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ABSTRACT

Motivation: The rapid accumulation of microarray datasets provides

unique opportunities to perform systematic functional characteriza-

tion of the human genome. We designed a graph-based approach to

integrate cross-platform microarray data, and extract recurrent

expression patterns. A series of microarray datasets can be modeled

as a series of co-expression networks, in which we search for

frequently occurring network patterns. The integrative approach

provides three major advantages over the commonly used micro-

array analysis methods: (1) enhance signal to noise separation

(2) identify functionally related genes without co-expression and

(3) provide a way to predict gene functions in a context-specific way.

Results: We integrate 65 human microarray datasets, comprising

1105 experiments and over 11 million expression measurements.

We develop a data mining procedure based on frequent itemset

mining and biclustering to systematically discover network

patterns that recur in at least five datasets. This resulted in

143 401 potential functional modules. Subsequently, we design a

network topology statistic based on graph random walk that

effectively captures characteristics of a gene’s local functional

environment. Function annotations based on this statistic are then

subject to the assessment using the random forest method,

combining six other attributes of the network modules. We assign

1126 functions to 895 genes, 779 known and 116 unknown, with a

validation accuracy of 70%. Among our assignments, 20% genes

are assigned with multiple functions based on different network

environments.

Availability: http://zhoulab.usc.edu/ContextAnnotation

Contact: xjzhou@usc.edu

1 INTRODUCTION

Systematic functional characterization of genes identified in the

genome sequencing projects is urgently needed in the post-

genomic era. The rapid increase in large-scale gene expression
data provides us unique opportunities to meet this need. A

commonly used approach is to cluster genes with similar

expression patterns (Beer and Tavazoie, 2004; Gasch and Eisen,
2002; Tamayo et al., 1999), and to predict functions of

unknown genes based on their expression similarity to known

genes (Gasch and Eisen, 2002; Niehrs and Pollet, 1999).

However, there are two problems with such clustering

approaches: (problem 1) genes with similar expression profiles

may not have the same function: for example, an experimental

condition may perturb multiple biological pathways simulta-

neously, such that genes from these different functional

pathways may show similar and indistinguishable expression

patterns; and moreover, experimental noise and outliers may

lead to biased and erroneously high estimates of expression

similarity. (Problem 2) Genes with similar functions may not have

similar expression profiles: for example, measurements of

expression similarity, e.g. Pearson’s correlation or Euclidean

distance, may not capture the relationship between two

expression profiles due to time—shifts (Qian et al., 2001); and

genes may be regulated at levels other than transcription.

Recently, we have proposed and validated two novel expression

relationships, ‘transitive expression similarity’ (Zhou et al.,

2002) and ‘second-order expression similarity’ (Zhou et al.,

2005), which can be used to link functionally related genes

without similar expression profiles. No doubt that many other

types of expression relationships exist among functionally

related genes—some may even be beyond our current knowl-

edge. How to identify such unknown expression relationships

systematically is one of the major aims of this article.

In addition, we will address another important problem

(problem 3) in functional annotation, which has so far received

little attention: how to annotate gene functions in a context-

specific manner? An increasing number of examples indicate

that in higher organisms, functional plasticity may be the rule

rather than the exception (Jeffery, 2003a, b). A gene may

acquire different functions under different endogenous or

exogenous conditions. However, current functional prediction

approaches (Wu et al., 2002; Zhu et al., 2005) and genome

databases [such as SGD (Wang et al., 2005), Wormbase

(Drysdale et al., 2005) and Flybase (Aggarwal et al., 2006)]

all annotate gene functions without specifying the necessary

context. Recently, Lussier et al. (2006) for the first time

systematically addressed this problem by proposing a system,

PhenoGO, which extracts phenotypic contextual information

from published literatures for existing Gene Ontology func-

tional annotations (Lussier et al., 2006).
In this article, we aim to overcome the above discussed three

issues by using information in multiple microarray datasets.

