every
edge list, a hash is maintained which maps each graph node
to the set of rows in the edge list which contain the graph
node. For example, for the edge listA− A, the node pointer
from node 4 points to edges (3, 4) and (4, 5) respectively.
Such pointers provide a fast access to the matching edges of
a particular type for a particular node.

B. Index Construction

We can compute both the index structures and the sorted
edge lists offline as follows. For constructing the graph
topology index and the maximum metapath weight index, a
breadth first traversal needs to be performed originating from
each node of the graph. For each node, each of itsd hop
neighbors are visited up to a maximum distanceD. For the
graph topology index, the breadth first traversal maintainsthe
current frontier of the visited nodes in a queue. After each
hop of the traversal, the actual paths from the origin node
are expressed in terms of their corresponding metapaths and
the topology index is updated based on the number of unique
endpoints along a particular metapath. To update the MMW
index, the sum of edge weights is computed for each path and
an entry in the MMW index is updated with the maximum
weight of any path for the corresponding metapath. Updating
the MMW index needs exhaustive enumeration of all paths.
However, for small values ofD, this is not very expensive.
Also, note that the index construction needs to be done just
once and is an offline task. IfB is the average number of
neighbors for a node, the total number ofd-hop neighbors up
toD isO(BD). Thus, the computation of the MMW index and
the topology index takesO(|VG|B

D) time. The space required
to store each of the two indexes isO(|VG|T

D) whereT is the
number of types.

As the number of types increases, the size of the two
indexes can bloat very quickly. However, most of the practical
heterogeneous information networks have few node types, and



also follow a schema. The schema can itself restrict the number
of edge types to a very few. Besides this, in SectionV, we
will discuss various ways in which we can reduce the size of
these indexes without much losses in efficiency.

The sorted edge lists are created by grouping edges by type
and sorting the edges within each type in a non-ascending
order. If there areT types of nodes in the graph, the number
of types of edges isT (T+1)

2 . Time to sort an edge list of length
L is O(L×logL). It is easy to see that the time to sortT (T+1)

2
lists such that their total size isEG is maximum when each
list is of the size 2|EG|

T (T+1) . Hence, the overall time complexity

of computing the sorted edge lists isO
(

|EG|log
(

2|EG|
T (T+1)

))

.

The space required to store the index isO(|EG|). Also
building the companion graph node pointers to rows in edge
lists takesO(|EG|) time and space.

IV. TOP-K I NTERESTINGSUBGRAPH QUERY PROCESSING

Given a queryQ with node setVQ and edge setEQ, top-
K matching subgraphs are discovered by traversing the sorted
edge lists in the top to bottom order with the following speedup
heuristics. First for each node inVQ, a set of nodes from
the graph that could be potential candidates for the query
node, is identified using the topology index (Algorithm1).
The edges in the sorted edge lists that contain nodes other
than the potential candidate nodes are marked as invalid.
This prunes away many edges and speeds up the edge list
traversal. The queryQ is then processed using these edge
lists in a way similar to the top-K join query processing
(SectionIV-B) adapted significantly to handle network queries.
The approach discussed in SectionIV-B is further made faster
by the tighter upper bound scores computed using the MMW
index (Algorithm 2). We will discuss these in detail in this
section.

A. Candidate Node Filtering using Topology Index

Here, we will discuss a methodology to reduce the candidate
search space by pruning away candidate graph nodes that can-
not be instantiated for a given query node, using the topology
index. The top-K query processing involves traversing the
edge lists from top to bottom. During this traversal, the top-K
pruning can improve if some edge entries in the edge lists can
be marked as invalid thereby reducing the effective size of the
edge lists.
Pruning Example

In Figure 3, the query consists of four nodes:
Q1, Q2, Q3, Q4. The matching candidate graph nodes
with respect to the node type are as follows. (2, 3, 4, 5, 8,
9, 10) forQ1, (2, 3, 4, 5, 8, 9, 10) forQ2, (2, 3, 4, 5, 8, 9,
10) for Q3, and (1, 6, 7) forQ4. In the query, we see that
the nodeQ2 is connected to 2 nodes of typeA at distance 1.
However, the row corresponding to the node2 in the topology
index indicates that there is just one neighbor of typeA at
distance 1. Thus, node 2 cannot be an instantiation of the
query nodeQ2 in any of the matches. Similarly, we observe
that the nodes 8 and 10 also cannot be potential candidates
for the query nodeQ2. Thus, the set of potential candidates

reduces to those shown in Figure7. The nodes in red-filled
cells can be filtered out.

The potential candidates can be identified for a query node
q by first computing the topology structure forq (similar to
a row in the graph topology index) and then verifying if the
query topology for query nodeq fits as a subgraph of the
graph topology with respect to a potential candidate nodep in
the graph. This topology fit can be checked by considering
all the paths in the query with length from 1 toD (the
index parameter) and verifying their presence in the graph.
Let us denote the topology index structure for the query by
queryTopology.

