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Abstract—Motif discovery in sequence data is fundamental to
many biological problems such as antibody biomarker identi-
fication. Recent advances in instrumental techniques make it
possible to generate thousands of protein sequences at once,
which raises a big data issue for the existing motif finding
algorithms: They either work only in a small scale of several
hundred sequences or have to trade accuracy for efficiency. In this
work, we demonstrate that by intelligently clustering sequences,
it is possible to significantly improve the scalability of all the
existing motif finding algorithms without losing accuracy at all.
An anchor based sequence clustering algorithm (ASC) is thus
proposed to divide a sequence dataset into multiple smaller
clusters so that sequences sharing the same motif will be located
into the same cluster. Then an existing motif finding algorithm
can be applied to each individual cluster to generate motifs. In
the end, the results from multiple clusters are merged together
as final output. Experimental results show that our approach is
generic and orders of magnitude faster than traditional motif
finding algorithms. It can discover motifs from protein sequences
in the scale that no existing algorithm can handle. In particular,
ASC reduces the running time of a very popular motif finding
algorithm, MEME, from weeks to a few minutes with even better
accuracy.

I. INTRODUCTION

Motif discovery, finding sequence patterns from a set of
protein sequences, is a very basic problem in many critical
biological and medical applications. It has been extensively
studied for more than a decade. For example, it is widely used
to identify transcription factor binding sites (TFBS) [1] and
antibody biomarkers [2]. Studying TFBS could help us learn
the mechanisms that regulate gene expression, while antibody
biomarkers are useful for diagnosis of diseases.

Figure 1 shows an example of protein sequences. In these
sequences, there are subsequeces that are almost identical to
each other with only a few mismatches. When aligning these
subsequences together, we can extract a sequence pattern,
which is also known as motif. A motif could be represented
as a consensus string or a model describing probabilities of
characters appearing at different positions. A data set usually
contains more than one motifs which makes it hard to deal
with even for a small number of sequences.

Advances in instrumental techniques like Random Peptide
Libraries (RPLs) [2] that generate massive sequences with
complex alphabets, e.g., protein sequences, post a Big Data
challenge for motif finding algorithms. For example, it takes
MEME [3], a very popular motif finding algorithm based

                       APFSELREIMHSYRG
            PFSEEAYWHVGGMKA

    LEWFESSGVPFSARS
        RGIGSTLKPFSATRD
                       ATFSARWSNMVPDLR

            CFSELPFSVWTPKAC
            PFTEAGITADMWAWV

Fig. 1: A Motif in Multiple Protein Sequences

on Expectation Maximization (EM), almost two weeks to
finish running for a data set with 10k sequences. Several
algorithms such as DREME [4], MEME-ChIP [5] and STEME
[6] adopted combinatorial approaches to improve the speed
of MEME. Unfortunately, they can only work with DNA
sequences (4 types of alphabets, A,G,C,T) as they either do
exhaustive search or rely on index structure like suffix tree.
A recently published algorithm MUSI [7], faster than MEME,
can be applied to protein sequences (20 types of amino acids).
Unfortunately, its accuracy is far below MEME according to
our experiments.

To the best of our knowledge, there is no algorithm that
could work with > 10k sequences with a complex alphabet
set and achieve comparable accuracy with MEME. Rather
than developing another motif finding algorithm to outperform
MEME, we propose a new strategy, that is pre-processing
sequences with clustering, to divide the data into multiple small
clusters and run existing motif finding algorithms on each
cluster. This strategy has several advantages. First, it could
be used in any existing motif finding algorithm. Second, by
limiting the input to only a subset of sequences, those time-
consuming algorithms may finish in a reasonable amount of
time. Figure 2 shows a sketch of the clustering and motif
discovery pipeline. Sequences are first grouped into clusters
before a motif finding algorithm is applied. Motifs discovered
from each cluster are merged together and delivered to users.

Now the key problem is how to cluster the sequences.
Could the problem be solved if we just arbitrarily divide the
sequences into several clusters (Partitioning)? The answer is no
since this method will miss most of low frequent motifs. For
the same reason, randomly sampling a subset of sequences will
not work either. Another straightforward approach is clustering
sequences based on their overall similarities, for instance, K-
means with edit distance as similarity measure. This will not
work for the reason that motifs only appear in subregions of
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Fig. 2: Clustering Sequences for Motif Discovery

sequences. Table I compares the number of motifs found by
aforementioned methods on a real data set. It is clear that direct
sampling, partitioning, and K-means do not work well though
they significantly reduce the runtime.

TABLE I: Comparisons between different methods on a real
dataset with 11,642 protein sequences

Methods # of motifs found Runtime (Min.)
MEME 20 two weeks

Sampling 11 79
Partitioning 5 9

K-means 14 32
ASC 24 6

Can we compare sequences based on their most similar
subsequences, e.g., longest common subsequence (LCS)? This
solution is intuitive but not scalable: Calculating LCS of
two sequences is nontrivial and the number of comparisons
could be quadratic in order to select a cluster center. In this
paper, we propose an anchor based sequence clustering (ASC)
algorithm that could efficiently identify sequences potentially
containing the same motif. ASC could bypass the problem
of directly calculating LCSs and identify cluster centers with
only one scan. In this algorithm, each sequence is decomposed
into a set of anchors which are similar to gapped q-grams
in other literatures, but with variable shapes. Sequences are
clustered based on anchors they contain to avoid pair-wise
sequence comparisons. In particular, these anchors are not
randomly selected. They are from the most significant ones
in the dataset and then iteratively refined. Afterwards, a set of
sequences are sampled from each cluster and provided to an
existing algorithm to find motifs. Table I shows the superior
performance of ASC. We are able to reduce the running time
of MEME from weeks to less than 10 minutes and discover
even more motifs than MEME.

The main contributions of this paper are summarized as
follows.
• We introduce a new strategy for speeding up motif

discovery by pre-processing sequences with clustering.
This strategy is generic for any existing motif finding
algorithm and a post-processing pipeline consisting of
sampling, filtering and merging is also built to discover
significant motifs.

• We propose an anchor based sequence clustering (ASC)
algorithm that could efficiently group sequences contain-
ing the same motif together. As far as we know, ASC is

the first anchor (gapped q-grams with variable shapes)
based clustering algorithm.

• We provide theoretical analysis for our anchor-based
similarity measure and illustrate that it can help check
if two sequences contain the same motif with high
accuracy.

