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Abstract 1 Introduction

OLAP (On-Line Analytical Processing) is an important ~ OLAP (On-Line Analytical Processing) [9, 5, 20, 2, 10]
notion in data analysis. Recently, more and more graph or iS an important notion in data analysis. Given the un-
networked data sources come into being. There exists a simderlying data, a cube can be constructed to provide a
ilar need to deploy graph analysis from different perspec- multi-dimensionaland multi-level view, which allows for
tives and with multiple granularities. However, traditmin ~ €ffective analysis of the data from different perspectives
OLAP technology cannot handle such demands because ifnd with multiple granularities. The key operations in
does not consider the links among individual data tuples. @1 OLAP framework are slice/dice and roll-up/drill-down,
In this paper, we develop a novglaph OLAP framework with slice/dice focusing on a particular aspect of the data,
which presents anulti-dimensionaland multi-level view  roll-up performing generalization if users only want to see

over graphs. a concise overview, and drill-down performing specializa-
The contributions of this work are two-fold. First, start- tion if more details are needed.
ing from basic definitionsj.e., what aredimensionsand In a traditional data cube, a data record is associated with

measuresn the graph OLAP scenario, we develop a con- a set of dimensional values, whereas different records are
ceptual framework for data cubes on graphs. We also viewed asmutually independentMultiple records can be
look into different semantics of OLAP operations, and clas- summarized by the definition of corresponding aggregate
sify the framework into two major subcasaéstormational measures such as COUNT, SUM, and AVERAGE. More-
OLAP and topological OLAP Then, with more emphasis over, if a concept hierarchy is associated with each at&jbu
on informational OLAP (topological OLAP will be covered multi-level summaries can also be achieved. Users can nav-
in a future study due to the lack of space), we show howigate through different dimensions and multiple hieragshi
a graph cube can be materialized by calculating a special via roll-up, drill-down and slice/dice operations. Howeve
kind of measure calledggregated grapdind how to imple-  inrecentyears, more and more data sources beyond conven-
ment it efficiently. This includes both full materializatio tional spreadsheets have come into being, such as chemi-
and partial materialization where constraints are enfatce cal compounds or protein networks (chem/bio-informaics)
to obtain an iceberg cube. We can see that the aggregated?D/3D objects (pattern recognition), circuits (computer-
graphs, which depend on the graph properties of underly- aided design), loosely-schemaed data (XML), and social or
ing networks, are much harder to compute than their tradi- informational networks (Web), where not only individual
tional OLAP counterparts, due to the increased structural entities but also thénteracting relationshipsamong them
complexity of data. Empirical studies show insightful re- are important and interesting. This demands a new genera-
sults on real datasets and demonstrate the efficiency of ourtion of tools that can manage and analyze such data.
proposed optimizations. Given their great expressive power, graphs have been
widely used for modeling a lot of datasets that contain struc
*The work was supported in part by the U.S. National Scienas#o ture information. \.Nlth the tremendoug amount of graph
dation grants 11S-08-42769 and BDI-05-15813, Office of Nawesearch ~ data accumulated in all above applications, the same need
(ONR) grant N00014-08-1-0565, and NASA grant NNXOSAC35A. to deploy analysis from different perspectives and with-mul




tiple granularities exists. To this extent, our main task in
this paper is to develop graph OLAP frameworkwhich
presents a multi-dimensional and multi-level view over

graphs. O D G I G °©©
In order to illustrate what we mean by “graph OLAP” o 0.0 Lo .22
and how the OLAP glossary is interpreted with regard to lsigmod, 2004]  [vldb, 2004] [sigmod, 2005) |icde, 2005]
this new scenario, let us start from a few examples. N 4 A /
Example 1 (Collaboration Patterns). There are a set of au- SLOM SL&
thors working in a given field: For any two persons, if they {0 0% {o 2%
coauthorw papers in a conference,g, SIGMOD 2004, {69 o {69 o
then a link is added between them, which has an collabo- o o o of
ration frequency attribute that is weighted:as For every [db_;;;,;;;;oéq [db-‘c;;—n;;;)oﬂ /
conference in every year, we may have a coauthor network 1
describing the collaboration patterns among researchers, \ T
each of them can be viewed as a snapshot of the overall e
coauthor network in a bigger context. {0 %
It is interesting to analyze the aforementioned graph {60 0¢
dataset in an OLAP manner. First, one may want to check o 0

the collaboration patterns for a group of conferences, say, db-conf. all-vears]

all DB conferences in 2004 (including SIGMOD, VLDB,

ICDE, etc) or all SIGMOD conferences since its inaugu- Figure 1: The OLAP Scenario for Example 1

ration. In the language of data cube, witvenuedimen-

sion and aime dimension, one may choose to obtain the

(db-conf, 2004%ell and the(sigmod, all-yearskell, where ~ guage, with dransportation-typeimension and aompany

the venueand time dimensions have been generalized to dimension, the above situations correspond to(#e all-
db-confandall-years respectively. Second, for the subset companieskell and the(all-types, company) cell, while

of snapshots within each cell, one can summarize them bythe measurecomputed for a celt is a graph displaying
computing a measure as we did in traditional OLAP. In the the overall maximum flow, which has considered all types
graph context, this gives rise to aggregated graph For and companies that are alloweddn Unlike Example 1,
example, a summary network displaying total collaboration computing the aggregated graph is now a much harder task;
frequencies can be achieved by overlaying all snapshots to-also, the semantics associated with un-aggregated network
gether and summing up the respective edge weights, so thagnapshots and aggregated graphs are different: The for-
each link now indicates two persons’ collaboration adégit ~ mer shows capacities on its edges, whereas the latter shows
in the DB conferences of 2004 or during the whole history transmitted flows, which must be smaller by its definition.
of SIGMOD. | u

