
Automated Trauma Incident Cubes Analysis

Ankit Srivastava∗, Lisa Ferrigno†‡, Stephen Kaminski‡, Xifeng Yan∗, Jianwen Su∗
∗ Department of Computer Science, UC Santa Barbara, CA, USA

{ankit, xifeng, su}@cs.ucsb.edu
† Translational Medicine Research Laboratory, UC Santa Barbara, CA, USA
‡ Trauma Services, Santa Barbara Cottage Hospital, Santa Barbara, CA, USA

{lferrigno, skaminski}@sbkh.org

Abstract—National Trauma Data Bank (NTDB) is the largest
repository of statistically robust trauma data in the United States,
assembled from trauma centers across the country. NTDB data
has been commonly used in risk adjusted studies in the medical
communities to describe patterns of injury, interventions and
patient outcomes in order to better tailor trauma treatment.
The studies have led to significant improvements in the standard
of care delivered to trauma patients. A considerable amount of
research efforts have been spent on development and maintenance
of NTDB to continuously improve the quality and effectiveness
of trauma patient records. Prior studies relied mostly on ad hoc
and manual extraction processes of data from NTDB repository.
Given the rapid growth of the NTDB datasets in an ever changing
clinical environment, there is an urgent need to develop standard
methodologies and software tools to support data analysis in-
volving NTDB datasets. The goal of this research is to empower
clinicians to be able to utilize collected content for such analysis
by using standardized data collection and aggregation practices.

Specifically, in this paper we generalize existing OLAP
techniques to model NTDB data for capturing statistical and
aggregated information. We present a system to automate the
process of creating “incident cubes” for all permutations of
attributes in NTDB data model, and a querying framework for
extracting information from cubes. We also define a ranking
function to discover new and surprising patterns from cubes,
based on the information gain from each attribute. A case study
is used to illustrate that we can take advantage of the system to
support trauma data analysis effectively and efficiently.

I. INTRODUCTION

Trauma remains one of the leading causes of mortality in
the United States, affecting all range of age groups. National
Trauma Data Bank (NTDB) 1 is the largest trauma registry
of trauma patients in the whole of US, Canada and Puerto
Rico. Over the past several years, NTDB has been extensively
used in trauma research, in the study of trauma epidemiology,
quality of care, and patient safety. While NTDB provides an
attractive option for obtaining a population reflective registry of
patient records, it suffers from issues of selection bias, missing
and erroneous data values. In order to improve the condition
of trauma research and provide better health care facilities to
trauma patients, National Trauma Data Standards (NTDS) was
established in 2009 [3].

Haider et al [15] highlights the usefulness of NTDB,
especially as practice standards with respect to data collection
have evolved. NTDB has improved the standard of care of
trauma patients. The data is accessible to clinician researchers,
such that the number of publications based on NTDB went

1http://www.ntdbdatacenter.com

from 2 articles in 2003 to 29 in 2009 and 33 in 2010. However,
the lack of standards with respect to data manipulation and
analysis may cause spurious or misleading results. Given
that these results may alter the care provided to patients,
consistency and correctness in the methodology is important
[13], [15].

One example of methodological inconsistency is the way
missing data is handled by different analysis. The Journal of
the American College of Surgeons, usually dedicated to the
research and publication of clinically related surgical (includ-
ing trauma) material, published a methodology for imputation
to handle missing data in the NTDB [22]. Despite that, [15]
pointed out that >70% of authors publishing on NTDB in
2009 and 2010 simply excluded missing data, frequently in a
context where some other mechanism would have been more
appropriate. Haider et al [13] reiterated some of the same
concerns about data handling and analysis and implored for
standardization of methodological practices.

The NTDB data model is inherently relational in nature.
The data model consists of a set of relations containing patient
incident records including relations for patient demographics,
physiological parameters, type of injury, facilities information
and event code lookup details. Due to its highly dimensional
nature, Online Analytical Processing (OLAP) based method-
ologies to deal with multidimensional datasets seem to be
a good fit for carrying out analytical studies. In this paper,
we present an aggregation methodology for multidimensional
data to carry out statistical and analytical studies and in
correspondence with NTDB. We present a system to outline
our approach by streamlining the processes of data extraction,
aggregation and querying.

The shortcomings of modeling multidimensional data in
relational databases to effectively consolidate, view and ana-
lyze data was first pointed out by Codd et al [7]. Their study
characterized the analysis of data on multiple dimensions as
one of the characteristics of an OLAP system. References
[10], [17] also presented that relational databases have been
designed for Online Transaction Processing (OLTP) and are
inadequate for handling OLAP operations. Since then signif-
icant research efforts have been done in the development of
dedicated multidimensional analysis systems. Reference [12]
proposed an extension to SQL with a Data Cube operator that
generalizes group by operator to produce multidimensional
aggregations. There are two main approaches in storing and
analyzing multidimensional data. One approach maintains the
data as a multidimensional cube on a non-relational structure
designed for storing multidimensional data. The other approach

2013 IEEE International Conference on Healthcare Informatics

978-0-7695-5089-3/13 $26.00 © 2013 IEEE

DOI 10.1109/ICHI.2013.32

248

2013 IEEE International Conference on Healthcare Informatics

978-0-7695-5089-3/13 $26.00 © 2013 IEEE

DOI 10.1109/ICHI.2013.32

248

2013 IEEE International Conference on Healthcare Informatics

978-0-7695-5089-3/13 $26.00 © 2013 IEEE

DOI 10.1109/ICHI.2013.32

248

stores multidimensional data in a relational database. Multidi-
mensional queries are translated into relational queries. This
approach led to development of Relational OLAP systems
(ROLAP) [6]. Agrawal et al [1] provided a hypercube based
model to provide semantic foundations of multidimensional
databases. They augmented the model with algebraic operators
to translate cube operations to either a SQL-based backend or
a special purpose multidimensional storage.

