
Mining Algorithm Roadmap in Scientific Publications
Hanwen Zha, Wenhu Chen, Keqian Li, Xifeng Yan

University of California, Santa Barbara
{hwzha,wenhuchen,klee,xyan}@cs.ucsb.edu

ABSTRACT
The number of scientific publications is ever increasing. The long
time to digest a scientific paper posts great challenges on the num-
ber of papers people can read, which impedes a quick grasp of
major activities in new research areas especially for intelligence
analysts and novice researchers. To accelerate such a process, we
first define a new problem called mining algorithm roadmap in sci-
entific publications, and then propose a new weakly supervised
method to build the roadmap. The algorithm roadmap describes
evolutionary relation between different algorithms, and sketches
the undergoing research and the dynamics of the area. It is a tool
for analysts and researchers to locate the successors and families
of algorithms when analyzing and surveying a research field. We
first propose abbreviated words as candidates for algorithms and
then use tables as weak supervision to extract these candidates
and labels. Next we propose a new method called Cross-sentence
Attention NeTwork for cOmparative Relation (CANTOR) to extract
comparative algorithms from text. Finally, we derive order for in-
dividual algorithm pairs with time and frequency to construct the
algorithm roadmap. Through comprehensive experiments, our pro-
posed algorithm shows its superiority over the baseline methods
on the proposed task.

KEYWORDS
Relation Extraction, Taxonomy Construction, Knowledge Base Con-
struction
ACM Reference Format:
Hanwen Zha, Wenhu Chen, Keqian Li, Xifeng Yan. 2019. Mining Algo-
rithm Roadmap in Scientific Publications. In The 25th ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining (KDD ’19), August 4–8,
2019, Anchorage, AK, USA. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3292500.3330913

1 INTRODUCTION
The number of scientific publications is ever increasing. According
to the prominent STM report [38], the number of journal articles
published in 2014 alone approached 2.5 million and this number is
still increasing on a yearly basis. The long time to digest a scientific
paper posts great challenges on the number of papers a researcher
can digest. Experienced researchers may be familiar to identify the
demanded papers. However, the problem becomes much severe for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’19, August 4–8, 2019, Anchorage, AK, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6201-6/19/08. . . $15.00
https://doi.org/10.1145/3292500.3330913

intelligence analysts who need to browse papers and quickly grasp
the major activities in new research areas. The novice researchers
may have a similar obstacle in finding out papers related to their re-
search. They usually take plenty of time to come up with keywords,
retrieve and read relevant papers and iterate this process.

One step assistingwith this process is taxonomy construction [11,
14, 32, 42], which extracts concepts from a collection of documents
and builds a tree structure to describe the hierarchical relation
between different concepts. Analysts and researchers can follow
this concept hierarchy to quickly identify more desired keywords
or documents. However, previous taxonomy construction methods
mostly focus on isA relation. They either rely on pattern-based
methods [14, 32] which extract hierarchical relation leveraging
linguistic features, or clustering-based methods [11, 42], which
cluster concepts to induce an implicit hierarchy.

In this paper, we generate a graph called Algorithm Roadmap,
focusing on a special type of concept – “algorithms”, and its specific
form – “abbreviations”. Given a scientific corpus, we mine com-
parative algorithms (described in section 3), and construct a graph
connecting mined algorithms. In Figure 1, for example, a roadmap
for algorithm Generative Adversarial Network (GAN) [9], describes
its successors and competitors in the scientific literature. The gen-
erated algorithm roadmap captures the development of algorithms,
sketches the undergoing research, and models the dynamics of an
area. It serves as a tool for analysts and researchers to locate the
successors and families of algorithms when doing analysis and
survey.

Figure 1: A pedagogical example of the algorithm roadmap
for “GAN” algorithm.

Conclusively, there exist three major challenges for mining the
algorithm roadmap in the scientific literature, corresponding to the
label, entity, and relation respectively.

https://doi.org/10.1145/3292500.3330913
https://doi.org/10.1145/3292500.3330913
https://doi.org/10.1145/3292500.3330913

Relation Type Instance

Single Sentence We train models using different GAN methods : WGAN-GP , WGAN with weight clipping and DCGAN.
Single Sentence In almost all experiments BayesGAN outperforms DCGAN and W-DCGAN.
Cross Sentence LapGAN proposed a Laplacian pyramid implementation of GANs. ... DCGAN used a deeper convolutional network.
Cross Sentence GDL focuses on unsupervised learning. ... GAN and DCGAN show results for unsupervised learning and semi-supervised classification .

Table 1: Examples of comparative algorithms.

Label Scarcity: Collecting in-domain algorithm entities and re-
lation labels in scientific publications are prohibitively expensive.
Existing datasets or curated in-domain knowledge bases [1, 4] are
rather small and frequently outdated with the development of sci-
ence. Moreover, a newly invented algorithm probably only appears
in a single paper. This scarcity raises a challenge for supervised
and distantly supervised entity extraction methods like [18, 19]
or weakly supervised phrase extraction approaches relying on fre-
quency [30]. The low coverage of knowledge base can also influence
the availability of relation labels when using distant supervision
[22].

Entity: General entity recognition does not directly separate the
algorithms with the others. Though using abbreviations as the rep-
resentation of algorithms alleviates the problem of considering all
types of entities, few types other than algorithm exists. In addition,
the abbreviation, as a short form of text, is prone to ambiguity.
Word sense disambiguation methods [23] have been studied to
disambiguate word senses, however, deciding the sense for the ab-
breviation in the scientific domain is still challenging when lack of
labeled data.