The above example is simple because the measure is cal- TSN TN,
culated by a simple sum over individual pieces of informa-
tion. A more complex case is presented next.
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Example 2(Maximum Flow). Consider a set of cities con- ( . = ( O @) “, =
nected by transportation networks. In general, there are s o ," o~

many ways to go from one cityl to another cityB, e.qg, .'\ o . ° . \’ 'S, O Oﬂ,‘

by car, by train, by air, by watergtc, and each way is op- b . L S-Ao

erated by multiple companies. For example, we can assume i Y

that the capacity of companys air service fromA to B is

% g, i., companyr can transport at most, ; units from Figure 2: The OLAP Scenario for Example 3

Ato B using the planes it owns. Finally, we get a snapshot

of capacity network for every service of every company.  Example 3(Collaboration Patterns, Revisited). Usually, the
Now, consider the transporting capability from a source whole coauthor network could be too big to comprehend,

city S to a destination cityl’, it is interesting to see how and thus it is desirable to look at a more compressed view.

this value can be achieved by sending flows via different For example, one may like to see the collaboration act#itie

paths if 1) we only want to go by air, or 2) we only wantto organized by the authors’ associated affiliations, which re

choose services operated by companyn the OLAP lan- quires the network to be generalized one step.epmerg-



ing all persons in the same institution as one node and con-mizations. Constraints and partial materialization anel-st
structing a new summary graph at the institution level. In ied in Section 5. We report experiment results and related
this “generalized network”, for example, an edge betweenwork in Sections 6 and 7, respectively. Section 8 concludes
Stanford and University of Wisconsin will aggregate all-col this study.

Iaborayon frequenmes oc_cu_rred between Stanford author& A Graph OLAP Framework

and Wisconsin authors. Similar to Examples 1 and 2, an ag-

gregated graphi.e. the generalized network defined above) ~ In this section, we present the general framework of
is taken as the OLAP measure. However, the difference heregraph OLAP.

is tha_t a roI_I-up from the |n_d|V|(_juaI Ieve_zl to the |ns_t|tUItIo Definition 1 (Graph Model). We model the data exam-
level is achieved by consolidating multiple nodes into one, .

which shrinks the whole graph. Compared to this, in Ex- lnheodtsgy_gr?é)h (G? LAP g$ Conﬁgfgath ZEZVZLk@‘:‘nfp'
amples 1 and 2, the graph is not collapsed because we ar T B { II’ Qé A J\él}cr\:\.lf N I »parek'n_-
always examining the relationships among the same set of,” 12 "2 -« =2 “k.i> i) Inwhich I i, Io.i, ... Ii.i !

. . - . formational attributeglescribing the snapshot as a whole
objects — it poses minimum changes with regard to network . .
o andG; = (V;, E;) is agraph There are alsmode attributes
topology upon generalization.

attached with any € V; andedge attributeattached with

The above examples demonstrate that OLAP provides a@nye € E;. Note that, sinceq, Ga, ..., Gy only repre-
powerful primitive to analyze graph datasets. In this paper sent different observation¥j, vz, ..., Vv actually corre-
we will give a systematic study on graph OLAP, which is spond to the same set of objects in real applications.
more general than traditional OLAP: In addition to individ-
ual entities, the mutual interactions among them are also
taken into consideration. Our major contributions are sum-
marized as below.

For instance, with regard to the coauthor network de-
scribed in the introductioryenueandtime are two infor-
mational attributes that mark the status of individual snap
shots,e.g, SIGMOD 2004 and ICDE 2005uthorIDis a
e For conceptual modeling a graph OLAP framework  node attribute indicating the identification of each nodel, a

is developed, which definetimensionsandmeasures  collaboration frequencys an edge attribute reflecting the

in the graph context, as well as the conceptruflti- connection strength of each edge.

dimensionaland multi-levelanalysis over the underly- Dimensionand measureare two concepts that lay the

ing networked data. We distinguish different semantics foundation of OLAP and cubes. As their names imply, first,

of OLAP operations and categorize them into two ma- dimensions are used to construct a cuboid lattice and parti-
jor subcasesinformational OLAP(as shown in Exam-  tion the data into different cells, which act as the basis for
ples 1 and 2) antbpological OLAP(as shown in Ex-  muilti-dimensional and multi-level analysis; second, mea-
ample 3). Itis necessary since these two kinds of OLAP syres are calculated to aggregate the data covered, which
demonstrate substantial differences with regard to thedeliver a summarized view of it. In below, we are going to
construction of a graph cube. formally re-define these two concepts for the graph OLAP

e For efficient implementation, the computation of ag-  scenario.