Gray et al [12] presented data cubes as a specialized
OLAP methodology to effectively perform aggregation and
summarization of data values. A data cube aggregates data
along an N -dimensional space. Each cell in the cube is pre-
calculated to store values across all N -dimensional values.
Beyer and Ramakrishnan [5] described an efficient algorithm to
compute “Iceberg” cubes, where not all cells are pre-computed
during the creation of the cube. Instead, only those cells that
are greater than a threshold aggregation amount are computed
and stored in the data cube.

Many different software tools already exist that facilitate
the process of creation of data cubes and multidimensional
analysis. Microsoft Excel and SQL Server can be extended to
support creation of data cubes and provide support for multi-
dimensional (MDX) queries [8]. Oracle’s Analytic Workspace
Manager [24] is another commercial tool to design data
model and create dimensions and cubes in an Oracle database.
Pentaho’s Mondrian Project [26] is an open source project that
provides an OLAP server to enable the users with real time
analysis of large quantities of data. Data Brewery provides
Cubes [33], a lightweight Python framework for OLAP pro-
cessing and multidimensional analysis.

In this paper, we introduce the NTDB data model and
highlight some of its issues, based on which we demonstrate
the need of standardized OLAP technologies for streamlining
the process of data extraction, aggregation and retrieval. We
define a rule based language for identifying missing values and
errors in NTDB, and develop a tool that leverages the language
to mark all incidents in the system. To support the patient data
analysis, we develop a prototype system [30] to automate the
process of data extraction and creation of incident cubes by
using the metadata associated with the logical definition of
cube attributes. We further introduce an entropy based ranking
function that accommodates missing values in classifying the
cubes. The system is augmented with a querying frontend
to allow the user to query aggregated data effectively and
efficiently, across all combinations of incident cubes. Finally,
we employ the system in conducting a gender based outcome
analysis and our experiences show that our system not only
improves analysis result through the use of entropy based
ranking over earlier studies on NTDB data, it also greatly
simplifies the process of patient data analysis by freeing the
user from tedious tasks such as formatting and extracting data.

The remainder of this paper is structured as follows.
Section II introduces NTDB and its data model, and discusses
some shortcomings. In Section III, we briefly highlight the
literature for OLAP methodologies and re-visit some existing
techniques. Based on these concepts, we define Incident Cubes
in Section IV, a prototype of a system to automate the process
of creation of data cubes from NTDB model. We also present
an entropy based ranking function for data cubes. Section V

TABLE I. DESCRIPTION OF RDS DATASET TABLES

Relation name Information Description

rds_aispcode Incident Abbreviated Injury Scale (AIS) code submitted
by the health facility

rds_aisccode Incident AIS code submitted globally using ICDMAP-90
rds_ais98pcode Incident AIS Code globally mapped to AIS version 1998
rds_comorbid Incident Pre-existing comorbidity information
rds_complic Incident NTDS Complications
rds_demo Incident Patient demographics information
rds_dcode Incident Diagnosis codes for each incident
rds_discharge Incident Discharge details and outcome information
rds_ecode Incident ICD-9 external injury code for each incident
rds_ed Incident Emergency Department information
rds_pcode Incident Procedure and Monitor details
rds_protdev Incident Protective devices for incidents
rds_transport Incident Transportation Information
rds_vitals Incident Vital Parameters for each incident
rds_facility Facility Facilities Information
rds_ecodedes Lookup External Injury Codes
rds_pcodedes Lookup Procedures and Monitor Codes
rds_dcodedes Lookup Diagnosis Codes

describes a case study conducted using the prototype of engine
developed. We present the conclusions in Section VI.

II. TRAUMA PATIENT DATASETS

This section describes the National Trauma Data Bank’s
(NTDB’s) data model and discusses the issues of missing data
and data errors in NTDB, based on which we shall present an
Online Analytical Processing (OLAP) based methodology of
creation of data cubes in Sections III and IV.

NTDB is the largest aggregation of trauma registry data,
collected and maintained by American College of Surgeons
(ACS), from hundreds of individual health care facilities. As of
2011, NTDB contains more than 5 million incidents submitted
voluntarily by more than 900 health care facilities across the
nation [4], [9], including 219 Level I, 239 Level II, 192 Level
III or IV trauma centers [9], [20]. Currently 95% of Level
I trauma Centers and 80% of Level II trauma centers have
contributed data to NTDB. NTDB provides datasets that can
be used by researchers to study in multiple domains of trauma
research. These datasets contains descriptive information about
trauma patients including patient’s demographics, physiolog-
ical parameters recorded during the course of diagnosis,
anatomical injury descriptions, diagnoses and interventions,
patient outcomes and trauma center facilities information.

Data is submitted voluntarily to NTDB by the trauma
centers, making NTDB data a convenience sample [4]. As a
result, the NTDB datasets inherit individual deficiencies of
contributing health care facilities and suffer from selection
bias. Another major issue with NTDB, pointed out by [18],
is that of missing data. The study observes that most of the
incidents recorded in NTDB have a missing physiological
parameter. Due to all of these limitations, NTDB cannot
be considered as a representative sample of all hospitals.
Despite its limitations, NTDB has been widely accepted as a
major reference for risk adjusted studies for predicting patient
outcomes [15].

A. NTDB Research Datasets

NTDB provides several Research Datasets (RDS) for sci-
entific analysis and research studies in multiple domains of
trauma. These datasets are prepared, organized and analyzed

249249249

by the individual(s) and have been used for publications in
medical peer reviewed journals, for production of local hospital
annual reports or quality assurance projects.

A typical RDS consists of a set of 18 relational data tables,
provided for download as data files in different formats, that
can be imported to various databases and statistical softwares
[4]. Patient incident records are identified using unique incident
identifier, “inc_key”, whereas facilities are identified by a
unique facilities identifier, “fac_key”.

