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Abstract

OLAP (On-Line Analytical Processing) is an important
notion in data analysis. Recently, more and more graph or
networked data sources come into being. There exists a sim-
ilar need to deploy graph analysis from different perspec-
tives and with multiple granularities. However, traditional
OLAP technology cannot handle such demands because it
does not consider the links among individual data tuples.
In this paper, we develop a novelgraph OLAP framework,
which presents amulti-dimensionaland multi-level view
over graphs.

The contributions of this work are two-fold. First, start-
ing from basic definitions,i.e., what aredimensionsand
measuresin the graph OLAP scenario, we develop a con-
ceptual framework for data cubes on graphs. We also
look into different semantics of OLAP operations, and clas-
sify the framework into two major subcases:informational
OLAP and topological OLAP. Then, with more emphasis
on informational OLAP (topological OLAP will be covered
in a future study due to the lack of space), we show how
a graph cube can be materialized by calculating a special
kind of measure calledaggregated graphand how to imple-
ment it efficiently. This includes both full materialization
and partial materialization where constraints are enforced
to obtain an iceberg cube. We can see that the aggregated
graphs, which depend on the graph properties of underly-
ing networks, are much harder to compute than their tradi-
tional OLAP counterparts, due to the increased structural
complexity of data. Empirical studies show insightful re-
sults on real datasets and demonstrate the efficiency of our
proposed optimizations.

∗The work was supported in part by the U.S. National Science Foun-
dation grants IIS-08-42769 and BDI-05-15813, Office of Naval Research
(ONR) grant N00014-08-1-0565, and NASA grant NNX08AC35A.

1 Introduction

OLAP (On-Line Analytical Processing) [9, 5, 20, 2, 10]
is an important notion in data analysis. Given the un-
derlying data, a cube can be constructed to provide a
multi-dimensionaland multi-level view, which allows for
effective analysis of the data from different perspectives
and with multiple granularities. The key operations in
an OLAP framework are slice/dice and roll-up/drill-down,
with slice/dice focusing on a particular aspect of the data,
roll-up performing generalization if users only want to see
a concise overview, and drill-down performing specializa-
tion if more details are needed.

In a traditional data cube, a data record is associated with
a set of dimensional values, whereas different records are
viewed asmutually independent. Multiple records can be
summarized by the definition of corresponding aggregate
measures such as COUNT, SUM, and AVERAGE. More-
over, if a concept hierarchy is associated with each attribute,
multi-level summaries can also be achieved. Users can nav-
igate through different dimensions and multiple hierarchies
via roll-up, drill-down and slice/dice operations. However,
in recent years, more and more data sources beyond conven-
tional spreadsheets have come into being, such as chemi-
cal compounds or protein networks (chem/bio-informatics),
2D/3D objects (pattern recognition), circuits (computer-
aided design), loosely-schemaed data (XML), and social or
informational networks (Web), where not only individual
entities but also theinteracting relationshipsamong them
are important and interesting. This demands a new genera-
tion of tools that can manage and analyze such data.

Given their great expressive power, graphs have been
widely used for modeling a lot of datasets that contain struc-
ture information. With the tremendous amount of graph
data accumulated in all above applications, the same need
to deploy analysis from different perspectives and with mul-



tiple granularities exists. To this extent, our main task in
this paper is to develop agraph OLAP framework, which
presents a multi-dimensional and multi-level view over
graphs.

In order to illustrate what we mean by “graph OLAP”
and how the OLAP glossary is interpreted with regard to
this new scenario, let us start from a few examples.

Example 1 (Collaboration Patterns). There are a set of au-
thors working in a given field: For any two persons, if they
coauthorw papers in a conference,e.g., SIGMOD 2004,
then a link is added between them, which has an collabo-
ration frequency attribute that is weighted asw. For every
conference in every year, we may have a coauthor network
describing the collaboration patterns among researchers,
each of them can be viewed as a snapshot of the overall
coauthor network in a bigger context.

It is interesting to analyze the aforementioned graph
dataset in an OLAP manner. First, one may want to check
the collaboration patterns for a group of conferences, say,
all DB conferences in 2004 (including SIGMOD, VLDB,
ICDE, etc.) or all SIGMOD conferences since its inaugu-
ration. In the language of data cube, with avenuedimen-
sion and atime dimension, one may choose to obtain the
(db-conf, 2004)cell and the(sigmod, all-years)cell, where
the venueand time dimensions have been generalized to
db-confandall-years, respectively. Second, for the subset
of snapshots within each cell, one can summarize them by
computing a measure as we did in traditional OLAP. In the
graph context, this gives rise to anaggregated graph. For
example, a summary network displaying total collaboration
frequencies can be achieved by overlaying all snapshots to-
gether and summing up the respective edge weights, so that
each link now indicates two persons’ collaboration activities
in the DB conferences of 2004 or during the whole history
of SIGMOD. �

The above example is simple because the measure is cal-
culated by a simple sum over individual pieces of informa-
tion. A more complex case is presented next.

Example 2(Maximum Flow). Consider a set of cities con-
nected by transportation networks. In general, there are
many ways to go from one cityA to another cityB, e.g.,
by car, by train, by air, by water.,etc., and each way is op-
erated by multiple companies. For example, we can assume
that the capacity of companyx’s air service fromA to B is
cx
AB, i.e., companyx can transport at mostcx

AB units from
A to B using the planes it owns. Finally, we get a snapshot
of capacity network for every service of every company.