• We perform extensive experiments with both synthetic
and real data sets. The results show that ASC can
discover motifs from protein sequences in the scale that
none of the existing algorithms can handle.

II. PRELIMINARIES

Let S = {s1, s2, ..., sN} denote a set of N sequences over
a fixed alphabet set Σ = {β1, β2, ..., β|Σ|} with |Σ| symbols,
e.g., |Σ| = 20 for protein sequences. Let s[i, j] denote
the subsequence between the ith and jth (both inclusive)
character of sequence s. Usually, the input sequences have
the same length, so we use l to represent the length of the
sequences. Let w be the length of a motif m. We use a vector
Θ = (θ1, θ2, ..., θ|Σ|) to represent the background model which
describes probabilities of seeing a character βi appearing at any
position in all the input sequences. θi is called the background
probability of βi, which can be calculated as the number of
occurrences of βi divided by the total number of characters
N × l. Table II summarizes some common notations that we
are going to use in this paper.

TABLE II: Notations

Notations Description
S A set of input sequences
N Total number of input sequences
Σ Alphabet set
l Length of input sequences
m A motif
w Width of the motif
θi Background probability of βi

Intuitively, a motif is a sequence pattern that repeatedly
appears in S. The colored subsequences in Figure 1 follow a
common sequence pattern as they differ from each other with
only a few mismatches. That is, their Hamming distance, which
is the number of different characters when aligned together, is
small.

Definition 1: (LOCAL HAMMING SIMILARITY) Given two
sequences s1, s2 and motif width w, the local hamming
similarity between s1 and s2 under w is

lh(s1, s2, w) = max
0≤i≤l1−w
0≤j≤l2−w

h(s1[i, i+ w − 1], s2[j, j + w − 1]),

where l1 and l2 are the length of s1 and s2 respectively, and
h(s1[i, i+w− 1], s2[j, j +w− 1]) is the hamming similarity
defined as the number of exactly matched characters between
s1[i, i+ w − 1] and s2[j, j + w − 1]).

Figure 3 shows the local hamming similarity between two
sequences is 3 when w = 4.

A motif is a sequence pattern extracted from a set of
similar subsequences. One way of representing motifs is using
consensus string.
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Fig. 3: Local Hamming Similarity

Definition 2: (CONSENSUS STRING) Given n similar sub-
sequences S = {s1, s2, ..., sn}, the consensus string is a
sequence m whose ith character m[i] = arg maxβ∈Σ f(i, β),
where f(i, β) is the number of times that character β appears
in position i for all s ∈ S.
For the example shown in Figure 1, the consensus string repre-
sentation of the motif is PFSE. There are other representations
such as position weight matrix (PWM) [3] (Section V). Our
proposed algorithm can work with all the representations.

An occurrence of a motif is a subsequence that matches the
motif (approximately). As shown in Figure 1, all the colored
subsequences are occurrences of the motif, PFSE. Given a
motif, we usually need to check which sequences contain this
motif. Assuming the motif m is represented as a consensus
string, we define the occurrence of motifs as follows.

Definition 3: (OCCURRENCE OF MOTIFS) Given a motif m
of length w, a sequence s of length w is an occurrence of m if
their hamming similarity is equal to or greater than t. We refer
to the occurrence of a motif in a sequence as motif region.

Similarly, we could say a sequence s contains an occurrence
of motif m with similarity t if their local hamming similarity
lh(s,m,w) ≥ t. How to choose the value of t is vague. A
statistical approach [8] can bypass this problem by assigning a
p-value to each sequence. A sequence is considered significant
when it has a very small p-value, e.g., less than 0.05.

Motif Discovery: Given a set of sequences S, the task of
motif discovery is to identify significant subsets of S that
contain motifs and extract them. In this paper, we focus on
the setting where each sequence is short and contains at most
one motif. This is a widely used setting for motif discovery
from peptide sequences [7]. Even under this simplified setting,
none of the existing algorithms works well for a large number
of sequences.

III. ANCHOR BASED SIMILARITY

As briefly discussed, clustering sequences based on motifs
they contain has several advantages and could lead us to an
efficient solution without developing yet another motif finding
algorithm. However, the dilemma is given a sequence dataset,
we do not know the motifs beforehand. Therefore, we need
to develop a measure that is able to cluster the data without
extracting motifs first.

Definition 4: (ANCHOR) A q-anchor consists of q charac-
ters (βi1 , βi2 , ..., βiq ) drawn from Σ with replacement, and βij
appears before βij+1 with gaps between them.

Definition 5: (ANCHOR BASED SIMILARITY) Given two
sequences s1, s2 and their corresponding anchor sets A1, A2,
the anchor based similarity between s1 and s2 is |A1 ∩ A2|
which is the number of common anchors they share.

For example, the set of 2-anchors for PFSE is {PF, FS, SE,
P S, F E, P E}. The concept of anchor is similar to gapped
q-gram [9] except that it has variable shapes. Instead of using
local hamming similarity, we propose to represent a sequence
as a vector of anchors and use the number of common anchors
to cluster sequences. In order to make anchor-based clustering
work, we need to build a connection between anchor-based
similarity and sequences that contain a motif.

RGIGSTLKPFSATRD ATFSARWSNMVPDLR
... ...

AT, SA, FS, 
F_A, S_ _ _P

RG, R_I, R_ _G, 
R_ _ _S, …, RD

A_F, A_ _S, A_ _ _A, 
…, D_R, LR

Fig. 4: Common 2-Anchors

Figure 4 shows two sequences and their 2-anchors. Among
all the five common 2-anchors, {FS, SA, F A} are from motif
regions shown in Figure 3. It is possible for two random
sequences to contain some common anchors. However this
probability is relatively small compared to the cases where
two sequences contain the same motif. We first analyze the
probability of two sequences sharing at least d common
anchors in these two cases as follows. Then we will show that
when q-anchors are selected first, the chance for a random
sequence of length l to contain d q-anchors is much smaller.

Here and throughout this section, we assume in a random
sequence model, called the background model, all characters
in the alphabet set Σ appear with equal probability. This
assumption simplifies the presentation of theorems. We say
a sequence pair contains an anchor if both sequences in the
pair contain the anchor.