The tables in RDS consist of three types of information—
incident descriptions, facilities description, and lookup infor-
mation. Detailed description of each of the tables is listed in
Table I. Three of the data tables (rds_ecodedes, rds_dcodedes,
rds_pcodedes) serve as look-up tables with descriptions for
ICD-9 [11] External Injury Codes, ICD-9 Diagnosis Codes,
and ICD-9 Procedure Codes, respectively. The data table
rds_facility, indexed by fac_key, provides facilities description
for each of the 697 participating hospitals. The facilities
information includes hospital characteristics such as bed size,
trauma level as well as registry inclusion criteria for the
participating hospital. The remaining 14 data tables contain
patient incident records that are identified by inc_key. The
table rds_demo contains patient demographic information in-
cluding age, gender, race, and ethnicity, whereas rds_dishcarge
contains outcome related information including total length of
stay, number of ICU days and outcome. The table rds_vitals
contains physiological parameters—motor, verbal, and eye
components of the Glasgow Coma Score (GCS), Respiratory
Rate (RR), Systolic Blood Pressure (SBP). Glasgow Coma
Scale is a scoring system used to describe the level of con-
sciousness in a patient following a traumatic brain injury and is
calculated as a sum of scores observed for three components—
eye opening, verbal response, and motor response in the
patient. The physiological parameters are recorded twice for
each patient, once by Emergency Medical Services (EMS) and
the second time at the Emergency Department.

We have used NTDB RDS dataset from the Admission Year
2011 for our research. The dataset contains a total of 722, 836
incidents. These incidents are characterized by 1293 unique
injury types and 6359 different diagnostic procedures. A total
of 697 different facilities contributed data to the dataset. These
facilities included 119 Level I, 147 Level II, and 92 Level III
or IV trauma centers; while 339 facilities were not classified.

B. Missing Data

National Trauma Data Standard (NTDS) [3] was estab-
lished in 2009 as a national standard for exchange of trauma
registry data by ACS. NTDS has since standardized the process
of inclusion and collection of information being added to
NTDB. NTDS provides exact standards for submission of data
to NTDB as part of its collection process [3].

Being the most comprehensive source for trauma research,
NTDB also faces issues of missing and incomplete data. It
was reported [18] that upto 30% of parameters required for
predicting incident outcome are missing in NTDB (version 4.3)
[2], parameters that have missing data include physiological
and demographics parameters.

Many reasons have been attributed to missing values in
NTDB, including absence of data values. Patients arriving at

the Emergency Department in a critical situation or suffering
from extra cranial trauma are more likely to face issues of
missing data values. Motor, verbal, and eye components of
GCS, RR, and SBP were considered missing if the data is
absent, aberrant or the patient is sedated. Verbal component of
GCS and RR were also considered missing when the patient
is intubated or the data is aberrant.

In case of missing physiological data, many different
methodologies have been adapted for trauma group compar-
isons. Traditional analytical techniques excluded all observa-
tions with missing data, leading to a biased group comparisons
since patients with missing values can be systematically very
different from patients with non-missing data [23]. Another
methodology adopted by researchers is to omit the physi-
ological parameters from the analysis, resulting in residual
confounding due to incomplete adjustment for baseline risk
[21], [31]. On the other hand, references [21]–[23], [25]
explore the feasibility of advanced statistical and evidence
based techniques such as Multiple Imputation to scientifically
calculate the missing values for physiological parameters. The
validity of Multiple Imputation relies on the hypothesis that
physiological parameters are missing completely at random.
The study by Roudsari et al [27] suggests that missing values
are correlated to other parameters in the system. While these
methodologies have been continuously debated, it still remains
unclear which method provides the most statistically and
physiologically correct way to deal with missing data.

C. Data Errors

Another limitation of the NTDB datasets is the high
proportion of erroneous data. By erroneous data, we refer to
all those incidents that violate the rules defined for collection
of data values in NTDS manual for the year 2011 [3].

One example for erroneous data is the set of all those
incidents that violate the way age is calculated by NTDS [3].
The rule to calculate a patient’s age is defined as follows. Age
is derived from the value of Date of Birth (DOB) of the patient.
If DOB is not collected or not available, then attributes Age
and Age Units are completed to the best approximation at the
time of injury. If age is less than 24 hours, then complete
the values for Age and Age Unit. Age and Age Units are
completed only when DOB is not recorded or not available.
And if Age is entered, then Age Unit must also be defined.
On the other hand, NTDB Manual for the year 2011 defines a
rule that Age Unit should be captured only when the patient’s
age is less than one year, leading to contradictions in the rules.

In order to test this rule, we consider the RDS dataset
2011 with 722, 836 incidents in total. Our tests show that there
are a total of 21, 887 patients with valid date of birth and
age attributes when age unit is not recorded. Whereas 34, 134
patients have a valid date of birth and age but their age unit
was not applicable. As high as 658, 329 incidents have a valid
value for all three attributes date of birth, age and age Unit
(after excluding all those patients that have an age less than
24 hours). The preliminary results outline the fact that NTDS
standards are not enforced strictly and this fact motivates the
need of a tool to identify incident records that violate rules
enforced by NTDS.

250250250

In Section IV-A, we define a language for specifying rules
to mark such errors in the database and present a schema
independent tool that uses this language to detect all errors.
We also extend this tool to mark all incidents in the database
that have missing values. These incidents can either be fixed
by correcting the erroneous values or excluding/imputing the
missing values, depending upon the analysis being conducted.

III. OLAP AND DATA CUBES

NTDB presents a typical example of a multidimensional
dataset with patient records having 50 different types of
attributes. These attributes are used for mining conceptual
information based on patient demographics, vitals or type of
injury in order to predict the value of the outcome variable.
We leverage OLAP based data modeling methodologies for
effective storage, retrieval and aggregation of data in NTDB.
The objective of this section is to present the current state of
OLAP methodologies and then introduce the concepts of data
cubes. We also discuss the methodologies for data extraction
from a normalized relational schema and creation of cubes.
We will present a system to automate the process of creation
of data cubes from NTDB dataset in Section IV.