Now, consider the transporting capability from a source
city S to a destination cityT , it is interesting to see how
this value can be achieved by sending flows via different
paths if 1) we only want to go by air, or 2) we only want to
choose services operated by companyx. In the OLAP lan-
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Figure 1: The OLAP Scenario for Example 1

guage, with atransportation-typedimension and acompany
dimension, the above situations correspond to the(air, all-
companies)cell and the(all-types, companyx) cell, while
the measurecomputed for a cellc is a graph displaying
the overall maximum flow, which has considered all types
and companies that are allowed inc. Unlike Example 1,
computing the aggregated graph is now a much harder task;
also, the semantics associated with un-aggregated network
snapshots and aggregated graphs are different: The for-
mer shows capacities on its edges, whereas the latter shows
transmitted flows, which must be smaller by its definition.

�
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Figure 2: The OLAP Scenario for Example 3

Example 3(Collaboration Patterns, Revisited). Usually, the
whole coauthor network could be too big to comprehend,
and thus it is desirable to look at a more compressed view.
For example, one may like to see the collaboration activities
organized by the authors’ associated affiliations, which re-
quires the network to be generalized one step up,i.e., merg-



ing all persons in the same institution as one node and con-
structing a new summary graph at the institution level. In
this “generalized network”, for example, an edge between
Stanford and University of Wisconsin will aggregate all col-
laboration frequencies occurred between Stanford authors
and Wisconsin authors. Similar to Examples 1 and 2, an ag-
gregated graph (i.e., the generalized network defined above)
is taken as the OLAP measure. However, the difference here
is that a roll-up from the individual level to the institution
level is achieved by consolidating multiple nodes into one,
which shrinks the whole graph. Compared to this, in Ex-
amples 1 and 2, the graph is not collapsed because we are
always examining the relationships among the same set of
objects – it poses minimum changes with regard to network
topology upon generalization. �

The above examples demonstrate that OLAP provides a
powerful primitive to analyze graph datasets. In this paper,
we will give a systematic study on graph OLAP, which is
more general than traditional OLAP: In addition to individ-
ual entities, the mutual interactions among them are also
taken into consideration. Our major contributions are sum-
marized as below.

• For conceptual modeling, a graph OLAP framework
is developed, which definesdimensionsand measures
in the graph context, as well as the concept ofmulti-
dimensionalandmulti-levelanalysis over the underly-
ing networked data. We distinguish different semantics
of OLAP operations and categorize them into two ma-
jor subcases:informational OLAP(as shown in Exam-
ples 1 and 2) andtopological OLAP(as shown in Ex-
ample 3). It is necessary since these two kinds of OLAP
demonstrate substantial differences with regard to the
construction of a graph cube.

• For efficient implementation, the computation of ag-
gregated graphs as graph OLAP measures is examined.
Due to the increased structural complexity of data, cal-
culating certain measures that are closely tied with the
graph properties of a network,e.g., maximum flow and
centrality, poses greater challenges than their traditional
OLAP counterparts, such as COUNT, SUM and AV-
ERAGE. We investigate this issue, categorize measures
based on the difficulty to compute them in the OLAP
context and suggest a few measure properties that may
help optimize the processing further. Both full materi-
alization and partial materialization (where constraints
are enforced to obtain an iceberg cube) are discussed.

The remaining of this paper is organized as follows. In
Section 2, we formally introduce the graph OLAP frame-
work. Section 3 discusses the general hardness to compute
aggregated graphs as graph OLAP measures, which cate-
gorizes them into three classes. Section 4 looks into some
properties of the measures and proposes a few further opti-

mizations. Constraints and partial materialization are stud-
ied in Section 5. We report experiment results and related
work in Sections 6 and 7, respectively. Section 8 concludes
this study.

2 A Graph OLAP Framework
In this section, we present the general framework of

graph OLAP.

Definition 1 (Graph Model). We model the data exam-
ined by graph OLAP asa collection of network snap-
shotsG = {G1, G2, . . . , GN}, where each snapshotGi =
(I1,i, I2,i, . . . , Ik,i; Gi) in whichI1,i, I2,i, . . . , Ik,i arek in-
formational attributesdescribing the snapshot as a whole
andGi = (Vi, Ei) is agraph. There are alsonode attributes
attached with anyv ∈ Vi andedge attributesattached with
anye ∈ Ei. Note that, sinceG1, G2, . . . , GN only repre-
sent different observations,V1, V2, . . . , VN actually corre-
spond to the same set of objects in real applications.

For instance, with regard to the coauthor network de-
scribed in the introduction,venueand time are two infor-
mational attributes that mark the status of individual snap-
shots,e.g., SIGMOD 2004 and ICDE 2005,authorID is a
node attribute indicating the identification of each node, and
collaboration frequencyis an edge attribute reflecting the
connection strength of each edge.

Dimensionand measureare two concepts that lay the
foundation of OLAP and cubes. As their names imply, first,
dimensions are used to construct a cuboid lattice and parti-
tion the data into different cells, which act as the basis for
multi-dimensional and multi-level analysis; second, mea-
sures are calculated to aggregate the data covered, which
deliver a summarized view of it. In below, we are going to
formally re-define these two concepts for the graph OLAP
scenario.

