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Abstract—In mobile opportunistic networks, most existing
research focuses on how to choose appropriate relays to carry
and forward data. Although relay selection is an important issue,
other issues such as finding content from people with the right
expertise are also very important since the ultimate goal of using
mobile opportunistic network is to provide the right content to
mobile users (nodes). In this paper, we study expertise-based data
access in content-centric mobile opportunistic networks, where
the objective is to minimize the average query delay given a
sequence of queries considering node expertise, node queuing
delay and communication delay. To solve this problem, we
propose various query forwarding approaches under determin-
istic and probabilistic expertise models. Specifically, we propose
centralized approaches to assign queries based on a modified
Dijkstra’s shortest path algorithm and distributed approaches in
which query forwarding is based on a utility metric. Extensive
simulations on both synthetic and realistic traces demonstrate
that our solutions outperform existing approaches.

I. INTRODUCTION

Mobile opportunistic networks, also known as Disruption
Tolerant Networks (DTNs) [1], consist of hand-held mobile
devices such as smartphones, tablets, and laptops. The major
advantage of mobile opportunistic network is that it does not
rely on any infrastructure, and can be applied to battlefield, dis-
aster recovery, environmental monitoring, habitat monitoring,
transportation, and many cyber physical systems. In mobile
opportunistic networks, due to node mobility and low node
density, the network topology is highly dynamic and end-
to-end connection is hard to maintain. To deal with these
problems, researchers adopt the idea of carry and forward,
where a node carries the data packet when no route exists,
and later forwards the packet to a new node (relay) that moves
into its communication range, referred to as contact. Then, the
key problem in mobile opportunistic network becomes how to
determine the appropriate relay selection strategy, and many
researchers design different metrics for choosing the relays [2],
(31, [4], [5].

Although relay selection is an important issue in mobile op-
portunistic networks, other issues such as finding content from
people with the right expertise are also very important since
the ultimate goal of using mobile opportunistic network is to
provide the right content to mobile users (nodes). Consider a
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group of users in a disaster recovery area connected by mobile
opportunistic networks. There are various kinds of information
access traces left by these users, such as local documents, Web
search, messages, emails, reports, and annotations, which are
useful for decision making such as what is the evacuation
plan? how to survive with limited source? how to help a
wounded person? Different users and information sources
possess different kinds of knowledge, and different kinds of
expertise. It would often be the case that a user (say v) wants
to learn something which falls into the expertise of another
user. User v may generate a query, and then route it through
the network until it reaches some user who can respond
it. Here routing is based on the content of the messages
(queries), rather than explicit destination addresses assigned
by the source. The key problem is hence how to design an
effective routing approach to minimize the query delay in such
content-centric mobile opportunistic network. Although there
have been many prior works on data dissemination in mobile
opportunistic networks [6], [7], [8], not much work has been
done on expertise-based data access in content-centric mobile
opportunistic network, which is the major focus of this paper.

The query delay is affected by several factors such as
user (node) expertise, node queuing delay, and communication
delay. When a node receives a query matching his expertise,
the query is likely to be responded quickly, which means the
processing delay is short. Otherwise, the user may have to
forward the query to some other node, which increases the
query delay. On the other hand, if a node has more than
one query to be processed, some queries will be buffered,
which incurs some queuing delay. The communication delay
is determined by the node inter-contact time. In such content-
centric mobile opportunistic networks, some simple query
solutions may not work well. For example, flooding the whole
network with the query may not necessarily reduce the query
delay since it will increase the message overhead and increase
the queuing delay. Thus, it is better to forward the query to the
node with the right expertise and less pending queries, and thus
it is a challenge to minimize the query delay by considering
all these factors.

In this paper, we propose techniques to address the afore-
mentioned challenges. We consider two node expertise models:
the deterministic expertise model in which a query can be
responded by all nodes but the processing time may differ from



one node to another, and the probabilistic expertise model in
which a node can only respond a query with some probability.
Under the deterministic expertise model, we first propose a
centralized approach based on a modified Dijkstra’s shortest
path algorithm [9] by assuming that the query source has
the up-to-date information (expertise profile, queuing delay,
communication delay) of all nodes in the network. Note that
since the network graph has both edge weight (communication
delay) and node weight (node queuing delay and processing
delay), we need to first transform the original graph to a new
weighted graph before running Dijkstra’s algorithm. Then, we
propose a distributed approach since such up-to-date informa-
tion is not always available. Under the probabilistic expertise
model, we first propose a centralized approach in which the
query source uses some pre-selected paths to route the query to
a number of destinations which are likely to respond quickly.
Then, we propose a distributed approach in which each node
decides whether to process the query or to multicast the query
to some other nodes, based on the collected information.
Extensive synthetic and realistic trace driven simulation results
validate the effectiveness of our approaches.