gregated graphs as graph OLAP measures is examined. Let us examine dimensions at first. Actually, there are

Due to the increased structural complexity of data, cal- two types of dimensions in graph OLAP. The first one, as

culating certain measures that are closely tied with the exemplified by Example 1, utilizes informational attribsite

graph properties of a network,g, maximum flow and  attached at the whole snapshot level. Suppose the following
centrality, poses greater challenges than their tradition concept hierarchies are associated wighueandtime:

OLAP counterparts, such as COUNT, SUM and AV- o venue conference— area— all,

ERAGE. We invggtigate this issue, categqrize measures oo year— decade— all:

based on the difficulty to compute them in the OLAP

context and suggest a few measure properties that ma)_;he role of these two dimensions is to o_rganize shapshots
help optimize the processing further. Both full materi- INt0 groups based on different perspectives and granular-

alization and partial materialization (where constraints '1€S: €-g, (db-conf, 2004)and (sigmod, all-years)where

are enforced to obtain an iceberg cube) are discussed. €2ch of these groups corresponds to a “cell” in OLAP ter-
minology. They control what snapshots are to be looked at,

The remaining of this paper is organized as follows. In they do not touch the inside of any single snapshot.
Section 2, we formally introduce the graph OLAP frame-

work. Section 3 discusses the general hardness to comput®efinition 2 (Informational Dimensions). With regard to
aggregated graphs as graph OLAP measures, which catethe graph model presented in Definition 1, the set of infor-
gorizes them into three classes. Section 4 looks into somemational attribute§ 11, I, . . ., I; } are called thenforma-
properties of the measures and proposes a few further optitional dimensionsf graph OLAP, ofinfo-Dimsin short.



The second type of dimensions are provided to operateelements inside individual networks. As a result, we will
on nodes and edges within individual networks. Take Ex- give a separate measure definition for each case in below.

ample 3 for instance, suppose the following concept hierar-
chy Definition 4 (I-Aggregated Graph). With regard to Info-

Dims{Iy, I»,..., I}, thel-aggregated graph/’ is anat-
tributed grapithat can be computed based on a set of net-
is associated with the node attribatethorID, thenitcanbe  \work snapshotyy’ = {G;,,G,,...,G;,,} whose Info-
used to group authors from the same institution into a “gen- pims are of identical values; it satisfies: 1) the nodes
eralized” node, and a new graph thus resulted will depict of ps! are as same as any snapshot@, and 2) the
interactions among these groups as a whole, which summangde/edge attributes attached 3¢’ are calculated asg-
rizes the original network and hides specific details. gregate function®f the node/edge attributes attached to
Gy, Giyy ., G
Definition 3 (Topological Dimensions). The set of dimen-
sions coming from the attributes of topological elements  The graph in Figure 1 that describes collaboration fre-

e authorlD: individual — institution — all

ins

(i.e, nodes and edges &), {T1,T»,...,T;}, are called guencies among individual authors for a particular group
the topological dimensionsf graph OLAP, orTopo-Dims of conferences during a particular period of time is an in-
in short. stance of l-aggregated graph, and the interpretation ef cla

sic OLAP operations in graph I-OLAP is summarized as

The OLAP semantics accomplished through Info-Dims follows.
and Topo-Dims are rather different, and in the followingwe e Roll-up: Overlay multiple snapshots to form a higher-
shall refer to them amformational OLAP(abbr.I-OLAP) level summary via I-aggregated graph.
andtopological OLAM(abbr.T-OLAR), respectively. e Drill-down: Return to the set of lower-level snapshots

For roll-up inl-OLAP , the characterizing feature is that, from the higher-level overlaid (aggregated) graph.
snapshots are just different observations of the same under , gjice/dice: Selecta subset of qualifying snapshots based
lying network, and thus when they are all grouped into one 5 |nfo-Dims.
cell in the cube, it is likeoverlayingmultiple pieces of in-
formation,without changinghe objects whose interactions Definition 5 (T-Aggregated Graph). With regard to Topo-
are being looked at. Dims{Ty,T»...,T;}, theT-aggregated graph/” is anat-

For roll-up inT-OLAP , we are no longer grouping snap- tributed graptthat can be computed based on an individ-
shots, and the reorganization switches to happen inside in-ual networkG;; it satisfies: 1) the nodes d@¥; with iden-
dividual networks. Heremergingis performed internally tical values on their Topo-Dims are grouped, whereas each
which “zooms out” the user’s focus to a “generalized” set group corresponds to a node 7, 2) the attributes at-
of objects, and a new graph formed by ssbhinkingmight tached toM 7 are calculated asiggregate functionsf the
greatly alter the original network’s topological struatur attributes attached t6r;.