Let us examine dimensions at first. Actually, there are
two types of dimensions in graph OLAP. The first one, as
exemplified by Example 1, utilizes informational attributes
attached at the whole snapshot level. Suppose the following
concept hierarchies are associated withvenueandtime:

• venue: conference→ area→ all,

• time: year→ decade→ all;

the role of these two dimensions is to organize snapshots
into groups based on different perspectives and granular-
ities, e.g., (db-conf, 2004)and (sigmod, all-years), where
each of these groups corresponds to a “cell” in OLAP ter-
minology. They control what snapshots are to be looked at,
but they do not touch the inside of any single snapshot.

Definition 2 (Informational Dimensions). With regard to
the graph model presented in Definition 1, the set of infor-
mational attributes{I1, I2, . . . , Ik} are called theinforma-
tional dimensionsof graph OLAP, orInfo-Dims in short.



The second type of dimensions are provided to operate
on nodes and edges within individual networks. Take Ex-
ample 3 for instance, suppose the following concept hierar-
chy

• authorID: individual→ institution→ all

is associated with the node attributeauthorID, then it can be
used to group authors from the same institution into a “gen-
eralized” node, and a new graph thus resulted will depict
interactions among these groups as a whole, which summa-
rizes the original network and hides specific details.

Definition 3 (Topological Dimensions). The set of dimen-
sions coming from the attributes of topological elements
(i.e., nodes and edges ofGi), {T1, T2, . . . , Tl}, are called
the topological dimensionsof graph OLAP, orTopo-Dims
in short.

The OLAP semantics accomplished through Info-Dims
and Topo-Dims are rather different, and in the following we
shall refer to them asinformational OLAP(abbr.I-OLAP)
andtopological OLAP(abbr.T-OLAP), respectively.

For roll-up inI-OLAP , the characterizing feature is that,
snapshots are just different observations of the same under-
lying network, and thus when they are all grouped into one
cell in the cube, it is likeoverlayingmultiple pieces of in-
formation,without changingthe objects whose interactions
are being looked at.

For roll-up inT-OLAP , we are no longer grouping snap-
shots, and the reorganization switches to happen inside in-
dividual networks. Here,mergingis performed internally
which “zooms out” the user’s focus to a “generalized” set
of objects, and a new graph formed by suchshrinkingmight
greatly alter the original network’s topological structure.

Now we move on to measures. Remember that, in tradi-
tional OLAP, a measure is calculated by aggregating all the
data tuples whose dimensions are of the same values (based
on concept hierarchies, such values could range from the
finest un-generalized ones to “all/*”, which form a multi-
level cuboid lattice); casting this to our scenario here:

First, in graph OLAP, the aggregation of graphs should
also take the form of a graph,i.e., anaggregated graph. In
this sense, graph can be viewed as a special kind of measure,
which plays a dual role: as a data source and as a special
(aggregated) measure. Of course, other measures that are
not graphs, such as node count, average degree, diameter,
etc., can also be calculated; however, we do not explicitly
include such non-graph measures in our model, but instead
treat them as derived from corresponding graph measures.

Second, due to the different semantics of I-OLAP and
T-OLAP, aggregating data with identical Info-Dim values
groups information among the snapshots, whereas aggregat-
ing data with identical Topo-Dim values groups topological

elements inside individual networks. As a result, we will
give a separate measure definition for each case in below.

Definition 4 (I-Aggregated Graph). With regard to Info-
Dims{I1, I2, . . . , Ik}, theI-aggregated graphM I is anat-
tributed graphthat can be computed based on a set of net-
work snapshotsG′ = {Gi1 , Gi2 , . . . , GiN′

} whose Info-
Dims are of identical values; it satisfies: 1) the nodes
of M I are as same as any snapshot inG′, and 2) the
node/edge attributes attached toM I are calculated asag-
gregate functionsof the node/edge attributes attached to
Gi1 , Gi2 , . . . , GiN′

.

The graph in Figure 1 that describes collaboration fre-
quencies among individual authors for a particular group
of conferences during a particular period of time is an in-
stance of I-aggregated graph, and the interpretation of clas-
sic OLAP operations in graph I-OLAP is summarized as
follows.

• Roll-up: Overlay multiple snapshots to form a higher-
level summary via I-aggregated graph.

• Drill-down: Return to the set of lower-level snapshots
from the higher-level overlaid (aggregated) graph.

• Slice/dice: Select a subset of qualifying snapshots based
on Info-Dims.

Definition 5 (T-Aggregated Graph). With regard to Topo-
Dims{T1, T2 . . . , Tl}, theT-aggregated graphMT is anat-
tributed graphthat can be computed based on an individ-
ual networkGi; it satisfies: 1) the nodes ofGi with iden-
tical values on their Topo-Dims are grouped, whereas each
group corresponds to a node inMT , 2) the attributes at-
tached toMT are calculated asaggregate functionsof the
attributes attached toGi.

The graph in Figure 2 that describes collaboration fre-
quencies among institutions is an instance of T-aggregated
graph, and the interpretation of classic OLAP operations in
graph T-OLAP is summarized as follows.

• Roll-up: Shrink the topology and obtain a T-aggregated
graph that displays a compressed view, whose topo-
logical elements (i.e., nodes and/or edges) have been
merged and replaced by corresponding higher-level
ones.