The rest of this paper is organized as follows. Section II
reviews related work. Section III describes the system model
and the problem formulation. We present various routing
approaches under deterministic and probabilistic expertise
models in Section IV and Section V respectively. Performance
evaluations are presented in Section VI, and Section VII
concludes the paper.

II. RELATED WORK

There have been a number of works to study data dissem-
ination in mobile opportunistic networks [6], [7], [8]. They
focus on forwarding data to the nodes which are interested
in the data, whereas our work aims to forward queries to
the nodes whose expertise is close to that required by the
queries. For example, Gao et al. [6] proposed a user-centric
data dissemination scheme which aims to use the minimum
number of relays to forward data only to the nodes that are
interested in the data. Lin et al. [7] designed another content
dissemination protocol to maximally satisfy user preferences
for various content objects, and later Guo et al. [8] also
considered privacy issues in content dissemination. However,
since these works do not consider the query processing time,
and thus cannot be applied to address our expertise-based data
access problem.

Recent years have witnessed the emergence of content-
centric networking (also known as named data network-
ing [10], [11], content-centric networking [12], [13] or data-
oriented networking [14]), where the focus is on the content
users wish to obtain instead of the servers that provide the
content. As a result, the new communication architecture is
built on named data and new approaches have been proposed
to routing named content. However, query processing in our
work may involve human in the loop and is much longer,
which is not considered in existing content-centric networking.

There have been some existing works to study expertise-
based data access in collaborative networks in which a group
of people work together to achieve specific goals (such as
resolving trouble tickets in IT service). Shao et al. [15]
proposed a Markov model to guide ticket (query) forwarding
by mining the ticket resolution sequences. However it does not
consider the ticket content, and might not be able to find the
best ticket routing sequences. To address these problems, Miao
et al. [16] developed a more comprehensive model using both
the content and the routing sequence of the ticket, which leads
to better ticket forwarding decisions. Later in [17], they also
studied the properties of collaborative networks (such as node
degree distribution), and proposed a simpler model to capture
how the tickets are routed by human beings. However, none of
them consider the node queuing delay, and so the nodes with
high expertise may be overloaded. They also do not consider
the communication delay, which is a major factor in mobile
opportunistic networks.

III. PRELIMINARIES

In this section, we first describe our system model, and then
formulate the expertise-based data access problem.

A. System Model

1) Network Model: We consider a mobile opportunistic
network of n users to process m queries (m >> n). The
network is modeled as a graph G(V, E), where each node
v € V corresponds to a user, and an edge (u,v) € FE
represents the stochastic contact process between a node pair
u, v. Each edge is associated with the communication link
delay, which is determined by the node inter-contact time.
In disaster recovery, users (nodes) usually move in repetitive
patterns (e.g., deliver supplies to evaluation camps, patrol
given routes, report to bases). This indicates the node inter-
contact time is relatively stable over time. Thus, we use the
average inter-contact time between u and v (denoted by ¢, )
to represent the communication link delay of (u,v).

2) Expertise Model: We consider both deterministic and
probabilistic expertise models. Let d be the number of exper-
tise domains. Each query ¢ is described by a d x 1 vector:

Q= [waqu%---awqd}T (D

Here [-]7 indicates matrix transpose. w,; denotes the amount
of expertise required by query ¢ in domain ¢ (0 < wy; < 1),
which can be specified by the node which generates the query.
We have 25:1 wg; = 1 for each query g.

Deterministic Expertise Model: For queries belonging to a
specific expertise domain, they can be responded by all nodes
but the processing time may differ from one node to another.

The expertise profile of node v is a d x 1 vector as follows:
P, = [to1, toa, ..., tva]” ()

Here t,; denotes the processing time for node v to respond a
query belonging to domain ¢.



Let T)? be the processing time for node v to process query
q, which may require expertise from more than one domain.
T3 is defined as follows:

d
T =PIQq =Y tuiwy 3)
i=1
Probabilistic Expertise Model: For queries belonging to a
specific expertise domain, a node may not be able to respond
all of them, and is even uncertain about whether an individual
query can be responded or not before processing it. The
expertise profile of node v is a d x 2 vector as follows:

P g t t t 4
1':') — v _ vl v2 cee vd 4
v |:Av:| |:av1 Ay2 - Qod @

Similar to the deterministic expertise model, ¢,; denotes the
processing time for node v to respond a query belonging to
domain i. The processing result is either success (node v can
respond the query) or fail (node v cannot respond the query).
We use a,; to denote the probability that node v can respond
a query belonging to domain ¢ (0 < a,; < 1).
For a query ¢ which may require expertise from more than
one domain, let 7} be the processing time of node v, and
? be the probability of node v to respond the query. T7 is
defined in the same way as Equation (3), and p{ is defined as:

d
pi=ATQ, =Y avws ®)
i=1

The probabilistic expertise model is more general than the
deterministic expertise model, and the deterministic expertise
model can be viewed as a special case of the probabilistic
expertise model by assigning a,; to 1 for Vo, 1.