Now we move on to measures. Remember that, in tradi- The graph in Figure 2 that describes collaboration fre-

tional OLAP, a measure is calculated by aggregating all the . T . .
. . encies among institutions is an instance of T-aggregated
data tuples whose dimensions are of the same values (base%u

. . graph, and the interpretation of classic OLAP operations in
on concept hierarchies, such values could range from the . .
! . e . . graph T-OLAP is summarized as follows.
finest un-generalized ones to “all/*”, which form a multi- ) _
level cuboid lattice); casting this to our scenario here: e Roll-up: Shrink the topology and obtain a T-aggregated
First, in graph OLAP, the aggregation of graphs should ~ 9raph that displays a compressed view, whose topo-
also take the form of a graphe. anaggregated graphin logical elementsi(e., nodes and/or edg_es) h_ave been
this sense, graph can be viewed as a special kind of measure, Merged and replaced by corresponding higher-level
which plays a dual role: as a data source and as a special °N€S:
(aggregated) measure. Of course, other measures that ares Drill-down: A reverse operation of roll-up.
not graphs, such as node count, average degree, diameters Slice/dice: Select a subgraph of the network based on
etc, can also be calculated; however, we do not explicitly Topo-Dims.
include such non-graph measures in our model, but instead e -
treat them as derived from corresponding graph measures. 3 Measure Classification
Second, due to the different semantics of I-OLAP and  Now, with a clear concept of dimension, measure and
T-OLAP, aggregating data with identical Info-Dim values possible OLAP operations, we are ready to discuss imple-
groups information among the snapshots, whereas aggregatnentation issues.e., how to compute the aggregated graph
ing data with identical Topo-Dim values groups topological in a multi-dimensional and multi-level way.



Recall that in traditional OLAP, measures can be classi- reasoning. Suppogensportation-typ@andcompanycom-
fied into distributive algebraicandholistic, depending on  prise the two dimensions of the cube, and we generalize
whether the measures of high level cells can be easily com-from low level cells(all-types, company 1jall-types, com-
puted from their low level counterparts, without accessing pany 2) ... to (all-types, all-companies).e., compute the
base tuples residing at the finest level. For instance, in themaximum flow based on all types of transportation oper-

classicsaldtime, location) example, the total sale 02008 ated by all companies. Intuitively, this overall maximum
California] can be calculated by adding up the total sales of flow would not be a simple sum (or other indirect manipula-
[January 2008 California], [February 2008 California], tions) of these companies’ individual maximum flows. For

..., [December 2008California], without looking at base  instance, company 1 may have excessive transporting ca-
data points such a84/12/2008Los Angeleswhichmeans  pability between two cities, whereas the same link happens
that SUM is a distributive measure. Compared to this, AVG to be a bottleneck for company 2: Considering both com-
is often cited as an algebraic measure, which is actually apanies simultaneously for determination of the maximum
semi-distributivecategory in that AVG can be derived from flow can enable capacity sharing and thus create a double-
two distributive measures: SUM and COUNe., alge- win situation. In this sense, maximum flow is not distribu-
braic measures are functions of distributive measures. tive by definition. However, as an obvious fact, maximum
(Semi-)distributiveness is a nice property for top-down flow f is determined by the networkthat shows link ca-
cube computation, where the cuboid lattice can be gradu-pacities on its edges, and this capacity graph is distkibuti
ally filled up by making level-by-level aggregations. Mea- because it can be directly added upon generalization: When
sures without this property is put into the holistic catggor link sharing is enabled, two companies having two separate
which is intuitively much harder to calculate. Now, consid- links from A to B with capacityc!, ; andc?  is no different
ering graph OLAP, based on similar criteria with regard to from a single link with capacity, 5 + ¢ 5 for maximum
the aggregated graphs, we can also classify them into thredlow calculation. Finally, being a function of distributive
categories. aggregated graphs, maximum flow is algebraic.

I-holistic. The I-holistic case involves a more complex ag-

sider a high level celt;, and the corresponding low level gregate graph, where base level details are required to com-
cells it covers:c}, c2, . ... An aggregated graphi/, is dis- pute it. In the coauthor network of Example 1, the median

tributive if M,(c;,) can be directly computed as a function of researchers’ collaboration frequency for all DB confer-
of Md(cll)’ Md(C?), e, ences from 1990 to 1999 is holistic, similar to what we saw

in a traditional data cube.

Definition 6 (Distributive, Algebraic and Holistic). Con-

Mq(en) = Fa[Ma(c}), Ma(c}), - .| 4 Optimizations

For a non-distributive aggregated grap,, if it can be Being (semi-)distributive or holistic tells us whether the

