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Abstract—In this work, we study the problem of concept
mining, which serves as the first step in transforming unstruc-
tured text into structured information, and supports downstream
analytical tasks such as information extraction, organization,
recommendation and search. Previous work mainly relies on
statistical signals, existing knowledge bases, or predefined lin-
guistic patterns. In this work, we propose a novel approach
that mines concepts based on their occurrence contexts, by
learning embedding vector representations that summarize the
context information for each possible candidates, and use these
embeddings to evaluate the concept’s global quality and their
fitness to each local context. Experiments over several real-
world corpora demonstrate the superior performance of our
method. A publicly available implementation is provided at
https://github.com/kleeeeea/ECON.

I. INTRODUCTION

The explosive growth of textual data is becoming pro-

hibitive. According to [1], there are about 2.5 million scientific

articles published in the year 2014, and this number is still

growing at an annual rate of 3%. Advanced techniques for

better organization, navigation, and knowledge extraction for

texts are in great demand. A first step towards this goal

is effective discovery of concepts, i.e., to identify integral

units such as “generative adversarial network” and “support

vector machine” from raw text. It plays an essential role in

transforming unstructured text into structured information [2],

[3], constructing knowledge bases [4], [5], [6], [7], and produc-

ing meaningful representation of texts to support downstream

analytical tasks [8], [9], [10], [11].

One important property of concepts is that some of them

may correspond to single words, while the others correspond

to multiple word expressions, such as “Folic acid” and “Mus-

carinic acetylcholine receptor”. According to linguistic studies,

these idiosyncratic, multi-word expressions should be treated

as single units in further analysis, and they are abundant: the

number of multi-word expressions is estimated to be “of the

same order of magnitude as the number of simplex words in a

speaker’s lexicon” [12], [13]. In an analysis of more specific,

technical terms, [14] points out that multi-word expressions are

preferred for specific technical terms because “single words in

general vocabulary” are “inherently ambiguous”. Perhaps this

is the reason driving the research in phrases mining [2], [3]

and chunking [15], among many others.

A simple but quite effective approach is to extract word

sequences based on predefined grammatical patterns, which

is heavily used in areas such as entity/relation type inference,

and knowledge construction [4], [16], [5]. However, rule based

TABLE I: A hypothetical example of sentence raw frequency.

Text Frequency
�logistic regression� is a supervised machine learning algorithm 10000
we use �logistic regression� for this classification task 5000
our approach outperform �logistic regression� on this dataset 2000
�P random� is a supervised machine learning algorithm 100
we use �P random� for this classification task 50
our approach outperform �P random� on this dataset 20
P vs NP 10000
we perform random walk on this graph 10000

methods are too simple to capture linguistic variations. On

the other extreme, there are end-to-end models that abstract

the problem as sequence tagging, and leverage complex mod-

els such as deep neural network to learn to capture their

occurrences [15]. Unfortunately, we do not always have a

large labeled corpus, and even if we do, it will be hard to

transfer it to unseen domains: a model that is trained to capture

“vector machine” may produce the right results in hardware

design, but in the area of machine learning, “support vector

machine” should be the correct one. This is especially true

when knowledge are constantly evolving and new texts with

newly invented concepts keeps emerging.

A key question is: Can we utilize an unlabeled corpus to
perform concept mining? Most work in this area relies on

statistical significance to estimate concept quality [17], [18].

The state of the art approaches from this angle are SegPhrase

and AutoPhrase [2], [3], which rank salient key-phrases by

occurrence and co-occurrence frequencies, and based on that

re-identify their occurrences in text and rectify these frequen-

cies. These methods work mostly well in identifying frequent

concepts in a domain, but would fail to capture long tail
infrequent concepts where statistical signals are less reliable.

This is illustrated in the following example.

Example 1 (Concept Extraction) Consider a corpus

consisting of sentences with frequencies shown in Table 1.

The numbers are hypothetical but manifest the following key

observations: (1) Concepts usually occur under certain usage

contexts; (2) Contexts are often shared with concepts with

similar meaning; (3) Interesting, but infrequent concepts may

be formed by grouping several frequent words together.

In the above example, it will be hard for statistical sig-

nificance based approaches to capture high quality concepts

such as “P random”, since its raw frequency and its relative

occurrence frequency (with respect to each component words

) are low. However, its usage contexts are highly similar to

other machine learning algorithms such as “random forest”,

indicating it’s likely a valid concept, instead of two words
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Fig. 1: Pipeline of our concept mining approach

randomly co-occurring together. If we decouple the contexts

from the occurrences, we will not be able to find such concept

correctly. This becomes a challenging issue for statistical

significance based concept mining approaches.

In addition to concept extraction, which extracts a set of

high quality concepts, contexts can be leveraged to help con-
cept recognition, i.e. to determine whether and what concepts

occurred in text.

Example 2 (Concept Recognition) Consider the following

two sentences

1. We found that the �support vector machine� algorithm

outperformed Naive Bayes on this dataset.

2. We use a novel instruction fetch mechanism to support

�vector machine� architecture design.