3) Queuing Model: If a node (user) is busy processing
some query, it cannot process other queries at the same. In
practice, each node has a queue to buffer pending queries
which cannot be immediately processed. Queries in the queue
are processed on a first-come-first-served basis. Once a node
begins to process a query, it works without interruption until
the query is processed. The queuing delay (73,) can be calcu-
lated as the total processing time for all queries buffered in
the queue.

B. Problem Formulation

We formulate the expertise-based data access problem as
follows.

Definition 1: Expertise-based data access problem
Given m queries, which need to be responded by n nodes in a
mobile opportunistic network G(V, E). Node v has probability
pd to respond query g and the processing time is 7). Suppose
query q is generated by some source node at time ¢,,. Let t; be
the time that the source node receives the response for query
q. The objective is to minimize the average query delay of all
queries, i.e., min 1 >oq(tg —tg)-

In practice, it is difficult to predict the query generation
time and the expertise requirement of future queries. Thus, it
is a challenge to minimize the query delay. In the following

two sections, we address this challenge by proposing various
query forwarding approaches.

IV. QUERY FORWARDING APPROACHES UNDER
DETERMINISTIC EXPERTISE MODEL

In this section, we first propose a Centralized Approach
under the Deterministic expertise model (CAD) and then pro-
pose a Distributed Approach under the Deterministic expertise
model (DAD).

A. Centralized Approach under Deterministic Expertise Model
(CAD)

A query should be forwarded to the node that will provide
response with the minimum delay. Let DZ denote the query
delay if node v responds query ¢, which includes the com-
munication delay, queuing delay, and query processing delay.
The communication delay also includes the delay for routing
the response back to the query source. Then, query ¢ should
be assigned to node v with the minimum DJ. In CAD, the
source node of query g uses a modified Dijkstra’s algorithm
to find the node v with the minimum D{, and then uses source
routing to send the query to node v along the path selected by
the algorithm.

Fig. 1.

An example network
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Fig. 2. A constructed weighted graph

Figure 1 shows an example network, in which each node
corresponds to a user and an edge represents the stochastic
contact process between a node pair. Suppose query g is
generated by node s. For each node v, DZ may be modeled as
the shortest path from node s to node v and then calculated
using Dijkstra’s algorithm. However, it is impossible to di-
rectly apply Dijkstra’s algorithm here since the graph has both
edge weight (communication delay) and node weight (node
queuing delay and processing delay). Thus, we first transform
the original graph to a new weighted graph (Figure 2), and
then run Dijkstra’s algorithm.



Specifically, for each node (called real node) in the original
graph, a virtual node is added, which connects to the real node
with an edge whose weight is the sum of the node queuing
delay and the processing delay. For example, let node v’ be
the virtual node of node v. Edge (v,v’) is associated with
T, + T2 where T, is the queuing delay of node v, and T} is
the processing time for node v to process query q. Here, the
query source is assumed to have all network information, and
hence can obtain the accurate queuing delay of node v when
node v receives the query. Other edges connecting two real
nodes are associated with twice of the communication link
delay, which also considers the delay for routing the response
back to the query source. For example, if the average inter-
contact time between v and v is ¢, ,, the communication link
delay of edge (u,v) will be represented by 2¢, ,. Then, DY
is equal to the length of the shortest s-v’ path. The formal
description of this modified Dijkstra’s algorithm is shown in
Algorithm 1.

1) Algorithm Description: Let V be the set of all real nodes
and virtual nodes (line 1). The algorithm first initializes d[?]
and d[o] for each node @ in V (line 2). Here d[t] denote the
shortest s-0 path length, and d[] denotes the s-o path length
that has been found so far. All nodes are classified into two sets
S and f/\S, where S denotes the set of nodes whose shortest
path length have not been obtained. Initially, .S contains all
real nodes and virtual nodes (line 3).

Next, in each round, the algorithm selects the node (say v)
with the minimum d[7] among the nodes in S (line 5). Based
on the property of Dijkstra’s algorithm, d[3] is equal to d[d],
and so ¥ will be removed from S according to the definition
of S (line 6). Let v and v’ be the corresponding real node and
virtual node of node v (line 7). If v is the first virtual node to
be selected, v’ (i.e., ¥) has the smallest d[v’] among all virtual
nodes based on the property of Dijkstra’s algorithm. Then, the
candidate node is the real node v, and the path from the query
source s to node v can be constructed by traversing n[v] (line
8). Here, n[v] denotes the predecessor of v on the shortest s-v
path. If node © is a real node, n[-] will be updated along with
d[] for all ©’s neighbors (lines 9-12), and the aforementioned
procedure will be repeated until the candidate node is selected.