Relation: The narrations of two comparative algorithms either
lie in a single sentence or are distributed across sentences. For
example, in Figure 1, the comparative relation may be described
in one sentence, e.g., “Algorithm A outperforms Algorithm B ...,”
or in multiple-sentences, e.g., “Algorithm A ... ; Algorithm B”
Moreover, it is likely more than two algorithms are compared or
more than two abbreviations appear in a paragraph. Additional ab-
breviations may convey a meaning related to comparative relation.
Unsupervised pattern-based methods such as [14] focus on isA rela-
tion, which are not suitable for finding compared algorithms. Most
existing researches for the supervised relation extraction focus on
single sentence relation extraction with an exception of [25, 37],
which focus on general documents while not targeting on a specific
narration of algorithm abbreviations and comparative relation. On
the other hand, these supervised approaches require annotated
corpora.

We propose a framework to mine the algorithm roadmap in sci-
entific publications to tackle the previous raised challenges. It first
extracts abbreviations with specific pattern as algorithm candidates.
Then it leverages weak supervision from tables and text to cre-
ate training data for comparative relation identification and entity
typing. Next, it applies our proposed relation extraction method
Cross-sentence Attention NeTwork for cOmparative Relation (CAN-
TOR) to extract comparative algorithms in the text. It leverages
words and abbreviations in the context, and jointly predicts the

candidate types for addressing ambiguity during the roadmap con-
struction. Finally, it connects the compared algorithms into a graph
with time and frequency information.

Extensive experiments on three real-world datasets demonstrate
our superior performance in finding the comparative relation. Our
CANTORmodel outperforms supervised and unsupervised baseline
methods by a large margin. We perform case studies on the con-
structed algorithm roadmaps to further visualize the effectiveness
of the construction.

2 RELATEDWORKS
Knowledge base construction is a known technique for harvesting
knowledge and storing facts in a structured format. The constructed
knowledge base plays an important role in downstream applications
such as information retrieval, question answering, and document
analysis, etc. Most existing automatically constructed knowledge
bases focus on general domain, which either extract facts from
Wikipedia info-boxes [3, 34] or harvest knowledge with specific lin-
guistic patterns [5, 39]. Taxonomy can be viewed as a tree-structure
knowledge graph, where linked nodes have hierarchical relation.
Plenty of methods have been proposed to extract these hierarchical
relation, either leveraging linguistic patterns [14] or hierarchical
clustering of concepts which implicitly captures the hierarchical
relation [42]. These methods mainly focus on the general domain,
harvesting common knowledge with pattern or statistics.

Manyworks focus on for mining scientific publications, for exam-
ple, [1] proposed a keyphrase and relation extraction competition
for scientific publications, [4] collected a dataset for scientific tax-
onomy construction, [13] studied the evolution of scientific topics
through dynamic topic models [21] modeling implicit topics and
obscure relations, and some technical reports 1 2 manually analyzed
the development of areas such as artificial intelligence. Some of
these works collected datasets for scientific publications, but the
process is known to be expensive and the collected datasets are
normally small in size.

Word sense disambiguation [23] is a type of technique used
to distinguish ambiguous word senses. They either disambiguate
word senses with a sense inventory or distinguish super senses
by clustering words. Inspired by methods using super senses, we
use types as evidence to distinguish abbreviations. To leverage the
constraint of abbreviations, we use predefined types as super senses
for abbreviations.

Another line of work related to ours is relation extraction, which
has attracted much attention from the community, while most
of the works focus on news and web data [8, 29]. Recent neural
1https://www.technologyreview.com/s/612768/we-analyzed-16625-papers-to-figure-
out-where-ai-is-headed-next/
2https://aiindex.org/

network based methods have achieved great success in relation
extraction, including CNN-based approaches [40, 41] and LSTM-
based approaches [31]. These approaches all consider relations lying
in a single sentence. On the other hand, most relation extraction
works assume entities and relation sets are given in the datasets,
while others apply distant supervision to link entity mentions [22,
28] in the text to the knowledge base entities [19] and acquire
relation labels. Their weaknesses lie in the fact that they require
either annotated corpora or well-covered knowledge bases.

Beside single-sentence relation approaches, some previous works
exist on cross-sentence relation extraction. [26] proposes to con-
struct cross-sentence relation data for entities with minimal-span
assumption. [25] proposes to use a Graph-LSTM to encode the
shortest path in the extracted dependency parse tree, where the
tree roots of different sentences are linked together. [37] proposes
a method using self-attention [36] and bi-affine scoring algorithm
to predict biological relations between all mention pairs in the ab-
stract simultaneously. Our work differs from them in three key
ways. First, we leverage weak supervision from the paper rather
than using annotated corpus or distant supervision from an ex-
ternal knowledge base. Second, we consider typing of entities for
abbreviation ambiguity and roadmap construction. Third, we model
both single-sentence and cross-sentence comparative relations with
words and abbreviations in the context.

3 PRELIMINARIES
In this paper, we mainly target at mining algorithm roadmap in
scientific publications. In order to provide a better understanding
of our paper, we first give definitions related to algorithm roadmap
and then briefly overview our proposed method.
Algorithm Roadmap. It is a directed acyclic graphG, where each
node of the graph is an algorithm term in abbreviation form. Each
directed edge e1 → e2 in the graph G represents a directed evo-
lutionary relation between two algorithm nodes e1 and e2. For
example, in the computer science domain, there are algorithms
such as GAN (Generative Adversarial Networks) [9] and DCGAN
(Deep Convolutional Generative Adversarial Networks) [27]. A di-
rected edge GAN → DCGAN represents “DCGAN" is a successor
and is evolved from “GAN".
Comparative Relation. It is a relation between two algorithms,
which means two terms were compared with each other in some
papers. For example, pair (GAN ,DCGAN) having comparative re-
lation means “DCGAN" was compared to “GAN" in some papers,
but there is no direction information implies which technique is a
successor.
Roadmap Construction. We are the first to mine algorithm pairs
with comparative relation using weak supervision harvested from
tables and texts. Moreover, we connect the compared algorithms
into a directed graph G by deriving order with time and frequency
information.