In the first sentence, the concept “support vector machine”

should be recognized: The context clearly indicates that it is

a machine learning algorithm. In the second one, the context

indicates that it is in hardware domain and “vector machine”

is more appropriate. Methods such as Autophrase [2] will

either recognize them both as “support vector machine”, or

both as “vector machine”. They are not able to change the

recognition based on contexts. By leveraging local context

clues such as “Naive Bayes” or “instruction fetching logic”,

and comparing them with common occurrence contexts of

“support vector machine”, or “vector machine”, we can more

confidently recognize their occurrences.

In this work, we propose to measure the quality of a concept

based on its occurrence contexts. This is in fact a commonly

used assumption in linguistics, known as “distributional hy-

pothesis”, which characterize the meaning of a word “by the

company it keeps” [19]. Motivated by recent successes in

embedding learning [20], [21], we propose to summarize the

occurrence contexts information for each possible concept into

an embedding vector representation, which we can then use to

evaluate the quality of possible concepts, and better identify

their occurrence in each local context. Our main contributions

are as follows:

• We proposed an embedding based method for extracting a

set of high quality concepts from corpus, by exhaustively

generating concept candidates, learning their embedding

vectors, and evaluating their qualities in the embedding

space.

• We further recognize concept occurrences in texts, by com-

paring the embedding of concepts against the current local

context, and select the one that is appropriate for the context.

• We experimentally demonstrate the effectiveness of our

approach on three real-world datasets, covering the domains

of machine learning, database and medicine.

II. OVERVIEW

We formalize the task of the concept mining as follows:

Given a set of documents D, each d ∈ D is a word sequence

of the form w1w2 . . . , wn, where concepts could correspond

to individual word, or span across multiple words1, the goal

is to group words back together so that each grouped words

correspond to the same concept2 3. Specifically, there are two

main outcomes we’re interested in.

I) A concept vocabulary Vc that gathers together all concepts

that ever occurred in corpus, each c ∈ Vc is represented as

a sequence of one or more words w1w2 . . . w|c|4. To allow a

more precise measure of concepts quality, a common practice

is to associate each concept with a numeric measure of quality

[2], [3], [17], [22]. We denote this as the concept quality

scoring function Q : Vc → [0, 1]. This task is referred to

as concept extraction.

II) A concept level representation for each original document,

as a consecutive sequence of concepts and words that occurred

1In this work, we do not consider the case where there are other words lying
between the word sequence of a concept. It will be an interesting direction
to explore in the future.

2This may come under different names, including phrase and single-
word phrase [2], [3], or key-phrase [17], terminology [22], [14], multi-word
expression [13] and simplex words, knowledge base entity [16], [23], [6]. The
usage of term “concept” follows previous work [5], [24], [10].

3By concept, we mainly mean either single words or multiple word
expression which have atomic meanings not derived from its components [13].
If restricted to noun type (noun or noun phrase), this is roughly equivalent to
the notion of “concept” in [5], [24], [10], and the notion of “entity” in [16],
[6], [23].

4Note that in this work we do not distinguish the string representation of a
concept (i.e., a concept “mention” [16]) with the concept itself. In practice, we
can preprocess the text using techniques such as lemmatization, word sense
disambiguation [25], which is not the focus of this work.
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in text, where each element in the sequence can be mapped

to a subsequence in the original text, in a non-decreasing

order. Specifically, for a word sequence w1w2 . . . wn, a con-

cept level representation c1 . . . cm is induced by two index

sequences, B = b1, . . . , bm ≤ n, E = e1, . . . , em, so that

ci = wbi . . . wei ; If we use the shorthand w[i,j] to denote

wiwi+1 . . . wj for brevity, the concept level representation can

be written as w[b1,e1]w[b2,e2] . . . w[bm,em]. This task is referred

to as concept recognition.

Both of the above tasks rely on properly grouping words

together in the original texts. The grouping process, however,

needs to take into account not only the individual concept

quality, but also their fitness to each other.

The grouping process can be described using the fac-

tor graph framework [26]. Given each original document

w1w2 . . . wn, the probability takes the following form

P (B,E|w1w2 . . . wn) =
1

Δ

∏

1≤i≤m

f(w[bi,ei])

∏

1≤i,j≤m,i �=j

g(w[bi,ei], w[bj ,ej ]) (1)

where the first type of feature function f(w[bi,ei]) measures

concepts’ individual qualities, and the second type of fea-

ture function f(w[bi,ei], w[bj ,ej ]) measures the fitness of each

concept with respect to its neighbors; Δ is a normalization

constant that makes the probabilities sum to one.

Solving this factor graph model is NP-hard [27]. Basically,

there are an exponential number of choices of grouping words

together that we need to examine in order to find the optimal

solution.

To alleviate this, we will take a pragmatic approach. The

intuition is that, we can first utilize existing techniques based

on linguistic analysis, external knowledge bases, key-phrase

extraction to generate a large pool of concept candidates;

assuming concepts are captured by at least one of the ap-

proaches, we can then focus on candidate selection. By exam-

ining their occurrence contexts, and efficiently summarizing

these information into embedding vectors, we’re able to derive

their global concept quality, and recognize their occurrences in

the original text. The overall pipeline, as illustrated in Figure 1,

consists of the following steps:

(i) We utilize existing techniques to generate a large number

of concept candidates along with their occurrences in

text. The result will be a large set of noisy, overlapping

candidate occurrences.