We model each microarray dataset with a graph, where a vertex
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represents a gene, and if two genes show high correlation in
their expression profiles, we connect them with an edge. A

series of microarray datasets can be modeled as a series of
co-expression networks, in which we search for frequently

occurring network patterns. Such a network pattern consists of
gene sets that function as a unit under various conditions, and

thus likely represent a functional module. Based on the
recurrent network patterns, we perform functional annotation.

This approach can address the three problems above: (1) to
separate true functional links from spurious co-expression links.

We suggest that a co-expression link recurrent in multiple
microarray datasets is more likely to represent a true functional

link. (2) To identify functionally related genes without direct
co-expression. When we combine multiple expression networks,

subtle signals may emerge that cannot be identified in any of the

individual networks. Such signals include recurrent paths that
may extend beyond simple co-expression clusters yet represent

functional modules. If we only consider a single co-expression
network, it is difficult to stratify functionally important paths

from their complex network environment. However, if a path
frequently occurs across multiple co-expression networks, it is

easily differentiated from the background. (3) To conditionally
annotate gene functions. Because a gene cannot exert its function

by itself but instead does so by interaction with other genes,
its functional switch is likely to be caused by or result from the

alteration of its interaction partners. Put into a network
perspective, a gene’s function may be different if placed in

different subnetworks. As different external or endogenous
conditions result in different topologies of the co-expression

network, we can relate a gene’s function to the experimental
conditions via its network environment, thus leading to the

context-specific functional annotation.
In this study, we integrate 65 human microarray datasets,

comprising 1105 experiments and over 11 million expression
measurements. We develop a data mining procedure based on

frequent itemset mining (FIM) and biclustering to extensively
discover network patterns that recur in at least five datasets. This

resulted in 143401 potential functional modules. Subsequently,
we design a network topology statistic based on graph random

walk that effectively captures characteristics of a gene’s local

functional environment. Functional annotations based on this
statistic are then assessed using the random forest method with

six other attributes of the network modules. We assign 1126
functions to 895 genes, 779 known and 116 unknown, with a

validation accuracy of 70%. Note that predictions on known
genes were used only for validation in previous studies. Our

predictions on known genes, on the other hand, additionally
provide the context information of genes’ function. Among our

assignment, 20% genes are assigned with multiple functions
based on different network environments. The functional

predictions together with the necessary context information are
available at http://zhoulab.usc.edu/ContextAnnotation.

2 MATERIALS AND METHODS

2.1 Microarray data

We collected 65 human microarray datasets including 52 Affymetrix

(U133 and U95 platforms) and 13 cDNA datasets (details see

Supplementary Material) from the NCBI GEO (Edgar et al., 2002)

and SMD (Gollub et al., 2003) databases (version December 2005). The

selection criteria are that each dataset contains at least eight

experiments and that the percentage of statistically significant co-

expressed gene pairs (see the section of Graph Construction for details)

is not higher than 3%. The first criterion ensures that the dataset

contains enough profiles so that the constructed co-expression graph is

reliable while the second criterion filters out the datasets, in which too

broad perturbations result in a large number of spurious co-expression

estimates. The collected datasets are preprocessed as follows. The

datasets generated from Affymetrix chips are log transformed (base e)

to place them on the same scale as the cDNA datasets. Note that the

original values less than 10 in Affymetrix datasets are set to 10. For

each dataset, genes with low expression variation (lowest 10% in

terms of the ratio of SD to mean for Affymetrix data and of SD for

cDNA data.) are discarded. Finally, genes with more than 30% missing

values and arrays with more than 20% missing values are also

discarded.

2.2 Gene Ontology function categories

The Gene Ontology file on Biological Processes was downloaded from

GO consortium (February 2005). The associated annotation informa-

tion for human genes was from the NCBI Gene Database (August

2005). With the method proposed in (Zhou et al., 2002), we selected

process categories from GO that contain more than 175 genes but each

of their children contains5175 genes. The 40 GO categories obtained

are called the informative functional categories and will be used in

functional annotation later. Note that genes with annotations but not

belonging to any of the informative categories were discarded. After the

data preprocessing, the 65 datasets comprise in total 8297 genes, of

which 5629 have at least one known function and 2668 do not have any

known functions.