A. OLAP Methodology

Multidimensional analysis are supported by OLAP method-
ologies [1], [6], [7], [10], [17]. OLAP models are designed to
be analytical and to support complex querying scenarios. They
typically use a multidimensional data model that is inherently
simple to model real world business entities in complex
scenarios [17]. One such OLAP technology, data cubes [12]
provides the user with an efficient way of investigating a
multidimensional dataset across many attributes. Data cubes
provide an efficient way to summarize data at various level
of details and on various combinations of attributes, making
it suitable for multidimensional analysis. Data cubes pre-
compute group-bys corresponding to all combinations of a list
of attributes (multiple dimensions) [29].

B. Data Cubes

A data cube or hyper-cube represents the storage of factual
data with multidimensional associations. A data cube stores
all factual information with similar shape, i.e. similar set of
dimensions. Each of the dimensions in the multidimensional
analysis is treated as a dimension of some N -space. Each cell
in the cube is an aggregation of particular set of attributes
values. Querying for data is performed using queries that get
translated using aggregation querying operations—rollup, drill
down, slicing, and dicing [12].

• Rollup refers to the data operation of summarizing
cube data along one specific dimension.

• Drill down/up allows navigation based on the detailing
of the data. Going down increases the detailing in
aggregation of data while drilling up leads to sum-
marization.

• Slicing refers to the act of filtering a rectangular subset
of a cube by choosing a single value for a dimension,
resulting in a new cube with one less dimension.

• Dicing also creates a sub-cube by filtering data on
multiple values for multiple dimensions. The total
number of dimensions remains the same in this op-
eration.

C. Star Schema

For the ease of implementation and design, three or more
dimensional datasets are implemented using relational OLAP
(ROLAP) model as backends. ROLAP model not only con-
forms to existing relational database engines, it also leverages
SQL based querying framework for performing multidimen-
sional analyses. In ROLAP, data is stored in a star schema
and data attributes are modeled as either dimensional attributes
or metrics. Star schema consists of two types of tables—
dimensions and facts. Fact refers to numerical and quantitative
transactional information and are huge in size. Dimensional
tables are usually smaller and contain descriptive information
used for performing detailing operation. A star schema is then
used as an input to create a cube to increase the querying per-
formance by pre-aggregating measures based on dimensional
data points.

In Section IV, we present a system that leverages the star
schema for creation of cubes and discuss in detail the process
of construction of star schema from NTDB data model. The
system automates the process of data extraction and creation
of star schema by taking as input a JSON representation of
data mapping information of the NTDB data model.

IV. INCIDENT CUBES

In this section we present a system to automate the process
of creation of multiple data cubes, named “Incident Cubes”, in
NTDB dataset. The system consists of three main components:
an error detection tool for preparing the dataset, a module to
create a relational star schema and an engine to create data
cubes from a star schema. We also outline an entropy based
ranking function to determine relevance between two cubes.
Fig. 1 presents the model architecture of our engine.

A. Detection of Missing Values and Errors in NTDB dataset

We discussed the issues of missing data and error values in
NTDB data in Section II-B. In this sub-section, we present a
tool to detect errors and missing values and mark the incidents
thus affected. The tool leverages a rule based language to
describe different types of errors, as described below. The tool
is schema independent and can be plugged into any relational
database with its set of rules.

The language uses rule based constructs. Rules are written
to specify data conditions and to mark incidents containing
data quality errors in the system. Any incident violating the
condition in a rule is marked as an error. Rules can span all
possible attributes in the database schema and are provided in
an input file. The error detection engine parses the input file
to instantiate a running instance of the error detection process.

A rule in the system consists of two components: a text
description of the rule and a logic condition stating what the
rule should do. The text description of a rule contains metadata
about the rule: a unique name of the rule, a human readable
text explaining the intent of the rule, and an optional database

251251251

Fig. 1. Architecture of the Cube Creation Engine

relation name on which the rule is to be applied. The relation
name is then used for mapping database relation columns
defined in rule’s logic condition to actual relational entities
in the database during detection. A rule description has one of
the following forms:

@rule 〈ruleName〉 〈text description〉
@rule 〈ruleName〉 〈text description〉 〈tableName〉

where 〈ruleName〉 is a string repsenting a unique name given
to the rule, 〈text description〉 is the informal description about
the rule (in quotes), and 〈tableName〉 is a name of a table in
the database.

Each rule description must be accompanied by a logic
condition. The logic condition contains an if-then construct
to establish the rationale for detecting data quality errors in the
system. Rule logic contains an explicit or implicit mapping of
relational columns, provided that the rule definition contains
the relation on which rule is applied, and the logic to detect
data quality errors. Currently, rule logic can be constructed
using if-then constructs but the language can be easily
extended to use more complex structures as well. For example,
nested if-then constructs are not supported but can be easily
added. An example of a rule logic condition is given below.

InvColVal if table1.column1 == 0
then raise invalidColumnError

Note that the relation name “table1.” is optional and can
be omitted if the name is specified in the rule description, and
invalidColumnError is an error name explained below.

Errors in the system are defined in a similar way as rule
descriptions. Each error definition contains a unique error
name and a text description. Error definitions do not have any
relational table definitions associated with them. The error in
the above example is defined as following.

@error invalidColumnError 〈logical description〉

where 〈logical description〉 is a quoted text explaining the
meaning of this error.

As discussed in Section II-C, NTDB datasets have large
number of data quality errors that restrict the potential to which
this data can be used in studies. Our system uses the language
presented above to model rules for detecting errors and missing
data in NTDB. In the following, we use NTDB datasets us
illustrate the rules in this languages. One example of a logical
description for a rule is to identify all non-valid values of a
patient’s age in NTDB dataset, this is defined as the following.

@rule ageRangeRule
"Rule to describe valid age range"

The rule has a name ageRangeRule and a description. The
logical definition for this rule is given below:

ageRangeRule if rds_demo.age < 0 or
rds_demo.age > 89

then raise invalidAgeRange

Consider another example of a rule logic to detect missing
values in the dataset. The rule detects all patients with a valid
age but an invalid age unit attribute. This rule logic condition
is expressed as:

validAgeIncidents
if rds_demo.age != -2 or

rds_demo.ageUnit is missing
then raise invalidAgeIncidents

where “-2” denotes an invalid value in NDTB and the string
“is missing” indicates a missing value for the referenced
attribute “rds_demo.ageUnit”.