Algorithm 1 Candidate Node Filtering Algorithm
Input: (1) Query Node q, (2) Graph Node p, (3) topology[p], (4)

queryTopology[q], (5) Index ParameterD
Output: Is p a potential candidate node for query nodeq?

1: for d = 1 . . . D do
2: for mp = 1 . . . Td do
3: if queryTopology[q][d][mp] > topology[p][d][mp] then
4: Return False
5: Return True

Candidate Node Filtering Algorithm
The proposed candidate node filtering approach is summa-

rized in Algorithm 1. For each distance valued, all possible
metapaths of lengthd are checked. By comparing thetopology
for all metapaths with the correspondingqueryTopology
values (Step3), it can be inferred whether the candidatep is
valid to be an instantiation of query nodeq for some match.
The time complexity isO(DTD+1).

Candidate pruning leads to shortening of the edge lists
associated with any of the query edges. For example, nodes
2, 8 and 10 get pruned for the query nodeQ2. Thus, the
edge list corresponding to the query edge (Q2, Q3) will have
the following AA edges marked as invalid: (2,3), (8,9) and
(10,9).

B. Top-K Match Computation

In this sub-section, we describe the top-K algorithm to
perform interestingness scoring and matching simultaneously.
The algorithm is based on the following key idea. A top-K

heap is maintained which stores the bestK answers seen so
far. The sorted edge lists are traversed from top to bottom.
Each time an edge with maximum edge weight from any of
the lists is picked and all possible size-1 matches in which
that edge can occur are computed. Candidate size-1 matches
are grown one edge at a time till they grow to the size of
the query. Partially grown candidate matches can be discarded
if the upper bound score of these matches falls below the
minimum element in the top-K heap. The algorithm terminates
when no subgraph using the remaining edges can result into
a candidate match with upper bound score greater than the
minimum element in the top-K heap. We discuss the details
below.

Definition 8 (Valid Edge). A valid edgee with respect to a
query edgeqE is a graph edge such that both of its endpoints
are contained in the potential candidate set for the correspond-



ing query nodes inqE. Recall that the potential candidate set
for each query node is computed using Algorithm1.

The sorted edge lists are quite similar to the lists in Fagin’s
TA [4]. To traverse the edge lists in the top to bottom order,
a pointer is maintained with every edge list. The pointers are
initialized to point to the topmost graph edge in the sorted
edge list, which is valid for at least one query edge. As the
pointers move down the lists, they move to the next valid edge
rather than moving to the next edge in the list (as in Fagin’s
TA).

Definition 9 (Size-c candidate match). A size-c candidate
match is a partially grown match such thatc of its edges
have been instantiated using the matching graph edges.

Generating Size-1 Candidate Matches
The processing starts by picking the edge type pointing to

the edge with the maximum score in the edge lists asET . The
graph edgee (with the max score) is then instantiated for all
query edges of typeET to form multiple size-1 candidate
matches. Size-1 candidate matches are gradually grown to
a larger size match containing more edge instantiations, one
edge at a time. Note that if the edge typeET has both end
points of the same node type, then the graph edgee could
match the query edgeqE in 2 ways. This case is hence handled
by creating another new candidate with the reversed graph
edgereverse(e).

For example, instantiation of edge (5,9) in Figure3 results
into four size-1 candidate matches: (Q1 − 9 − 5 − Q4), (5 −
9−Q3 −Q4), (Q1 − 5− 9−Q4), and (9− 5−Q3 −Q4).
Actual Score and Upper Bound Score (UBScore) of
a Candidate Match

Given a size-c candidate match, it can either be pruned
off because its upper bound score is less than the least
element in the top-K heap or it can be grown further or
put into the heap. To make this decision, the upper bound
score needs to be computed. At any point during the process-
ing, CurrCandidates contains the candidate matches each
of which contains instantiated edges listed in a set called
ConsideredEdges. The actual score of each such candidate
match is simply the sum of the weights of all the instantiated
edges. The upper bound score of the candidate is its actual
score plus the upper bound score of each of its non-instantiated
edges. Further, the upper bound score of a non-instantiated
query edgeqE of type (t1, t2) is computed as the maximum
score of any graph edge of type(t1, t2) compatible with the
current edges in the candidate match and lying below the
current pointer position in the edge list(t1, t2).
Growing the Candidate Matches

If the heap contains at leastK elements, and if the upper
bound score of a candidate match is less than the minimum
element in the heap, the candidate match is pruned off. The
next query edge to be instantiated,qE′, for all the candidates
in any iteration should be selected such that it does not belong
to the set ofConsideredEdges but is linked to some edge in
ConsideredEdges.
Maintaining the Top-K Heap

For each fully computed match inCurrCandidates, if the
score for the candidate is greater than the minimum element
in the heap, the new candidate is added to the heap and
the minimum element is removed from the heap. Also, after
the processing for all query edges inQueryEdges has been
finished, the pointer is moved to the next valid edge in the
edge list of typeET . Before proceeding to the next valid edge
to be processed, an upper bound of any possible candidate
match is computed by simply summing up the upper bound
score for all edges in the query. If the upper bound score for
any potential candidate is less than the minimum element in
the heap (which we refer to as the global top-K quit check),
the algorithm terminates. At this point, the heap contains the
desired top-K matches for the queryQ.