2.3 Graph construction

Each microarray dataset is modeled as a relation graph where each

node represents one gene and two genes are connected if their

expression correlation is significant. Here the expression correlation,

denoted as r, is taken as the minimum of the absolute value of leave-

one-out Pearson correlation coefficients, which is robust against single

experiment outliers and sensitive to overall similarities in express-

ion patterns (Zhou et al., 2002). We then use the statistic

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 2Þr2=ð1� r2Þ

p
to determine if the expression correlation is

significant. More precisely, the quantity t is modeled as a t-distribution

with n� 2 degrees of freedom, where n is the number of measurements

used in the computation of the correlation. In our study, an expression

correlation significant at P� 0.01 level is included as an edge in the

relation graph.

2.4 Mining recurrent network modules

Given 65 graphs, each of which contains (at most) 8297 nodes,

we attempt to identify connected network patterns that comprise at

least 4 nodes and that occur in at least five graphs. This is

computationally very difficult due to the exponential number of

potential patterns. In our approach, we first search for frequent edge

sets that are not necessarily connected and then extract connected

components from them. Conceptually, we represent the 65 graphs as a

matrix where each row represents an edge (i.e. a gene pair), each column

represents a graph, and each entry (0 or 1) indicates whether the edge

appears in that graph. Clearly, our problem of discovering frequent

edge sets can be formulated as a typical biclustering problem that

searches for submatrices with high density of 1s, which is a well-known

NP-hard problem.
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We developed a biclustering algorithm based on simulated annealing

to discover frequent edge sets. More precisely, we employ simulated

annealing to maximize the objective function c0/(mnþ�c), where c is

the number of 1s in the input matrix, c0, m and n are the numbers of 1s,

rows and columns of the bicluster, respectively, and � is a regularization

factor. Clearly, such an objective function is in favor of biclusters with a

high density of 1 and with large size. Note that the density is maximized

to 1 when c0 ¼mn, while the size of bicluster is maximized when c0 ¼ c

(i.e. the pattern is as large as the input matrix). The regularization

parameter � controls the compromise between the density and the size.

However, there is no theoretic result on selecting optimal �. In the

study, we tried many heuristic choices of � and the reported results are

based on �¼ 0.2 / max (1, log10 n1), where n1 is the number of edges of

the initial configuration (i.e. seed).

Although this method performs well in our experiments, the search

space has to be restricted in order to discover hundreds of thousands

patterns in reasonable time because of the huge size of matrix (more

than 1 million rows and 65 columns). As an attempt to solve this

problem, we employ the FIM technique (Grahne and Zhu, 2003) to

restrict the search space and also provide seeds for our biclustering

algorithm. In what follows, we briefly describe FIM and related

concepts. Let I¼ {i1, i2, . . ., in} be a set of items and database D be a set

of m transactions, where each transaction T is a set of items such that

T�D. Let X be a set of items. A transaction T is said to contain X if

and only if X�T. X is frequent if at least s transactions in the database

contain X. In our case, we regard an edge as a transaction and its

occurrence in a particular graph as an item. For our purpose, we

include only edges occurring in at least five graphs in the transaction

dataset. The output of FIM algorithms is the set of all possible item sets

which occur in at least s transactions. Note that the submatrices of

frequent itemsets and their supporting transactions are actually

biclusters full of 1s. These clusters with perfect density can then serve

as seeds for our biclustering algorithm to search for larger biclusters

that permit holes (i.e. 0s). We ended up with � 1.8 millions frequent

itemsets which contain at least four edges and occur in at least five

graphs. These FIM patterns, however, should not be used as seeds

directly because they are highly overlapping, which is due to the nature

of frequent itemset’s definition. This is well known in data mining

community. In order to improve these seeds and also reduce

unnecessary computation in final biclustering, we first remove FIM

patterns whose supporting transactions/edges are the subset of those of

other patterns. Second, we also merge two patterns if their union has a

density larger than 0.8. This procedure is repeated until no additional

merge can happen.