Error rules are processed by an error detection engine.
The error detection engine performs two main operations: (1)
execute the rules to mark all erroneous rows in the schema and
(2) maintain the schema metadata containing error information.
The execution engine takes as input a set of files containing
the rules (along with their logic conditions) and information
about different errors that are valid in the database instance.
The output after execution is a metadata table consisting of
all records from the database that have raised one or more
errors. Rows in this new relation are indexed by the primary
key column of the row in the original table, the original table

252252252

name and error identifier. One row can raise multiple errors.
It is left to the user carrying out the analysis to decide how to
deal with these errors. They can either reject erroneous data
columns or correct them using the methodologies discussed
earlier.

The rule-based error detection engine supports detection of
missing values automatically. Rules can be designed to mark
each incident that has a missing value for relational columns
specified in the rule. The result set can be provided as an input
to any of the multiple imputation algorithms or researchers can
choose to ignore them depending upon the type of analysis.

There are three metadata tables that get populated
by error detection engine—meta_rules, meta_errors, and
meta_errorInstances. The tables meta_rules and meta_errors
contain definition of all the rules and errors specified in the
input file. The table meta_errorInstances gets populated after
execution of the error detection engine is completed. It consists
of all rows in the database that raised one or more errors. Any
table in the schema can join to this table in order to identify
the records that contain one or more errors.

The rule detection engine can also be adapted in solving
problems related to other medical scenarios and domains. The
engine provides support for rules with proper relational table
and columns mapping, so any researcher with knowledge about
the relational structure of their dataset can write rules and
provide them as input to the engine. The detection engine can
also be extended with a web based user interface to provide
support for other users.

B. Data Extraction Module

The input to the system described in Fig. 1 is in form of
a JSON file. The input file contains logical representation of
a star schema in form of mappings between physical relations
and logical star schema relations, that are created by the
module.

1) Data Extraction: The data extraction module retrieves
the data from the underlying physical database based on the
mapping information present in the input file. Dimensional
tables are populated first in order to populate the surrogate
key for each dimensional value before facts are processed.
Fact extraction process follows dimensional tables, in which
raw transactional data is first populated in a staging table with
transformations on dimensional attributes and aggregations
on factual measures as defined in the input file. Fact tables
are populated from the staging table after resolving for each
dimensional values’ surrogate key using a lookup on the
dimension table. The output of the data extraction module is
a relational star schema created from the NTDB dataset.

2) Star Schema modeling in NTDB: The process of cre-
ation of a star schema is a step driven by human activity. It
requires significant understanding of the NTDB data model
and incident population as it requires in modeling of patient
attributes as dimensional and factual entities. There are various
modeling difficulties that need to be solved in different ways
depending as analysis being conducted. One such problem
is that of mapping individual physiological parameters—GCS
Score, Respiratory Rate (RR), and Systolic Blood Pressure
(SBP). Physiological parameters are captured at two instances

in NTDB, one during EMS and another during the Emergency
Department (ED); unless when data values are missing because
of reasons discussed above. A designer can choose to model
this scenario in multiple ways. One way would be to create
logical dimensions for each set of physiological parameters.
Logical dimensions to map each physiological parameter to
either its EMS value or the ED value. Another way to solve
this modeling problem would be to create a new dimension
in the system to identify the type of physiological parameter,
either EMS or ED. In our system, we chose to go with the
former approach.

3) Metadata Management: Metadata Manager is responsi-
ble for creation of all metadata objects in the system. Each
entity, whether fact or dimension, has a metadata object
associated with it. This is used in components described later
to create logical model for input into the cubes creation engine.
The Metadata Manager maintains separate tables for maintain-
ing data associated with dimensional and fact attributes.

C. Cube Creation Engine

Many analytical softwares exist that facilitate the process
of cube creation from a star schema (see discussions in the
Introduction). In order to create cubes through managed code,
we leverage Cubes [33], a lightweight Python framework
for performing multidimensional analysis and browsing of
aggregated data.

1) Python Cubes Framework: Cubes is a part of the data
analysis framework provided by Data Brewery [32]. In order
to automate the creation of cubes from a star schema generated
in the previous step, we provide a wrapper around the Cubes
library in Python to programmatically create physical data
cubes stored as materialized views. The cubes framework
consists of four modules and a command line tool:

• Model: One of the main features of Cubes is its logical
model that provides an abstraction over the physical
data to provide an end user layer.

• Browser: The framework provides an aggregation
browser to perform cube based operations, namely
slicing, dicing, roll up, and drill down.

• Backend: Implementation of data aggregation and
browsing functionality is provided. Cubes comes with
built-in support for ROLAP backends that leverage
SQL through SQLAlchemy.

• Server: The Cubes framework provides an easy-to-
install web service WSGI server with API that covers
most of the Cubes logical model metadata and aggre-
gation browsing functionality.

2) Creation of a Cube: We leverage the framework pro-
vided by Cubes to create OLAP Cubes. The process of creation
of data cubes is automated using the Cubes browser module
that takes as input a logical fact table describing a list of
metrics and a set of dimensions. The list of metrics and a
set of dimensions are obtained from the data collected by
the Metadata Manager in the previous step of data extraction.
We provide a wrapper class to the Cubes browser module
that automates the retrieval of metadata associated to a star
schema—list of fact metrics and set of dimensions, and creates

253253253

a logical cube using a subset of dimensions. Data is aggregated
against this subset of dimensions and stored in form of
materialized views in the physical database.

3) Multiple Cubes: One way to deal with a large number
of dimensional attributes is to create one large cube with all
attributes. Large cubes cause decreased querying performance
since data needs to be aggregated/consolidated with each query
operation. The other option is to create multiple smaller cubes.
Smaller cubes have more pre-calculated data than larger cubes,
making them more efficient. We automate the creation of
multiple cubes by creating cubes for all possible permutation
of dimensional attributes.