(ii) We learn an embedding vector representation for each

concept candidate based on its occurrence contexts and

project all of them into an embedding space.

(iii) We learn a concept quality score function for candidates

based on their embedding vectors. Each candidate will be

associated with a score indicating how likely it is to be

a concept.

(iv) We determine the true occurrence of concepts in each

original document based on both their individual qualities

and their fitness to context, according to the learned

embedding vectors.

III. CANDIDATE GENERATION

We first generate candidates for further selection. The goal

is to be exhaustive, so that recall is preserved and further

selection process will not miss important candidates. While

generating a large pool of candidate concepts from raw text is

technically interesting, we mainly rely on existing techniques

and do not make major contributions, and therefore will briefly

discuss this step for completeness.

Specifically, as both the concept extraction and concept

level representation depend on grouping word together in the

original text, the generated candidates will take the form of

candidate concept occurrences, where sequences of words

denoting the same concepts are grouped together. We consider

the following three sources of candidates:

• Linguistic Analysis We extract single words or word

sequences as candidates if they matched the POS patterns

defined in [4], or are detected by pre-trained noun phrase

chunking model [28].

• Knowledge Base: We extract single words or word

sequences if they are detected by the DBPedia Spotlight

entity linking model [29].

• State-of-the-arts: We also incorporate the outputs from a

set of state of art approaches, including statistical phrase

mining [2], graph-based text summarization [17], super-

vised concept extraction [30] and key-phrase extraction

[31]. Since some of the methods only generate a set of

concepts without producing their occurrences in text, we

generate occurrences for them via simple string matching.

Following previous approaches [2], [18], [16], [23], [32],

We apply basic post-processing for the output of each above

method, by keeping only noun phrases, i.e. those ending with

a noun5 and discard candidates with length above a threshold

K = 6.

As illustrated in Figure 1, these candidate concepts occur-

rences will form a noisy, overlapping set, which can be viewed

as a sequence of super-concepts. Each super-concept will be a

word sequence that completely covers some of the candidates

occurrences, and each candidate occurrence is covered by one

and only one super-concept (The super-concepts are defined

as the minimal ones that fit the above requirement). Given

a word sequence w1w2 . . . wn, we denote a super-concept

sequence U = u1u2 . . . ul using the following two index

sequences, B′ = b′1, . . . , b
′
l, E′ = e′1, . . . , e

′
l, so that each

ui = w[b′i,e
′
i]

. As an example, in the case where the candidate

occurrences “vector machine” and “support vector machine”

overlap, then “support vector machine” would be a super-

concept that contains both candidates. And the task is to make

a choice between the two.

5Extracting other types of phrases, e.g. verb phrases, adjective phrases may
also be interesting. However, our approach is not specific to noun phrases and
we can simply replace the above noun phrases filters to detect different type
of phrases.
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In other words, we have simplified our task (see Equation 1)

as selecting candidates from each super-concept, instead of

exhaustively searching all different ways of grouping words

together. If we use variables Z = z1z2 . . . , zl to denote the

candidate selection decision in each super-concepts, where zi
denotes the unit (a candidate or a plain text word) in ui we

choose to be included in the concept level representation, then

Equation 1 can be simplified as

P (u1u2 . . . ul,Z) =
1

Δ

∏

1≤i≤l

f(zi)
∏

1≤i,j≤l,i�=j

g(zi, zj)I(zi ∈ ui)

(2)

I(·) is the identity function that returns 1 if the condition is

true, and 0 otherwise.

The selection of candidates, however, needs to consider all

the candidates at a global level: How can we best leverage the

global occurrence contexts to judge the concept qualities? And

how can we use these information to best recognize concepts’

occurrences in local contexts? These will be the key questions

to address in the next section.

IV. EMBEDDING AWARE CONCEPT MINING

In this section, we describe our approach to produce the

concept vocabulary and concept level representations based

on the generated candidates. We will start by describing

the objective function and introducing our overall approach

(subsection IV-A), and then discuss each individual step in

detail (subsection IV-B - subsection IV-D).

A. Framework

The goal of our concept mining approach is to maximize

both the individual qualities of the selected concepts and their

fitness to the surrounding contexts. To that end we propose to

use the following feature functions (see Equation (1), (2) ) to

quantify our objective.

First, we study the feature function for each node pair,

g(zi, zj), which accounts for the context fitness. We will start

by introducing a new set of parameters θ, each θz , as indexed

by either a word or a concept candidate z, is a vector of

fixed length (For convenience we refer to the set of all words

and concept candidates as V). There are several commonly

used models to measure embedding based context fitness,

e.g. Softmax, Hierarchical Softmax, Skip-Gram with Negative

Sampling (SGNS) (see [20]), Adaptive Softmax (see [33]). In

their simplest form, Softmax, our fitness measure g(zi, zj) can

be expressed as

g(zi, zj|θ) =

⎧⎪⎨
⎪⎩

exp(θzi ·θzj )

(
∑

z′∈V
exp(θzi ·θz′ ))

1
2 (

∑

z′∈V
exp(θzj ·θz′ ))

1
2

|i− j| ≤ K

1 |i− j| > K
(3)

The above definition of the node feature function is in

accordance with the word2vec model [20]: for each pair

of units from the super-vocabulary (e.g. words or concept

candidates) that is within a local window of size K, where

K is a predefined constant, we measure the proximity of their

vector representation based on the Softmax function. We can

see that the embedding is indeed learned from the context:

the embedding of a word or concept candidate is completely

determined by the contexts it occurs in, regardless of what it

originally is.

