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1 Introduction

Relational graphs are widely used in modeling large
scale networks such as biological networks and social net-
works. In a relational graph, each node represents a distinct
entity while each edge represents a relationship between en-
tities. Various algorithms were developed to discover in-
teresting patterns from a single relational graph [3]. How-
ever, little attention has been paid to the patterns that are
hidden in multiple relational graphs. One interesting pat-
tern in relational graphs is frequent highly connected sub-
graph which can identify recurrent groups and clusters. In
social networks, this kind of pattern corresponds to com-
munities where people are strongly associated. For exam-
ple, if several researchers co-author some papers, attend the
same conferences, and refer their works from each other, it
strongly indicates that they are studying the same research
theme.

Figure 1 depicts this pattern discovery problem: Given
a set of massive relational graphs, how to mine frequent
highly connected subgraphs from it?
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Figure 1. Mining Massive Relational Graphs

This new problem setting has three major characteristics
different from the previous frequent graph mining problem
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[2]. First, in relational graphs each node represents a dis-
tinct object. No two nodes share the same label. In bio-
logical networks, nodes often represent unique objects like
genes and enzymes. Second, relational graphs may be very
large. For example, social networks often have thousands of
nodes and millions of edges. Third, the interesting patterns
should not only be frequent but also satisfy some connectiv-
ity constraints. Previous studies usually interpret a frequent
graph as an object and ignore its internal structure such as
connectivity.

2 Formulation

A relational graph set consists of multiple undirected
simple graphs, {Gi = (V,Ei)}, i = 1, . . . , n, Ei ⊆ V ×V ,
where a common vertex set V is shared among the graphs
in the set. Frequent relational (sub)graphs are the subgraphs
that occur frequently in a relational graph dataset. Since fre-
quent graph mining usually generates too many patterns, it
is more appealing to mine closed frequent graphs only [4].
A frequent graph g is closed if and only if there does not
exist a supergraph with the same support. Assume graphs g
and g′ are both frequent subgraphs and appear in the same
set of relational graphs. If g′ is contained by g, then it is
unnecessary to present graph g′ to users since it does not
provide new information.

The second concern is the connectivity of a graph pat-
tern. An edge cut of a relational graph G is a set of edges
Ec such that E(G) − Ec is disconnected. A minimum cut
is the smallest set in all edge cuts, whose size is written
κ(G). As suggested by many graph theoretic approaches
for data clustering [3, 1], the minimum cut measure, also
called edge connectivity, is good at clustering nodes based
on their connectivity. In this study, we investigate the issues
of mining all closed frequent graphs with edge connectivity
(minimum cut size) at leastK, whereK is a positive integer.
Since previous studies only provide solutions to clustering



objects in one graph, instead of a set of graphs, we have
to solve two issues emerging from this new graph mining
problem: (1) how to mine closed frequent graphs efficiently
in large relational graphs, and (2) how to handle the connec-
tivity constraint.

We briefly introduce our solution to the above two issues.
Different from general labeled graphs, relational graphs
have unique label for each node. Because of this special
property, we can treat relational graphs as sets of edges and
use the closed frequent itemset mining technique instead of
general graph mining algorithms. Here, each distinct edge
is an item. The mining algorithm should assure each dis-
covered graph pattern connected.

There is no downward closure property for edge con-
nectivity. That is, the high connectivity of a graph does
not imply the high connectivity of its supergraph, and vice
versa. Therefore, we have to enumerate all subgraphs of
each closed frequent graph and check their connectivity.
Since billions of frequent graphs may exist in one dataset, it
is impossible to finish this brute-force computation within
limited time. Thus, we develop two graph theoretic ap-
proaches, CLOSECUT (a pattern-growth approach) and
SPLAT (a pattern-reduction approach), to efficiently dis-
cover closed highly connected graphs. CLOSECUT extends
a candidate graph by inserting new edges until the candi-
date graph is not frequent any more, while SPLAT works in
the reverse direction. Furthermore, we apply graph con-
densation and decomposition techniques in the design of
CLOSECUT and SPLAT to improve the performance. Both
of them can reduce the size of candidate graphs in terms of
nodes and edges.

3 Experimental Results

We conducted a comprehensive performance study on
both synthetic and real datasets. The synthetic data is con-
trolled by a set of parameters that allow us to test the per-
formance under different conditions. The real dataset is ex-
tracted from microarray data.

Figure 2 shows the runtime of CLOSECUT and SPLAT
for a synthetic dataset. This dataset contains a small num-
ber of relational graphs, each with a large number of nodes.
Each graph in this dataset contains multiple highly con-
nected subgraphs, and these subgraphs overlap with each
other. As shown in the figure, CLOSECUT and SPLAT have
the similar performance when the support is high. The
high support threshold filters out lots of infrequent edges
and noise edges. Thus, both algorithms complete very fast.
When the support is lowered down, CLOSECUT outper-
forms SPLAT because SPLAT has to enumerate lots of infre-
quent highly connected subgraphs, which will eventually be
discarded. However, when the support is very low, the situ-
ation is reversed. SPLAT can use the connectivity constraint

to remove many frequent, but low minimum cut edges.
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Figure 2. Runtime vs. Support

We also applied CLOSECUT and SPLAT in biologi-
cal datasets and successfully identified interesting patterns
from multiple biological networks. In the full version of
this paper, we will formulate CLOSECUT and SPLAT, and
report the patterns they discovered systematically.

4 Conclusions

In this paper, we introduced a new graph mining prob-
lem: finding closed frequent graphs with connectivity con-
straints in relational graphs. We adopted the concept of
edge connectivity and applied graph theoretic results, graph
condensation and decomposition, in our algorithm design.
Through our study, a new research area in frequent graph
mining is exposed, where the previous algorithms on single
graph mining should be re-examined for pattern discovery
in multiple relational graphs.
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