For example, after processing the edge(4, 5), the heap con-
tains two elements both with score 2.2. At this stage, the edge
pointers point to the edges(2, 3) and (2, 7). The maximum
upper bound score now is 0.7 (due to edge(2, 3))+0.6 (due to
edge(8, 9))+0.7 (due to edge(2, 7))=2.0 which is< 2.2 and
hence processing can be stopped.

C. Faster Query Processing using Graph Maximum Metapath
Weight Index

In SectionIV-B, the upper bound score for partially instan-
tiated candidates is computed by summing up the actual score
for the considered edges and the upper bounds for the non-
considered edges. Is it possible to have a tighter bound for
the non-considered edges? A tighter bound will help in more
aggressive pruning of the candidate matches and thereby make
the top-K query processing faster.
Computing Upper Bounds using Paths rather than
Edges

Consider the queryQ′ as shown in Figure9. The top right
part shows the size-1 candidate match where a graph edge
was used to instantiate the query edge(Q1, Q2). So, the actual
score of the candidate is simply the edge weight corresponding
to the instantiation. In SectionIV-B, the upper bound score
was computed as the sum of the actual score for the edge
corresponding to(Q1, Q2) and the upper bound scores each
for the edges(Q1, Q3), (Q3, Q4), (Q4, Q5) and (Q2, Q3).
However, a stricter upper bound can be obtained if we could
compute the upper bound score as the sum of the actual score
for the edge corresponding to(Q1, Q2) and the upper bound
scores for the paths(Q1, Q3, Q4, Q5) and (Q2, Q3).

This results into the following two problems. (1) How do
we split the set of the non-considered query edges into paths?
(2) How do we compute the upper bound scores for these
paths?

To answer the second question, consider a pathp = (v1,
v2, . . ., vn) of length n in the query. Let the corresponding
metapath bet = (t1, t2, . . . , tn). Suppose that the query edge
(v1, v2) has been instantiated with the graph edge(u1, u2).
We can estimate the upper bound score for the path in
the partial candidate match as the actual edge weight of
(u1, u2)+MMW [u2][t3, t4, . . . , tn]. Thus, the upper bound



score of a path can be computed using the maximum metapath
weight index.

To answer the first question, the query needs to be split into
paths which satisfy the following criteria.
• The path must originate from an instantiated node. This

is necessary because we can use the MMW index only if
the origin of the path has been instantiated.

• The paths should not overlap with each other or with the
already instantiated edges so as to obtain a stricter upper
bound.

• The length of each path should be less than the index
parameterD.

Greedy Path Set Selection
A partial instantiated match consists of instantiated edges

IE, instantiated nodesIN which is the set of nodes covered
by the instantiated edges, and a set of non-instantiated edges.
The method starts by first enumerating all possible paths
that can cover the non-instantiated edges originating from
nodes∈ IN and satisfying the above criteria. The union of
all such paths across all instantiated query nodes is called
AllPaths. Though we can design more principled benefit-
cost based method to select the set of paths fromAllPaths,
we resort to a greedy method for the sake of efficiency. Thus,
the paths are selected one by one from this set of paths in a
greedy manner such the longest path is selected at each step.
After selecting a path, the set of available pathsAllPaths is
updated by removing all the paths that overlap with the already
selected paths. The algorithm stops whenAllPaths becomes
empty.

However such a greedy selection of paths does not guarantee
that all non-instantiated edges will get covered. For example,
in Figure10 (with D=4), the edge(Q1, Q2) is already instanti-
ated. Next the processing selects the longest path (with length
≤ MMW index parameter) originating from the instantiated
nodes such that it does not overlap with any of the instantiated
edges or other paths. Hence, the path(Q1, Q3, Q4, Q5, Q7) is
chosen and then the path(Q2, Q3). Now, the edges(Q4, Q6)
and (Q6, Q7) need to be considered separately since they
cannot be covered by any of the paths originating from the
instantiated nodes. Thus, the query is actually split into three
disjoint sets: (1) already instantiated edges, (2) edges onthe
selected paths, and (3) extra edges not covered by (1) or (2).
Path Based Upper Bound Score Computation

The approach is summarized in Algorithm2. The upper
bound score of the candidate is initialized to the sum of the
edge weights for all instantiated edges. For each instantiated
node, the set of all paths originating from this node is
computed (Step4). This set excludes any path that contains
any of the already instantiated edges. Until all the query edges
are not covered, the longest pathmaxPath is chosen from
AllPaths (Step6). Edges from themaxPath are added to
the set of instantiated edges (Step7) and the upper bound
score is updated with the upper bound score ofmaxPath

by looking up the appropriate entry from the MMW index
(Step8). AllPaths is updated by removing all the paths that
overlap withmaxPath (Step 9). Finally when there are no

more paths left inAllPaths, the upper bound score of the
candidate match is updated by adding the upper bound score
of the query edges not yet covered (Step10).Maximum Path Weight Index
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Algorithm 2 Path Based Upper Bound Score Computation
Input: (1) QueryQ, (2) Instantiated EdgesIE, (3) Instantiated Graph NodesIN , (4)

MMW Index, (5)SortedEdgeLists
Output: Upper Bound ScoreUBScore

1: UBScore←
∑

ie∈IE
weightG(ie).