As for the context-independent node feature function f(zi),
we will directly define it as the concept quality score6.

f(zi) = Q(zi) (4)

We can now formally describe our objective function ac-

cording to Equation 2 and the feature function defined above,

as a function of the embedding vectors θ, concept quality score

function Q, and the selection decisions in the super-concepts

sequence Z(d) = z
(d)
1 z

(d)
2 . . . , z

(d)

l(d)
for each document d ∈ D,

shorthanded as Z � {Z(d)|d ∈ D}. Specifically, it takes the

following form

O(θ,Z, Q) =
∏

d∈D
(

∏

1≤i≤l(d)

Q(z
(d)
i ) ·

∏

1≤i,j≤l(d),i �=j

g(z
(d)
i , z

(d)
j |θ)

(5)

·
∏

1≤i≤l(d)

I(z
(d)
i ∈ u

(d)
i ))

For learning the embeddings θ, the concept quality scores

Q(zi) and the recognized candidate occurrences Z , we take a

3-step approach: we firstly learn the embedding parameters

θ by maximizing the expectation of the objective function

(subsection IV-B); then we learn concept quality score func-

tion Q (subsection IV-C) incorporating the information from

the learned embeddings θ; and finally, we treat the learned

embedding θ and concept quality score function Q as fixed,

and perform an exact optimization of the objective function

O(θ,Z, Q) to obtain selection choices Z . The rationale is

the following: since we have no prior knowledge of which

candidate to choose for each of the overlapping region, we will

assume it is uniformly distributed, and learns the embedding

of each concept candidates that equally reflect all of its

possible occurrence contexts; likewise, the quality score of

each concept, should be an averaged ensemble where each

possible occurrence context contributed equally; and finally,

we use these averaged ensembles to determine context fitness

and select the best settings.

B. Concept Embedding

We first learn the embedding θ, by maximizing towards the

expectation of the objective function. Assuming the concept

selection choices Z is randomly distributed, where each of

its component value, z
(d)
i for d ∈ D is randomly select

6 The concept quality score is defined as a small enough positive constant
for those inputs that are not concepts. The exact value does not matter to the
optimization process.
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from available choices for the specific super-concept, the

maximization goal becomes

max
θ

E
Z,Q

[O(θ,Z, Q)] (6)

=
1

Δ

∑

Z
(
∏

d∈D
(

∏

1≤i,j≤l(d),i �=j

g(z
(d)
i , z

(d)
j |θ)

·
∏

1≤i≤l(d)

I(z
(d)
i ∈ u

(d)
i )))

Again, Δ is a constant accounting for taking the expectation

over Q and Z , and is irrelevant for the optimization process.

Similar to vanilla word embedding learning, we learn the

embedding vectors in a stochastic fashion [20], where at each

time we maximize the feature function g with respect to

a specific pair (z
(d)
i , z

(d)
j ), and keep iterating over all such

possible pairs.

C. Concept Quality Estimation

In this step, each concept candidate is associated with

an embedding vector, and thus mapped to a point in the

embedding space. Our goal is to measure their quality in the

embedding space, and produce the concept quality scoring

function Q(c) : Vc → [0, 1]7. We will propose several novel

measures to capture the quality of a concept’s occurrence

contexts via its embedding. The idea is originated from our

usage experience with previous phrase mining tools, such as

Autophrase: it is able to produce high quality concepts such

as ”query plan”, whose learned embedding is similar to many

other high quality concepts such as ”join operators”, ”join

orders”, and ”query optimizer”; but it may also generate low

quality ones such as “following treatment”, which do not have

that many high quality neighbors.

To that end, we examine the two most used properties in the

intrinsic evaluation of semantic embedding vectors [20], [34]:

semantic similarity, e.g. answering questions such as ”what

is the most similar word to king?”; and semantic relatedness,

e.g. answering questions such as ”men is to women as king is

to what?”. It has been shown that relatedness can be derived

from similarity using vector arithmetic [34]. Therefore, we will

solely focus on semantic similarity. Specifically, we measure

the similarity of two embedding vectors θc, θc′ , denoted as

〈θc, θc′〉, using the cosine similarity function

〈θc, θc′〉 = θc · θc′
||θc||||θc′ || (7)

where · denotes vector inner product and ||v|| denotes the l2-

norm of vector. We advocate a spatial representation of the

embedding vectors, and focus on what we call a concept’s

“similarity neighborhood”, that is, all concepts that have simi-

7In this work we simply take the set of all concept candidates as the set
of concepts Vc, and rely on the concept quality scoring function to compute
distinguishes the high quality concepts from low quality ones. As a result, we
may use the term “concept” and “candidate” interchangeably.

larity above a certain threshold κ with the concept of interest8.