2) Algorithm Analysis: Now we calculate the computa-
tional complexity. Let G(V, E) be the network graph. After
adding virtual nodes and virtual edges, the new weighted graph
has 2|V| nodes and |V'| + | E/| edges. The complexity analysis
is similar to that of Dijkstra’s algorithm. If our algorithm is
implemented using a heap-based priority queue, the overall
time complexity is O((|V| + |E|) log2|V]). Since |E| > |V|
(G is connected), the overall time complexity is also equal to
O(|E[log|V]).

B. Distributed Approach under Deterministic Expertise Model
(DAD)

CAD assumes the query source has up-to-date information
(expertise profile, queuing delay, communication link delay)
of every other node, which is impossible due to the communi-
cation delay. Thus, we propose a Distributed Approach under

Algorithm 1 CAD

Input: node s, T, T for Vv € V, and Cy,v for V(u,v) € E
Output: the candidate node and the path from node s to that node
V < the set of real nodes and virtual nodes

2 d[?] <= oo for Vo € V, and d[s] < 0

S+ V

: while S # @ do B

¥ <— the node with the minimum d[5] among the nodes in .S
d[o] « d[7], S« S\ {0}

v, v' < the real node and the virtual node of ¥, respectively
If © is ', return the original node v and the s-v path constructed by
traversing n[v] _

9:  If d[v'] > d[v] + Ty + T, then d[v'] + d[v] + Ty + T

A ol s

10: for each real node u which has an edge with v do
11: If d[u] > d[v] + 2¢cu,v, then d[u] < d[v] 4 2cy,v, and nfu] < v
12: end for

13: end while

the Deterministic expertise model (DAD) which only requires
limited scope of information dissemination. The disseminated
information is collected by each node, and further used to
calculate the following utility metric to determine where to
forward the query.
Definition 2: Utility

The utility value of node v for query ¢ is defined as

Ul = min {2dy,» + Tu + 11} 6)

UEN,

where AN, is the set of nodes whose information is used
to calculate UJ. d,, , is the minimum communication delay
between node u and node v. It is modeled by the length of
the shortest u-v path in a weighted graph where the link weight
is the communication link delay, and it can be calculated using
Dijkstra’s algorithm. Note that v € N, and d, , = 0.

UY indicates the estimated minimum total delay for respond-
ing query ¢, if it is forwarded to node u and processed by the
nodes in A,,. The calculation of UJ depends on the scope of
N,, which is generally defined as the r-hop neighborhood of
node v (r > 1).

Let Bl , denote the benefit for node u to forward query g
to node v. It is defined as the amount of decrease in the total
delay if query ¢ is processed by node v instead of node u, and
can be calculated as follows:

Bg,v = (Tu + Tg) - (2Cu,'u + Ug) (7)

Generally speaking, each query is greedily forwarded to
the nodes which bring maximum benefit in reducing the
query delay, and will be processed by the node which does
not have any neighbor to bring any benefit. Suppose query
q is received/generated by node u. Node wu first calculates
the benefit value of each neighbor. Let v be the node with
the maximum B{ , in node u’s one-hop neighborhood. If
B, <0, node u will process the query by itself. Otherwise,
node u will forward the query to node v. The aforementioned
procedure is repeated until the query is finally processed
by some node. The formal description of the algorithm is
described in Algorithm 2.

Information Dissemination:

Here information dissemination is needed so that each node

can calculate the utility values of all nodes in its one-hop



Algorithm 2 DAD

Input: query g, node u, information disseminated from other nodes
: C + the set of u’s one- hop neighbors
: Calculate B ,, for each v in Cg
Sort Cd in a descendlng order of benefit value
: v < the node in C{ which has the largest benefit
if B , < 0 then
Process query ¢
else
Forward query g to v
: end if

ORI N B WD

neighborhood. If the calculation of utility value is based on the
r-hop neighborhood, node v has to maintain the information
of all nodes in the r + 1-hop neighborhood. Thus, each node
has to disseminate its information (expertise profile, queuing
delay, communication link delay) to all nodes in its r + 1-hop
neighborhood. The details are described as follows.

To obtain the expertise profile, each node estimates the
average time to process a query belonging to each domain (as
aforementioned in Section III-A2). The communication link
delay can be modeled by the average pairwise node inter-
contact time. Since the expertise profile and the communica-
tion link delay is relatively stable over a long period of time,
they only need to be disseminated once after a warm-up period.
For the queuing delay, whenever a query is inserted into the
queue, the node should re-estimate the queuing delay and re-
disseminate it to all nodes in its 7 + 1-hop neighborhood. Due
to limited scope of information dissemination, there will not
be heavy control traffic regarding the dissemination of queuing
delay. The information dissemination also takes less time, and
hence it is more likely that other nodes can obtain up-to-date
information.