2: AllPaths← φ.
3: for each instantiated noden ∈ IN do
4: AllPaths← AllPaths ∪ Paths in query graph originating from

n, length≤ D and do not contain edges fromIE.
5: while ∃ a query edge not yet covered orAllPaths 6= φ do
6: maxPath←Compute path with maximum length fromAllPaths.
7: Add edges frommaxPath to IE.
8: UBScore← UBScore+ Score ofmaxPath usingMMW .
9: Remove paths fromAllPaths containing edges inmaxPath.

10: UBScore← UBScore+ UBScore for edges∈ Q but /∈ IE.

Claim 1. Pruning using the maximum metapath weight
(MMW) index is more effective compared to the pruning using
just the sorted edge lists.

When computing the upper bound using the sorted edge
lists, the upper bound for a non-instantiated edge can be arbi-
trarily high if there is any unprocessed valid edge anywherein
the entire network with a high weight. However, because of the
MMW index, the upper bound score for the non-instantiated
edges gets restricted to the local neighborhood of the already
instantiated edges thereby restricting the overall upper bound
score, which in turn results in more effective pruning.

The MMW index can indeed help prune candidate matches
which cannot be pruned using the sorted edge lists. For
example, consider the candidate (9 − 5 − Q3 − Q4) and
recall that the heap contains the two elements with scores
2.1 and 2.0 at this stage. Now, the upper bound score for this
candidate match using the edge lists is 0.9+0.8+0.7=2.4 and
since2.4 > 2.0 it cannot be pruned off. On the other hand,
the upper bound score using the MMW index is 0.9+MMW(5,
(A,B))=0.9+0.9=1.8 and since1.8 < 2.0 the candidate match
can be pruned off.
Time Considerations

Though the computation of the upper bound score using
the MMW index results into a stricter upper bound, the



computation may itself consume a lot of time. Hence, this
optimization needs to be used sparingly. The maximum benefit
of such an optimization occurs when the candidate size is small
(e.g., only one edge). Hence, the upper bound for only the
size-1 candidates is computed using this path-based method
while the edge-based method (SectionIV-B) is still used for
other cases. After computing the path based UBScore, it is
compared with the edge based UBScore and the one which
represents a tighter upper bound is used.

V. D ISCUSSIONS

In this section, we discuss various general scenarios in
which the proposed approach can be applied.
Queries with Multiple Edge Semantics

In this paper, we considered queries such that the interest-
ingness of every edge in the query carries the same semantics.
However, we might need to address the cases where the
semantics are very different across the different edges in the
query and the graph. For example, consider a query: Find
an interesting combination of a movie and 2 persons where
the first person is the director of the movie and the second
person is an actor in the movie. Now, the query consists of 2
edges: both are movie-person edges, however the relationship
for the first edge is “director” while for the second edge,
the relationship is “actor”. Such queries can still be answered
using the proposed system by defining metapaths in terms of
edge labels rather than node types.
Directed and Homogeneous Graphs

We presented the ideas based on undirected graphs and
undirected queries. However, the approach is general enough
to work with directed graphs and directed queries. Trivial up-
dates are needed for the index construction and the candidate
match growth to make them direction sensitive. Also, when
T=1, the system conforms to the setting of homogeneous
networks. In the case of homogeneous networks, there will
be a single edge list, if all the relationships have the same
semantics.
Weighted Query Edges

Weighted query edges can have two semantics. Weights
can be assigned to a query to signify the expected amount
of interestingness on each edge. The interestingness scoreof
an instantiated edgee with weight w for a query edgeqE
with weight qW can then be computed as some function of
w and qW , e.g., the squared error,(w − qW )2. Such edge-
weighted queries can still be handled by the proposed system
as long as the function is a monotonic function and has a well
defined upper bound. Another semantics of edge weights is
to specify how much importance an edge carries in the query.
Thus, a user can specify that the interestingness with respect to
say the edge(Q1, Q2) is more than the interestingness with
respect to the edge(Q2, Q3) in Figure 3. In that case, the
interestingness of a subgraph can be computed as aweighted
sum of the interestingness of its edges rather than simply the
sum of interestingness of its edges. Again, this can be easily
implemented in the proposed framework by multiplying the
edge interestingness scores with the appropriate user-specified

weights when computing the interestingness scores. Note that
for both the cases discussed above, the MMW index cannot be
used as the path scores cannot be estimated any more because
the edge interestingness is now defined based on the query.
Faster Computations versus Index Size