?V?[NJ\G;[% fromi :orf‘r;?v(;ther distributive aggregated graphs aggregated graph computation needs to start from com-
d)"Fdo e e h pletely un-aggregated data or some intermediate resuits ca
Ma(cn) = Fo [M(cn), M2(cn), -], bg Ieyeraged. However, even if the aggregated gra_ph is dis-
tributive or algebraic, and thus we can calculate high level
then we say that it imlgebraic Aggregated graphs that measures based on some intermediate level ones, it is far
are neither distributive nor algebraic belong to thelistic from enough, because the complexity to compute the two
category. functions F; and F, in Definition 6 is another question.
i ) Think about the maximum flow example we just mentioned,
If we further consider the d|fferences betweep l'_OLAP F, takes the distributive capacity graph as input to compute
and T-OLAP, there are actually six classes: I-distributive the flows, which is by no means an easy transformation.
l-algebraic, I-holistic and T-distributive, T-algebraid- Based on our analysis, there are mainly two reasons for
holistic. Due to limited space, in the remaining of th|s P& such potential difficulties. First, due to the interconiregt
ber, we Sh‘?"” putmore empha5|s on I-OLAP; discussions for nature of graphs, the computation of many graph properties
T-OLAP will be covered in a future study. is “global” as it requires us to take the whole network into
I-distributive . The I-aggregated graph describing collabo- consideration. In order to make this concept of globalness
ration frequency in Example 1 is an I-distributive measure, clear, let us first look at a “local” case: For I-OLAP, ag-
because the frequency value in a high level I-aggregatedyregated graphs are built for the same set of objects as the
graph can be calculated by simply adding those in corre-ynderlying network snapshots; now, in the aggregated graph
sponding low level I-aggregated graphs. of Example 1, “R. Agrawal” and “R. Srikant™s collabora-
I-algebraic. The graph displaying maximum flow in Ex- tion frequency for cel{db-conf, 2004js locally determined
ample 2 is an l-algebraic measure based on the followingby “R. Agrawal” and “R. Srikant™s collaboration frequency



for each of the DB conferences held in 2004; it does not aggregated graph's;-a> edge can be restricted to a 1-
need any information from other authors to fulfill the com- neighborhood of these two authors in the un-aggregated
putation. This is an ideal scenario, because the calcaktio snapshots of 2004’s DB conferencés,, we only need to
are localized and thus greatly simplified. Unfortunatebt, n  check edges that are directly adjacent to eithesr a-, and
all measures provide such local properties. For instance, i in this way a third persons can be found, if he/she pub-
order to calculate a maximum flow froghto T for the cell lishes with bothe; andas, while the total collaboration fre-
(air, all-companies)n Example 2, only knowing the trans- quencies summed from the weights of these adjacent edges
porting capability of each company’s direct flights between are at leasé.. Also, note that, the above aggregated graph
S andT is not enough, because we can always take an indi-definition is based on the number of length-2 pathsdike
rect route via some other cities to reach the destination.  a3-a; where each edge of it represents a “friendship” rela-
Second, the purpose for us to compute high level aggre-tion; now, if we further increase the path lengttkt@ompu-
gated graphs based on low level ones is to reuse the intertations can still be localized in ﬁzﬁj-neighborhood of both
mediate calculations that are already performed. However,authors,i.e, any relevant author on such paths of “friend-
when computing the aggregated graph of a low level cell ship” must be reachable from either or a; within L%J
ci, we only had a partial view about thé-portion of net- steps. This can be seen as a situation that sits in the middle
work snapshots; now, as multiple pieces of information are of Example 1's “absolute locality” (0-neighborhood) and
overlaid into the high level celt,, some full-scale consol- maximum flow’s “absolute globality"do-neighborhood).
idation needs to be performed, which is very much like the  There is an interesting note we want to put for #ie
merge sort procedure, where partial ranked lists are reusedolutely local distributiveaggregated graph of Example 1.
but somehow adjusted to form a full ranked list. Still, be- Actually, such a 0-neighborhood localization property de-
cause of the structural complexity, it is not an easy task to generates the scenario to a very special case, where it is no
develop such reuse schemes for graphs, and even it is possjonger necessary to assume the underlying data as a graph:
ble, reasonably complicated operations might be involved. For each pair of coauthors, we can construct a traditional
Admitting the above difficulties, let us now investigate cube showing their collaboration frequency “OLAPed” with
the possibility to alleviate them. As we have seen, for some regard tovenueandtime, whose computation does not de-
aggregated graphs, the first aspect can be helped bydheir pend on anything else in the coauthor network. In this sense,
calizationproperties with regard to network topology. Con- we can treat the coauthor network as a virtual union of pair-
cerning the second aspect, the key is how to effectively wise collaboration activities, whereas Example 1 can iddee
reuse partial results computed for intermediate cells ab th be thought as a traditional OLAP scenario disguised under
the workload to obtain a full-scale measuraitenuatedas its graph appearances, since the graph cube we defined is
much as possible. In the following, we are going to examine nothing different from a collection of pair-wise traditiain
these two directions in sequel. cubes. As a desirable side effect, this enables us to lezerag
specialized technologies that are developed for tradition
OLAP, which in general could be more efficient. But after
Definition 7 (Localization). For an I-OLAP aggregated g||, the case is special anyway, most graph measures would
graph M, that summarizes a group of network snapshots not hold such absolute localization, which is also the rea-

G = {Gi,,Gi,,..., Gy, }, if 1) we only need to check  son why traditional OLAP proves to be extremely restrictive
aneighborhoodfv in G;,, G, ..., G, to calculatev’s when handling networked data.

node attributes inV/;, and 2) we only need to checkaigh-
borhoodof u,v in G;,,Gi,, ..., G, to calculate(u,v)’s 4.2 Attenuation
edge attributes in\/;, then the computation dff; is said to
belocalizable

4.1 Localization

In below, we are going to explain the idea of attenuation
through examples, and the case we pick is maximum flow.
In a word,the more partial results from intermediate cal-

Example 4(Common Friends). With regard to the coauthor culations are utilized, the more we can decrease the cost of

network depicted in Example 1, we can also compute the -
. o obtaining a full-scale aggregated graph

following aggregated graph: Given two autharsandas, o ) ) _

the edge between them records the number of their common To k_’e9'n W't,h’ let us first review some bas‘|/c conceg(t)s, cf.