Theorem 1: Given a pair of sequences of length l drawn
from the background model, the probability that this sequence
pair contains at least d common q-anchors is at most

1
d|Σ|q

∑l
i=q

(
i−2
q−2

)
(l− i+ 1)2. When q = 2, this probability is

upper bounded by l3

3dΣ2l−2 .
We prove this theorem by following a counting argument:

we first focus on the number of common anchors shared by a
sequence pair and compute the sum, denoted as Tca, of this
number among all sequence pairs; then the number of sequence
pairs that contain at least d common anchors is at most Tca

d ;
thus the probability of one sequence pair containing at least
d common anchors will be upper bounded by Tca

d divides by
the total number of possible sequence pairs Ts. We compute
Tca and Ts in the following two lemmas.

Lemma 1: The total number of possible length l sequence
pairs Ts = |Σ|2l. Those sequence pairs appear with equal
probability in the background model.

Proof: Each position in length l has |Σ| possible charac-
ters. Then the total number of possible length l sequence pairs
Ts = |Σ|2l, as one sequence pair has 2l positions. Note that
all characters in alphabet set Σ appear with equal probability
in the background model. Therefore all sequence pairs appear
with equal probability.
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Lemma 2: Let S be the set of all possible sequences and let
Nq(s1, s2), s1, s2 ∈ S, be the number of common q-anchors
shared by s1 and s2. Then Tca =

∑
s1, s2∈S Nq(s1, s2) =

|Σ|q ·
∑l
i=q

(
i−2
q−2

)
(l − i+ 1)2.

Proof: Firstly, for each length k q-anchor, here we use a
length 3 anchor A B as an example, we count the number of
possible positions in one sequence that contains this anchor. If
a sequence s1 contains anchor A B, this anchor could appear
in l − k + 1 = l − 2 positions in this sequence. Then if two
sequences in a sequence pair both contain anchor A B, this
anchor could appear in (l − k + 1)2 positions pairs in this
sequence pair. Secondly, there are |Σ|q possible choices for
the characters in a q-anchor. Since the length of sequences is
l, the length of a q-anchor including gaps could range from q
to l. And for each possible length i, there are

(
i−2
q−2

)
ways to

place the q−2 characters other than the start and end of the q-
anchor. Therefore the total number of anchor matches between
all possible sequence pairs will be |Σ|q ·

∑l
i=q

(
i−2
q−2

)
(l−i+1)2.

Now we are ready to show the proof of Theorem 1.
Proof: Clearly, the number of sequences pairs which

contain at least d q-anchors is upper bounded by the number of
common q-anchors Tca divides by d. Then the probability of
a sequence pair containing at least d q-anchor is Tca/(dTs) =

1
d|Σ|2l−q

∑l
i=q

(
i−2
q−2

)
(l − i + 1)2. Specially, when q = 2,

Tca/(dTs) = 1
d|Σ|2l−q

∑l
i=q

(
i−2
q−2

)
(l − i+ 1)2 ≤ l3

3dΣ2l−2 .

Corollary 1: Given a sequence s of length l drawn from the
background model and d random q-anchors, the probability of

s containing all d anchors is (
(l
q)

|Σ|q
∑l

i=q (i−2
q−2)

)d. When q = 2,

this probability is ( l
2|Σ|2 )d.

Proof: It is clear to see that sequence s contains at most(
l
q

)
different anchors. By Lemma 4 (Section IV-A), the number

of possible q-anchors is |Σ|q
∑l
i=q

(
i−2
q−2

)
. Therefore the prob-

ability of s containing one random q-anchor is (l
q)

|Σ|q
∑l

i=q (i−2
q−2)

.

As these d anchors are independently selected, the probability

of s containing all d anchors is (
(l
q)

|Σ|q
∑l

i=q (i−2
q−2)

)d.

Corollary 1 shows that the chance for a random sequence to
contain multiple q-anchors from a motif could be very low. If
we are able to extract a few q-anchors from potential motifs,
we can quickly remove those sequences that do not contain
any motif and also group those sequences that contain the
same motif together. This property will be used in the design
of anchor-based clustering in Section IV. Theorem 1 and
Corollary 1 together show that the chance for two sequences
accidently sharing d common anchors is much higher than the
chance for one sequence containing d pre-selected anchors.

Now we move to estimate the probability of discovering
common anchors in motif regions of a pair of sequences.
Let s1 and s2 be two sequences which contain motif m of
width w with similarity t. Common anchors in s1 and s2

can be either anchors in motif m or other anchors happen
to be contained in both sequences. However, anchors in
motif m more likely appear as common anchors than other

random anchors. We here use the probability of discovering
common anchors only from the motif as a lower bound. Denote
the motif region in s1 and s2 as o1 = o11o12 . . . o1w and
o2 = o21o22 . . . o2w, respectively. The following lemma shows
that we could compute the number of common anchors in o1

and o2 by simply counting the number of identical characters
found in the same positions of o1 and o2.

Lemma 3: Given two sequences s1 and s2 and their corre-
sponding motif occurrence o1 and o2, let I = {i|δ(o1i, o1i) =
1}, where δ(·, ·) returns 1 if its two arguments are the same and
returns 0 otherwise. Then I is the set of positions at which o1

and o2 contain the same character. Let k = |I| is the cardinality
of set I , then the number of the common anchors in the motif
regions of s1 and s2 is at least

(
k
q

)
.

Proof: It is easy to see that characters at the ith position
of o1 and o2 are the same if i ∈ I . Then any q-anchor
composed by characters at q positions drawn from set I
without replacement is a common anchor of of s1 and s2.
Therefore the number of the common anchors in the motif
regions of s1 and s2 is at least the number of draws, which is(
k
q

)
.

The above theorem shows that if we want to compute the
probability of discovering d common anchors in o1 and o2, we
could (1) find the smallest integer k which satisfies

(
k
q

)
≥ d,

and (2) compute the probability of having the same characters
in k positions of o1 and o2. We apply this idea in the following
theorem.

Theorem 2: Let k be the smallest integer which satisfies(
k
q

)
≥ d. Given two sequences s1 and s2 which contain motif

m of length w with similarity t, the probability that s1 and s2

share at least d common q-anchors is at least
∑k−1

i=0 (t
i)(

w−t
t−i )

(w
t )

.

Proof: We only need to compute the probability of having
the same characters in k positions of o1 and o2. Motif
occurrence o1 share the same character with motif m at at
least t positions. Without loss of generality, we assume that
o1 and m share the same characters at the first t positions.
Motif occurrence o2 also share the same character with motif
m at at least t positions. Consider event Ai = {When drawing
t positions without replacement from a length w motif, i
positions are chosen in the first t positions and t− i positions
are chosen from the rest w − t positions}. The probability of
o1 and o2 share the same characters at no less than k positions
is
∑t
i=k Pr{Ai}, as we assume that o1 and m share the same

characters at the first t positions. Note that the probability

of event Ai is (t
i)(

w−t
t−i )

(w
t )

. Therefore, the probability of o1 and
o2 sharing at least d common q-anchors is lower bounded by∑t
i=k Pr{Ai} =

∑t
i=k (t

i)(
w−t
t−i )

(w
t )

.