If the number of types is high and the graph is very
dense, the size of the topology and the MMW index could
bloat quickly with increasingD. Even with smallD storing
the metapaths improves the pruning capability but consumes
memory. Various schemes could be used to serve as a trade
off between the index size and the pruning capability (and
hence computational efficiency) achievable due to index usage.
One approach is to index only the destination node of the
metapaths rather than the actual metapath itself. This reduces
the index size fromO(|VG|T

D) to O(|VG|TD). However, the
pruning capability reduces too due to looser upper bounds on
interestingness scores. A mix of the two schemes could also
be used where the path level information is stored ford = 1 to
d = D0 and then only the destination node level information
is stored ford = D0+1 to d = D whereD0 is decided based
on a memory-vs-efficiency trade off. We plan to explore this
trade off further as part of future work.

Another way of reducing the size of the topology and the
MMW indexes is by storing only a selective few metapaths
rather than storing columns for every metapath. One scheme
could be to store only the columns corresponding to the
most frequent metapaths in the entire network. Most frequent
metapaths can be identified when performing breadth first
traversal (for MMW index construction) itself. The intuition
is that if a metapath is rare and if the query contains that
metapath, then the number of matches would be low too,
and then the top-K algorithm may not be efficient anyway.
On the other hand, further flexibility can be obtained by
storing information for different metapaths for differentnodes,
i.e., store information for node-wise most frequent metapaths.
Intuitively, a nodewise scheme could provide a better size
versus efficiency tradeoff compared to the reduced columns
scheme.

VI. EXPERIMENTS

We perform experiments on multiple synthetic datasets each
of which simulates power law graphs. We evaluate the results
on the real datasets using case studies. We perform a compre-
hensive analysis of the objects in the top subgraphs returned
by the proposed algorithm to justify their interestingness. Data
and code is available athttp://dais.cs.uiuc.edu/manish/RWM/.

A. Synthetic Datasets

We construct 4 synthetic graphs using the R-MAT graph
generator in GT-Graph software [2]: G1, G2, G3 andG4 with
103, 104, 105, and106 nodes respectively. Each graph has a
number of edges equal to 10 times the number of nodes. Thus,
we consider graphs with exponential increase in graph size.
Each node is assigned a random type from 1 to 5. Also, each
edge is assigned a weight chosen uniformly randomly between
0 and 1. All the experiments were performed on an Intel Xeon

http://dais.cs.uiuc.edu/manish/RWM/
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CPU X5650 4-Core 2.67GHz machine with 24GB memory
running Linux 3.2.0. The code is written in Java. The distance
parameterD for the indexes is set to 2 for both the proposed
approachRWM (Ranking While Matching) and the baseline
RAM (Ranking After Matching), unless specified explicitly.
Also unless specified explicitly, we are interested in computing
top 10 interesting subgraphs (K=10) and the execution times
mentioned in the tables and the plots are obtained by repeating
the experiments 10 times.

Baseline: Ranking After Matching (RAM)
The problem of finding the matches of a queryQ in a

heterogeneous networkG has been studied earlier [20], [27].
In [27], the authors present an index structure called SPath.
SPath stores for every node, a list of its typed-neighbors at
a distanced for 1 ≤ d ≤ D. SPath index is then used to
efficiently find matches for a query in a path-at-a-time way:
the query is first decomposed into a set of shortest paths and
then the matches are generated one path at a time. This method
is used as a baseline.

Index Construction Time
Figure 11 (A) shows the index construction times for the

various indexes. Generating the sorted edge lists is very fast.
Even for the largest graph with a million nodes, the sorted edge
lists creation takes around 40 seconds. The Topology+MMW
(D=2) and SPath (D=2) curves show the time required for
construction of these indexes, for various graph sizes. TheX

axis denotes the number of nodes in the synthetic graphs and
theY axis shows the index construction time in seconds. Note
the Y axis is plotted using a log scale.

The index construction time rises linearly as the graph size
grows. Also, as expected the index construction time rises as
D increases.

Index Size
Figure 11 (B) shows the size of each index for different

values ofD. The X axis plots the number of nodes in the
synthetic graphs and theY axis plots the size of the index
(in KBs) using a logarithmic scale. Different curves plot the
sizes of various indexes, and the graph. Note that the size of
the topology index and the MMW index forD=2 is actually
smaller than the size of the graph. Even when the index
parameter is increased toD=3, the topology and the MMW
indexes remain much smaller than the SPath index forD=2.
For D=3, the SPath index grows very fast as the size of the
graph increases. As expected as the graph size increases, the
size of each index increases. While the increase is manageable

|VQ|=2 |VQ|=3 |VQ|=4 |VQ|=5

RAM 245 2004 14628 169328
RWM0 15 32 43 122
RWM1 19 36 98 178
RWM2 20 40 442 6887
RWM3 218 1733 2337 3933
RWM4 18 34 42 118