“friends”, whereas in order to build such “friendship”, the (6]- Given a directed grapty’ = (V. E), ¢ : (3) = R=

total collaboration frequency between anda, must sur-  indicates acapacityfor all pairs of vertices and’ is pre-

pass &, threshold for the selected conferences and tihe.  CiS€ly the set of vertex pairs for which > 0. For a
source nodss and a destination node aflowin G is a

The above example provides another instance that leverfunction f : (‘2/) — R assigning values to graph edges
ages localization to promote efficient processing. Con- such that, (i)f(u,v) = —f(v,u): skew symmetry, (ii)
sider a cell,e.g, (db-conf, 2004)the determination of the  f(u,v) < c(u,v): capacity constraint, and (iii) for each



v # s/t,> ey flu,v) = 0: flow conservation. Since

definition calledbetweenness centralityz uses shortest

most maximum flow algorithms work incrementally, there path to model this: Let;; denote the number of short-

is an important lemma as follows.

Lemmal Let f be a flow inG and letG be its residual
graph, whereresidualmeans that the capacity function of
Gyiscy =c— f; f'is amaximum flow it7; if and only

if f+4 f’is amaximum flow ird.

est pathsi(e., equally short ones) between two nogeand

k; for any nodei, ”J%S) is the fraction of shortest paths
betweenj, k that go throughi, with Cz(7) summing it up

for all node pairsCp (i) = >, 1 ., %](:) Intuitively, for a
“star"-shaped network, all shortest paths must pass the net
work center, which make€'s achieve its maximum value

Note that, the+/— notation here means edge-by-edge (|V|—1)(|V] - 2)/2.

addition/subtraction; and in summary, this lemma’s core

idea is to look for a flowf’ in G; and usef’ to augment
the current flowf in G.

Only considering shortest paths is inevitably restrictive
in many situations; and thuisformation centralityC'; goes
one step further by taking all paths into account. It models

For the graph OLAP context we consider, in order to any path fromyj to k as a signal transmission, which has a
compute the algebraic aggregated graph displaying max-channel noise proportional to its path length. For more de-

imum flow, the functionF, takes a distributive capacity

tails, we refer the readers to [17], which has derived the fol

graphc as its input; now, since capacity can be written as lowing formula based on information theoretic analysist Le

the sum of a flow and a residual graph= f+ ¢, does this

A be a matrix, whose;; entry designates the interaction

decomposition provide us some hints to pull out the useful strength between nodend nodg; defineB = D— A+ J,

part f, instead of blindly taking and starting from scratch?
Suppose that the capacity graph of ¢ell-types, com-
pany 1)is ¢!, where f; is the maximum flow anal:1 =

¢! — f1 denotes the corresponding residual graph. leeW|se sum asl = Z\

we have??, f, andc2 for cell (all-types, company 2With-

whereD is a diagonal matrix wittD;; = Z‘Vll a;; andJ is

a matrix having all unit elements; perform an inverse opera-
tion to get the:entrality matrixC = B~1, write its diagonal

1 ¢j; and its row sum a®; = ZJ 1 Cijs

the |nformat|on centrahty of nodeis then equivalent to

out loss of generallty, assume there are only these two com-

panies whose transportation networks are overlaid(gite
types, all-companiesyvhich has a capacity ef= c' + ¢2.

Claim1 f; + fo + f"is a maximum flow foe if and only
if f"is a maximum flow foe} + ¢3,.

PROOF. Sincef; and f, are restricted to the transportation
networks of company 1 and company 2, respectivehy, /-
must be accommodated by the overall capaeityc! + 2,
even if link sharing is not enabled. After subtractifig- fa,
the residual graph thus resulted is:

(e +c) = (f1 + f?)
= (= fH+(@ =) =cj +j,

Cfi+fo

A direct application of Lemma 1 finishes our proof. W

1
Cii + (T - 2RZ)/|V|

Cr(i) =

Now, with regard to the coauthor network described in
Example 1, if we define the interaction strength between
two authors as their total collaboration frequency for a set
of network snapshots, then an aggregated grapl), can
be defined, whose nodés associated with a node attribute
C(7) equaling its information centrality. |

Claim 2 The computation af/..,, is hard to be attenuated
in a level-by-level aggregation scheme.