After the post-processing, we finally have about half million merged

FIM patterns to feed our biclustering algorithm. Given a FIM pattern

with v member genes, we will use all possible v (v�1)/2 edges among

these v genes and all datasets as the input matrix for our biclustering

algorithm. The FIM pattern is also used as the initial configuration

of simulated annealing. From the output biclusters of our algorithm,

we extract connected components as the final output patterns.

2.5 Network topology score for each function category

Given a network pattern, the most popular gene function prediction

method involves the use of the hyper-geometric distribution to model

the probability of genes function based on neighborhood. This method

however ignores the network topology, which is probably the most

important information in the network patterns. To avoid this problem,

we developed a new method based on graph random walk to fully

explore the topology of network patterns. Our method is still based

on the principle of ‘guilt by association’. In terms of network topology,

the association between genes is measured by how close they are

(i.e. the length of path between them) and how tightly connected they

are (i.e. how many paths between them). Statistically, this translates to

how likely it is to reach one gene starting from another gene in a

random walk. This probability can be approximately calculated by

matrix multiplication.

Given a network pattern consisting of v genes, let P be a stochastic

matrix of size v� v, of which the element Pij is 1/ni if genes i and j are

connected, or 0 otherwise, where ni is the number of neighbors of gene i.

If we regard genes as states and Pij as the probability of transformation

from genes/states i to j, then the random walk on the graph can be

thought as a Markov process. Therefore, it is easy to see that the

element of Pk is the probability that gene i reaches gene j in k steps of

the walk. The intuition behind our method is that genes with similar

function are more likely to be well connected (i.e. gene i can reach gene j

with high probability in a random walk). Simply put, the probability Pk
ij

would be large if genes i and j share the same function. Let o be the

Gene Ontology binary matrix of which element oij is 1 if gene i belongs

to category j and 0 otherwise. Thus, the matrix M¼ P
k
O gives the scores

of genes relating to functional categories. The higher the score, the more

likely a gene has that function. In practice, we choose k¼ 3 because we

would like to confine our prediction to a local area of network patterns.

With the score matrix M, the function of each gene is estimated by

finding the functional category with the maximum score in the

corresponding row of M.

2.6 Assessment of function assignments with

random forest

A random forest is a classifier consisting of a collection of tree-

structured classifiers (Breiman, 2001). In an attempt to improve our

method, we wanted to include other attributes of network patterns in

the final prediction beside the network topology score. In particular, we

include recurrence, density, size, average node degree, percentage of

unknown genes and functional enrichment of network modules. To

take those factors into account, we use a random forest to determine

whether the function assignments based on the network topology score

is robust. Note that the purpose of the random forest here is to

determine whether to accept or reject the functional assignment made

based on the network topology score. The random forest was trained

using the assignments of known genes. The trained model was then

applied to assignments of unknown genes. Finally, we keep only the

function assignments that the random forest classified as ‘accept’.

3 RESULTS

3.1 Systematic identification of functional modules

in human genome

We constructed 65 co-expression networks from 65 microarray

datasets. In total, the graphs contain 8297 genes. Using the

graph-based mining approach as described in Methods Section,

we obtained 1 823 518 network patterns which occur in at least

five graphs. We further designed a bi-clustering approach (see

Methods Section) to merge patterns similar in both their

network topology and their dataset recurrence. This drove

down the number of network patterns to 143 400, which covers

2769 known and 1054 unknown genes and varies in size from

4 to 180. The whole pipeline took 254 CPU hours (2GHz AMD

Opteron Processor 270). In general, the size of a module is

inversely proportional to its recurrence. Among those modules,

45% of modules each contain more than 90% known genes,

which allow us to assess the functional homogeneity of the

module. We define a module to be functionally homogenous if

the hyper-geometric P-value, after Bonferroni correction,
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is50.01. Among the identified network modules, 77.0% of the

patterns are functionally homogenous.