7
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Fig. 3. TIllustration of DAD

We use Figure 3 to illustrate how DAD performs with
different scope of information dissemination. Suppose a query
q is generated by node s. We first show the case that the
calculation of utility value is based on the one-hop neigh-
borhood. For example, node v; has s and vz in its one-hop
neighborhood, so v1’s utility value is the minimum of T;,, +7/,
(200), 2d,, s +Ts + T2 (310) and 2d,, o, + Tv3 + T (320).

Here T, + T}} = 200, Tx + T = 300, T,; + T}/, = 300,
dvl,S = Cyy,s = = 5, and dvl,vg = Cyywg = 10 as shown
in the figure. Thus, v;’s utility value Ugl is 200. Then,

the benefit for node s to forward query ¢ to node v; is

(Ts + Td) — (2¢5,0, + UZ ), which is equal to 90. Following
the same procedure, node s can also obtain the benefit value
of node wvo, which is equal to —40. Thus, the query will be
forwarded to node vy since it has the highest positive benefit
value among the nodes in node s’s one-hop neighborhood.
Then, v; receives the query and will calculate the benefit value
of the neighbors from its own perspective. For example, B, |
is (T, + T ) — (2¢y,,s + UZ), which is equal to —20, and
Bl ., is equal to —40. Since no neighbor has positive benefit
value, node v; will process the query. The overall query delay
is the sum of v;’s node queuing delay, v;’s processing delay,
and twice of the communication delay of link (s, v;), which
is equal to 210.

However, the overall query delay can be reduced if two-
hop neighbors are used to calculate the utility metric. In this
example, some utility values are reduced, and then the benefit
value for a node to forward the query to another node will
be updated. Now the query will be forwarded along path s-
v9-U4-v7 to node v7 for processing, which leads to the overall
query delay of 170. Although increasing the scope increases
the effectiveness of query forwarding, it also increases the
cost of information dissemination. We will further investigate
it through extensive simulations.

V. QUERY FORWARDING APPROACHES UNDER
PROBABILISTIC EXPERTISE MODEL

In this section, we first propose a Centralized Approach un-
der the Probabilistic expertise model (CAP) and then propose a
Distributed Approach under the Probabilistic expertise model
(DAP).

A. Centralized Approach under Probabilistic Expertise Model
(CAP)

Under the probabilistic expertise model, we cannot assign
each query to only the node which has the minimum total
delay for processing the query. If the node fails to respond
it, the query has to be re-assigned to some other node, which
may significantly increase the overall query delay. Thus, we
should assign each query to multiple nodes to reduce the
failure probability.

In CAP, the source of query ¢ first uses Dijkstra’s algorithm
to calculate DY for each node v. Then, the nodes are sorted
in an ascending order of DZ/p2. The query source will select
the first o nodes from the sorted node list, and use source
routing to multicast query ¢ to these nodes along the paths
selected by Dijkstra’s algorithm. Here « is a parameter to be
configured by the query source. For each selected node, it
sends back the result to the source node through the reverse
path that the query had previously traversed to reach the node.
If these o nodes are unable to respond query g, the query will
be multicasted to the next o nodes. The query source continues
this procedure until the query is either responded or has been
processed by all nodes in the network. The formal description
of the algorithm is described in Algorithm 3.

Effect of Parameter o:



Algorithm 3 CAP

Input: node s, a, Ty, T, p for Vo € V, and ¢y, for V(u,v) € E
1: Consider node s as the source node and calculate DJ for Vv € V by
using Dijkstra’s algorithm

2: S« V

3: Sort S in an ascending order of D /pd for Vv € S

4: while query ¢ cannot been responded do

5: Sa < the first o nodes from S

6: S+ S\ Sa

7: Multicast query g to the nodes in S, along the paths selected by

Dijkstra’s algorithm (line 1)
8: Wait for the results from the selected nodes
9: end while
629 4— Dq / p.

550 440 D;
330 by

@

Now we use an example network to investigate the effect
of parameter « on the performance (in terms of the expected
query delay) and the overhead (in terms of the expected
number of nodes which are assigned a query). In Figure 4,
suppose node s generates a query ¢ and assigns it to some
nodes for processing using CAP. For each node v, D/p?, DZ
and pJ are shown in the figure. The node list in an ascendlng
order of ratio DZ/p? is vy (233), v7 (340), s (429), vo (467),
v (550), v4 (589), vs (629), vs (688), vg (838). If o = 1,
node s will first send the query to v;. If v; responds the
query (the probability is pf ), the overall query delay is D .
If v1 cannot respond the query (the probability is 1 — p{.),
node s will send the query to v7 immediately after it obtains
the responding result from node v;. If v; responds the query
(the probability is (1 — p@ )pd ), the overall query delay is
Di + DI . To summarize, the expected query delay can
be calculated as Di + (1 —pd )(DE +(1—pl)---), and
the expected number of assigned nodes can be calculated as

1+ (1 —pd )+ @ =pd)--).