In order to investigate how different values of q will affect
our anchor based similarity measure, we vary q and calculate
the probabilities according to Theorem 1, Corollary 1 and
Theorem 2. Figure 5 shows the probabilities when we fix
l = 15, w = 10, t = 7, d = 5 and range q from 2 to 5. As
we can see, even though all the probabilities drop when q is
increased, for two sequences containing the same motif, their
probability of sharing d common q-anchors is always much
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Fig. 5: The probabilities that two random sequences and two
sequences containing the same motif share at least d
common q-anchors, and the probability that a random

sequence contains d random q-anchors when
l = 15, w = 10, t = 7, d = 5.

higher than sequences that are merely generated according to
the background model. And given d random q-anchors, the
probability that a sequence contains them is extremely low.
With this property, we could use the anchor based similarity
between two sequences to indicate their probability of contain-
ing the same motif and further make clustering decisions.

IV. ANCHOR BASED CLUSTERING

Recall that there are mainly two challenges for clustering se-
quences based on motifs they contain: (1)Motifs are unknown
beforehand, and (2) Pairwise sequence comparison shall be
avoided. By adopting the concept of anchor based similarity
measure, both problems can be avoided. In this section, we are
going to introduce the design of anchor-based clustering.

According to our theoretical analysis in Section 3, the
probability for two random sequences to have common anchors
is much lower than sequences containing the same motif. Thus
we derive an initial design of our algorithm as follows. A
sequence is randomly picked as a cluster center, and then
all the other sequences are compared with it using anchor
based similarity measure. For any sequence, if its anchor
based similarity with the center is equal to or greater than
a threshold, it will be captured by this cluster. Repeat this
for the rest of sequences until there is no sequence left.
This method has two drawbacks. If we continuously choose
sequences not containing any motif as cluster centers, the
number of comparisons could be as large as O(N2) which
is no better than pairwise comparisons. Furthermore, it might
generate many small useless clusters for sequences that do not
contain any motif; yet one still needs to run a motif finding
algorithm on these clusters.

Running a traditional K-means algorithm on the anchor
representation of sequences is also problematic. The number
of comparisons could be quadratic with respect to the number
of sequences in order to calculate the mean or centroid
of a cluster. Hence we propose an anchor based sequence
clustering (ASC) algorithm. ASC iteratively clusters sequences
and selects a few anchors that are likely from potential motifs
as cluster centers. Each sequence is first decomposed to a set
of anchors and then clustered based on their corresponding
anchors. Instead of using the mean or centroid of the sequences

like traditional K-means, we carefully (re)select a set of
anchors to represent the most distinctive features of a motif
as the cluster center at each iteration. At first, K centers are
initialized. In each iteration, sequences are assigned to their
closest cluster and then the center of each cluster is adjusted.
Not only is the center adjusted based on the new membership,
but the anchor set used to represent the center is also adjusted.
This process is repeated until all the clusters are stabilized.

Algorithm 1 outlines the anchor based sequence clustering
algorithm. In our algorithm, a cluster center is a set of anchors,
not the motif or the consensus string of sequences in the
cluster.

Algorithm 1: Anchor based Sequence Clustering
input : A set of sequences S, the number of clusters K,

the number of anchors d in a cluster center
output: K clusters of sequences
for si ∈ S do

Decompose si into a set of anchors
end
Calculate the odd score (Section IV-A) of all the anchors
Select top d×K anchors based on their odd scores and
randomly divide them into K anchor sets; each has d
anchors
repeat

Assign each sequence to a cluster
Adjust the center of each cluster

until termination condition (Section IV-D)
return sequences in each cluster

A. Choose Initial Anchors

Lemma 4: Given a set of sequences with length l, the
maximum number of q-anchors (q ≥ 2) that could possibly
appear in it is |Σ|q ·

∑l
i=q

(
i−2
q−2

)
. It is |Σ|2 · (l − 1) when

q = 2.
Proof: For each possible length i, there are

(
i−2
q−2

)
ways

to place the q − 2 characters other than the start and end
of the q-anchor. And there are |Σ|q possible choices for
the characters for each of q-anchor placement. Therefore the
maximum number of possible q-anchors in length l sequence
is |Σ|q ·

∑l
i=q

(
i−2
q−2

)
.

For example, if |Σ| = 20 and l = 15, the number of
possible 2-anchors is 5,600. The number of possible q-anchors
increases exponentially with q as shown in Figure 6. Rather
than using all q-size anchors, we propose an anchor filtering
method by comparing the background probability and the
observed probability of an anchor.

Definition 6: (ANCHOR’S BACKGROUND PROBABILITY)
Given a q-anchor a, let t be its length including gaps. Its
background probability

Pbackground(a) = 1− (1−
∏
βi∈a

θi)
l−t+1,

where l is the length of sequences.
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Definition 7: (ANCHOR’S OBSERVED PROBABILITY)
Given a q-anchor a, its observed probability

Pobserved(a) =
f(a)

N
,

where f(a) is the number of sequences that contain the anchor
a and N is the total number of sequences.

Those anchors that are over-represented are more useful for
clustering sequences. So all the anchors that have Pobserved .
Pbackground will be discarded.
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Fig. 6: The numbers of q-anchors before and after filtering
for a data set of 11,642 protein sequences

Figure 6 illustrates the effectiveness of our filtering method
on a data set of 11,642 protein sequences. More than half
of anchors are filtered out by this method. It is getting more
effective with the increase of q.

Intuitively, we want to use anchors that are uniquely derived
from motif regions as the cluster center, such that the number
of anchors a sequence shares with the center could indicate
how likely this sequence contains the motif. That being said,
we use d anchors as the center of a cluster. These d anchors
represent the most distinguishable features of a motif. Thus
the clustering algorithm will cluster the sequences based on
which features they contain the most.

The first step of the clustering algorithm would be initializ-
ing centers for clusters. One way of doing this is to randomly
assign some anchors as the center of a cluster. But this could
make our algorithm take more iterations to converge or easily
get stuck in local optimal. Here, we propose an initialization
method based on the odd score of anchors.