• Drill-down: A reverse operation of roll-up.

• Slice/dice: Select a subgraph of the network based on
Topo-Dims.

3 Measure Classification
Now, with a clear concept of dimension, measure and

possible OLAP operations, we are ready to discuss imple-
mentation issues,i.e., how to compute the aggregated graph
in a multi-dimensional and multi-level way.



Recall that in traditional OLAP, measures can be classi-
fied intodistributive, algebraicandholistic, depending on
whether the measures of high level cells can be easily com-
puted from their low level counterparts, without accessing
base tuples residing at the finest level. For instance, in the
classicsale(time, location) example, the total sale of [2008,
California] can be calculated by adding up the total sales of
[January 2008, California], [February 2008, California],
. . ., [December 2008, California], without looking at base
data points such as [04/12/2008,Los Angeles], which means
that SUM is a distributive measure. Compared to this, AVG
is often cited as an algebraic measure, which is actually a
semi-distributivecategory in that AVG can be derived from
two distributive measures: SUM and COUNT,i.e., alge-
braic measures are functions of distributive measures.

(Semi-)distributiveness is a nice property for top-down
cube computation, where the cuboid lattice can be gradu-
ally filled up by making level-by-level aggregations. Mea-
sures without this property is put into the holistic category,
which is intuitively much harder to calculate. Now, consid-
ering graph OLAP, based on similar criteria with regard to
the aggregated graphs, we can also classify them into three
categories.

Definition 6 (Distributive, Algebraic and Holistic). Con-
sider a high level cellch and the corresponding low level
cells it covers:c1

l , c
2
l , . . .. An aggregated graphMd is dis-

tributive if Md(ch) can be directly computed as a function
of Md(c

1
l ), Md(c

2
l ), . . ., i.e.,

Md(ch) = Fd

[

Md(c
1
l ), Md(c

2
l ), . . .

]

.

For a non-distributive aggregated graphMa, if it can be
derived from some other distributive aggregated graphs
M1

d , M2
d , . . ., i.e., for ∀ch,

Md(ch) = Fa

[

M1
d (ch), M2

d (ch), . . .
]

,

then we say that it isalgebraic. Aggregated graphs that
are neither distributive nor algebraic belong to theholistic
category.

If we further consider the differences between I-OLAP
and T-OLAP, there are actually six classes: I-distributive,
I-algebraic, I-holistic and T-distributive, T-algebraic, T-
holistic. Due to limited space, in the remaining of this pa-
per, we shall put more emphasis on I-OLAP; discussions for
T-OLAP will be covered in a future study.

I-distributive . The I-aggregated graph describing collabo-
ration frequency in Example 1 is an I-distributive measure,
because the frequency value in a high level I-aggregated
graph can be calculated by simply adding those in corre-
sponding low level I-aggregated graphs.

I-algebraic. The graph displaying maximum flow in Ex-
ample 2 is an I-algebraic measure based on the following

reasoning. Supposetransportation-typeandcompanycom-
prise the two dimensions of the cube, and we generalize
from low level cells(all-types, company 1), (all-types, com-
pany 2), . . . to (all-types, all-companies), i.e., compute the
maximum flow based on all types of transportation oper-
ated by all companies. Intuitively, this overall maximum
flow would not be a simple sum (or other indirect manipula-
tions) of these companies’ individual maximum flows. For
instance, company 1 may have excessive transporting ca-
pability between two cities, whereas the same link happens
to be a bottleneck for company 2: Considering both com-
panies simultaneously for determination of the maximum
flow can enable capacity sharing and thus create a double-
win situation. In this sense, maximum flow is not distribu-
tive by definition. However, as an obvious fact, maximum
flow f is determined by the networkc that shows link ca-
pacities on its edges, and this capacity graph is distributive
because it can be directly added upon generalization: When
link sharing is enabled, two companies having two separate
links fromA toB with capacityc1

AB andc2
AB is no different

from a single link with capacityc1
AB + c2

AB for maximum
flow calculation. Finally, being a function of distributive
aggregated graphs, maximum flow is algebraic.

I-holistic . The I-holistic case involves a more complex ag-
gregate graph, where base level details are required to com-
pute it. In the coauthor network of Example 1, the median
of researchers’ collaboration frequency for all DB confer-
ences from 1990 to 1999 is holistic, similar to what we saw
in a traditional data cube.

4 Optimizations

Being (semi-)distributive or holistic tells us whether the
aggregated graph computation needs to start from com-
pletely un-aggregated data or some intermediate results can
be leveraged. However, even if the aggregated graph is dis-
tributive or algebraic, and thus we can calculate high level
measures based on some intermediate level ones, it is far
from enough, because the complexity to compute the two
functionsFd and Fa in Definition 6 is another question.
Think about the maximum flow example we just mentioned,
Fa takes the distributive capacity graph as input to compute
the flows, which is by no means an easy transformation.