4 EXTRACTING COMPARATIVE RELATION
In this section, we present a framework to extract comparative
algorithm pairs from papers. The framework consists of three steps:
i) Extracting abbreviations as algorithm candidate mentions; ii)
Applying weak supervision from tables and texts to create training

data for comparative relation and typing; iii) Learning to predict
the relation for candidate mention pairs.

4.1 Candidate Mention Extraction
We use abbreviations as our algorithm candidates. The intuition of
using abbreviations as algorithm candidates lies in two folds: entity
and relation label availability.

Lack of annotated corpus and well-covered in-domain knowl-
edge bases, general entity recognition methods [18, 19] do not fit
our candidate mention extraction. With low occurrence frequency,
phrase extraction approaches do not satisfy the job as well.

We observed that abbreviation is a commonly used representa-
tion of algorithm terms. With a unified form, it is easy to harvest
from the corpus. More importantly, using abbreviations as candi-
dates provides a possibility to gather supervision from tables for
comparative relation, which we will show in section 4.3.

Abbreviations follow specific patterns and may refer to several
types of meanings. For example, Table 2 shows algorithms such
as CNN (Convolutional Neural Network), datasets such as MNIST
(Modified National Institute of Standards and Technology dataset),
andmetrics such as AUC (Area under curve). Types of a few abbrevi-
ations can be distinguished by checking the signal words following
the abbreviation. For example, an algorithm abbreviation may be
followed by algorithm, method, model etc. in the text.

We use regular expression with pattern consists of capital letters,
lowercase letters, numbers, and hypen, to unsupervisedly harvest
abbreviations as algorithm mention candidates from the text. We
extract type of a few abbreviations identified by signal words to pro-
vide weak supervision for entity typing in section 4.2.5, unidentified
abbreviations are randomly sampled as type Others.

Type Abbreviations Signal Word

Algorithm CNN, LSTM, GAN algorithm
Metric AUC, MAP, MAE metric
Dataset MNIST, CIFAR10, SQuAD dataset
Others NP, VP, POS /

Table 2: An example of different types of abbreviations.

4.2 Cross-Sentence Relation Extraction
We designed our model to incorporate both single-sentence and
cross-sentence information, and consider all abbreviations in a para-
graph. To this end, our model consists of a single-sentence module
with Piecewise CNN [40], and a cross-sentence module which lever-
ages self-attention to attend to all words capturing the paragraph-
level relation information, and abbreviation-attention to attend to
all abbreviations helping describe the relation of the candidate pair.
Moreover, typing is jointly done on the attended candidates to as-
sist downstream roadmap construction. Mention pair predictions
are pooled on single-sentence module and cross-sentence module
for the entity pair prediction. Finally, the predictions of the two
modules are interpolated with weights learned simultaneously with
other parameters.

4.2.1 Inputs. Both the single-sentencemodule and the cross-sentence
module take a sequence of N token embeddings in Rd . The input

MLP

score

score1 score2

Single
Module

Single
Module

Single
Module

s1 s2 s3

Cross
Module

s1

Cross
Module

s2

Cross
Module

s3

Cross ModuleCombined Relation Extraction Model

Convolution

Self
Attention

e2e1CLS

CLS word abbv word

Convolution

Abbreviation
Attention

abbv

Fusion Layer

Figure 2: Architecture of our CANTOR model.

embedding of each token is xi , which is a concatenation of word
embedding and positional embedding [40].

4.2.2 Single-Sentence Module. We use PCNN (piecewise convo-
lutional neural networks) [40] as our single-sentence relation ex-
tractor, which is a well-performed model for short-context relation
extraction.

PCNN is a variation of CNN that adopts piecewise max pooling
in relation extraction. It divides the sentence into three segments:
part before first entity, part between two entities and part after
second entity. Thus each convolutional filter qi is divided into three
segments (qi1,qi2,qi3). The max-pooling is performed on three
segments separately, which is defined as

pi j =max(qi j) 1 ≤ i ≤ n, 1 ≤ j ≤ 3 (1)

where n is the number of convolutional filters, and pi is equal to
the concatenation of pi j over all segments j, which aggregates
information from different parts. A non-linear layer is added on
top of the sentence relational encoding which is represented by all
filters p1:r , to get the relation prediction:

o1 =W1tanh(p1:r) + b1. (2)

4.2.3 Cross-Sentence Module. Our cross-sentence module focuses
on finding paragraph-level comparative relation, where two algo-
rithm mention candidates lie across sentences. We base on recent
Transformer architecture [7, 36] to build this module, due to its
better performance in encoding long-distance context compared
to Long Short Term Memory Networks (LSTMs) [15] and Convolu-
tional neural networks (CNNs).

Self-Attention. We adapt Transformer [36] to encode word se-
quences in a paragraph, where we calculate the self-attention of
the words, and use a convolutional layer in self-attention blocks
similar to [37] to alleviate the burden on the model to attend to
local features. We add residual connections [12] to both multi-
head attention and convolutional layers. The Transformer contains
stacked layers of Transformer block, which contains its own set
of parameters. The token embedding X = {x1, ...,xN } is fed to the
first-layer transformer block and the output of the kth-layer block
Âk is calculated by

Âk = Ak +Ak × so f tmax(
ATkAk√
dAk

) (3)

where so f tmax(·) is a column-wise normalizing function, and dAk
is the dimension of the input token embedding of kth transformer

block used for self-attention. A convolutional layerConv with resid-
ual connection follows the self-attention layer:

HAk = Âk +Conv(Âk). (4)

We follow BERT [7] which recently achieves great success in
multiple NLP tasks, to add a special <CLS> token at the start of the
paragraph and a special <SEP> token at the end of each sentence in
the paragraph. The representation of <CLS> is used for gathering
relational information in a paragraph. With self-attention layer, all
other tokens in a paragraph attend to this <CLS> token. <SEP> is
a special token stands for the end of a sentence, which is used to
incorporate the sentence boundary information in the model.