Similarly, We can calculate the expected query delay and
the expected number of assigned nodes when « is any value
within the range [1,9]. The results are shown in Figure 5.

As shown in Figure 5, as « increases, the expected query
delay decreases, while the expected number of assigned nodes
increases. When a query is assigned to « nodes at once and
can be responded by one of them, it is unnecessary to select
the other o — 1 nodes. Thus, increasing o generally increases
the number of unnecessary nodes, which leads to an increases
of expected number of assigned nodes. On the other hand,
increasing « allows the query to be processed by more nodes
at one time, which reduces the overall query delay. As «

query delay
# of nodes

Y. —— expected query delay
—A— expected # of assigned nodes

0
1 2 3 4 5 6 7 8 9
parameter a

Effect of a on CAP

Fig. 5.

increases, more lower-ranked nodes in the sorted node list
are selected for processing the query, and the performance
improvement (in terms of expected query delay) is much
smaller compared with the increase of overhead (in terms
of expected number of assigned nodes) by further increasing
o, as shown in Figure 5. This overhead may affect the
performance under the scenario of multiple queries. That is, if
the network has few nodes or the query generation interval is
very short, assigning a query to many nodes will significantly
increase the node queuing delay for other queries. Thus, it
is hard to configure o appropriately in order to achieve good
performance at the cost of minimal overhead. We propose the
following distributed approach to achieve cost effectiveness.

B. Distributed Approach under Probabilistic Expertise Model
(DAP)

Since it is impossible to achieve CAP considering the
communication delay, we propose a Distributed Approach un-
der Probabilistic Expertise Model (DAP) which only requires
limited scope of information dissemination. The disseminated
information is collected by each node to calculate the fol-
lowing revised utility metric to guide query multicasting. A
node that can process the query with small delay and large
responding probability should have better utility value. To
achieve cost effectiveness, a query should only be multicasted
to a number of nodes which are just enough to respond the
query (e.g., the overall responding probability is about 80%).
The detailed description of DAP will be given after introducing
the following revised utility metric.

Definition 3: Utility

The utility value of node v for query ¢ is defined as

Ul = min {(2du,o + Tu + TJ)/pL} ®)

u€ENY

Similar to DAD, various scopes (N,) of information are
used for calculating the utility metric. Increasing the scope
increases the effectiveness of query multicasting (forwarding),
but at the cost of information dissemination.

Let B , denote the benefit for node u to forward query ¢

to node v. It can be calculated as follows:
B, = (Tu +T) /Pt — (2cu,0 + UY) )

Suppose query ¢ is received/generated by node wv. First
of all, node v finds out node v’s neighbors which have
not processed the query (based on some acknowledgement



mechanism to be described later). These nodes will be sorted
in a descending order of benefit value, and query ¢ will be
multicasted to the first o nodes which have positive benefit
values. Note that if the query cannot be multicasted to enough
appropriate nodes, node v may also process the query.

Generally speaking, the query should be processed by more
than one node at once to reduce the failure probability, so
we should have o > 2. However, this may make query
q disseminated to an exponential number of nodes, which
significantly increases the queuing delay of other queries.
Thus, we also estimate the overall responding probability PZ
that query ¢ has been responded when it is received by node
v. Note that node v will process the query without further
multicasting if (i) P? > g (/5 is a pre-defined parameter) and
(i1) node v has not processed query q. Next we describe the
details when o = 2.

Suppose a query ¢ is generated by node s (P¢ is initialized
to zero). The query may be multicasted to some other nodes for
processing. For some node w which generates/receives query
¢, suppose it multicasts the query to nodes v; and vs. The
calculation of P} (P1) should consider the probability that
query ¢ can be responded by the nodes in v2’s (v1’s) neigh-
borhood. For each node v, such probability ]33 is estimated
using the responding probability of v’s neighbor (say u) which
has the smallest (2d,, , + T, + T.7)/p% among the nodes in
v’s neighborhood. Here we assume if node v receives query
q, it is most likely to forward the query to such node u for

processing. Then, P and P}, will be calculated as:

Pl =1-(1-PL)(1-P})
szzl_(l_P31)(1_sz)

10)
an

When node w forwards query ¢ to node v; (v2), it also
appends the value P/ (P},) to the query. Suppose node v;
receives query ¢. If P} < f3, node vy will multicast the
query to some of its neighbors following the aforementioned
procedure. Otherwise, node v; will process query g without
further multicasting if it has not processed the query before.