Based on our analysis, there are mainly two reasons for
such potential difficulties. First, due to the interconnecting
nature of graphs, the computation of many graph properties
is “global” as it requires us to take the whole network into
consideration. In order to make this concept of globalness
clear, let us first look at a “local” case: For I-OLAP, ag-
gregated graphs are built for the same set of objects as the
underlying network snapshots; now, in the aggregated graph
of Example 1, “R. Agrawal” and “R. Srikant”’s collabora-
tion frequency for cell(db-conf, 2004)is locally determined
by “R. Agrawal” and “R. Srikant”’s collaboration frequency



for each of the DB conferences held in 2004; it does not
need any information from other authors to fulfill the com-
putation. This is an ideal scenario, because the calculations
are localized and thus greatly simplified. Unfortunately, not
all measures provide such local properties. For instance, in
order to calculate a maximum flow fromS to T for the cell
(air, all-companies)in Example 2, only knowing the trans-
porting capability of each company’s direct flights between
S andT is not enough, because we can always take an indi-
rect route via some other cities to reach the destination.

Second, the purpose for us to compute high level aggre-
gated graphs based on low level ones is to reuse the inter-
mediate calculations that are already performed. However,
when computing the aggregated graph of a low level cell
ci
l, we only had a partial view about theci

l-portion of net-
work snapshots; now, as multiple pieces of information are
overlaid into the high level cellch, some full-scale consol-
idation needs to be performed, which is very much like the
merge sort procedure, where partial ranked lists are reused
but somehow adjusted to form a full ranked list. Still, be-
cause of the structural complexity, it is not an easy task to
develop such reuse schemes for graphs, and even it is possi-
ble, reasonably complicated operations might be involved.

Admitting the above difficulties, let us now investigate
the possibility to alleviate them. As we have seen, for some
aggregated graphs, the first aspect can be helped by theirlo-
calizationproperties with regard to network topology. Con-
cerning the second aspect, the key is how to effectively
reuse partial results computed for intermediate cells so that
the workload to obtain a full-scale measure isattenuatedas
much as possible. In the following, we are going to examine
these two directions in sequel.

4.1 Localization

Definition 7 (Localization). For an I-OLAP aggregated
graph Ml that summarizes a group of network snapshots
G′ = {Gi1 , Gi2 , . . . , GiN′

}, if 1) we only need to check
a neighborhoodof v in Gi1 , Gi2 , . . . , GiN′

to calculatev’s
node attributes inMl, and 2) we only need to check aneigh-
borhoodof u, v in Gi1 , Gi2 , . . . , GiN′

to calculate(u, v)’s
edge attributes inMl, then the computation ofMl is said to
be localizable.

Example 4(Common Friends). With regard to the coauthor
network depicted in Example 1, we can also compute the
following aggregated graph: Given two authorsa1 anda2,
the edge between them records the number of their common
“friends”, whereas in order to build such “friendship”, the
total collaboration frequency betweena1 anda2 must sur-
pass aδc threshold for the selected conferences and time.�

The above example provides another instance that lever-
ages localization to promote efficient processing. Con-
sider a cell,e.g., (db-conf, 2004), the determination of the

aggregated graph’sa1-a2 edge can be restricted to a 1-
neighborhood of these two authors in the un-aggregated
snapshots of 2004’s DB conferences,i.e., we only need to
check edges that are directly adjacent to eithera1 or a2, and
in this way a third persona3 can be found, if he/she pub-
lishes with botha1 anda2, while the total collaboration fre-
quencies summed from the weights of these adjacent edges
are at leastδc. Also, note that, the above aggregated graph
definition is based on the number of length-2 paths likea1-
a3-a2 where each edge of it represents a “friendship” rela-
tion; now, if we further increase the path length tok, compu-
tations can still be localized in a⌊k

2⌋-neighborhood of both
authors,i.e., any relevant author on such paths of “friend-
ship” must be reachable from eithera1 or a2 within ⌊k

2 ⌋
steps. This can be seen as a situation that sits in the middle
of Example 1’s “absolute locality” (0-neighborhood) and
maximum flow’s “absolute globality” (∞-neighborhood).

There is an interesting note we want to put for theab-
solutely local distributiveaggregated graph of Example 1.
Actually, such a 0-neighborhood localization property de-
generates the scenario to a very special case, where it is no
longer necessary to assume the underlying data as a graph:
For each pair of coauthors, we can construct a traditional
cube showing their collaboration frequency “OLAPed” with
regard tovenueandtime, whose computation does not de-
pend on anything else in the coauthor network. In this sense,
we can treat the coauthor network as a virtual union of pair-
wise collaboration activities, whereas Example 1 can indeed
be thought as a traditional OLAP scenario disguised under
its graph appearances, since the graph cube we defined is
nothing different from a collection of pair-wise traditional
cubes. As a desirable side effect, this enables us to leverage
specialized technologies that are developed for traditional
OLAP, which in general could be more efficient. But after
all, the case is special anyway, most graph measures would
not hold such absolute localization, which is also the rea-
son why traditional OLAP proves to be extremely restrictive
when handling networked data.

4.2 Attenuation

In below, we are going to explain the idea of attenuation
through examples, and the case we pick is maximum flow.
In a word, the more partial results from intermediate cal-
culations are utilized, the more we can decrease the cost of
obtaining a full-scale aggregated graph.