We propose the following four types of quality measure.

Context commonness measures how common a concept’s

occurrence contexts are with respect to other concepts. For

example, the concept “support vector machine” may often be

associated with common context patterns that are also suitable

for other machine learning algorithms, such as “random forest”

or “logistic regression”. On the other hand, for a less meaning-

ful candidate concept, e.g. ”vector support machine”, it will

probably only appear in some rarely seen contexts, which can

not be associated with that many concepts.

We define the context commonness as the number of mem-

bers in a concept c’s neighborhood : the higher this value

is, the more concepts there will be that are associated with

its similar contexts, and hence the more common its contexts

should be
∑

c′∈Vc,c′ �=c

I(〈θc, θc′〉 > κ) (8)

Context purity focuses on the internal differences between

a concept’s occurrence contexts. For example, for a concept

with clear meanings such as “query optimizer”, its usage

contexts are usually quite specific and often associated with

the same type of concepts; while casual expressions such as

“nice property” will have a much more diverse set of usage

contexts, and thus less “pure”.

We define context purity as the average similarity between

a concept and concepts in its similarity neighborhood. High

value means that its usage contexts are more likely to be

associated with only specific type of concepts
∑

c′∈Vc,c′ �=c〈θc, θc′〉∑
c′∈Vc,c′ �=c I(〈θc, θc′〉 > κ)

(9)

Context link-ability measures to what extent a concept’s

occurrence context can be associated with existing high quality

concepts in the knowledge base. For example, if we know that

“rhinella marina” (a type of toad) usually occurs in contexts

that are similar to“frog”, and that “frog” already exists in the

knowledge base as a high quality concept, it would help us

confirm that “rhinella marina” is also a high quality concept.

We define context link-ability as the number of concepts in

a concept c’s neighborhood belonging to a predefined set of

high quality concepts Vext
∑

c′∈Vext,c′ �=c

I(〈θc, θc′〉 > κ) (10)

A nice property of this measure is that, the knowledge base

entities themselves need not have high value in this measure:

they may or may not be similar to other entities in the

knowledge base. This will allow us to re-use them as training

examples for the concept quality score model.

Context generalizability measures whether the string rep-

resentation of a concept can be generalized to denote more

8κ can be determined from dataset, e.g., by examining the lists of most
similar concepts for each concept (or some of the concepts), and determining
a cutoff threshold
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specific ones. As an example, if we see two or more concepts

(but not one) such as “fuzzy support vector machine”, “twin

support vector machine”, “one-class support vector machine”,

all of which have similar usage context as “support vector ma-

chine”, it would further confirm that “support vector machine”

is a valid concept, rather than a random word combination.

We define context generalizability as the number of concepts

in a concept c’s neighborhood that contains it as subsequence:

max
θ

(
∑

c′∈Vc,c≺c′
I(〈θc, θc′〉 > κ)− 1, 0) (11)

where we use c ≺ c′ to denote that c is a subsequence of c′.
Based on the measures defined above, we produce a com-

bined score using a machine learning model that adaptively

weight each features, similar to previous approaches [3], [2].

Specifically, given a few positive examples, e.g. concepts that

occur in knowledge bases, and optionally a few negative ex-

amples [2], we will train a classification model such as random

forest, or support vector machine, and use its predictions as

the quality scores.

D. Concept Recognition

Finally, in the concept recognition step, we compute Z and

determine which concept to recognize for each super-concept.

Specifically, the task is to maximize Equation 5 with respect

to Z. The challenge lies in the fact that the decisions of

concept occurrence may influence each other, and a brute-

force approach to find the exact maximum solution may take

exponential time. In the following, we present our efficient

inference approach that is guaranteed to reach the global

optimal result in linear time.

To achieve this, we explore the locality of the correlation

in the overall objective function, and write maximization goal

as

max
Z

O(θ,Z, Q) (12)

=
1

Δ

∏

d∈D
(

∏

1≤i≤l(d)

Q(z
(d)
i ) ·

∏

1≤i,j≤l(d),i �=j

g(z
(d)
i , z

(d)
j |θ)

· I(z(d)i ∈ u
(d)
i ))

It can be easily seen that the above can be decomposed into

the maximization within each document. Specifically, given

each one document u1u2 . . . ul, the goal is to output the best

configuration for that document, Z = z1z2 . . . zl.
We apply a technique called junction tree algorithm [26].

The basic idea is to re-parameterize the parameters to make the

maximization easy. We will introduce a variable to represent

each local window zt−K+1zt−K+2 . . . zt of size K, for t =
K,K+1, . . . l. Without confusion we denote it as the variable
Zt:−K . It can be shown that the new factor graph can be

described by the following factors:

ht,t+1(Zt:−K ,Zt+1:−K) = f(zt+1)
∏

i=t−K+1,...,t

g(zi, zt+1)

(13)

for t = K,K+1, . . . l−1, and an additional factor accounting

for the initial condition

h0(ZK:−K) =
∏

i=1,...,K

f(zi) (14)

∏

i=0,...,K−1

∏

j=i+1,...,K

g(zi, zj)