Abbreviation-Attention. The abbreviation-attention layer calcu-
lates attention over all abbreviations in the sentences. When addi-
tional algorithms are also compared or share a similar relation to
two candidates, two candidate mentions may have a high probabil-
ity to be comparative.

Different from the self-attention mechanism, the abbreviation
attention is calculated based on all abbreviations in a paragraph.
Denoting all token embeddings of abbreviations as B, transformer
blocks with a new set of parameters are applied. Similar to self-
attention, with kth-layer input embedding Bk , the kth-layer output
of abbreviation attention B̂k is calculated as

B̂k = Bk + Bk × so f tmax(
BTk Bk√
dBk

). (5)

Similarly a convolutional layer with residual connection is applied
to the output of abbreviation-attention layer:

HBk = B̂k +Conv(B̂k). (6)

With abbreviation-attention layer, all the abbreviations in the
sentences are attending to the algorithm candidates. The final out-
put HBk,e1 and HBk,e2 of the algorithm candidates in HBk are
selected as the entity representation, which fuses all abbreviation
information in the paragraph.

Character Embedding. Some of the abbreviations are rarely men-
tioned in the text, which may result in an insufficiently trained
word embedding. Since the abbreviation is often created by summa-
rized text, similar abbreviations probably imply overlapped word
sequences. To leverage this intuition, we use character embedding
that describes character-level information of abbreviations and
we apply a character-level convolutional layer followed by a max-
pooling layer to get a character-level abbreviation representation.

For an abbreviation with corresponding character embedding
sequences C =< c1, c2, ..., cn >, we apply a convolution kernel
followed by a max-pooling layer.

Hc =max(Conv(ci)) 1 ≤ i ≤ n (7)

Fusion Layer. Finally, We use a single layer on top of the encoded
paragraph representation HAk,<CLS> and the algorithm candidate
representation E to model their interaction. The candidate represen-
tation E is constructed by concatenating original word embedding
Xe1,Xe2, character embedding Hc,e1,Hc,e2, attended abbreviation
embedding HBk,e1,HBk,e2. The final fusion layer predicts a final
relational score for one instance.

E = [Xe1,Xe2,Hc,e1,Hc,e2,HBk,e1,HBk,e2] (8)

o2 =W2([HAk,<CLS> ,E]) + b2 (9)

4.2.4 Combined Relation Extraction. Predicting whether an algo-
rithm candidate pair is compared forms a multi-instance learning
problem [29, 35]. For each pair, a bag of instances may contain
two candidates. The entity-level prediction is an aggregation over
multiple mention pair instances. Based on different assumptions,
different weighting strategies have been proposed such as max-
pooling [35] and selective attention [17].

We follow at-least-one assumption, where a positive example
has at least one instance implies the comparative relation, and use
max-pooling to select the instance with the maximum score for an
entity pair in both single-sentence and cross-sentence module.

The final score of an algorithm candidate pair (e1, e2) is a inter-
polation of the aggregated prediction score O1(z |S) of the single-
sentence module and O2(z |S) of the cross-sentence module. The
trainable weights λ1 and λ2 are jointly learned from the data to
reflect the importance of single-sentence and cross-sentence part.
The weights are limited to be positive and have a total sum of 1.

O(z |S) = λ1O1(z |S) + λ2O2(z |S)
λ1, λ2 > 0, λ1 + λ2 = 1

(10)

Finally, we use softmax to normalize the scores to get a proba-
bility distribution pz = so f tmax(O(z |S)), and relation prediction
loss is defined as a cross-entropy loss: LRE = −∑2

i=1 yi · loд(pz,i),
where each yi ∈ {0, 1} indicates algorithm candidate pair relation
is true for which class (without/with relation).

4.2.5 Entity Typing. Previous relation extraction modules do not
distinguish the types of the abbreviations. Few types other than
algorithm exists, even though using abbreviations as algorithm can-
didates addresses the problem of candidate recognition. In addition,
introducing abbreviations may increase chance of ambiguity. For
example, “GAN” could be an algorithm (Generative Adversarial
Network) but also a gene in biology. “CNN” could be an algorithm
Convolutional Neural Network but also a television channel (Cable
News Network).

Inspired by word sense disambiguation methods that label super
sense types for word clusters [23], we jointly predict the types for
abbreviation candidates with relation extraction task to distinguish
abbreviations for downstream roadmap construction. Consider-
ing the limited types of abbreviation, we pre-define a fixed type
inventory instead of using clustering and labeling word clusters.

We use a projection matrixW3 on top of the attended algorithm
candidate representation after abbreviation attention to predict the
type of the candidate abbreviation, and the scores are normalized
with softmax function: pt = so f tmax(WtHBke).

The type prediction loss also applies the cross-entropy loss:
LT P = −∑T

i=1 yt,i · loд(pt,i), where there are total T types and
each yt i ∈ {0, 1} indicates the correctness for ith type.

We add a type constraint to the loss function, considering that a
comparative relation only holds for candidates with the same type.
For a compared algorithm candidate pair e1, e2 in the ground truth,
a type constraint loss is defined as a kl-divergence of two predicted
types, where LTC = DKL(pt,e1,pt,e2).

The final score is a weighted sum of all the loss functions, with
weights as hyper parameters.

L = γ1 · LRE + γ2 · LT P + γ3 · LTC (11)

4.3 Weakly Supervised Training Data
The labels for comparative relation is hardly available from existing
datasets and curated knowledge bases. We propose a weakly super-
vised approach based on our observation that in the same row or
same column of the table, mentioned abbreviations are often com-
parative, including compared algorithms, datasets, or metrics etc.
This gives us an opportunity to create positive training examples
from the table without human effort.