The system automatically repeats the process of creation
of a single data cube, as described above, for all permutations
of dimensions obtained from the Metadata Manager. After
completion of cube creation process, each cube is ranked by
the Ranking Module based on the ranking function (discussed
below). In order to implement a model system, we assume that
all dimensions are independent of each other, although this
might not be completely accurate in an application scenario.
Ranking of cubes help in providing precedence among cubes
during an exploratory data analysis.

D. Ranking of Cubes

Mutual Information has been accepted as a relatively good
measure to calculate the relevance of an attribute to an outcome
variable in many machine learning algorithms [19], [28].
Decision tree algorithms use mutual information to find the set
of attributes that are most relevant in predicting the value of an
outcome variable. Mutual Information is expressed information
gain in an entropy model and is defined as:

I(Y ;X) = H(Y)−H(Y |X) (1)

where X and Y are two random variables, H(Y) is the entropy
[16] of variable Y , H(Y |X) represents the conditional entropy
[16] of Y given the state of X , and I(Y ;X) represents the
information gain about Y obtained from an observation from
the state of X . Information gain denotes the reduction of
entropy of Y achieved by learning the state of random variable
X .

Similarly, for a given a set of random attributes,
X1, X2, ..., XN , selected during the construction of the cube
and each attribute assumed independent of all other attributes,
we calculate the total reduction in entropy of the outcome
variable Y , given the individual mutual information of each
attribute with the outcome variable, as H(Y |X1, X2, ..., XN).
We use the total reduction in entropy of the outcome variable
to give a score to each cube created, as defined previously.
The formula for the reduction in entropy of Y from a given
set of independent random attributes is defined as:

H(Y |X1, X2, ..., XN)
= H(Y)− I(Y ;X1)−I(Y ;X2)−I(Y ;X3)−...−I(Y ;XN)

where H(Y |X1, X2, ..., XN) denotes the conditional entropy
of Y given the state of random variables X1, X2, ..., XN and
I(Y ;Xi) refers to individual information gain in outcome
variable from a random attribute Xi and is defined in equation
1. Fig. 2 illustrates the entropy of the system consisting of an
outcome variable and a set of independent random attributes.

H(X1)

H(Y|X1, X2, … XN)

I(Y|X1)

I(Y|X2)

I(Y|X3)
I(Y|XN)

H(X2)

H(X3)
H(XN)

H(Y)

Fig. 2. Conditional Entropy of an Outcome Variable (Y) Given Values
for Random Variables X1, X2, ..., Xn

We denote the score for each cube as the conditional
entropy of the outcome variable that is calculated as above.
The cube with the lowest score denotes the system with lowest
entropy. Lower entropy signifies that the variable has a more
non-uniform distribution making it more predictable when the
values for the attributes used in the construction of the cube
are provided. Cubes are ranked from highest to lowest, based
on which cube has a lower score for the entropy function.

E. Querying Framework

User defined multidimensional queries are translated by
the querying framework module. The queries are translated
by a two step process: resolving the query to the targeted
cube(s) and performing cube operations (rollup, drill down,
slicing and dicing) to get the correct information from the cube.
The first step of translation involves extracting the dimensional
attributes from the user query. These attributes are then used
by the Metadata Manager to get the corresponding cube(s).
In the second step, the user query is then executed against the
cube(s) obtained and the data obtained in the result is provided
to the user in form of a JSON object(s).

In Section V, we present a case study to deal with
the need of controlling variables in a risk adjusted analysis
conducted with survival as an outcome. We leverage the
querying framework to solve this problem. By default, a list
of variables can be defined in the querying framework with
baseline filter conditions, in order to define the controlled
population properties. And the corresponding attributes can be
appended to all user queries to ensure that the user queries
always adhere to the controlled group population.

V. CASE STUDY: GENDER BASED OUTCOME ANALYSIS

Like the population at large, the trauma population is
changing. It used to be a younger population of risk takers.

254254254

Improvements in automobile safety, an overall decrease in
gun violence in many locales and the increase in the ageing
population has led to a population at risk from a different sort
of adverse outcome: the increasing need of a place other than
home, post discharge, with skilled nursing facilities. The ram-
ifications are huge on many levels; aside from the emotional
and familial burdens, the potential costs to society are high
as well. It is not unusual to have a number of patients being
maintained in the hospital setting awaiting a suitable placement
as the patient is unable to return home. The ability to look
at attributes or variables which may have a higher likelihood
of needing placement would enable hospital, rehabilitation
centers and nursing facilities to anticipate and perhaps begin
to allocate resources appropriately within communities. In this
case study, we validate the need of developing highly skilled
facilities for patient care post discharge by providing analytical
insights from the NTDB dataset.

In a risk adjusted analysis, there are certain variables that
are known to affect the outcome of survival: patient’s age,
sex, measure of both anatomic and physiologic injury severity,
and mechanism or type of injury and these variables that
must be controlled for, as also observed by Haider et al [15].
Frequently, not all of these variables are controlled for in
studies investigating survival as an outcome in NTDB. The
risk of ignoring this adjustment of variables can be expressed
by an example.

Let us say that we want to evaluate the risk of death in
NTDB population based on whether someone has long or
short fingernails. We decide to control for age because we
were aware of significant effect that age has on survival by
stratification or utilization of a regression model, but arbitrarily
do not control for any other variable. We conclude based on
our analysis that having long fingernail at the time of trauma
has a protective effect. Although this is an unrealistic example
and since NTDB does not collect fingernail information, if one
was to know that gender consistently makes a difference with
respect to survival and that women tend to fare better [14], the
bias in our conclusion, for those with long fingernail is clear:
we did not control for gender and women tend to have longer
fingernail, and hence have better outcomes. Had we controlled
for gender, we must not have reached the same conclusion.
Usually, of course, the variable being investigated and one of
the known significant variables is not so obvious.