There are some other cases when the query cannot be
multicasted to enough appropriate nodes. For example, it is
possible that only some node v can be selected by node w.
Then, if node w also processes the query, P? is calculated as:

Pl=1-(1-P(1- Pl (12)

Otherwise, PJ is equal to PZ. Note that node w will simply
delete the query if (i) node w has processed query ¢ and (ii)
query g cannot be forwarded to any appropriate neighbor.
The aforementioned procedures can be generalized for any
«a > 1, which are described in Algorithm 4.
Query Re-multicast and Acknowledgement: We further
address the following two problems: (i) a query cannot be
responded by all the nodes that receive the query (ii) a query
has been responded by some node but is still processed by
other nodes, which is a waste of network resources. To address
problem (i), if a node v fails to respond a query g, it will set
P? to zero and re-multicast query ¢ following Algorithm 4.
The candidate nodes will be selected from the neighbors who

Algorithm 4 DAP

Input: parameters «, /3, query g, node u, P, information disseminated from
other nodes

1: If P > B, process query g and return

2: CZ < the set of u’s one-hop neighbors which have not processed ¢
3: Calculate By ,, for each v in CZ

4: Sort C{ in a descending order of benefit value
5: S < the set of the first o nodes in Cg which have positive benefit
6
7
8
9

: if |SI| < b and node u has not processed query q then
1 S S? U{u}
: end if

D If 8P s empty, delete query g and return
10: Calculate Py for each v in S
11: for each v in S7 do ~
122 Pi+1-(1- Pg)]‘[wesg\{v}u - P2)

13: If v and w are the same node, process query ¢; otherwise, forward
message (q,P7) to node v.
14: end for

have not processed query g. To achieve this, each node is
required to broadcast acknowledgement of whether a query
is responded or not after processing it. Then, if node v has
not received acknowledgement from a neighbor u, node w is
assumed to have not processed query ¢. The acknowledgement
also addresses problem (ii). That is, if node v knows node u
has responded query ¢, it will remove the query from its queue
to avoid processing it later.

VI. PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of our ap-
proaches on both synthetic and realistic traces.

A. Approaches for Comparison

We evaluate the performance of the four proposed query
forwarding approaches: CAD, DAD, CAP, and DAP, and
compare them with the following approaches.

Flooding (Flood): When a query q is received/generated by
some node v, v processes ¢ and forwards it to all neighbors. If
some node u responds ¢, it will broadcast acknowledgement
to all other nodes in the network so that they can remove ¢
from their queues.

Stochastic Greedy Routing (SGR) [17]: SGR captures the
behavior of humans in forwarding queries. The intuition is
that, a query should be forwarded to a node with the following
conditions: (i) it has closer expertise to that required by the
query, (ii) it has higher node degree, assuming that a better-
connected neighbor is more likely to route the query along
a shorter path to the node with closer expertise. Specifically,
when a node receives a query g, it may process the query or
forward it to one of its neighbors. The probability of query ¢
to be forwarded to (processed by) node v is proportional to
plk,/T4. Here k, denotes v’s node degree.

Note that we do not implement existing data dissemination
schemes [6], [7], [8] for comparison since they do not consider
processing delay and cannot fit into our problem formulation.
For example, there is a time constraint for each data item in
the user-centric data dissemination scheme [6], whereas our
problem does not have such constraint but instead aims to
minimize the overall query delay.



B. Synthetic Traces

1) Simulation Setup: In our simulations, we randomly gen-
erate a mobile opportunistic network consisting of a number
of nodes. The pairwise node inter-contact time is randomly
generated within the range of [10,100]. There are 10 ex-
pertise domains. For the expertise profile of each node wv,
t,; is randomly generated within the range of [100,1000],
and a,; is randomly generated within the range of [0, 1]
(i=1,2,...,10). We generate a sequence of 10,000 queries
of different expertise requirements. The source of each query is
randomly selected. The average query delay will be evaluated
under various settings of query generation interval. In all
simulations, the first half of the trace is used for warmup to
collect necessary network information. All the data and queries
are generated during the second half of the trace.

2) Comparison with Flood and SGR: Figure 6 and Figure 7
compare the approaches under the deterministic and proba-
bilistic expertise models, respectively.

Figures 6(a), 6(b) (Figures 7(a), 7(b)) compare CAD, DAD
(CAP, DAP) with Flood and SGR in a network of 50 nodes,
as the query generation interval change. In DAD (DAP), the
scope of information dissemination is two-hop. In CAP and
DAP, a = 2, and 8 = 0.8. For all approaches, increasing the
query generation interval decreases the average query delay,
since the queries are generally buffered for less time before
being processed.

In Figure 6(a) (Figure 7(a)), CAD (CAP) generally outper-
forms DAD (DAP), because CAD (CAP) allows the query
source to have up-to-date information of all nodes in the
network. For example, when the query generation interval is
20, CAD (CAP) has 9% (26%) lower average query delay than
DAD (DAP). When the query generation interval exceeds 100,
CAP underperforms DAP since the configuration of parameter
a becomes inappropriate for CAP as the query generation
interval increases.