Now that the new factor graph forms a linear chain structure,

we can easily obtain the optimal setting. Specifically, we apply

the max-product inference procedure [26], and the message

passing rule and factors between nodes can be expressed as

μZt:−K→ht,t+1
(Zt:−K) =

∑

f∈ne(Zt:−K)\ht,t+1

μf→Zt:−K
(Zt:−K)

(15)

where ne(Zt:−K) refers to all “neighboring” factors associated

with variable Zt:−K , and

μht,t+1→Zt+1:−K
(Zt+1:−K) = max

Zt:−K

(16)

(ht,t+1(Zt:−K ,Zt+1:−K) · μZt:−K→ht,t+1(Zt:−K)

· I((Zt+1:−K)1:K−1 = (Zt:−K)2:K) )

where the last term is to ensure that the re-parameterized

variables Zt+1:−K and Zt:−K agree on the overlapping region,

so that the original variables can be recovered. And the initial

condition is given by

μh0→ZK:−K
(ZK:−K) = h0(ZK:−K) (17)

We present the inference algorithm in Algorithm 1.

Algorithm 1 Concept Recognition

Input: super-concept sequence U = u1u2 . . . ul, factors f :
V → R, g : V × V → R, window size K
Output: : word sequences to identify within each super-

concept sequence Z1:l = z1z2 . . . zl
initialize μh0→ZK:−K

(ZK:−K) according to Equation 17

for t = K to l − 1 do
update μZt:−K→ht,t+1

(Zt:−K) according to Equation 15

update μht,t+1→Zt+1:−K
(Zt+1:−K) according to Equa-

tion 16

end for
compute (Zn:−K)max to maximize the last messages, as

arg max
Zt:−K

μhn−1,n→Zt:−K
(Zt:−K)

for t = l − 1 to K do
find (Zt:−K)max that maximizes the right hand side of

Equation 16, given Zt+1:−K = (Zt+1:−K)max

end for
return Z1:l

As shown in [26], the junction tree inference algorithm is

able to achieve the optimal results; it is also quite efficient,

since it only uses O(l) iterations to find the optimal value as

well as the corresponding parameter setting, where l is the

number of latent variables z1z2 . . . zl.
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TABLE II: Dataset Statistics

Machine Learning Database Medicine
# docs 14.5K 3.6K 110K

# sentences 5.9M 2.2M 0.9M
# words 77M 31M 15M

V. EXPERIMENT

In this section, we experimentally demonstrate the effective-

ness of our proposed approach in 3 benchmark dataset, from

the domains of machine learning, database and medicine.

A. Experiment Setup

1) Datasets: We have collected the following 3 datasets.

Their statistics are summarized in Table II.

Machine Learning The first dataset contains a complete

full-text collection till 2017 of the NIPS proceeding9, JMLR

journal10 and the Proceedings of Machine Learning Research

(PMLR), which includes proceedings from major machine

learning conferences such as ICML, AISTATS and COLT.

Database Our second dataset contains complete full-text col-

lection till 2017 of VLDB11 and SIGMOD proceeding12, the

two top publication venue in the field of database.

Medicine We have also collected a paper abstract dataset from

PubMed13 in the domain of medicine. Specifically, the 31

medicine journal that has more than 1M bytes of words and

SCI impact factor above 1, which includes prominent ones

such as The New England journal of medicine, JAMA, British

medical journal and Lancet.

2) Compared methods: We compare with a wide range of

state-of-the-art approaches, as described below:

• AutoPhrase [2] is the state-of-the-art phrase mining tech-

nique, which combines the quality estimation and occur-

rence identification to extract salient phrases from text

documents with little to zero amount of human labeling.

We follow the settings recommended by the original paper

[2] and the released code14.

• Textrank [17] is an unsupervised key-phrase extraction

algorithm that leverages the graph based importance to

select significant key-phrases from documents. We use the

implementation and the parameter settings according to a

publicly available version15, and keep the top 20% of the

extracted key-phrases. Since the entire corpus is too long to

fit in memory, we batchify the input data, 20 sentences at

a time, and sum the scores of all the documents for each

keyphrase as their final score.

• WINGUS [35] is a supervised key-phrase extraction ap-

proach which considers a large set of grammatical, statis-

tical and document logical structure features. We use the

implementation and the parameter settings according to a

9https://nips.cc/
10http://www.jmlr.org/
11http://www.vldb.org/
12https://sigmod.org/conferences/
13https://www.ncbi.nlm.nih.gov/pubmed/
14https://github.com/shangjingbo1226/AutoPhrase
15https://github.com/summanlp/textrank

publicly available version16 and batchify the corpus similar

to the above.

• Chunking directly captures the occurrences of the word

sequences of interest as a textual span. There are two

choices, the noun phrase chunking model and named entity

recognition model. Because we observe that noun phrase

chunking gives better performance, and also because it’s

more related to our task, we report the performance of the

noun phrase chunking model, implemented in Spacy [28],

as the performance of the chunking approach.

• Grammartical Pattern Extraction captures concepts us-

ing pre-defined regular expression over POS tags of the

word sequence. We used the grammar pattern according

to the publicly available software, associated with [4],

“StructMine”17. We refer to this approach using the name

“StructMine”.