In our case study, we perform a gender based outcome anal-
ysis to determine conclusive facts about the need of improving
patient care in skilled nursing facilities, using cube operations
described in Section III-B. NTDB RDS 2011 dataset is used
for this analysis. The analysis considers mortality, discharge to
a skilled nursing facility and hospice care as negative patient
outcomes, and discharge event with no or organized home
services and short term or long term rehabilitation program are
considered positive outcome. We control the gender attribute
for this analysis, and compare its distribution against different
outcomes. Other attributes that are considered for this study
are based on the individual information gain to the outcome
variable, we select the top two attributes thus obtained, namely
“age”, and “GCS”. We consider the cube with age, gender,
GCS and outcome as its attributes.

Rollup by gender dimension informs us that there are a total
of 877, 101 males and 510, 321 females who conform with

Fig. 3. Gender and Age based Distribution of Positive and Negative
Outcomes for the Age Groups 0-13, 13-64, and >64.

Fig. 4. Gender and GCS based Distribution of Positive and Negative
Outcomes for the GCS Groups 3-8, 9-12 and 13-15

the outcome codes provided above. Gender based outcome
distribution shows that 23.2% females had negative outcomes
as compared to 10.3% males. As against the general notion
[14] and the observation we made above, males fared well
as compared to females. Figs. 3 and 4 show the individual
distribution of age and GCS, after controlling for gender, with
the outcome variable. When, age and gender are controlled
for, we notice that age group >65 years provides interesting
insights on female vs. male population when it comes to
negative outcomes. In order to validate that, we performed the
drill down operation to a detailed age group and considered
the population across 65-75, 75-85 and >85 separately, shown
in Fig. 5. Fig. 4 compares the effect of GCS on determining
the outcome. In the GCS group 13-15, which reflects the
population with least severe trauma conditions, females tend
to have more negative outcomes. Fig. 6 correlates these two
observations based on age and GCS and provides a conclusive
fact that females tend to have a worse outcomes than males
when age and GCS are controlled as age is in the groups (65-
75, 75-85) and GCS is in the group 13-15. After drilling down
(along with the splicing operation) to compare different kinds
of bad outcomes for females, while still controlling age and
GCS, we observe that there is a high proportion of females
that go to skilled nursing facilities after discharge.

In our study, we did not consider the population group
obtained by controlling GCS in 3-8 and 9-12 groups. The
reason for that is discussed here. Fig. 4 shows that females tend
to have more negative outcomes in all three GCS groups 3-8,

255255255

Fig. 5. Gender and Age based Distribution of Positive and Negative
Outcomes for Age Groups 65-74, 75-84, and 85-99

Fig. 6. Gender and Age based Distribution of Positive and Negative
Outcomes for Age Groups 65-74, 75-84, and 85-99 and
GCS Group 13-15

9-12, and 13-15. The GCS group 3-8 refers to the population
of very severely injured patients. Our intuition suggests that
the distribution of this group over age group >65 years would
be quite uniform, since older patients tend to do worse in case
of an severe trauma injury. Although the reason for selection
of GCS group 13-15 over 9-12, as the controlling variable
value is derived from the entropy model. The ranking algorithm
suggests that the incident cube with attributes age, GCS,
gender and outcome, with age controlled as >65 years and
GCS controlled as 9-12 has a higher entropy as compared to
the cube with age controlled as >65 years and GCS controlled
as in the 13-15 range.

The above case strengthens our claim for the system we
described in Section IV. We conducted the same analysis
twice, once during the data exploration and understanding
phase of NTDB, and once after we had the system in place.
The earlier attempt was done manually and it was prone to
human errors. The responsibility for fixing control variable
values was based on intuition and required significant insights
into the datasets. The incident cubes system simplifies the data
retrieval methodology, the querying framework makes it easier
to retrieve results based on multidimensional attributes. We
also leveraged the ranking function in order to take decisions
for selecting control variable values. The system also improved
the experience of choosing control variable values, an issue
raised by Haider et al [13], [15], based on statistical relevance.

VI. CONCLUSION

This paper reports the preliminary work on developing a
OLAP cubes based methodology for data extraction, aggre-
gation and retrieval. A case for a tool, based on a language
with rules based constructs, is highlighted for detection of
missing values and errors in NTDB datasets. A methodology
for creation of incident cubes from NTDB data model is
specified and the process is automated for all possible combi-
nations of data attributes to create a set of incident cubes.
We establish a ranking function to classify incident cubes
based on the entropy of an outcome variable. The prototype
that implements the proposed approach for analyzing NTDB
datasets is developed. For the future work, we will carry
out extensive investigation of standardization issues faced in
trauma research to mitigate the risk associated with the analysis
and provide more statistically relevant analytical insights.

ACKNOWLEDGMENT

The authors are grateful to Dr. Avery B. Nathens (ACS
Trauma Quality Improvement Program, TQIP), Dr. Scott D.
Hammond (Translation Medicine Research Laboratory at UC
Santa Barbara), and Rohit Sharma (MD, Santa Barbara Cottage
Hospital) for their support and and fruitful discussions, and to
Yi Xiao, Bo Yang, and Xiaoxi Yu who helped in the design
and implemenation of the error detection language and engine.

REFERENCES

[1] R. Agrawal, A. Gupta, and S. Sarawagi. Modeling multidimensional
databases. In Proc. of 13th IEEE International Conference on Data
Engineering (ICDE), pages 232–243, 1997.

[2] American College of Surgeons. National Trauma Databank Pediatric
Report 2004. http://www.facs.org/trauma/ntdbpediatric2004.pdf, 2004.

[3] American College of Surgeons. National Trauma Data Stan-
dard Data Dictionary. http://www.ntdsdictionary.org/dataElements/
datasetDictionary.html, 2011.

[4] American College of Surgeons. NTDB Research Data Set Admis-
sion Year 2011 – User Manual. http://www.facs.org/trauma/ntdb/pdf/
ntdbmanual2011.pdf, 2011.