Figure 1a shows the histogram of network recurrence across

the 65 datasets, which approximates an exponential distribu-

tion. We define a module to be active in a dataset if 80% of its

edges appear in that dataset. The recurrence of those modules

ranges from 5 to 20. The most frequently occurring module

(with recurrence 20) contains five genes MT1E, MT1F, MT1H,

MT1L and MT1X (the network topology is shown in Fig. 2a),

all of which are metallothionein and only MT1X has known
annotations in the GO database as ‘nitric oxide mediated signal
transduction’ and ‘response to metal ion’. Multiple experi-

mental studies have revealed concurrent activities of the MT
genes in intracellular defense against reactive oxygen and
nitrogen species. For example, substances causing oxidative

stress and agents involved in inflammatory processes induce the
synthesis of metallothionein (Chun et al., 2004; Chung et al.,

2006; Izmailova et al., 2003). This evidence is consistent
with their observed tight expression regulation in our study.
Another frequent occurring module, comprising four genes

RPS4Y1, USP9Y, DDX3Y and EIF1AY as a clique (the
network topology is shown in Fig. 2b), occurs in 18 datasets.
Interestingly, USP9Y, DDX3Y and EIF1AY are all located in

the chromosomal region Yq11 and considered to be involved in
spermatogenesis (Vogt, 2005). In addition, RPS4Y1 shares high
sequence similarity with RPS4Y2, which also resides in Yq11

and is linked to spermatogenesis. These examples demonstrate
that recurrent network modules are highly likely to be involved

in a specific biological process.
In general, the higher the recurrence, the more likely the

modules are to be functionally homogenous (Fig. 1b). This lays

the foundation for using multiple microarray datasets to
enhance the functional inferences. In fact, when the recurrence
is high, even loosely connected network patterns, or paths, can

represent functional modules. We define the connectivity of a
graph g to be 2m/[n(n� 1)], where m is the number of edges
and n the number of vertices in g. Figure 3a shows an example.

All seven genes are involved in ‘immune response’, though
extremely loosely connected; they are identified through their

occurrence in six graphs. Most current algorithms identify
network modules by looking for densely connected subnet-
works in a single network (Bader and Hogue, 2003; Shannon

et al., 2003; Spirin and Mirny, 2003). Here, by considering
pattern recurrence across many networks, we are able to
identify network modules of most topologies. In fact, 24% of

the identified modules have connectivity50.5. Figure 3b shows
the network connectivity distribution of the modules.

3.2 Enrichment of protein–protein interaction in

network modules

To explore the types of interaction relations among the network

members beyond co-expression, we resort to the only available
large-scale interaction information, protein interaction data.

We retrieved the human protein interaction information from
EBI(European Bioinformatics Institute)/IntAct (Hermjakob
et al., 2004) (version 2006-10-13), and test for each of the

143 400 modules whether protein interaction was over-repre-
sented among its member genes compared to all human genes
based on the hyper-geometric test. Total 60556 (22.44%)

network modules were found to be enriched in protein
interaction at P-value 0.001 level. This shows that genes in
our network modules are more likely to encode interacting

proteins. Interestingly, many of the protein interaction-enriched
network modules fall into functional categories, such as protein

biosynthesis, DNA metabolism, etc., and many interacting
protein pairs are not necessarily co-expressed. Figure 4 shows
an example of such network modules with two edge colors

indicating co-expression and protein interaction, respectively.

Fig. 1. (a) Distribution of recurrence of identified modules approx-

imates an exponential distribution. (b) For all modules containing

seven genes, the percentage of function-homogenous modules

increases with recurrence. Modules of different sizes show similar

trend (see Supplementary Material).

Fig. 2. Two network modules with high recurrences.
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3.3 Function prediction with random forest classifier

Based on the 143 400 recurrent network patterns, we assigned

to each gene the function with maximum network topology

score in each network pattern and made functional predictions

for 779 known and 116 unknown genes by random forest with

70.5% accuracy. In our random forest model, there are seven

explanatory variables: functional enrichment P-value, network

topology score, network connectivity, network size, average

node degree, unknown gene ratio and the pattern recurrence

numbers.