We first used a table parsing tool [6] 3 to extract tables from raw
pdf files of papers. Then we processed the parsed results to iden-
tify abbreviations in the same row or column. We enumerated and
labeled aligned abbreviation pairs as positive examples with com-
parative relation. The supervision from the table gives compared
abbreviations of various types.

We randomly sample other non-positive candidate pairs as nega-
tive examples in training. To reduce the huge number of unrelated
and non-informative negative examples, we follow the minimum-
span strategy in [26], and limit sampled negative candidate pairs
to the co-occurred pairs shown in a limited length of continuous
sentences. Intuitively, most compared algorithms are kept since
authors tend to describe compared algorithms coherently in a short
paragraph.

5 GENERATING ALGORITHM ROADMAP
Previous comparative relation extraction step produces a large
set of compared abbreviation pairs, and each pair corresponds to
an undirected edge in algorithm roadmap. Our goal is to derive
direction for the edge and connecting individual pairs.

The evolutionary relation has a strong association with the com-
parative relation. The publication time is a strong indicator of evo-
lution direction for compared algorithms. We use first occurrence
time in the corpus of an abbreviation as an approximation. For
those pairs identified with the same occurrence time, we expect
usually low frequent algorithm is evolved from high frequent one.

Algorithm 1 Algorithm Roadmap Construction
Input: Comparative algorithm list P , time dictionary T , and fre-

quency dictionary F
Output: Algorithm roadmap G
1: for all (e1, e2) ∈ P do
2: if T [e1] < T [e2] or (T [e1] = T [e2] and F [e1] > F [e2]) then
3: G.add(e1 → e2)
4: else
5: G.add(e2 → e1)
6: return G

Example. Pairs “GAN" and “DCGAN" are mined compared algo-
rithms. We locate their first appearance time, and find that “GAN”
was published first in 2014, and “DCGAN" was first published in

3https://github.com/allenai/pdffigures

2015. GAN (2014) → DCGAN (2015) is predicted as the direction
where “DCGAN" is a successor.

When connecting individual pairs, only candidates above certain
probability threshold are kept. In addition, candidates with different
types in different pairs except for type Other are considered as
separated nodes for roadmap construction.

6 EXPERIMENT
The following section is organized in this way, first we describe
datasets and implementation details, second, we show held-out
and manual evaluation results of different methods in comparative
relation extraction task, third, we perform case studies to visualize
the constructed algorithm roadmaps.

6.1 Dataset
We crawled papers from scientific conferences in domains including
machine learning, natural language processing, and database. The
corpora include papers in NeurIPS/NIPS (Annual Conference on
Neural Information Processing Systems) from 1987 to 2017 4, ACL
(Annual Meeting of the Association for Computational Linguistics)
from 1974 to 2017 5, and VLDB (The Proceedings of the VLDB
Endowment) from 2008 to 2017 6. The statistics of each of datasets
is shown in Table 3.

Dataset documents sentences positive pairs abbreviations

NeurIPS 7k 3144k 9k 66k
ACL 5k 2277k 22k 71k
VLDB 2k 1289k 5k 40k

Table 3: Dataset statistics of NeurIPS, ACL, VLDB dataset.

From these datasets, we extract algorithm candidate mentions,
apply weak supervision to extract types from texts and comparative
relation labels from tables as described in section 4. We split train
and test data with a ratio of 80% and 20%. Among training data, 10%
is separated as validation data. Additional implementation details
are included in Appendix A.

6.2 Results
We conduct both held-out evaluation and manual evaluation on our
method and several baseline methods in the task of comparative
relation extraction, where models predict whether given candidate
pairs are comparative or not. Evaluated methods can be divided
to unsupervised methods including co-occurrence based methods
[10], word-similarity based methods [20], and supervised relation
extraction methods [40]. The pattern-based method [14] is not
compared due to its low recall in our task.

Test set from weakly supervised table data is used for held-out
evaluation. The evaluation is harsh due to the limited number of
positive examples, and noisy because of few table parsing errors. In
the manual evaluation, for each supervised method, we randomly
sample 100 examples from their positive predictions and ground
truth positive set in test data, and combine those into a unified

4https://nips.cc/
5http://aclweb.org/anthology/
6https://www.vldb.org/pvldb/

manual test set. We let human annotators to label the pairs, where
we do not distinguish compared algorithms, datasets or metrics
following the criteria of our weak supervision. In the following we
introduce evaluated methods in detail.

PCNN_single: Piecewise CNN model [40], which is one of the
state of art single-sentence relation extractionmethods. PCNN_single
only uses single-sentence instances for candidate pairs.

PCNN_cross: The same PCNN model as PCNN_single where
cross-sentence instances are also used.

Sent_cooccur: A method similar to co-occurrence method used
in hypernymdetection [10]. Sent_cooccur calculates the co-occurrence
frequency of candidate pairs in one sentence. A threshold that de-
cides a positive-negative ratio closest to the ground-truth test data
is used.

Doc_cooccur: Similar to Sent_cooccur, where the co-occurrence
frequency in one document is used instead.

Word_similarity:Amethod predicts comparative relation score
based on word embedding similarity, where the embedding is pre-
trained with the Skip-Gram model [20] implemented in Gensim 7

for each corpus. The threshold is decided similarly to Sent_cooccur.
CANTOR:Our proposed cross-sentence relation extractionmethod,

which considers both single-sentence and cross-sentence instances,
all abbreviations in the context, and jointly typing the candidates.

Method NeurIPS ACL VLDB
AUC F1 AUC F1 AUC F1

sent_cooccur 0.68 0.71 0.66 0.71 0.70 0.67
doc_cooccur 0.57 0.69 0.46 0.68 0.62 0.68
word_similarity 0.62 0.70 0.67 0.72 0.66 0.72
PCNN_single 0.73 0.71 0.72 0.68 0.78 0.67
PCNN_cross 0.75 0.71 0.76 0.74 0.82 0.76
CANTOR (ours) 0.82 0.74 0.79 0.78 0.85 0.78

Table 4: Manual evaluation of different relation extraction
methods for finding comparative relation on NeurIPS, ACL
and VLDB datasets.