Recall that Pbackground and Pobserved are the background
probability and the observed probability of seeing a sequence
containing an anchor respectively. We use the odd score to
indicate how much an anchor is different from the background.

Definition 8: (ODD SCORE) The odd score of anchor a is
defined as the log ratio between the observed and background
probabilities of a,

S(a) = logPobserved(a)− logPbackground(a).

For an anchor, a higher odd score means it is more distin-
guishable from the background, thus having a higher proba-
bility of belonging to a motif. Therefore, before initializing
centers, we first calculate the odd score for anchors and then
rank them accordingly. Assume we have K cluster centers
(later we will remove this requirement) and each cluster center
has d anchors, we select the top K × d anchors and randomly
draw d anchors without replacement as each cluster’s center.

B. Adjusting Anchors

Sequence Assignment. Let C = (C1, C2, ..., CK) refer to the
K centers of clusters. In each iteration. the ith sequence si will
be assigned to its closest center C ∈ C. Since each sequence
is represented as a set of anchors, we use Ai to denote the set
of anchors of si. The distance between si and a cluster center
Ck is calculated as

dist(si, Ck) = |Ck| − |Ai ∩ Ck|,

where |Ck| (i.e, d) is the number of anchors in the kth cluster’s
center and |Ai∩Ck| is the number of common anchors between
the sequence and the center. Then for si, the closest center C
can be found by

C = arg min
C∈C

dist(si, C).

We restrict that one sequence can only belong to one cluster
as in our setting one sequence contains at most one motif.
Center Adjustment. In each iteration, centers of clusters are
adjusted according to the sequences assigned to each cluster.
In order to select the anchors that not only belong to a motif,
but also represent the motif’s most distinguishable features,
we propose a ranking function based on the abundance score
proposed as follows.

Definition 9: (ABUNDANCE SCORE) For the kth cluster
and an anchor a, let fk(a) be the number of sequences in
this cluster containing the anchor and Nk be the total number
of sequences in this cluster. The abundance score is defined as

Sk(a) = log
fk(a)

Nk
− log

f(a)

N
.

For each cluster, we select d anchors with the highest
abundance scores because they are more abundant in the cluster
than in the whole set of sequences. The anchors of a motif are
likely the most abundant ones when most of the sequences in
the cluster contain the motif.

C. Extra cluster

In addition to the K clusters, we set up an extra cluster
to collect sequences that do not share any anchor with the
existing cluster centers. This is essential due to two cases:
(1) Not all the sequences in the data set contain motifs, and
(2) If the number of sequences that contain a motif is small,
the anchors of that motif might not be selected. In this case,
the corresponding sequences will not belong to any cluster. If
we allow the sequences in these cases to be placed into other
clusters, they could potentially affect the center adjustment
process.

D. Termination Condition

The goal of our clustering algorithm is to minimize the
distance between sequences and their cluster center so that
sequences in a cluster will have a higher probability of
containing the same motif. This objective can be captured by
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calculating the entropy of anchors in each cluster. The entropy
of the kth cluster is

H(Ck) = − 1

|Ck|
∑
a∈Ck

fk(a)

Nk
log

fk(a)

Nk
.

We want to minimize this entropy to ensure that most of se-
quences in the cluster contain anchors in the center. Therefore,
the entropy can be used to measure the quality of the cluster.
For each cluster, we re-calculate H(Ck) using this objective
function after the assignment of sequences. Assume Hi(Ck)
and Hi+1(Ck) are the entropy scores after the ith and (i+1)th

iteration for the kth cluster. Define

δk = Hi+1(Ck)−Hi(Ck).

We stop updating the kth cluster if δk is smaller than a
pre-defined threshold.

For each iteration, the computational complexity comes
from two parts: comparing each sequence with centers and
selecting top anchors according to their abundance scores.
Since we have N sequences, K clusters, and d anchors per
cluster, the number of sequence-anchor comparisons would be
O(d ·K · N). And the time complexity of checking whether
an anchor is contained by a sequence is constant since we
have built inverted index with bit vectors of sequence ids for
anchors. The time complexity of enumerating of all q-anchors
in sequences of length l is O(lq ·N). Assume the total number
of anchors is |A|, the complexity of selecting top d anchors for
K clusters is O(K · |A|) in the worst case. The complexity of
each iteration is O(d·K ·N+lq ·N+K ·|A|) which is linear with
respect to the number of sequences N , the number of clusters
K, and the number of anchors d. Note that this complexity is
only valid for one iteration. ASC takes multiple iterations to
finish the clustering task. Though the number usually is small,
it might change with respect to d.

One issue we shall pay attention to is that |A| = |Σ|q ·∑l
i=q

(
i−2
q−2

)
according to Lemma 4. This complexity is expo-

nential in terms of q. Fortunately, the results are already pretty
good when we set q = 2 according to our experiments. If
not specifically mentioned, we will be using 2-anchors in our
implementation.

E. Eliminating K

The cluster number K corresponds to the number of motifs
within the dataset, which usually is not known beforehand. In
practice, our algorithm still works when K is not equal to the
true number of motifs.

1) K is smaller than the true number of motifs. In this
case, one cluster may contain two or more motifs. The
existing motif discovery algorithms such as MEME
[3] can handle sequence datasets with multiple motifs
inside.

2) K is larger than the true number of motifs. In this case,
two clusters may contain the same motif. It is fine to
have duplicate motifs. Section V will discuss merging
motifs.

Since our goal is to find motifs in sequences, not to achieve
the best clustering result, we do not have a high requirement
on the quality of clusters. The above two cases show that the
setting of K is not critical in our method.

To further reduce the number of parameters, we propose a
recursive clustering framework to eliminate parameter K. At
first the whole pool of sequences are divided into two groups
using our anchor based sequence clustering algorithm. Then
each group is recursively clustered until all of its children can
not be further divided into more clusters. Finally, we combine
all the extra clusters into one set of sequences and rerun this
whole process again to generate more clusters. This recursive
process runs till the size of the combined extra clusters is small
enough for the traditional motif finding algorithms to handle.

Figure 7 gives an example where the sequences are divided
into 11 clusters. As the sequences are continuously being
divided into two groups, some are marked as final clusters
as the size of their children is smaller than a threshold τ ,
which is the maximum number of sequences that existing motif
finding algorithms such as MEME can handle (we set τ = 600
by default). Then after 8 clusters are generated, all the extra
clusters are combined together and go through the process
recursively to generate 3 more clusters.

sequences

1 2

3 4

5 76 8

9 10 11

extra clusters

final 
clusters

combined 
extra clusters

recursive clustering

Fig. 7: An example of the recursive clustering framework in
which a set of sequences is divided into 11 groups

This framework is different from traditional hierarchical
clustering as we actually have two layers: inner loop and outer
loop. Inner loop carries out recursive clustering while the outer
loop collects the sequences that are considered as ”random”
in each iteration to ensure the capture of low frequent motifs.