[5] K. Beyer and R. Ramakrishnan. Bottom-up computation of sparse and
Iceberg CUBE. ACM SIGMOD Record, 28(2):359–370, June 1999.

[6] S. Chaudhuri and U. Dayal. An overview of data warehousing and
OLAP technology. ACM SIGMOD Record, 26(1):65–74, 1997.

[7] E. F. Codd, S. B. Codd, and C. T. Salley. Providing OLAP (On-line
Analytical Processing) to User-analysts: An IT Mandate. Codd and
Date, 32:3–5, 1993.

[8] Microsoft Corporation. SQL Server 2012 Analysis Services.
http://www.microsoft.com/en-us/sqlserver/solutions-technologies/
business-intelligence/analysis.aspx, 2012.

[9] R. J. Fantus and M. L. Nance. Annual Report 2011: Eightfold over
eight years. http://www.facs.org/trauma/ntdb/fantus/0112.pdf, 2011.

[10] R. Finkelstein. Database reaches the next dimension. Database
Programming and Design, 8:26–26, 1995.

[11] Centers for Disease Control and Prevention. Classification of Diseases,
Functioning, and Disability : International Classification of Diseases,
Ninth Revision (ICD-9). http://www.cdc.gov/nchs/icd/icd9.htm.

[12] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venka-
trao, F. Pellow, and H. Pirahesh. Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and sub-totals. Data Mining
and Knowledge Discovery, 1(1):29–53, 1997.

[13] A. H. Haider. Improving the quality of science arising from the NTDB:
We can do this! Journal of Trauma and Acute Care Surgery, 74(2):352–
353, 2013.

256256256

[14] A. H. Haider, J. G. Crompton, D. C. Chang, D. T. Efron, E. R. Haut,
N. Handly, and E. E. Cornwell III. Evidence of hormonal basis for
improved survival among females with trauma-associated shock: an
analysis of the National Trauma Data Bank. The Journal of Trauma
and Acute Care Surgery, 69(3):537–540, 2010.

[15] A. H. Haider, T. Saleem, J. J. Leow, C. V. Villegas, M. Kisat, E. B.
Schneider, E. R. Haut, K. A. Stevens, E. E. Cornwell III, E. J.
MacKenzie, and D. T. Efron. Influence of the National Trauma Data
Bank on the Study of Trauma Outcomes: Is It Time to Set Research
Best Practices to Further Enhance its Impact? Journal of the American
College of Surgeons, 214(5):756–768, 2012.

[16] S. Ihara. Information theory for continuous systems, volume 2. World
Scientific Publishing Company Incorporated, 1993.

[17] R. Kimball and K. Strehlo. What’s wrong with SQL. Datamation,
1994.

[18] K. J. Koval, C. W. Tingey, and K. F. Spratt. Are Patients Being
Transferred to Level-I Trauma Centers for Reasons Other than Medical
Necessity? The Journal of Bone & Joint Surgery, 88(10):2124–2132,
2006.

[19] W. Li. Mutual information functions versus correlation functions.
Journal of Statistical Physics, 60(5):823–837, 1990.

[20] E. J. MacKenzie, F. P. Rivara, G. J. Jurkovich, A. B. Nathens, K. P.
Frey, B. L. Egleston, D. S. Salkever, and D. O. Scharfstein. A National
Evaluation of the Effect of Trauma-Center Care on Mortality. New
England Journal of Medicine, 354(4):366–378, 2006. PMID: 16436768.

[21] L. Moore, J. A. Hanley, A. Lavoie, and A. Turgeon. Evaluating the
validity of multiple imputation for missing physiological data in the
National Trauma Data Bank. Journal of Emergencies, Trauma & Shock,
2(2):73–79, 2009.

[22] L. Moore, J. A. Hanley, A. F. Turgeon, A. Lavoie, and M. Emond. A
Multiple Imputation Model for Imputing Missing Physiologic Data in
the National Trauma Data Bank. Journal of the American College of
Surgeons, 209(5):572–279, 2009.

[23] L. Moore, A. Lavoie, N. LeSage, M. Liberman, J. S. Sampalis,
E. Bergeron, and B. Abdous. Multiple Imputation of the Glasgow
Coma Score. The Journal of Trauma: Injury, Infection, and Critical
Care, 59(3):698–704, 2005.

[24] Oracle. Oracle Analytic Workspace Manager. http://www.oracle.com/
technetwork/database/options/olap/olap-downloads-098860.html.

[25] T. A. Oyetunji, J. G. Crompton, I. D. Ehanire, K. A. Stevens, D. T.
Efron, E. R. Haut, D. C. Chang, E. E. Cornwell III, M. L. Crandall,
and A. H. Haider. Multiple Imputation in Trauma Disparity Research.
Journal of Surgical Research, 165(1):e37 – e41, 2011.

[26] Pentaho. Pentaho Analysis Services. http://mondrian.pentaho.com/.

[27] B. Roudsari, C. Field, and R. Caetano. Clustered and missing data in
the US National Trauma Data Bank: implications for analysis. Injury
Prevention, 14(2):96–100, 2008.

[28] G. Salton and M. J. McGill. Introduction to modern information
retrieval. 1986.

[29] S. Sarawagi, R. Agrawal, and A. Gupta. On computing the data cube.
IBM Research Division, 1996.

[30] A. Srivastava, L. Ferrigno, S. Kaminski, X. Yan, and J. Su. Incident
Cubes : A framework for data aggregation and exploration in NTDB.
http://cs.ucsb.edu/~isel/IncidentCubes/, 2013.

[31] J. William Thomas. Risk Adjustment for Measuring Health Care
Outcomes, 3rd edition. International Journal for Quality in Health
Care, 16(2):181–182, 2004.

[32] S. Urbanek. Data Brewery: A set of frameworks with tools for Data
Analysis. http://databrewery.org/.

[33] S. Urbanek. Cubes: Light-weight Online Analytical Processing. http:
//pythonhosted.org/cubes/, 2011.

257257257