In Figure 6(b) (Figure 7(b)), DAD (DAP) outperforms SGR
and Flood since the latter two approaches do not consider
various kinds of delay information (e.g., communication link
delay and node queuing delay). DAD (DAP) has 57%-59%
(45%-73%) lower average query delay than SGR, and 96%-
97% (93%-96%) lower average query delay than Flood. Flood
performs the worst since the node queuing delay is signifi-
cantly increased.

Figure 6(c) (Figure 7(c)) shows how the performance of
DAD (DAP) is affected by the scope of information dissem-
ination when the query generation interval is 20. Here we
measure the average query delay and the total number of
update messages which are used to disseminate the up-to-date
information about node queuing delay.

For DAP (Figure 7(c)), as the number of hops increases
from 1 to 3, the average query delay decreases by 34%, while
the total number of update messages increases by 212%. As
aforementioned in Section IV-B, increasing the scope generally
increases the effectiveness of query forwarding. When the
number of hops further increases to 4, the average query
delay slightly increases. Increasing the scope leads to longer

information dissemination time, and so it becomes less likely
to obtain up-to-date information (e.g., the node queuing delay
may be changed during the information dissemination time).
Thus, further increasing the scope reduces the effectiveness of
query forwarding. For DAD, the average query delay reaches
minimum when the information is only disseminated within
one hop. If the scope further increases, the average query delay
increases first, and then stays almost flat, which is shown in
Figure 6(c).

When the number of hops is more than 4, it is likely that the
information dissemination can cover the entire network due to
limited network scale. Thus, further increasing the number of
hops cannot increase the total number of update messages too
much, or significantly change the average query delay.

C. Realistic Traces

1) Evaluation Setup: We further evaluate the performance
of our approaches under the probabilistic expertise model
using some real-world trace. Here we do not use realistic
DTN traces since they do not contain information about
node expertise. Our trace is obtained from IBM’s IT service
department, where service agents collaborate to solve trouble
tickets submitted by customers. There are a total of 180 agents
and 78,000 tickets which are generated within one month. The
tickets are classified into 11 topics, and the topic id reflects
the popularity; i.e., a ticket of smaller id is more popular. We
assume each topic represents a distinct expertise domain, and
use the derived statistics to perform simulations as follows.

We model this network by a graph in which each node
represents an agent. If one agent routes a ticket to another
agent, an edge is added between them. We randomly generate
the pairwise node inter-contact time and study its effect on the
performance. We aggregate the tickets by topic and calculate
the mean processing time and the probability that a query can
be responded by a specific node (referred to as the responding
probability). Each ticket is viewed as a special kind of queries
which only require expertise of one domain. In all simulations,
the first half of the tickets is used for warmup to collect
necessary network information. All the queries are generated
using the second half of the tickets.
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2) Results: Figure 8 compares the performance of CAP

(o =1,2), DAP (o = 1), Flood and SGR as the pairwise node

inter-contact time changes. For example, [10%, 10?] means that

the inter-contact time is randomly generated within [10!, 10%]s.
In DAP, the scope of information dissemination is one-hop.

Results on the realistic trace
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For CAP, DAP and SGR, increasing the pairwise node
inter-contact time increases the communication link delay,
which increases the overall query delay. Among the three
approaches, our approaches have much lower average query
delay compared with SGR. For CAP, since there are many
queries, increasing « increases node queuing delay, which
leads to worse performance. Thus, CAP (o = 1) performs
better than CAP (o = 2). For the same reason, we should
reduce the number of nodes selected for query processing in
DAP. We set a = 1, so a query is processed by one node at
a time. Thus, we do not need to configure S to restrict the
scope of query multicasting.

For Flood, increasing the pairwise node inter-contact time
does not change the overall query delay too much. Since there
are many queries, flooding significantly increases the node
queuing delay. Thus, the query delay is dominated by the node
queuing delay, and does not change too much as the pairwise
node inter-contact time increases.

VII. CONCLUSIONS

This paper studied the expertise-based data access problem
in content-centric mobile opportunistic networks, where the
objective is to minimize the average query delay of all
queries considering the node expertise, node queuing delay and
communication delay. We designed centralized and distributed
routing approaches under both deterministic and probabilistic
expertise models. Some of our solutions are based on well-
known techniques, but with novel modifications. For example,
since the network graph has both edge weight (communication
delay) and node weight (node queuing delay and processing
delay), we need to first transform the original graph by adding
virtual nodes and edges before running Dijkstra’s algorithm.
Extensive simulations on both synthetic and realistic traces
demonstrate that our solutions outperform existing approaches.
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