V. MOTIF MERGING AND FILTERING

Similar motifs might be discovered in different clusters.
Hence, we need to merge them if they are close to each other. If
motifs are represented as consensus string, we could use string
distance measure such as hamming distance to cluster them.
If motifs are represented as position weight matrix (PWM),
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we could use a similarity measure based on Kullback-Leibler
(KL) divergence.

Definition 10: (POSITION WEIGHT MATRIX (PWM)) For a
motif with width w, the PWM is a matrix M with size of
w × |Σ|. Mij =

f(i,βj)
n which is the probability of seeing the

character βj in position i of the motif.
Since discovered motifs might have different lengths, we

need to consider all the possible ways of aligning two motifs.
We first segment motifs with a sliding window and compare
the motif segments using the slide window. The length of the
sliding window is chosen as the minimum length of motifs
wmin.

The distance of two PWMs is defined as the minimum
distance between their segments of length wmin and the
distance of segments is defined as the average distance of their
rows. Let M and M ′ denote the PWMs of two motifs, the
distance between their ith and jth rows is defined as

DKL(Mi∗||M ′j∗) =

|Σ|∑
t=1

Mit log
Mit

Mjt
,

where Mi∗ and Mj∗ are the ith and jth rows in the corre-
sponding PWMs. The distance between M and M ′ is

DKL(M ||M ′) = min
i,j

1

wmin

wmin−1∑
t=0

DKL(M(i+t)∗||M ′(j+t)∗),

where 1 ≤ i ≤ w − wmin + 1 and 1 ≤ j ≤ w′ − wmin + 1.
If DKL(M ||M ′) ≤ θ (we set θ = 1.5), the two motifs are

considered to be similar. The sequences in their corresponding
clusters will be merged together and we go through the motif
discovery process again to get a unified motif.

VI. EXPERIMENTS

In this section, we perform experiments to evaluate the
anchor based sequence clustering (ASC) algorithm on both
synthetic and real data sets. We have built the whole pipeline
of motif discovery upon MEME [10], MUSI [7], GibbsCluster
[11] and ACME [12]. With ASC being applied, we refer to
them as ASC+MEME, ASC+MUSI, ASC+GibbsCluster and
ASC+ACME. It is worth mentioning that ASC can be adopted
by any existing motif finding algorithm. (1) We first show
how much ASC can actually improve existing motif finding
algorithms in terms of runtime without a quality trade-off. (2)
We then examine the characteristics of ASC and verify the
design.

MEME is the most popular motif discovery algorithm with
high discovery rate. In comparison with MEME, MUSI and
GibbsCluster are the two state-of-the-art probabilistic methods
that were developed to improve the runtime with an accu-
racy trade-off. ACME is a recently proposed parallel motif
extracting algorithm based on suffix tree. It’s designed to
extract motifs from an extremely long sequence and reported
scaling to large alphabet set. When ASC is applied to these
algorithms as a pre-processing step, it can be five orders
of magnitude faster than MEME and 50+ times faster than
MUSI/GibbsCluster/ACME, without losing any accuracy. All

the experiments are conducted on a server with 2.67GHz Intel
Xeon CPU (32 cores) and 1TB RAM. The real datasets and the
source code are available at http://www.cs.ucsb.edu/∼honglei/
abp/download.htm.

A. Data Sets
We compare ASC with other algorithms using both real and

synthetic data sets. Only protein sequences are used in our
experiments as there already exist several methods [4], [5],
[6] that work very well for large scale DNA sequences. In
the real dataset, we directly compare the quality of discovered
motifs, while in the synthetic data, we embed some motifs and
treat them as ground truth. Most of our data sets contain fairly
short sequences, which is a common setting in deep sequencing
phage-selected peptide datasets [13], [14] for which none of
the existing tools scales well.

Real data. For the real data, we use 5 datasets of protein
sequences as shown in Table III. Celiac is from [2], consisting
of 11,642 peptide sequences recognized by serum antibodies
from patients with Celiac Disease. Each sequence in this data
set has a length of 15. The other 4 datasets, FXIIa, uPA, SrtA
and PK are from [13], containing shorter sequences ranging
from 8 to 10.

TABLE III: Real datasets

Name # of sequences Length of sequences
Celiac 11,642 15
FXIIa 13,945 10
uPA 5,525 9
SrtA 4,993 8
PK 2,149 8

Synthetic data. We generate synthetic data sets using the
same procedure as shown in [15]. A set of N sequences with
length l are generated by randomly choosing characters from
the protein alphabet set Σ (total 20 amino acids ). Then K
sequences with length w are generated as parent motifs in
the same manner. Finally, each parent motif is planted to p
percent of all the sequences. And e characters of the parent
motif are randomly mutated to other characters in Σ each
time before being planted into a sequence. The values of
w, p and e are integers randomly drawn from [6, 12], [1, 20]
and [0, d0.3we] respectively to mimic the real data set, where
d0.3we represents the smallest integer not less than 0.3w. We
generate different data sets by varying l, K and N . In order to
test how the noise in the data set would affect our results, we
also generate data sets by gradually increasing e from d0.3we
to d0.9we.

B. Motif Discovery
Real Data. Since MEME usually finds more and better motifs
than MUSI and GibbsCluster, both of which trade accuracy for
efficiency. We first compare the quality of motifs discovered
by ASC+MEME with MEME.

For the 11,642 protein sequences in Celiac, MEME is
applied to find 20 motifs from it. Then, we redo the process
of motif discovery again with ASC+MEME (MEME is set

http://www.cs.ucsb.edu/~honglei/abp/download.htm
http://www.cs.ucsb.edu/~honglei/abp/download.htm
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to find 20 motifs in each cluster) and compare their results.
We say that a motif x discovered by MEME is successfully
recalled if there exists a motif y in ASC+MEME’s results and
DKL(Mx||My) ≤ 1.5 [16]. Table IV shows the results of
ASC+MEME with respect to different numbers of clusters. It
is possible for the number of discovered motifs to be smaller
than the number of recalled motifs since MEME may return
duplicate motifs while we have merged those motifs. With
the increasing cluster number, ASC+MEME not only recalls
all the 20 motifs discovered by MEME, but also discovers
new motifs. When we remove the k constraint and use the
framework proposed in Section IV-E to automatically generate
clusters, 20 motifs can be fully recovered.