In the application of random forest, a small number k of the

variables are randomly selected to split the node for each tree.

We proved that the performance of random forests is not

sensitive to the choice of k (details on Supplementary Material),

which is also an expected result based on Breiman’s comments

(Breiman and Cutler, 2003).
The predicted gene functions cover a wide range of

functional categories, e.g. protein biosynthesis, electron trans-

port, vesicle-mediated transport and immune response. Each

prediction is made conditionally on the gene’s network

environment and specific perturbations. Some functions, such

as protein biosynthesis, occur universally under almost all

perturbations. Others, such as cell cycle, are activated

predominately in conditions related to cancer and development.

The comprehensive prediction results, together with the

necessary context information, are available at http://zhoulab.

usc.edu/ContextAnnotation. Many of our predictions are

supported by experimental studies in the literature. For

example, we predicted NCF4 to participate in ‘immune

response’. According to a study (Wientjes et al., 1993), NCF4

is important for immunity and its deficiency leads to chronic

granulomatous disease (CGD). We assigned the function

‘mitotic cell cycle’ to AURKB; and AURKB is known to be

responsible for mitotic arrest in the absence of aurora A (Yang

et al., 2005). We predicted RPS8 to be involved in ‘protein

biosynthesis’, and RPS8 has been shown to participate in

translation (Yu et al., 2005). Spc25 was predicted to be involved

in ‘mitotic cell cycle’, which is supported by the evidence that

SPC25 is an essential kinetochore component that plays a

significant role in proper execution of mitotic events

(Bharadwaj et al., 2004).
It should be noted that the prediction accuracy of 70% is an

underestimate due to the sparse nature of human GO

annotations. Since GO annotation is based only on positive

biological evidence, many annotated genes may still have other

undiscovered functions. Furthermore, the GO directed acyclic

graph structure is not perfect. For example, we predicted

ch-TOG to have ‘mitotic cell cycle’ function. Based on recent

evidence (Cassimeris and Morabito, 2004), the updated (2006

December) GO classifies it as ‘RNA transport’, ‘centrosome

organization and biogenesis’, ‘spindle pole body organization

and biogenesis’ and ‘establishment and/or maintenance of

microtubule cytoskeleton polarity’. Since none of these four

GO nodes is a child of ‘mitotic cell cycle’, we have to classify the

prediction to be wrong, while the original paper clearly

documented its important involvement in mitotic cell cycle

(Cassimeris and Morabito, 2004).

3.4 Context-specific function annotation

One of the surprises of the human genome project is that we

have far fewer genes than expected. A possible explanation to

relate the limited number of genes to the high degree of

complexity is that many genes perform multiple functions.

Fig. 3. (a) A loosely connected network module (connectivity¼ 0.28)

enriched with the function ‘immune response’ (P510�7).

(b) Distribution of network connectivity among identified modules.

Fig. 4. A network pattern enriched with protein interaction. Edges

representing protein interaction are colored in red.
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Since our approach allows one gene to appear in more than one

network module, we are able to perform context-sensitive

functional annotation. That is, we can assign to a gene multiple
functions as well as the network environments in which the

gene exerts those functions. This is valuable even if a gene’s

function is already known. Among our predictions, 20% of

genes are assigned multiple functions. This is certainly an
under-estimate, since for each network module we only picked

the functional category associated with the highest network

topology score. Of course, some of the different assignments for

the same gene are relevant, such as ‘response to pest, pathogen

or parasite’ and ‘immune response’, or ‘regulation of cell cycle’
and ‘mitotic cell cycle’. However, the dramatic difference in the

network environment associated with those functional assign-

ments indicates different functional involvement of this gene,

which is beyond the rough classification of GO functional
categories. In our predictions, among the genes assigned with