TABLE I
QUERY EXECUTION TIME (MSEC) FOR PATH QUERIES (GRAPH G2 AND

INDEXES WITH D=2)

|VQ|=2 |VQ|=3 |VQ|=4 |VQ|=5

RAM 144 8698 34639 174992
RWM0 10 375 14689 229136
RWM1 13 446 16754 200065
RWM2 12 562 19088 201708
RWM3 156 2277 17182 161533
RWM4 11 346 13547 199616

TABLE II
QUERY EXECUTION TIME (MSEC) FOR CLIQUE QUERIES (GRAPHG2 AND

INDEXES WITH D=2)

for the Edge lists, the MMW index and the topology index,
the increase in SPath index size is humongous.
Query Execution Time

We experiment with three types of queries: path, clique
and general subgraphs, of sizes from 2 to 5. We present a
comparison of different techniques for the graphG2 using the
indexes withD=2. The tablesI- III show the average execution
times for an average of 10 queries per experimental setting
each repeated 10 times. The six different techniques are as
follows: RAM (the ranking after matching baseline), RWM0
(without using the candidate node filtering), RWM1 (without
using the MMW index), RWM2 (same as RWM1 without
the pruning any partially grown candidates), RWM3 (same as
RWM1 without the global top-K quit check), RWM4 (same
as RWM1 with the MMW index). Clearly, RAM takes much
longer execution times for all types of queries. We observed
that the larger the number of candidate matches, the more
the execution time gap between the RAM method and the
RWM methods. An interesting case is|VQ|=5 for the clique
queries. Actually there are very few (less than 10) cliques of
size 5 of a particular type in the graph. Hence, we can see
that almost all the approaches take almost the same time. In
this case, the top-K computation overheads associated with
the RWM approaches and lack of pruning result in relatively
lower execution time for RAM.

Next, note that RWM4 usually performs faster than RWM1.
The time savings are higher for the path queries compared
to the subgraph or clique queries. This is expected because
the upper bound scores computed in RWM4 are tighter only
if most of the query structure can be covered by the non-
overlapping paths. Also, RWM0 performs slightly better than
RWM4 for smaller query sizes, but candidate node filtering
helps significantly as query size increases.

TableIV shows the time split between the candidate filtering
step and the actual top-K execution. Note that the candidate
filtering takes a very small fraction of the total query execution
time.



|VQ|=2 |VQ|=3 |VQ|=4 |VQ|=5

RAM 158 3186 39294 469962
RWM0 10 165 824 4660
RWM1 12 195 1022 5891
RWM2 12 212 3135 27363
RWM3 111 1486 3978 9972
RWM4 12 165 791 4518

TABLE III
QUERY EXECUTION TIME (MSEC) FOR SUBGRAPH QUERIES (GRAPH G2

AND INDEXES WITH D=2)

QuerySize→ |VQ|=2 |VQ|=3 |VQ|=4 |VQ|=5
QueryType↓ CFT TET CFT TET CFT TET CFT TET

Path 8 10 10 24 10 32 12 106
Clique 5 6 8 338 9 13538 9 199608

Subgraph 6 6 9 156 10 781 12 4506

TABLE IV
RUNNING TIME (MSEC) SPLIT BETWEEN CANDIDATE FILTERING (CFT)

AND TOP-K EXECUTION (TET) FOR GRAPHG2 (D=2)

|VQ|=2 |VQ|=3 |VQ|=4 |VQ|=5 |VQ|=6 |VQ|=7
|V | = 103 5 18 77 382 1870 7656
|V | = 104 10 90 407 2267 12366 87657
|V | = 105 52 396 2794 18412 131256 1006773
|V | = 106 362 4907 28600 184523 1216893 9786327

TABLE V
RUNNING TIME (MSEC) FOR DIFFERENTQUERY SIZES AND GRAPH SIZES
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Scalability Results
We run the 20 path and general subgraph queries (each 10

times) over all the 4 synthetic graphs using RWM4 and present
the results in TableV. The table shows that the execution time
increases linearly with the graph size, and exponentially with
the query size. Even though the execution time is exponential
in query size, (1) that is the case with most subgraph matching
algorithms, and (2) intuitive user queries are limited in size
by limits of human interpretability for most applications.
Effect of Varying the K

Figure 12 shows the effect of varyingK on 20 path and
general subgraph queries on graphG2 using RWM4. As
expected, the query execution time increases asK increases.
However, the increase in execution time is reasonably small
enough making the system usable even for larger values ofK.
Pruning Power of Top-K

The time efficiency of the RWM algorithm is mainly
attributed to the way it leverages the top-K framework. The
algorithm starts with the size-1 candidates which are grown
one edge at a time till they grow up to|EQ| or get pruned.

|VQ|=2 |VQ|=3 |VQ|=4 |VQ|=5

#Size-1 Candidates 9.54 7.86 4.38 1.63
#Size-2 Candidates 28.28 18.31 7.94
#Size-3 Candidates 24.42 25.5
#Size-4 Candidates 13.61