TABLE IV: Motifs returned by ASC+MEME for Celiac

# of clusters # of motifs recalled # of motifs found
10 17 16
20 18 19
40 20 22
60 20 24

w/o k 20 24

For the other 4 real datasets, we use the motifs reported
in [2] as ground truth. For MEME, we set it to find 10
motifs which is already larger than the number of reported
motifs. For ASC+MEME, we try k = 10 and the case with k
removed (MEME is still set to find 10 motifs). Both MEME
and ASC+MEME can recall all the motifs that are reported by
[2]. Table V shows both of them run better and ASC+MEME
finds more.

TABLE V: Comparisons with the reported motifs

FXIIa uPA SrtA PK
# of reported motifs 2 2 1 1

MEME 2 4 1 2
ASC+MEME (k = 10) 7 4 2 2

ASC+MEME (w/o k) 7 4 2 2

Though MEME and ASC+MEME both can recall all the
originally reported motifs , they differ a lot in efficiency. The
only two datasets MEME can finish running within 24 hours
are SrtA and PK while ASC+MEME only takes minutes to
run for each of the 4 datasets as shown in Figure 8.
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Fig. 8: Runtime of ASC+MEME for the real data sets

Synthetic Data. In the synthetic data experiment, we count
the number of planted motifs discovered by each method.
For MEME and GibbsCluster, we set the number of clusters
identical to the number of planted motifs. For MUSI, since

we always get a segment fault whenever we set the number of
motifs larger than 10, we set it to 10 through the experiments.
For ACME, because it requires several additional parame-
ters (minimum number of occurrences, maximum number
of allowed mismatches and number of threads) than those
probabilistic methods, we report its results separately at the
end of this section.

Since the planted motifs are a kind of consensus strings, we
extract the consensus strings from each probabilistic method
by using the most frequent characters at each position of a
motif. We say that a planted consensus string x is recalled
if there exists a consensus string y in the result such that
lh(x, y,min(|x|, |y|)) ≤ 2, where min(|x|, |y|) is the smaller
length of x and y. We conduct experiments by fixing d = 5
and varying l and K, where d is the number of anchors in
each cluster center, l is the length of input sequences and K
is the number of planted motifs. Figure 9 shows the number
of recalled motifs for these methods when we fix l = 15. We
also randomly sample 10% of all the sequences in the data
set and run MEME, which is referred as Sampling+MEME.
Moreover, we refer to the naive method which randomly
divides sequences into several clusters as random sequence
clustering (RSC). RSC+MEME fails to discover most of the
planted motifs. In the contrast, ASC+MEME (ASC+MUSI
and ASC+GibbsCluster) outperforms the original algorithm
MEME (MUSI and GibbsCluster). We then conduct exper-
iments to test our method’s robustness with respect to the
sequence length. Figure 10 shows the number of recalled
motifs when we fix K = 20 and vary l. Due to space
constraint, we omitted the results of RSC+MEME since they
follow a similar trend. The improvements of ASC over existing
motif finding algorithms are consistent for different l.
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Next, we check the robustness of these algorithms by grad-
ually increasing the noise (the number of mutated characters
e) when a motif is planted to sequences. We fix l = 15, d = 5,
K = 10, N = 1k and compare our results with MEME and
GibbsCluster. We do not include MUSI here because it fails to
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run with unknown error. The reason we choose such a small
data set is because it takes too much time for MEME to run
on a larger data set. As shown in Figure 11, ASC+MEME’s
accuracy is comparable to MEME even when there are a large
amount of noises. ASC+MEME even recalled more motifs than
MEME when e = 0.6w and 0.8w where w is the width of the
planted motif.
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Fig. 11: Number of recalled motifs when l = 15, d = 5,
K = 10, N = 1k with different e

We then examine the runtime of these methods by fixing
d = 5, N = 10k, and varying l and K. In Figure 12, we
omitted the results of MEME because it takes more than two
weeks to run for one data point. Figure 12(a) shows the overall
runtime when we fix l = 15 and vary K. Note that the run-
time of ASC+MEME (ASC+MUSI and ASC+GibbsCluster)
is the cumulative running time of ASC and MEME (MUSI
and GibbsCluster). ASC+MEME is much faster than MEME,
MUSI and GibbsCluster, and its runtime does not change much
over K. ASC+MUSI is still two orders of magnitude faster
than MUSI and GibbsCluster. Figure 12(b) shows the runtime
when we fix K = 20 and vary l. The increase of l does not
affect ASC’s consistent improvement over runtime.
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To compare ASC+ACME with ACME, we concatenate
short sequences as a long sequence. We also use 3 and 100
for the maximum number of allowed mismatches and the

minimum number of occurrences when N = 10k. Note that
these parameters are set according to how we generated the
synthetic data and are usually not accessible to users when
working with real data. In the following experiments, we use
30 threads for ACME. When we set d = 5,K = 10 and vary
l, both ASC+ACME and ACME can recall all the planted
motifs. Moreover, as shown in Figure 12(c), ASC+ACME
has consistent improvements over the runtime. Results with
different parameters are omitted as they follow a similar trend.
Scalability. The scalability of these methods is tested by
varying the number of sequences. Figure 13 shows the runtime
and the number of recalled motifs when we vary N from
50 thousand to 1 million. Some results are omitted because
we couldn’t get them within a reasonable amount of time for
the corresponding methods. In particular, MEME didn’t finish
in one month. As we can see, ASC+MEME (ASC+MUSI
and ASC+GibbsCluster) takes much less time than MUSI
and GibbsCluster. Moreover, ASC+MEME (ASC+MUSI and
ASC+GibbsCluster) can work in some cases that MUSI and
GibbsCluster can’t.
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Fig. 13: Scalability w.r.t. Number of Sequences

C. Properties of ASC
In this section, we analyze the design of ASC and check its

performance using synthetic data.

Effectiveness. The goal of ASC is to group the sequences
that contain the same motif into one cluster. We call a pair of
sequences a misplaced pair if the two sequences contain the
same motif but are placed into different clusters by ASC. We
use misplaced sequence ratio (MSR) to measure the ratio of
misplaced pairs. MSR is defined as

MSR =
# of misplaced pairs

(# ofsequences containing motifs)2
.

If a sequence contains multiple motifs, we will count it mul-
tiple times. A lower MSR indicates better clustering accuracy.