PROOF As we can see, the core component of information
centrality computation is a matrix inverse. Now, given two
portions of network snapshots that are overlaid, the olveral

As itis generally hard to localize maximum flow compu- centrality matrix is:

tations with regard to network topology, the above property
is important because it takes another route, which reuses [(D1 + Dy) —
partial resultsf,, fo and attenuates the overall workload

from ¢! + ¢ to ¢, + ¢7,. By doing this, we are much
closer to the overall maximum flos + f> + f’ because a

-1

(A1—|—A2)+J} :(Bl+BQ—J)71.

From intermediate results, we know the centrality matrices
C, = By andCy = B;*'; however, it seems that they do

big portion of it, f; + f», has already been decided even be- not help much to decrease the computation cost of inverting
fore we start an augmenting algorithm. Unfortunately,gher B1 + Bz — J. n

are also cases where such attenuation properties aretard, i

not impossible, to develop.

Example 5 (Centrality). Centrality is an important con-

cept in social network analysis, which reflects how “cen-

When things like this happen, an alternative is to aban-
don the exactness requirement and bound the answer within
some range instead; as illustrated by the following segction
this would become useful if the cube construction is subject

tral” a particular node’s position is in a given network. One to a set of constraints.



5 Constraints and Partial Materialization done on a Microsoft Windows XP machine with a 3GHz
Pentium IV CPU and 1GB main memory. Programs are

In above, we have focused on the computation of a full compiled by Visual C++.

cube,i.e., each cell in each cuboid is calculated and stored.
In many cases, this is too costly in terms of both space and6.1 Real Dataset
time, which might even be unnecessary if the users are not  The first dataset we use is the DBLP Bibliogra-

interested in obtaining all the information. Usually, wser phy (http://www.informatik.uni-trier.de/~ley/db/) down-
may stick with arinterestingnesunction?, indicatingthat  |5aded in April 2008. Upon parsing the author field of
only those cells above a particular threshbidake sense to papers, a coauthor network with multiple snapshots can be
them. Considering this, all celiswith I(c) > 6 comprise  constrycted, where an edge of weighis added between
anicebergcube, which representspartial materialization 4,9 persons if they publishy papers together. We pick a

of the cube’s interesting part. . few representative conferences for the following three re-
Optimizations exist as to how such an iceberg cube cangegch areas:

be calculatedg._e., how tq e_fﬂmgntly process the cgnstramt « Database (DB): PODS/SIGMOD/VLDB/ICDE/EDBT,
of I(c) > ¢ during materialization, without generating a full o
cube at first. Two most important categories of constraints ® Data Mining (DM): ICDM/SDM/KDD/PKDD,

are anti-monotoneand monotone They can be “pushed” ¢ Information Retrieval (IR): SIGIR/WWW/CIKM;

into the computation process as follows: In bottom-up com- ang also distribute the publications into five-year bins:
putation,i.e, high level cells are calculated first, followed (2002, 2007), (1997, 2002], (1992, 1997],.... In this way,

by low level cells they cover, on one hand, if a high level \e obtain two informational dimensionsenueandtime,
cell ¢, does not satisfy an anti-monotone constraint, then g, which 1-OLAP operations can be performed.

we know that no low level celt; covered by, would sat-

isfy it, and thus the computation can be immediately termi- " James D Calln

nated withc; pruned from the cube; on the other hand, if W Bruse Crof e
a high level celk;, already satisfies a monotone constraint, ch;n%gg}zn A
then we no longer need to perform checkings for any low Lo N
level cells covered by;, because they would always sat- Victor Lavierko ® N

Wei-Ying Ma

isfy it. Concerning top-down computation, the roles of anti
monotonicity and monotonicity are reversed accordingly.

Philip S, Yu

It is easy to see that the anti-monotone and monotone i

Haixun Wang

properties depend on specific analysis of measures and in- T
terestingness functions. Here, since we are working with o

DM
DB
networked data, some graph theoretic studies need to be Sheng 2 // /, § > time
1992

made. For example, regarding the maximum flow’s value =~ =" 2007 "mé 7
Ifl = Dpey f(s,0) = X e flv,t), ie, the highest

~

amount of transportation a network can carry fréno 7, TRV, gt Abmabam Silbeehrs Famd Patesn
|f| = &4 is anti-monotone, because the transporting ca- Laks%ii;évz%iiém Jgﬁ:}é’gc:’ﬁ“i’" R&hiﬁ:n}ffc,“;m
pability of one company must be smaller than that of all ;fgyu@d;:m ]e?ﬁi’,é’%‘l‘g‘:: h}faﬁa:;d;}?:“‘;ﬁn
companies together (actually, as we showed in Section 4, Exteiin e ESy
the flow value ofc;, is no smaller than the flow sum of all Danicla Florescu  Sudarshan Michacl Stoncbraker

¢'s that are covered byy,, which is a condition stronger

than the normal anti-monotonicity defined between two in- Figure 3: A Multi-Dimensional View of Top-10 “Central” Authors

dividual cells); also, regarding the diametéof a graph,

which is designated as the maximum shortest path length  Figure 3 shows a classic OLAP scenario. Based on the

for all node pairsd > §4 is monotone, because more viable definition in Section 4, we compute the information central-

links can only cut down the distance between two vertices. ity of each node in the coauthor network and rank them from