• RAKE [31] employs the phrase delimiter to detect candi-

date phrases, estimates their quality using a graph-based

importance measure, and then forms more phrases based

on their adjacency in text. We used the implementation and

the parameter settings in a publicly available version18.

• ECON refers to our approach, Embedding based CONcept

mining. For the objective function, the window size is set

to 5, and the node pair feature function is implemented

using the Hierarchical Softmax model [20]. For concept

quality estimation step, we use a linear support vector

machine implementation from Scikit-learn19, with positive

training example provided by Dbpedia and equal number of

randomly sampled negative training samples to produce the

quality score function;

For methods that generate textual occurrences but do not

provide quality scores, we use the sum of TF-IDF values

across all the documents as the concept quality scores. For

methods that only output a plain set of concepts, but not

textual occurrence, we generate occurrence of these concepts

via simple string match.
In order to have a fair comparison, we did some basic fil-

tering on the set of extracted concepts, to discard all extracted

concepts not ending with a noun, or starting with a determiner

other than “the”, which helps to improve the accuracy of

baseline methods.
3) Evaluation Metrics: We measure the quality of the

extracted concepts from each method in terms of precision and

recall. Because we observed that common extracted phrases

that rank high in each method can be easily captured by many

other state of the art phrase mining and keyword extraction

methods, we focus on long tail concepts. Specifically, for the

concepts generated by each of the methods, we exclude the

ones that can also be found by others (which are easier to find),

and then, randomly sample k = 100 elements from the rest of

the extracted concepts for each method, and merge them into

a ground-truth evaluation set. We then manually evaluate the

16https://github.com/boudinfl/pke
17https://github.com/shanzhenren/StructMineDataPipeline
18https://github.com/fabianvf/python-rake
19http://scikit-learn.org/
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(a) Machine Learning (b) Database (c) Medicine

Fig. 2: Precision-recall curves for concept quality evaluation

TABLE III: Example concept level representation generated by various approaches

ECON AutoPhrase StructMine
Fast [global convergence] of [gradient methods] [Fast global convergence of gradient methods] [Fast global convergence] of [gradient methods]
for high-dimensional [statistical recovery] for high-dimensional statistical recovery for [high-dimensional statistical recovery]
Our [paper] develops [Riemannian LBFGS], Our [paper develops] Riemannian [LBFGS], Our [paper] develops [Riemannian LBFGS],
which can also achieve which can also achieve for which can also achieve
local [superlinear convergence]. local [superlinear convergence]. [local superlinear convergence].
To incorporate these [results] into the To incorporate these results into the To incorporate these [results] into the
corresponding [parent workflow], the expected corresponding parent workflow, the expected [corresponding parent workflow], the expected
[turnaround time] of the [parent] is calculated turnaround time of the parent is calculated [turnaround time] of the [parent] is calculated
in the following [hierarchical manner]. in the following [hierarchical manner]. in the [following hierarchical manner].
If current [mortality trends] continue, If current [mortality trends] continue, If [current mortality trends] continue,
[HIV AIDS] can be expected to become [HIV AIDS] can be expected to become [HIV AIDS] can be expected to become
one of the five [leading causes] of [death] one of the five leading causes of death one of the five [leading causes] of [death]
by 1991 in [women] of [reproductive age] by 1991 in women of reproductive age . by 1991 in [women] of [reproductive age].

quality of ground-truth evaluation set, based on a principle we

call “knowledge-baseness”: if we were to construct a Wiki-

like knowledge base from the target domain, is it significant

enough, that it’s worthwhile to be explained and added to

the knowledge base? Google and domain dictionary could

help, but for niche ones like “APCA” (a time series analysis

technique) that carries specific meanings, we also want to

include them as true concepts.

In addition, we evaluate the quality of concept identification

using the application task of information retrieval. Specifically,

given a concept as query, we aim to retrieve relevant sentences

based on the result of concept identification. Similar to the

above, we take the top K = 50 retrieved documents from

each method, exclude common ones that occurred in all of

them, and merge them to form the ground truth documents.

We then manually label them using the same standard as

above and measure their performance using the Mean Average

Precision (MAP)20 score, averaged over 5 concept queries. The

queries are randomly selected from commonly known concept,

which can usually be extended with prefix and suffix, e.g.

“belief propagation” as in “tensor belief propagation”, “global

convergence” as in “global convergence rate”.

B. Results

Precision and recall evaluation Figure 2 presents the

precision-recall curves of all compared methods. The per-

formances vary by dataset, with the medicine domain being

20https://en.wikipedia.org/wiki/Evaluation measures (information
retrieval)

the easiest, where the terminologies are rigorous and the

extracted concepts for each method are quite meaningful in

general; the machine learning domain is the most noisiest

one, where longer and more complex word sequences such

as “maximal ancestral graph” are required to express a con-

cept. In general, we observe that different approaches define

the quality measure in their own way, which appears to

be consistent across datasets: StructMine and Chunking are

the most straightforward, that counts the number of times

a word sequence occur, “standalone” (as opposed to being

contained in a longer sequence); Textrank emphasizes on the

connection to neighbors, and can capture popular concepts

such as “vertex”; the supervised method, WINGUS, performs

relatively well, however it sometimes misses important ones

such as “NMSE” and gives false positive results such as “such

transformations”; RAKE only captures multi-word phrases and

completely misses single-word ones, and tends to produce long

phrases such as “respiratory tract cultures yielding aspergillus”

(medicine); Autophrase is good at extracting coherent phrases,

such as “minimum inhibitory concentration” (medicine), but

is not good at capturing atomic single-word concepts such

as “matrix” (machine learning). ECON ranks concepts in a

more natural way, from obvious ones such as “convolution”,

“covariate matrix” down to borderline cases such as “unsuper-

vised grammar induction”, and then down to low quality ones

such as “feedback setting”. However, in the medicine dataset,

it tends to give high scores to expressions like “essential role”

and “unmet need” which always appear in consistent contexts.