multiple functions, 72% are in network modules that differ at

least 50% of member genes and 57% are in network modules

that differ at least 70% of member genes.
Figure 5 shows two examples of genes predicted to have

multiple functions. In Figure 5a, IRF1 appears in three

different network modules, and annotated with the functions
‘immune response’, ‘regulation of cell cycle’, and ‘response to

wounding’, respectively. The first pattern appears in six

datasets (details on Supplementary Material). The dataset

conditions include cancer, infection and inflammatory

responses, which is consistent with IRF1’s role in ‘immune

response’. The second pattern appears also in six datasets,

measuring exercise effect, infections and cancer. Since cell cycle

may also be accelerated upon inflammatory responses, and

conditions such as ‘cancer’ may impact various pathways, it is

hard to conceptually separate those two datasets into two

types of strictly different conditions. In fact, in two of

those datasets measuring infection (GDS260 and SMD

dataset with Category¼ Infection, Subcategory¼PBMC,

experimenter¼Cheryl Hemingway), the two network modules

merge into one, indicating a potential role of IRF1 in mediating

cross-pathway communication. The third pattern annotated

with the function ‘response to wounding’ occurs in five

datasets. Since the process ‘response to wounding’ is highly

related to the process ‘immune response’, and it may also

initiate the acceleration of ‘cell cycle’, the dataset conditions are

similar to those previously described, except the condition

‘osmotic stress reaction’, which is in agreement with the specific

process ‘response to wounding’. The first two functions

‘immune response’ and ‘regulation of cell cycle’ agree with

the known annotation of IRF1, and we believe that the

function ‘response to wounding’ is also likely to be true due to

strong evidence (the hyper-geometric P-value measuring the

module functional homogeneity is 10�5). As another example,

Figure 5b shows that the unknown gene FLJ11305 occurs in

two different network modules, and is annotated with two

functions ‘mRNA processing’ and ‘regulation of cell cycle’.

Each module is activated in five datasets, including drug

treatment, dyslipidemia, Huntingtons disease, exercise effect

and cancer, with the conditions dyslipidemia and ovarian

tumor being shared between the two modules. The fact, that

often different network modules involving the same gene can be

merged together under some conditions, indicates that many

genes with multiple functions may participate in related

pathways, and they are likely to serve as cellular process

communicator.

3.5 Discovery of uncharacterized cellular systems

The comprehensive functional modules generated in this study

can facilitate the discovery of uncharacterized cellular systems.

Date and Marcotte defined ‘uncharacterized cellular systems’

as discrete subgraph in reconstructed protein interaction

networks in which 50% or more member proteins lack

functional assignments (Date and Marcotte, 2003). Among

the identified modules, we identified 2206 such modules,

varying in size from 4 to 68 member genes. Among those, 204

modules contain only unannotated genes. Figure 6a shows an

example. The module contains five genes, DRE1, C15orf25,

FLJ11029, FLJ12151 and FLJ14346, that form a densely

connected subgraph. The complete subgraph appears in eight

datasets (GDS1062, 1312, 1321, 505, 564, 760, 858, 914).

Notably, 5 out of the 8 datasets are cancer datasets. Although

cancer datasets are enriched in our collected data (21 out of 65),

the ratio is still marginally significant at (P¼ 0.06) level. This

suggests the potential involvement of the module in cancer.

Interestingly, the homolog of DRE1 in Drosophila plays an

important role in regulating DNA replication-related genes

Fig. 5. Functional predictions for (a) IRF1 and (b) FLJ11305 upon

different network environments. Nodes labeled in red are annotated

with the titled functions by GO consortium. Nodes labeled in green are

the genes with predicted functions.
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(Okudaira et al., 2005), which may suggest its potential role in
cell cycle or cell proliferation—a hypothesis consistent with its

activation in cancer. This example demonstrates that even for
the poorly uncharacterized modules, our method may provide

useful information based on the experimental conditions under

which the module is activated. Furthermore, 251 uncharacter-
ized modules have connectivity 50.5, which can hardly be

identified from a single graph. Figure 6b shows such an
example. Among the eight member genes, three have annotated

functions: DHX15 is involved in mRNA processing, GTF2H2

participate in regulation of transcription and TIA1 is a member
of a RNA-binding protein family. The exact function of

MATR3 is unknown, but it is known to encode a nuclear

matrix protein, which may play a role in transcription. These
evidences point to a possible involvement of the module in

transcription.