We first conduct experiments on two data sets of 1 million
sequences with the input sequence length l = 15 and l =
20 respectively. The number of embedded motifs K and the
number of anchors d in each cluster center are varied. Figure
14 demonstrates that the MSRs of ASC follow similar trends
for different l. The misplaced sequence ratio is quite small.
Efficiency. We then conduct experiments to test the clustering
efficiency of ASC. Figure 15 shows the running time of ASC
when l is fixed to 15. Due to space constraint, we omit the
results for l = 20 since they follow a similar trend. We first
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Fig. 14: Misplaced Sequence Ratio of ASC

fix N to 1 million and vary the values of d and K to see
how ASC behaves, where d is the number of anchors in each
cluster center and K is the number of planted motifs. Figure
15(a) shows that the runtime increases when either d or K
increases. This is because larger K or d would make the
clustering process take more time to terminate. This is not
a problem since a small d can already give us a very good
MSR and the running time of ASC is negligible compared to
the time taken by the following motif discovery process. We
further conduct experiments to test how ASC responds with an
increasing number of sequences by fixing K = 20 and vary d
and N . Figure 15(b) shows that with different d, the runtime
of ASC increases almost linearly with respect to N which is
consistent with our time complexity analysis in Section IV-D.
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VII. RELATED WORK

Motif finding is a classic problem and has been extensively
studied for more than a decade. Federico et al. gives a very
good survey of motif finding algorithms before and after next-
generation sequencing era [1]. But still, with new challenges
posted by the increasing size and complexity of big data, it is
not completely solved. Most of the existing algorithms can be
divided into two categories, combinatorial and probabilistic.
Combinatorial methods. Usually these methods use a combi-
natorial definition of motif, and treat the motif finding problem
as an approximate pattern matching problem. For instance, in
order to find motifs with length W , all possible 4W sequences
are enumerated (for DNA sequence with {A,G,C,T} as the
alphabet set). These sequences are modified with ambiguity
codes, e.g., setting K=A or C, to allow mismatches. An
exhaustive matching with the input sequences is conducted to
count the frequency of sequences. The most frequent sequences
will be outputted as motifs. Methods like SMILE [17] and
Weeder [18] adopted this idea and also created index structure
to speed up the matching process. However, since they need
to do exhaustive searching, they are still very slow and can

not scale w.r.t a larger alphabet set. Recently, a method named
ACME [12] is reported to be able to scale to large alphabet set
by utilizing parallel computing. We compared our algorithm
with ACME in the experiments section.

The combinatorial methods usually can get optimal results.
However, they need large search space and often require a few
parameters like the length of motifs and the number of allowed
mismatches, which users may not have knowledge of.
Probabilistic methods. These methods treat the data as com-
posed of two components, the motif model and background
model. They can infer the parameters of motif and background
models that fit the data, thus classifying the subsequences
either to motif or background. Currently, there are two ap-
proaches used to perform inference: Expectation Maximization
(EM) and Gibbs Sampling.

EM. Multiple EM for Motif Elicitation (MEME) [3], [19],
[10] is currently the most popular motif finding software. It
was first proposed in 1994 by T. Bailey etc. The idea is to
first break each input sequence into overlapping k-mers. Then
use EM to estimate the model that fits the data best. Even
though they kept improving the algorithm, there are still some
problems with this method. It can not handle large data sets,
e.g., larger than 600 protein sequences of length 15 in our real
dataset.

STEME [6] can speed up the EM process by using suffix
tree index for the sequences. But due to the complexity of
suffix tree, this method can only support DNA sequences.

Recently, T. Kim et al proposed MUSI [7] which is fast and
can work with protein sequences. MUSI first uses MAFFT [20]
to do multiple sequences alignment and then use EM to infer
PWMs from the alignment results. We compared our algorithm
with MUSI in the experiment section.

Gibbs sampling. Gibbs Sampling has similar mechanism
with EM, but adopts a stochastic way to modify the current
solution. GibbsCluster [11] adopts the idea of Gibbs sampling
to do multiple sequences alignment and clustering. Motifs are
extracted from aligned sequences in each cluster.
Gapped q-gram. Another related topic is gapped q-gram. A
gapped q-gram is a subset of q characters of a fixed non-
contiguous shape. For example, the 3-grams of shape ## # in
the string ACAGCT are AC G, CA C and AG T. This concept
is similar to the anchors we have used in our work, but they
have different focuses.

Gapped q-gram is mostly used in string matching problems
to filter candidates that could potentially match a target se-
quence. Most of these studies are focused on how to find some
optimal “shapes” that could maximize the filtering effects. S.
Burkhardt et al [21], [9] proposed to use gapped q-grams in
a string matching problem and they also showed how to use
experiments to choose the shape of gapped q-grams.

There is another work [22] that also represented a motif as a
set of anchors like we did. It is used to search for occurrences
of a motif in a set of sequences, which is different from our
problem setting as we do not know the motif beforehand.
Record matching and deduplication. This problem is trying
to identify records in a database that refer to the same entity. A
commonly used technique in this domain is called “blocking”
which divides the database into blocks and compare only
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the records that fall into the same block [23], [24]. This
idea is similar to our pre-processing strategy, but it cannot
be directly applied to motif discovery. Our design of anchor
representation, initial anchor selection and iterative anchor set
adjustment is essential for successfully identifying motifs.

To tolerant data heterogeneity, some methods [25], [26] use
q-gram to do matching and blocking. However, none of the
methods have adopted gapped q-gram in any way. So, our
anchor (gapped q-grams with variable shapes) based clustering
algorithm may be also interesting to this domain.
Time series motifs. A time series is a sequence of numerical
and continuous data points. Time series motifs are frequent
repeated patterns in time series data. Several recent papers
[27], [28] targeted on this problem, but their problem settings
are totally different from ours.

VIII. CONCLUSIONS

In this work, we examined the motif discovery problem
in the context of big data, where massive short sequences
are generated by the newest sequencing techniques. Existing
motif finding algorithms usually work only in a small scale
or have to trade accuracy for efficiency. Our strategy is not to
develop another motif finding algorithm and make it scalable.
Instead, we resort to a different methodology which clusters a
sequence dataset into multiple small subsets and then reuses
existing motif finding algorithms. This strategy is generic.
Our experimental results are extremely appealing. The anchor-
based clustering approach can reduce the runtime in more
than two orders of magnitude, without losing any accuracy.
Sometimes it even discovers more motifs.
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