Certainly, having such properties derived will greatlyghel high to low. in general, people who not only publish a lot

us in constructing an iceberg cube. but also publish frequently with a big group of collaborator

6 E . t will be ranked high. Along theenuadimension, we can see

Xperiments how the “central” authors change across different research

In this section, we present empirical studies evaluat- areas, while along théme dimension, we can see how the

ing the effectiveness and efficiency of the proposed graph“central” authors evolve over time. In fact, what Figure 3

OLAP framework. It includes two kinds of datasets, one gives is a multi-dimensional view of the graph cube’s base

real dataset and one synthetic dataset. All experiments areuboid; without any difficulty, we can also aggregate DB,



DM and IR into a broad Database field, or generalize the

e " direct ——
time dimension toall-years and then compute respective £ 1000 attenuated-——- 4
cells. The results are omitted here due to the lack of space. § 100}
6.2 Synthetic Dataset é‘ w0k

(&)

The second experiment we perform is used to demon- E o S

strate the effectiveness of the optimizations that are pro- T 2 s 4 s s 1
posed to efficiently calculate a graph data cube. The test Number of Dimensions

we pick is the computation of maximum flow as a graph
OLAP measure, which has been used as an exemplifyingFigure 4: The Effect of Optimization w.r.t. Number of Dimensions
application in above.

Generator Mechanism Since it is generally hard to get e T e
real flow data, we develop a synthetic generator by our- 1oy AlemedT
selves. The data is generated as follows: The graph has
a source node and a destination nodgeand in between of
them, there aré. intermediate layers, with each layer con-
taining H nodes. There is a link with infinite capacity from ‘ L
s to every node in layer 1, and likewise from every node in 12 3 4 5 6 7 8 9
layer L to t. Other links are added from layéto layeri + 1 Cordnally of Sach Dimension

on a random basis: For the total numberdf H choices
between two layers, we piakH?2 pair of nodes and add a
link with capacity 1 between them.

For the graph cube we construct, there drdimen- computation of a data cube, such as [20, 2], whereas the
sions, each dimension hasrd different values i(e., car- wealth of literature cannot be enumerated. However, all
dinality), which can be generalized to “all/*". For a base these researches target conventional spreadsheet.data,
cell where all of its dimensions are set on the finest un- OLAP analysis is performed on independent data tuples that
generalized level, we generate a snapshot of capacity netmathematically form a set. In contrast, as far as we know,
work L5H1Ka0.01, i.e, there are 5 layers of intermediate ours is the first that puts graphs in a rigid multi-dimenslona
nodes, and.01 - (1K)? = 10K links are randomly added and multi-level framework, where due to the nature of the
between neighboring layers. underlying data, an OLAP measure in general takes the

The algorithm we use to compute the maximum flow form of an aggregated graph.
works in an incremental manner. It randomly picks an aug-  The classification of OLAP measures into distributive,
menting path froms to ¢ until no such paths exist. To ac- algebraic and holistic was introduced in the traditional
commodate top-down computation, where high level cells OLAP arena, where we can also find related works for ice-
are computed after low level cells so that intermediate re- berg cubing [7], partial materialization [12] and consttai
sults can be utilized, we integrate our attenuation scheme*pushing” [15]. It is important to see how these basic as-
with the classic Multi-Way aggregation method for cube pects are dealt with in the graph OLAP scenario; and as

10 ¢

Total Computation Time

Figure 5: The Effect of Optimization w.r.t. Dimension Cardinality

computation [20]. we can see from the discussions, things become much more
The results are depicted in Figure 4 and Figure 5, with complicated due to the the increased structural complexity
Figure 4 fixing the cardinality as 2 and varyiddrom 2, 3, In graph OLAP, the aggregated graph can be thought as

... up to 6, and Figure 5 fixing the number of dimensions delivering a summarized view of the underlying networks
as 2 and varyingard from 2, 4..., up to 8. It can be  based on some particular perspective and granularityign th
seen that, the optimization achieved through attenuasion i sense, concerning the generation of summaries for graphs,
obvious; especially, when the dimensionality goes higl, on there have been quite a few researches that are associated
may reap orders of magnitude savings. with terminologies like compression, summarization, sim-
plification, etc. For example, [16, 3] study the problem of
7 Related Work compressing large graphs, especially Web graphs; however,
OLAP (On-Line Analytical Processing) is an important they only focus on how the Web link information can be
notion in data mining, which has drawn a lot of attention efficiently stored and easily manipulated to facilitate eom
from the research communities. Representative studies inputations such as PageRank and authority vectors, which
clude [9, 5], and a set of papers on materialized views do not give any insight into the graph structures. Similarly
and data warehouse implementations are collected in [10].[4] develops statistical summaries that analyze simplplgra
There have been a lot of works that deal with the efficient characteristics like degree distributions and hop-plbhey



are useful but hard to be navigated with regard to the un-References

derlying networks; also, the multi-dimensional functibna 1]
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