4 CONCLUSION AND DISCUSSION

We have presented a generic approach to integrate many

microarray datasets to identify functional modules and to

perform functional annotation in human genome. To our
knowledge, this is the first study to systematically annotate

human gene functions based on multiple microarray datasets.
Compared to current approaches based only on a single

microarray dataset, our method provides: (1) higher specificity:

the identified functional modules are more likely to be
functionally homogenous; (2) higher sensitivity: we can identify

functional modules beyond co-expression clusters.
Our approach is based on pattern mining across

co-expression networks. It is known that absolute expression

values of a gene cannot be compared across datasets. However,
the expression correlations of a gene pair in different datasets
are comparable because they are unitless measures each derived

from a single dataset. As our co-expression networks are
constructed from expression correlations of gene pairs, their
comparisons are not affected by inter-dataset variations. Thus,

our approach provides an effective way to integrate a large
number of microarray experiments conducted in different
laboratories, at different times, and using different technology

platforms. There are large numbers of public microarray
datasets available for model organisms, such as Homo sapiens,
Mus musculus, Arabidopsis thaliana, Drosophila melanogaster,

Caenorhabditis elegans and Saccharomyces cerevisiae. Using
our approach, we are in a position to extract orders of
magnitude more information for any genome, for which large

amount of microarray data exists. A natural extension will be
to compare co-expression networks across species. Several
studies along this direction (Bergmann et al., 2004; Oldham
et al., 2006; Stuart et al., 2003) have already been performed on

two or several species. To extend those studies to many species
is likely to require efficient algorithm design.
In our studies, 20% of genes received multiple functions in

different network contexts. This is certainly an underestimate
for at least three reasons: (1) we only assigned one function to a
gene based on its top network topology score; (2) the whole

functional module may perform multiple functions in different
contexts of activities of other modules and (3) our data source
only includes 65 datasets, that mostly represent human

pathological conditions and cover a small proportion of
human dynamical functional landscape. We note that incor-
porating the concept of dynamics is especially important in

charactering human gene functions due to its high temporal
and spatial complexity. However, relating specific conditions to
particular gene functions is not an easy task due to the subtle

difference in experimental conditions, and the difficulties in
systematically characterize them.
The principle of our approach, integrating multiple networks

for functional studies, can be extended beyond microarray
analysis. For example, a popular approach to functional
modules is to identify dense subgraphs on protein interaction

networks (Chen and Yuan, 2006; Hwang et al., 2006; Koyuturk
et al., 2006; Luo et al., 2007; Spirin and Mirny, 2003; Tornow
and Mewes, 2003). However, as discussed above, functional

modules often occur as non-dense subgraphs, e.g. metabolic
and signal pathways. Furthermore, since current protein
interaction network are static networks, edges in such a

network may not occur together if considering temporal or
spatial parameters. Thus, such identified functional modules
may not truly represent a functional unit. In the future, given

protein interaction networks generated under different condi-
tions, our approach can further facilitate the identification of
condition-specific functional modules or dynamic protein

complex assembly. In fact, if different species are conceptua-
lized to represent manifestations of different conditions of life
forms, several recent studies on conservation and evolution of

protein interaction networks across species can be regarded as a
first attempt to characterize network dynamics (Flannick et al.,
2006; Kelley et al., 2003; Koyuturk et al., 2006; Sharan and

Ideker, 2006; Sharan et al., 2005). In that context, due to the

Fig. 6. Two examples of uncharacterized cellular systems.
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NP-hard graph isomorphism problem, how to perform large-

scale pattern mining across protein interaction networks of

many species is still a challenging problem.
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