Figure 3 shows the held-out evaluation and Table 4 shows the
manual evaluation for all different methods. For held-out evaluation,
we draw the precision-recall curve of all methods, and for manual
evaluationwe calculate theweightedmacro F1 andAUC(Area under
the ROC Curve). AUC depicts the ranking correctness, where F1
does not take the rank into account.

Overall, due to a limited number of positive examples from weak
supervision, the unsupervised methods show a low precision on the
held-out evaluation. The manual test set looses the strict condition
of positive examples, moreover, its construction filters most nega-
tive examples from the unsupervised methods. These two result in
increased performance of unsupervised methods. However, neither
co-occurrence based model or similarity is good at modeling the
ranking of comparative pairs, thus result in a low AUC.

Co-occurrence is one indicator for comparative relation of abbre-
viations with good recall while suffering from low precision. This
is because counting co-occurrence introduces non-comparative ab-
breviations into the results. Sentence-level co-occurrence model
7https://radimrehurek.com/gensim/

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
is
io
n

Doc_cooccur
Sent_cooccur
PCNN_single
PCNN_cross
Word_similarity
ANCOR

(a) NeurIPS

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
is
io
n

Doc_cooccur
Sent_cooccur
PCNN_single
PCNN_cross
Word_similarity
ANCOR

(b) ACL

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
is
io
n

Doc_cooccur
Sent_cooccur
PCNN_single
PCNN_cross
Word_similarity
ANCOR

(c) VLDB

Figure 3: Precision-Recall curve of different relation extraction methods for finding comparative relation on NeurIPS, ACL
and VLDB dataset with held-out evaluation.

has a better performance than the document-level model since com-
pared candidates are more likely to appear in a short context. Word
similarity model performs between two co-occurrence methods.
The word embedding captures the context of type rather than com-
parative relation. On the other hand, a large number of candidates
are rarely mentioned, which leads to insufficient training of word
embedding.

The supervised relation extraction methods generally outper-
form the unsupervised methods. The relation extraction model
PCNN_single that uses single-sentence works well, but its preci-
sion drops rapidly when recall increases. PCNN_cross considering
cross-sentence instances further improves the performance of the
model, which shows the importance of cross-sentence instances in
finding comparative relation. Our CANTOR method outperforms
all these methods, which implies better modeling of cross-sentence
comparative relation.
Ablation Study We do an ablation study to show the performance
of different components. We use the manual test data in NeurIPS
dataset collected by random samples from positive predictions
and held-out positive examples from supervised methods to evalu-
ate the components. As shown in Table 5, stacking self-attention,
abbreviation-attention, typing and combined modeling improves
the model performance.

Method AUC F1

Self-Attention 0.77 0.72
+Abbreviation-Attention 0.78 0.72
+Tpying 0.78 0.74
CANTOR (ours) 0.82 0.74

Table 5: Abalation study on different components in
NeurIPS dataset.

6.3 Case Study
For each dataset, we mine compared algorithms from the entire
corpus with our trained CANTORmodel and connect the individual
pairs with the approach described in section 5. In Figure 4, we show
parts of the algorithm roadmaps constructed from different datasets.
In each figure, each node contains its abbreviation name and its first

occurrence time described in section 5 in its dataset. To be noticed,
this time is not necessarily equal to the first publication time, as
the algorithm is non-necessarily published in this conference.

“GAN” (Generative Adversarial Networks) is a deep generative
model [9], which has been extensively cited since proposed. Re-
searchers even maintain a “GAN zoo” 8 to keep track of various
kinds of “GAN” successors.

In NeurIPS dataset, our method mines its direct successors such
as “DCGAN,” “SteinGAN,” “UnrolledGAN,” “Reg-GAN” and “ALI.”
Then we keep identifying the successors of each successor. For
example, “DCGAN” has successors including “W-DCGAN,” “Stein-
GAN,” and “Improved-GAN” etc. The comparison of our mined
algorithms with algorithms in “GAN zoo” reveals a good precision
in found successors. Our current method does not distinguish dif-
ferent forms of an abbreviation, thus “SteinGAN” and “SteinGan”
are viewed as separated candidates. A minimum confidence score
threshold can be used to control each level of the roadmap to trade
off the precision and recall.

Similarly in ACL dataset, query “Word2Vec” usually stands for a
word embedding method. Our method identifies its direct successor
such as “Glove,” “GCCA,” “NetSize,” and “NetSime.” And Glove has
successors including “HLBL,” “SAC” and “vecDCS” etc. In VLDB
dataset, query “MonteDB” is a database management system, our
method finds its direct successor such as “VectorWise,” “HyperR,”
“PostgreSQL.” And “MXQuery” has successors such as “BDB” and
“MapReduce-RDF-3X.” Among the results, “LLVM” is a compiler
backend used by some database management system. This error
comes from incorrect table parsing, and the pair is treated as a
positive example in training data.

Overall our method mines compared algorithms with good qual-
ity, though it has potential drawbacks. Some errors come from the
direction derivation, mostly because of the incorrect time informa-
tion and the lack of entity linking. For example, in ACL dataset,
“LSA-Wiki” is actually a baselinemethod comparedwith “Word2Vec”
that uses Latent Semantic Analysis used on Wikipedia. However,
this abbreviation as a whole first appears in 2015, resulting in an
error in direction. On the other hand, the first appearance time of
an algorithm in the dataset is non-necessarily the first time this
algorithm was proposed since algorithms could firstly show up in

8https://github.com/hindupuravinash/the-gan-zoo

(a) Partial roadmap for “GAN” in NeurIPS dataset.

(b) Partial roadmap for “Word2Vec” in ACL dataset.

(c) Partial roadmap for “MonetDB” in VLDB dataset.