To begin with, let us first review some basic concepts, cf.
[6]. Given a directed graphG = (V, E), c :

(

V
2

)

→ R≥0

indicates acapacityfor all pairs of vertices andE is pre-
cisely the set of vertex pairs for whichc > 0. For a
source nodes and a destination nodet, a flow in G is a
function f :

(

V
2

)

→ R assigning values to graph edges
such that, (i)f(u, v) = −f(v, u): skew symmetry, (ii)
f(u, v) ≤ c(u, v): capacity constraint, and (iii) for each



v 6= s/t,
∑

u∈V f(u, v) = 0: flow conservation. Since
most maximum flow algorithms work incrementally, there
is an important lemma as follows.

Lemma 1 Let f be a flow inG and letGf be its residual
graph, whereresidualmeans that the capacity function of
Gf is cf = c − f ; f ′ is a maximum flow inGf if and only
if f + f ′ is a maximum flow inG.

Note that, the+/− notation here means edge-by-edge
addition/subtraction; and in summary, this lemma’s core
idea is to look for a flowf ′ in Gf and usef ′ to augment
the current flowf in G.

For the graph OLAP context we consider, in order to
compute the algebraic aggregated graph displaying max-
imum flow, the functionFa takes a distributive capacity
graphc as its input; now, since capacity can be written as
the sum of a flow and a residual graph:c = f +cf , does this
decomposition provide us some hints to pull out the useful
partf , instead of blindly takingc and starting from scratch?

Suppose that the capacity graph of cell(all-types, com-
pany 1) is c1, wheref1 is the maximum flow andc1

f1
=

c1−f1 denotes the corresponding residual graph. Likewise,
we havec2, f2 andc2

f2
for cell (all-types, company 2). With-

out loss of generality, assume there are only these two com-
panies whose transportation networks are overlaid into(all-
types, all-companies), which has a capacity ofc = c1 + c2.

Claim 1 f1 + f2 + f ′ is a maximum flow forc if and only
if f ′ is a maximum flow forc1

f1
+ c2

f2
.

PROOF. Sincef1 andf2 are restricted to the transportation
networks of company 1 and company 2, respectively,f1+f2

must be accommodated by the overall capacityc = c1 + c2,
even if link sharing is not enabled. After subtractingf1+f2,
the residual graph thus resulted is:

cf1+f2
= (c1 + c2) − (f1 + f2)

= (c1 − f1) + (c2 − f2) = c1
f1

+ c2
f2

.

A direct application of Lemma 1 finishes our proof. �

As it is generally hard to localize maximum flow compu-
tations with regard to network topology, the above property
is important because it takes another route, which reuses
partial resultsf1, f2 and attenuates the overall workload
from c1 + c2 to c1

f1
+ c2

f2
. By doing this, we are much

closer to the overall maximum flowf1 + f2 + f ′ because a
big portion of it,f1 + f2, has already been decided even be-
fore we start an augmenting algorithm. Unfortunately, there
are also cases where such attenuation properties are hard, if
not impossible, to develop.

Example 5 (Centrality). Centrality is an important con-
cept in social network analysis, which reflects how “cen-
tral” a particular node’s position is in a given network. One

definition calledbetweenness centralityCB uses shortest
path to model this: Letnjk denote the number of short-
est paths (i.e., equally short ones) between two nodesj and
k; for any nodei, njk(i)

njk
is the fraction of shortest paths

betweenj, k that go throughi, with CB(i) summing it up
for all node pairs:CB(i) =

∑

j,k 6=i

njk(i)
njk

. Intuitively, for a
“star”-shaped network, all shortest paths must pass the net-
work center, which makesCB achieve its maximum value
(|V | − 1)(|V | − 2)/2.

Only considering shortest paths is inevitably restrictive
in many situations; and thus,information centralityCI goes
one step further by taking all paths into account. It models
any path fromj to k as a signal transmission, which has a
channel noise proportional to its path length. For more de-
tails, we refer the readers to [17], which has derived the fol-
lowing formula based on information theoretic analysis: Let
A be a matrix, whoseaij entry designates the interaction
strength between nodei and nodej; defineB = D−A+J ,
whereD is a diagonal matrix withDii =

∑|V |
j=1 aij andJ is

a matrix having all unit elements; perform an inverse opera-
tion to get thecentrality matrixC = B−1, write its diagonal
sum asT =

∑|V |
j=1 cjj and its row sum asRi =

∑|V |
j=1 cij ,

the information centrality of nodei is then equivalent to

CI(i) =
1

cii + (T − 2Ri)/|V |
.

Now, with regard to the coauthor network described in
Example 1, if we define the interaction strength between
two authors as their total collaboration frequency for a set
of network snapshots, then an aggregated graphMcen can
be defined, whose nodei is associated with a node attribute
CI(i) equaling its information centrality. �

Claim 2 The computation ofMcen is hard to be attenuated
in a level-by-level aggregation scheme.

PROOF. As we can see, the core component of information
centrality computation is a matrix inverse. Now, given two
portions of network snapshots that are overlaid, the overall
centrality matrix is:

[

(D1 + D2) − (A1 + A2) + J
]−1

= (B1 + B2 − J)−1.

From intermediate results, we know the centrality matrices
C1 = B−1

1 andC2 = B−1
2 ; however, it seems that they do

not help much to decrease the computation cost of inverting
B1 + B2 − J . �

When things like this happen, an alternative is to aban-
don the exactness requirement and bound the answer within
some range instead; as illustrated by the following section,
this would become useful if the cube construction is subject
to a set of constraints.