TABLE VI
NUMBER OF CANDIDATES AS PERCENTAGE OFTOTAL MATCHES FOR

DIFFERENTQUERY SIZES AND CANDIDATE SIZES

DBLP Wikipedia

Number of Nodes 138K 670K
Number of Edges 1.6M 4.1M
Number of Types 3 10
Sorted Edge List Index Size 50 MB 261 MB
Topology Index Size 5.8 MB 148 MB
MMW Index Size 11.4 MB 249 MB
SPath Index Size 4.3 GB 13.7 GB
Sorted Edge List Construction Time 12 sec 23 sec
Topology+MMW Construction Time 461 min 1094 min
Average Query Time 100 sec 42 sec

TABLE VII
DATASET AND INDEX DETAILS

TableVI shows the percentage of candidates of different sizes
with respect to the total number of matches. The results shown
in this table are obtained by running the algorithm for the
20 path and subgraph queries on graphG2. We removed
the clique queries because the number of cliques of size 5
matching such queries is less than 10 and hence no pruning
occurs. Note that on an average, the number of candidates
is around 14% of the total number of matches. Clearly, for
subgraph queries there are candidates of higher sizes also,
but the number of such candidates is much smaller (< 1%)
compared to the number of matches, and so we do not show
them here.

B. Real Datasets

We experiment with two real datasets: DBLP and
Wikipedia, and obtain some interesting results.
DBLP Dataset

The DBLP network consists of authors (A), keywords (K)
and conferences (C). We considered a temporal subset of
DBLP1 for 2001-2010. We obtained a list of conferences from
the Wikipedia Computer Science Conferences page2 which
categorizes conferences into 14 research areas (or commu-
nities). By associating keywords from these conferences with
the research areas, we obtained the keyword priors which were
used as input forNetClus[17] to perform community detection
on DBLP. The interestingness of an edge is then defined as
the KL-divergence between the community distributions of its
end points.
Results on the DBLP Dataset

Details of the dataset and the index are shown in TableVII .
Note that, compared to the topology and the MMW index,
the SPath index for RAM actually takes 4.3GB space. The
number of edges of different types are as follows:AA – 288K,
AC – 608K,AK – 392K,CK – 211K,KK – 87K. On an

1http://www.informatik.uni-trier.de/∼ley/db/
2http://en.wikipedia.org/wiki/Listof computerscienceconferences

http://www.informatik.uni-trier.de/~ley/db/
http://en.wikipedia.org/wiki/List_of_computer_science_conferences
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average, query execution time is 100 seconds on the DBLP
network usingD=2. We present two case studies for this
dataset corresponding to the two queries shown in Figure13.
Case Study 1For the queryQ1 shown in Figure13, the
top subgraph turns out to be (1: Rohit Gupta, 2: BICoB, 3:
Vipin Kumar). The three entities were linked because of the
paper “Rohit Gupta, Smita Agrawal, Navneet Rao, Ze Tian,
Rui Kuang, Vipin Kumar: Integrative Biomarker Discovery
for Breast Cancer Metastasis from Gene Expression and
Protein Interaction Data Using Error-tolerant Pattern Mining”
at BICoB 2010. This case is interesting mainly because it
represents an interesting collaboration of people from multiple
areas. Rohit Gupta primarily works in computer networking.
Vipin Kumar is known for his work in Data and Information
Systems. BICoB (International Conference on Bioinformatics
and Computational Biology) is a conference focused on bio-
informatics.
Case Study 2For the queryQ2 shown in Figure13, the
top subgraph turns out to be (1: Jimeng Sun, 2: Operating
Systems Review (SIGOPS), 3: Christos Faloutsos, 4: mining).
The four entities are linked because of the paper “Evan Hoke,
Jimeng Sun, John D. Strunk, Gregory R. Ganger, Christos
Faloutsos: InteMon: continuous mining of sensor data in
large-scale self-infrastructures.” at Operating SystemsReview
(SIGOPS) in 2006. Again, this case represents an interesting
collaboration of people from multiple areas. Jimeng Sun and
Christos Faloutsos are mainly focused on Data and Informa-
tion Systems. Also, “mining” is a keyword which is frequently
associated with the Data and Information Systems community.
On the other hand, “Operating Systems Review (SIGOPS)”
can be considered to belong to the areas of Operating systems,
and Computer architecture which are completely different
from the research areas associated with the other entities.
Wikipedia Dataset