This, along with the fact that medical terms are easy to capture
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TABLE IV: MAP scores for information retrieval evaluation

Method Machine Learning Database Medicine

AutoPhrase 0.87 0.87 0.87
Textrank 0.84 0.92 0.81
WINGUS 0.89 0.92 0.85
RAKE 0.77 0.67 0.58
StructMine 0.91 0.93 0.85
Tagger 0.90 0.82 0.82
ECON 0.98 0.99 0.97

TABLE V: Example concepts captured by ECON

Dataset Example Concepts

Machine Learning variable, eigenvalue, likelihood, matrix,
value injection experiment,
move-making algorithm

Database locks, XES, overhead, throughput,
preference relation, System Administrator,
distributed file system

Pubmed antigens, HBP, titre, prostate, TUDCA,
proportional hazards regression,
fragment length polymorphism

using co-occurrence and simple grammatical rules, causes its

performance to drop and be very close to the best performing

baseline methods in that dataset.

Information retrieval task evaluation The MAP score for

each method is shown in Figure 2. ECON achieves high

recognition accuracy in general; the main drawback is that

it tends to favor atomic ones, recognizing “bone marrow

transplantation” in place of “autologous bone marrow trans-

plantation”. Other methods tend to fluctuate between each

query, since they mostly ignore context words and grammatical

constraint; for those that are based on grammatical patterns,

they have difficulty distinguishing between bad ones such as

“a leading commercial centralized relational database”, and

good ones such as “generalized belief propagation”.

C. Qualitative Evaluation

We present the following qualitative evaluation to further

compare the proposed approach against baseline methods.

Concepts Representation Table III illustrates the concept

level representation generated by ECON, Autophrase and the

pattern based approach, StructMine, without noun phrases

filtering on the recognition results. We can observe that, ECON

can capture concept occurrences in a more comprehensive

fashion, adaptively including or excluding decorative words

depending on the contexts; Autophrase only selectively labels

a few concept occurrences, which may or may not conform to

grammar patterns; StructMine, on the other hand, generates

concept representation by greedily including all decorative

words for each noun phrases.

Concept quality difference We compare the results of concept

quality score produced by our approach and the statistical

signal based phrase mining approach, Autophrase. Table V

shows some example concepts that can be confidently captured

by our approach but not by Autophrase. Specifically, we

compare the rank of concepts among all evaluated concepts

between our approach and Autophrase, and select those that

have a difference bigger than 50 %. We can observe that, our

approach can better capture general, but meaningful concepts

such as “likelihood”; it can also better capture concepts made

up of frequent words, which may be missed by statistical co-

occurrence based measures.

VI. RELATED WORK

Historically, the problem of mining concept from texts

is addressed within the NLP community [23], [13], [36],

[37], [38], with the closest lines of work being noun phrase

chunking and named entity recognition [23], which either

employ heuristics such as fixed POS-tag patterns [4], or use

large amount of labeled training data and train complex models

based on CRF, LSTM [15] and CNN [39].

Specifically, there has been a line of work focusing on

terminology and keyphrase extraction, where they generated

noun phrases as candidates, and exploited statistical occur-

rence and co-occurrence measures [22], semantic information

from knowledge base [40], along with other textual features

such as whether the candidate appears in title or abstract,

whether it is an acronym, or whether it ends with specific

suffix in order to rank the candidates [30]. Supervised methods

aim at replacing human effort in assigning keywords to each

document using the above features, while unsupervised ones

typically use similarity graph between candidates in order to

compute importance score and generate the top concepts for

each document [18], [31], [17]. This is quite different from

our goal.

The state of art approaches for mining quality phrases is [3],

[2]. They innovatively proposed the approach of adaptively

recognizing concept occurrence based on concept quality,

and exploited various important statistical features such as

popularity, concordance, informativeness [3], as well as POS-

tag sequence [2] to measure phrase quality, and leverage

knowledge base entity names as training label, to train the

concept quality scoring function. They mainly focus statisti-

cally significant phrases, not concepts with low occurrences

and co-occurrences.

VII. CONCLUSION

In this work, we studied the problem of concept mining,

where given a set of documents, the goal is to extract

concepts and recognize their occurrences. We proposed a

novel framework that first exhaustively generate candidates,

and then perform candidate selection based on embeddings.

Many interesting future directions exists. One is to further

explore the relations between these mined concepts to extract

more structured information from text. Another direction is to

incorporate more supervised signal, such as performance in

downstream tasks to enhance the concept mining process.
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