5 Constraints and Partial Materialization
In above, we have focused on the computation of a full

cube,i.e., each cell in each cuboid is calculated and stored.
In many cases, this is too costly in terms of both space and
time, which might even be unnecessary if the users are not
interested in obtaining all the information. Usually, users
may stick with aninterestingnessfunctionI, indicating that
only those cells above a particular thresholdδ make sense to
them. Considering this, all cellsc with I(c) ≥ δ comprise
an icebergcube, which represents apartial materialization
of the cube’s interesting part.

Optimizations exist as to how such an iceberg cube can
be calculated,i.e., how to efficiently process the constraint
of I(c) ≥ δ during materialization, without generating a full
cube at first. Two most important categories of constraints
areanti-monotoneand monotone. They can be “pushed”
into the computation process as follows: In bottom-up com-
putation,i.e., high level cells are calculated first, followed
by low level cells they cover, on one hand, if a high level
cell ch does not satisfy an anti-monotone constraint, then
we know that no low level cellcl covered bych would sat-
isfy it, and thus the computation can be immediately termi-
nated withcl pruned from the cube; on the other hand, if
a high level cellch already satisfies a monotone constraint,
then we no longer need to perform checkings for any low
level cells covered bych because they would always sat-
isfy it. Concerning top-down computation, the roles of anti-
monotonicity and monotonicity are reversed accordingly.

It is easy to see that the anti-monotone and monotone
properties depend on specific analysis of measures and in-
terestingness functions. Here, since we are working with
networked data, some graph theoretic studies need to be
made. For example, regarding the maximum flow’s value
|f | =

∑

v∈V f(s, v) =
∑

v∈V f(v, t), i.e., the highest
amount of transportation a network can carry fromS to T ,
|f | ≥ δ|f | is anti-monotone, because the transporting ca-
pability of one company must be smaller than that of all
companies together (actually, as we showed in Section 4,
the flow value ofch is no smaller than the flow sum of all
cl’s that are covered bych, which is a condition stronger
than the normal anti-monotonicity defined between two in-
dividual cells); also, regarding the diameterd of a graph,
which is designated as the maximum shortest path length
for all node pairs,d ≥ δd is monotone, because more viable
links can only cut down the distance between two vertices.
Certainly, having such properties derived will greatly help
us in constructing an iceberg cube.

6 Experiments
In this section, we present empirical studies evaluat-

ing the effectiveness and efficiency of the proposed graph
OLAP framework. It includes two kinds of datasets, one
real dataset and one synthetic dataset. All experiments are

done on a Microsoft Windows XP machine with a 3GHz
Pentium IV CPU and 1GB main memory. Programs are
compiled by Visual C++.

6.1 Real Dataset

The first dataset we use is the DBLP Bibliogra-
phy (http://www.informatik.uni-trier.de/∼ ley/db/) down-
loaded in April 2008. Upon parsing the author field of
papers, a coauthor network with multiple snapshots can be
constructed, where an edge of weightw is added between
two persons if they publishw papers together. We pick a
few representative conferences for the following three re-
search areas:

• Database (DB): PODS/SIGMOD/VLDB/ICDE/EDBT,

• Data Mining (DM): ICDM/SDM/KDD/PKDD,

• Information Retrieval (IR): SIGIR/WWW/CIKM;

and also distribute the publications into five-year bins:
(2002, 2007], (1997, 2002], (1992, 1997], . . .. In this way,
we obtain two informational dimensions:venueand time,
on which I-OLAP operations can be performed.
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Figure 3: A Multi-Dimensional View of Top-10 “Central” Authors

Figure 3 shows a classic OLAP scenario. Based on the
definition in Section 4, we compute the information central-
ity of each node in the coauthor network and rank them from
high to low. in general, people who not only publish a lot
but also publish frequently with a big group of collaborators
will be ranked high. Along thevenuedimension, we can see
how the “central” authors change across different research
areas, while along thetimedimension, we can see how the
“central” authors evolve over time. In fact, what Figure 3
gives is a multi-dimensional view of the graph cube’s base
cuboid; without any difficulty, we can also aggregate DB,



DM and IR into a broad Database field, or generalize the
time dimension toall-years, and then compute respective
cells. The results are omitted here due to the lack of space.

6.2 Synthetic Dataset

The second experiment we perform is used to demon-
strate the effectiveness of the optimizations that are pro-
posed to efficiently calculate a graph data cube. The test
we pick is the computation of maximum flow as a graph
OLAP measure, which has been used as an exemplifying
application in above.

Generator Mechanism. Since it is generally hard to get
real flow data, we develop a synthetic generator by our-
selves. The data is generated as follows: The graph has
a source nodes and a destination nodet, and in between of
them, there areL intermediate layers, with each layer con-
tainingH nodes. There is a link with infinite capacity from
s to every node in layer 1, and likewise from every node in
layerL to t. Other links are added from layeri to layeri+1
on a random basis: For the total number ofH · H choices
between two layers, we pickαH2 pair of nodes and add a
link with capacity 1 between them.

For the graph cube we construct, there ared dimen-
sions, each dimension hascard different values (i.e., car-
dinality), which can be generalized to “all/*”. For a base
cell where all of its dimensions are set on the finest un-
generalized level, we generate a snapshot of capacity net-
work L5H1Kα0.01, i.e., there are 5 layers of intermediate
nodes, and0.01 · (1K)2 = 10K links are randomly added
between neighboring layers.