Figure 4: Examples of partial algorithm roadmaps for query “GAN” in NeurIPS dataset, query “Word2Vec” in ACL dataset, and
query “MonetDB” in VLDB dataset.

other conferences/journals or even in other domains. Some of these
conferences/journals are not non-open access, which means data
sources for mining algorithm roadmap are naturally incomplete.
Fortunately, the rise of open access repositories such as Arxiv 9,
alleviates the data source incompletion problem.

7 CONCLUSION
We propose a new task of mining algorithm roadmap in scientific
literature, and present a weakly-supervised method towards solv-
ing this problem. Our method automatically identifies candidate
mentions and relation labels, then jointly predicts abbreviation

9https://arxiv.org/

types and extracts comparative relation across sentences leverag-
ing attention context of words and abbreviations, finally it connects
individual pairs into a roadmap. Our model outperforms baseline
methods on three real-world datasets and shows good mining re-
sults.

Our current model mainly focuses on algorithms in the form of
abbreviations. However, this could be extended to general forms
of entities and relations by integrating our model with general
phrase mining algorithms [30], entity linking [19], and general
cross-sentence relations with corresponding supervision signal. We
will leave these directions for the future work.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for
their thoughtful comments. This research was sponsored in part
by the Army Research Laboratory under cooperative agreements
W911NF09-2-0053 and NSF IIS 1528175. The views and conclusions
contained herein are those of the authors and should not be in-
terpreted as representing the official policies, either expressed or
implied, of the Army Research Laboratory or the U.S. Government.
The U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright
notice herein.

REFERENCES
[1] Isabelle Augenstein, Mrinal Das, Sebastian Riedel, Lakshmi Vikraman, and An-

drew McCallum. 2017. Semeval 2017 task 10: Scienceie-extracting keyphrases
and relations from scientific publications. In Proceedings of The 12th International
Workshop on Semantic Evaluation.

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normaliza-
tion. arXiv preprint arXiv:1607.06450 (2016).

[3] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.
2008. Freebase: a collaboratively created graph database for structuring human
knowledge. In Proceedings of the 2008 ACM SIGMOD international conference on
Management of data. AcM, 1247–1250.

[4] Georgeta Bordea, Els Lefever, and Paul Buitelaar. 2016. Semeval-2016 task 13: Tax-
onomy extraction evaluation (texeval-2). In Proceedings of the 10th International
Workshop on Semantic Evaluation. 1081–1091.

[5] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R Hr-
uschka Jr, and Tom M Mitchell. 2010. Toward an architecture for never-ending
language learning.. In AAAI, Vol. 5. Atlanta, 3.

[6] Christopher Andreas Clark and Santosh Divvala. 2015. Looking beyond text: Ex-
tracting figures, tables and captions from computer science papers. InWorkshops
at the Twenty-Ninth AAAI Conference on Artificial Intelligence.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[8] George R Doddington, Alexis Mitchell, Mark A Przybocki, Lance A Ramshaw,
Stephanie Strassel, and Ralph M Weischedel. 2004. The Automatic Content
Extraction (ACE) Program-Tasks, Data, and Evaluation.. In LREC, Vol. 2. 1.

[9] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. In Advances in Neural Information Processing Systems 27: Annual Conference
on Neural Information Processing Systems.

[10] Gregory Grefenstette. 2015. INRIASAC: Simple hypernym extraction methods.
In Proceedings of the 9th International Workshop on Semantic Evaluation.

[11] Thomas L Griffiths, Michael I Jordan, Joshua B Tenenbaum, and David M Blei.
2004. Hierarchical topic models and the nested chinese restaurant process. In
Advances in neural information processing systems. 17–24.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[13] Qi He, Bi Chen, Jian Pei, Baojun Qiu, Prasenjit Mitra, and Lee Giles. 2009. Detect-
ing topic evolution in scientific literature: how can citations help?. In Proceedings
of the 18th ACM conference on Information and knowledge management. ACM,
957–966.

[14] Marti A Hearst. 1992. Automatic acquisition of hyponyms from large text cor-
pora. In Proceedings of the 14th conference on Computational linguistics-Volume 2.
Association for Computational Linguistics, 539–545.

[15] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[16] Diederik Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimiza-
tion. In 3rd International Conference on Learning Representations, ICLR 2015.

[17] Yankai Lin, Shiqi Shen, Zhiyuan Liu, Huanbo Luan, and Maosong Sun. 2016.
Neural relation extraction with selective attention over instances. In Proceedings
of the 54th Annual Meeting of the Association for Computational Linguistics, Vol. 1.
2124–2133.

[18] Xuezhe Ma and Eduard Hovy. 2016. End-to-end Sequence Labeling via Bi-
directional LSTM-CNNs-CRF. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics, Vol. 1. 1064–1074.

[19] Pablo N Mendes, Max Jakob, Andrés García-Silva, and Christian Bizer. 2011.
DBpedia spotlight: shedding light on the web of documents. In Proceedings of the
7th international conference on semantic systems. ACM, 1–8.

[20] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems. 3111–3119.

[21] David Mimno, Hanna Wallach, and Andrew McCallum. 2008. Gibbs sampling
for logistic normal topic models with graph-based priors. In NIPS Workshop on
Analyzing Graphs, Vol. 61.

[22] Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky. 2009. Distant supervision
for relation extraction without labeled data. In Proceedings of the Annual Meeting
of the Association for Computational Linguistics. Association for Computational
Linguistics, 1003–1011.

[23] Alexander Panchenko, Eugen Ruppert, Stefano Faralli, Simone Paolo Ponzetto,
and Chris Biemann. 2017. Unsupervised does not mean uninterpretable: The case
for word sense induction and disambiguation. In Proceedings of the 15th Conference
of the European Chapter of the Association for Computational Linguistics, Vol. 1.
86–98.

[24] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in PyTorch. (2017).