We generate a network using Wikipedia Infobox pages as
follows. For an entitye, an edge was created frome to
the entity e′ in the entity relationship network, if the entity
e′ appears in the Wikipedia page fore and the Wikipedia
pages for both the entities have Infoboxes. We restrict our
study to the entities of top ten types (film, person, company,
football biography, nrhp, television, album, settlement,musical
artist, single). This ten-type network covers about 45% of the
Wikipedia Infobox entities (1.7 million). We use the Wikipedia
Infobox data as entity attributes. On an average, each entity
has 28 attributes. We augment the original network of entities
with the categorical and the sets-of-strings attribute values of
the entities as nodes. Entity nodes are linked to each of their
attribute nodes. Attribute nodes within the same set of strings
are linked to each other. We use METIS [12] to compute the
hard partitions (K=20) on such an augmented network. Further,
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Fig. 14. Two Queries for the Wikipedia Dataset

we aggregate the cluster labels of all the attribute neighbors of
an entity to get its soft cluster distribution. The interestingness
of an edge is then defined as the KL-divergence between the
community distributions of its end points.
Results on the Wikipedia Dataset

Details of the dataset and the index are shown in TableVII .
Note that, compared to the topology and the MMW index,
the SPath index for RAM actually takes 13.7GB space. On an
average, query execution time is 42 seconds on the Wikipedia
network usingD=2. Again, we present two case studies
for this dataset corresponding to the two queries shown in
Figure14.
Case Study 1For the queryQ3 shown in Figure14, the
top subgraph turns out to be (1: Stacy Keach, 2: The Biggest
Battle, 3: John Huston). The Biggest Battle is an Italian
Macaroni war movie (1978) in which Stacy Keach and John
Huston starred. There are multiple ways in which these con-
nections are unusual. Stacy Keach is an American actor and
narrator. Usually, American actors used to act in American
movies in those years. Also, Stacy has has done narration
work in educational programming on PBS and the Discovery
Channel, as well as some comedy and musical roles, which are
quite different from this war movie. Again, John has worked
mostly in US movies, rather than Italian ones. Also, John
was an American film director, screenwriter and actor who
worked mostly for drama, documentary, adventure and comedy
movies, and not war movies.
Case Study 2For the queryQ4 shown in Figure14, the
top subgraph turns out to be (1: Medha Patkar, 2: BBC,
3: Felix D’Alviella, 4: Mogilino). The British Broadcasting
Corporation (BBC) is a British public service broadcasting
corporation. Medha Patkar is an Indian social activist and is
linked to BBC because she won the Best International Political
Campaigner by BBC. Felix D’Alviella is a Belgian actor best
known for his character Rico Da Silva in the BBC soap
opera Doctors. Mogilino is a village in Bulgaria. In 2007,
the BBC showed the film “Bulgaria’s Abandoned Children”
which became quite popular. This combination of entities is
surprising in multiple ways. It is rare for a British companyto
reward an Indian woman. Similarly, it is rare for a British
company to be linked to a place in Bulgaria or a person
from Belgium. Thus, each of these links to BBC are quite
rare causing the entire combination to be reported as the top
interesting subgraph.

VII. R ELATED WORK

The network (graph) query problem can be formulated as a
selection operator on graph databases and has been studied
first in the theory literature as the subgraph isomorphism
problem [3], [14], [20]. One way of answering network queries



is to store the underlying graph structure in relational tables
and then use join operations. However, joins are expensive,
and so fast algorithms have been proposed for approximate
graph matching as well as for exact graph matching. A
problem related to the proposed problem is: given a subgraph
query, find graphs from a graph database which contain the
subgraph [16], [22], [29]. All top-K processing algorithms
are based on the Fagin et al.’s classic TA algorithm [4].
Growing a candidate solution edge-by-edge in a network can
be considered to be similar to performing a join in relational
databases. The candidates are thus grown one edge at a time
much like the processing of a top-K join query [11] and
as detailed in SectionIV-B. However, we make the top-K
join processing faster by tighter upper bounds computed using
the MMW index and list pruning using the topology index.
The top-K joins on networks with the support of such graph
indexes is our novel contribution. The proposed problem is
also related to the team selection literature. However, most
of such literature following the work of Lappas et al. [13]
focuses on clique (or set) queries [10], unlike the general
subgraph queries handled by the proposed approach. Top-
K matching subgraphs can also be considered as statistical
outliers. Compared to our previous work on outlier detection
from network data [6], [7], [8], [9], we focus on query based
outlier detection in this work. For more comparisons with
previous work, please refer to SectionI.

VIII. C ONCLUSION

In this paper, we studied the problem of finding top-K

interesting subgraphs corresponding to a typed unweighted
query aplied on a heterogeneous edge-weighted information
network. The problem has many practical applications. The
baseline ranking after matching solution is very inefficient for
large graphs where the number of matches is humongous. We
proposed a solution consisting of an offline index construction
phase and an online query processing phase. The low cost
indexes built in the offline phase capture the topology and
the upper bound on the interestingness of the metapaths in
the network. Further, we proposed efficient top-K heuristics
that exploit these indexes for answering subgraph queries very
efficiently in an online manner. Besides showing the efficiency
and scalability of the proposed approach on synthetic datasets,
we also showed interesting subgraphs discovered from real
datasets like Wikipedia and DBLP. In the future, we plan to
study this problem in a temporal setting.
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