The algorithm we use to compute the maximum flow
works in an incremental manner. It randomly picks an aug-
menting path froms to t until no such paths exist. To ac-
commodate top-down computation, where high level cells
are computed after low level cells so that intermediate re-
sults can be utilized, we integrate our attenuation scheme
with the classic Multi-Way aggregation method for cube
computation [20].

The results are depicted in Figure 4 and Figure 5, with
Figure 4 fixing the cardinality as 2 and varyingd from 2, 3,
. . . up to 6, and Figure 5 fixing the number of dimensions
as 2 and varyingcard from 2, 4 . . ., up to 8. It can be
seen that, the optimization achieved through attenuation is
obvious; especially, when the dimensionality goes high, one
may reap orders of magnitude savings.

7 Related Work
OLAP (On-Line Analytical Processing) is an important

notion in data mining, which has drawn a lot of attention
from the research communities. Representative studies in-
clude [9, 5], and a set of papers on materialized views
and data warehouse implementations are collected in [10].
There have been a lot of works that deal with the efficient
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Figure 4: The Effect of Optimization w.r.t. Number of Dimensions

 1

 10

 100

 1  2  3  4  5  6  7  8  9

T
ot

al
 C

om
pu

ta
tio

n 
T

im
e 

(s
)

Cardinality of Each Dimension

direct
attenuated

Figure 5: The Effect of Optimization w.r.t. Dimension Cardinality

computation of a data cube, such as [20, 2], whereas the
wealth of literature cannot be enumerated. However, all
these researches target conventional spreadsheet data,i.e.,
OLAP analysis is performed on independent data tuples that
mathematically form a set. In contrast, as far as we know,
ours is the first that puts graphs in a rigid multi-dimensional
and multi-level framework, where due to the nature of the
underlying data, an OLAP measure in general takes the
form of an aggregated graph.

The classification of OLAP measures into distributive,
algebraic and holistic was introduced in the traditional
OLAP arena, where we can also find related works for ice-
berg cubing [7], partial materialization [12] and constraint
“pushing” [15]. It is important to see how these basic as-
pects are dealt with in the graph OLAP scenario; and as
we can see from the discussions, things become much more
complicated due to the the increased structural complexity.

In graph OLAP, the aggregated graph can be thought as
delivering a summarized view of the underlying networks
based on some particular perspective and granularity. In this
sense, concerning the generation of summaries for graphs,
there have been quite a few researches that are associated
with terminologies like compression, summarization, sim-
plification, etc.. For example, [16, 3] study the problem of
compressing large graphs, especially Web graphs; however,
they only focus on how the Web link information can be
efficiently stored and easily manipulated to facilitate com-
putations such as PageRank and authority vectors, which
do not give any insight into the graph structures. Similarly,
[4] develops statistical summaries that analyze simple graph
characteristics like degree distributions and hop-plots.They



are useful but hard to be navigated with regard to the un-
derlying networks; also, the multi-dimensional functional-
ity that can conduct analysis from different angles is miss-
ing. Another group of papers [19, 1, 13], which we refer
as graph simplification, aim to condense a large network
by preserving its skeleton in terms of topological features.
In this case, attributes on nodes and edges are not impor-
tant, and the network is indeed an unlabeled one in its ab-
stract form. Works on graph clustering (to partition similar
nodes together), dense subgraph detection (for community
discovery, link spam identification,etc.) and graph visu-
alization include [14], [8] and [11], respectively. They all
provide some kind of summaries, but the objective and re-
sult achieved are substantially different from those of this
paper.

With regard to summarizing attributed networks that in-
corporates OLAP-style functionalities, [18] is the closet
to ours in spirit. It introduces an operation called SNAP
(Summarization by grouping Nodes on Attributes and Pair-
wise relationships), which merges nodes with identical la-
bels, combines corresponding edges, and aggregates a sum-
mary graph that displays relationships for such “general-
ized” node groups. Users can choose different resolutions
by a k-SNAP operation just like rolling-up and drilling-
down in an OLAP environment. Essentially, the above set-
ting showcases an instance of topological graph OLAP that
is defined here. Though we did not emphasize T-OLAP in
this paper, based on our analysis of the aggregated graph
describing collaboration frequency, it seems that SNAP can
also be categorized as locally distributive, even if the con-
text is switched from I-OLAP to T-OLAP.

8 Conclusions

We examine the possibility to applymulti-dimensional
andmulti-levelanalysis on networked data, and develop a
graph OLAP framework, which is classified into two ma-
jor subcases:informational OLAPand topological OLAP,
based on the different OLAP semantics. Due to the na-
ture of the underlying data, an OLAP measure now takes
the form of anaggregated graph. With regard to efficient
implementation, because of the space limit, we focus on I-
OLAP in this paper. We categorize aggregated graphs based
on the difficulty to compute them in an OLAP context, and
suggest two properties: localization and attenuation, which
may help speedup the processing. Both full materializa-
tion and constrained partial materialization are discussed.
Experiments show insightful results on real datasets and
demonstrate the efficiency of our proposed optimizations.

As for future works, there are a lot of directions we
want to pursue on this topic, for example, extending the
current framework to heterogenous-typed graphs, hyper-
graphs,etc., and our immediate target would be providing a
thorough study on topological OLAP.
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