[25] Nanyun Peng, Hoifung Poon, Chris Quirk, Kristina Toutanova, and Wen-tau Yih.
2017. Cross-sentence n-ary relation extraction with graph lstms. TACL (2017).

[26] Chris Quirk and Hoifung Poon. 2017. Distant Supervision for Relation Extraction
beyond the Sentence Boundary. In Proceedings of the 15th Conference of the
European Chapter of the Association for Computational Linguistics. 1171–1182.

[27] Alec Radford, Luke Metz, and Soumith Chintala. 2016. Unsupervised representa-
tion learning with deep convolutional generative adversarial networks. In 4th
International Conference on Learning Representations, ICLR 2016.

[28] Xiang Ren, Zeqiu Wu, Wenqi He, Meng Qu, Clare R Voss, Heng Ji, Tarek F
Abdelzaher, and Jiawei Han. 2017. Cotype: Joint extraction of typed entities
and relations with knowledge bases. In Proceedings of the 26th International
Conference on World Wide Web. International World Wide Web Conferences
Steering Committee, 1015–1024.

[29] Sebastian Riedel, Limin Yao, and Andrew McCallum. 2010. Modeling relations
and their mentions without labeled text. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases. Springer, 148–163.

[30] Jingbo Shang, Jialu Liu, Meng Jiang, Xiang Ren, Clare R Voss, and Jiawei Han.
2018. Automated phrase mining from massive text corpora. IEEE Transactions on
Knowledge and Data Engineering 30, 10 (2018), 1825–1837.

[31] Vered Shwartz, Yoav Goldberg, and Ido Dagan. 2016. Improving hypernymy
detection with an integrated path-based and distributional method. In Proceedings
of the 54th Annual Meeting of the Association for Computational Linguistics, ACL
2016.

[32] Rion Snow, Daniel Jurafsky, and Andrew Y Ng. 2005. Learning syntactic patterns
for automatic hypernym discovery. In Advances in neural information processing
systems. 1297–1304.

[33] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. The Journal of Machine Learning Research 15, 1 (2014), 1929–1958.

[34] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. 2007. Yago: a core of
semantic knowledge. In Proceedings of the 16th international conference on World
Wide Web. ACM, 697–706.

[35] Mihai Surdeanu, Julie Tibshirani, Ramesh Nallapati, and Christopher D Manning.
2012. Multi-instance multi-label learning for relation extraction. In Proceedings
of the 2012 joint conference on empirical methods in natural language processing
and computational natural language learning. 455–465.

[36] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Processing Systems. 5998–6008.

[37] Patrick Verga, Emma Strubell, and Andrew McCallum. 2018. Simultaneously
Self-Attending to All Mentions for Full-Abstract Biological Relation Extraction. In
Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, NAACL-HLT 2018.

[38] Mark Ware and Michael Mabe. 2015. The STM report: An overview of scientific
and scholarly journal publishing. (2015).

[39] Wentao Wu, Hongsong Li, Haixun Wang, and Kenny Q Zhu. 2012. Probase: A
probabilistic taxonomy for text understanding. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data. ACM, 481–492.

[40] Daojian Zeng, Kang Liu, Yubo Chen, and Jun Zhao. 2015. Distant Supervision for
Relation Extraction via Piecewise Convolutional Neural Networks.. In Proceedings
of Conference on Empirical Methods in Natural Language Processing. Association
for Computational Linguistics, 1753–1762.

[41] Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou, Jun Zhao, et al. 2014. Relation
Classification via Convolutional Deep Neural Network.. In Proceedings of the
International Conference on Computational Linguistics. 2335–2344.

[42] Chao Zhang, Fangbo Tao, Xiusi Chen, Jiaming Shen, Meng Jiang, Brian Sadler,
Michelle Vanni, and Jiawei Han. 2018. TaxoGen: Constructing Topical Concept
Taxonomy by Adaptive Term Embedding and Clustering. In Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining.

A IMPLEMENTATION DETAILS
A.1 Preprocessing
The paper pdf files are converted into plain text files by using Linux
pdftotext tool, and non-ascii letters are removed. For each dataset,
we keep a word vocabulary with all abbreviations and other words
with minimum frequency threshold 5. The max paragraph length
is set to 160 words, and the max number of continuous sentences
considered is set to 20. Paragraphs longer than the threshold are
cut off.

A.2 Training
The model is implemented in pytorch [24] and trained on a sin-
gle GeForce GTX 1080 GPU. The dimensions of word embedding,
character embedding, and positional embedding are set to 100, 50
and 10 respectively. The word embedding is pre-trained in each
scientific publication corpus with Skip-Gram model implemented
in Gensim. The kernel size of the convolutional layer is set to 7.
vfill

We use 200 filters for the convolutional layer in the single-
sentence module, and the same number of filters as input dimension
for the convolutional layer in each Transformer block. We apply
layer normalization [2] to each component of transformer block,
and adopt dropout [33] to the input layer, piece-wise max-pooling
and Transformer block with a dropout rate 0.3. The number of
Transfomer block layer is set to 1, since we did not observe perfor-
mance gain in increasing layers. We use Adam optimizer [16] with
a learning rate 0.001. In training, the batch size is set to be 32, and
for each positive example, we sample 5 different negative examples.
In validation and test, we use all examples. The maximum number
of epochs is set to be 16, where the result with best positive-class
validation F1 is kept.

	Abstract
	1 Introduction
	2 Related works
	3 Preliminaries
	4 Extracting Comparative Relation
	4.1 Candidate Mention Extraction
	4.2 Cross-Sentence Relation Extraction
	4.3 Weakly Supervised Training Data

	5 Generating Algorithm Roadmap
	6 Experiment
	6.1 Dataset
	6.2 Results
	6.3 Case Study

	7 Conclusion
	Acknowledgments
	References
	A Implementation Details
	A.1 Preprocessing
	A.2 Training

