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Abstract—Cloud computing promises high scalability, flexibil-
ity and cost-effectiveness to satisfy emerging computing require-
ments. To efficiently provision computing resources in the cloud,
system administrators need the capabilities of characterizing and
predicting workload on the Virtual Machines (VMs). In this
paper, we use data traces obtained from a real data center
to develop such capabilities. First, we search for repeatable
workload patterns by exploring cross-VM workload correlations
resulted from the dependencies among applications running on
different VMs. Treating workload data samples as time series,
we develop a co-clustering technique to identify groups of VMs
that frequently exhibit correlated workload patterns, and also
the time periods in which these VM groups are active. Then, we
introduce a method based on Hidden Markov Modeling (HMM)
to characterize the temporal correlations in the discovered VM
clusters and to predict variations of workload patterns. The
experimental results show that our method can not only help
better understand group-level workload characteristics, but also
make more accurate predictions on workload changes in a cloud.

I. INTRODUCTION

Cloud computing [1] promises high scalability, flexibility
and cost-effectiveness to satisfy emerging computing require-
ments. To realize these promises, cloud providers need to be
able to quickly plan and provision computing resources, so that
the capacity of the supporting infrastructure can closely match
the needs of new applications. To this end, it calls for mech-
anisms to characterize and predict workload continuously.

Our goal is to develop such a mechanism, using data traces
obtained from an in-production, private cloud [1] environment.
The private cloud studied in this paper supports hundreds of
enterprise customers, each runs 100 to 5000 Virtual Machines
(VMs). Most VMs are provisioned to run certain business
applications. For instance, a retail chain customer may have
a set of VMs running 3-tiered web applications to support
online orders. The workloads on these VMs are often driven by
repeatable business behavior and hence, exhibit temporal and
spatial correlations. Temporally, business behavior may show
time-of-day effects. Spatially, when many users send online
orders in the above example, the workload on front-end Web
servers will increase, which would lead to workload increases
on the middleware and database servers. As a result, workload
variations on these servers may exhibit “clustered” behavior.
This observation, together with the fact that complete applica-
tion configurations on customers’ VMs are often unavailable
to the cloud provider, motivated this study.

Our approach is to first develop a model to capture groups

of VMs that behave in frequent and repeatable patterns. Such
behavior patterns make some workload variations predictable.
Based on this model, we then design a technique that predicts
the workload of individual VMs. For simplicity of exposition,
we limit our discussions to CPU utilization in the paper, but
our approach is applicable to other resource demands in the
cloud, such as memory, I/O, network, etc.

The problem of workload characterization and prediction
has been widely studied in the past [2], [3], [4], [5], [6].
Among them, a set of works focus on creating mathematical
models that can be used to represent typical workload for Web
servers [7], [8], [9], high performance computing platforms [3]
or networks [4]. More recently, some work has been done to-
ward characterizing the workload in a cloud environment [10],
[11], [12], [13]. However, these studies are concerned with
statistically understanding and reproducing computing tasks
(e.g., MapReduce tasks) scheduled on a cloud. The work on
capacity management and VM placement typically employs
some workload modeling and prediction techniques [14], [15],
[16], [17], [18]. These methods depend on the statistics of
individual workload time series to predict future resource
demand. Different from the existing works, we apply a multiple
time series approach, so that workload is analyzed at the group
level, rather than at the individual VM level. As we shall
see, this helps to achieve a deeper understanding of workload
characteristics and greater prediction accuracy.

We make the following unique contributions in this paper.
First, we propose a new means of characterizing correlated
workload patterns across VMs resulted from the dependencies
of applications running on them. Treating workload data
samples as multiple time series, we introduce a co-clustering
algorithm to identify VM groups and the time periods in which
certain workload patterns appear in a group. Second, we use
Hidden Markov Model (HMM) to explore the temporal corre-
lations in workload pattern changes. This allows us to predict
individual VM’s workload based on the groups found in the
previous step. Our study is based on real measurement data
collected from a production cloud environment, hence provides
insights for system administrators to understand the typical
cloud workload patterns and to better manage resources.

II. BACKGROUND

Our study is based on workload traces collected from
a production cloud environment that supports a number of
enterprise customers. A customer runs business applications
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on VMs provisioned to it. Each application has one or more
components, each of which runs on one or multiple VMs.
From the service provider’s perspective, application configu-
rations on these VMs are not all known. A software agent
is deployed on every VM to periodically collect performance
data, including CPU, memory, disk and I/O utilization, etc.,
and reports the data back to a central server, which then stores
all performance data into a database. We obtained the CPU
utilization traces from this database for our study.

The agents collect CPU workload data at a minimum time
granularity of 15 minutes. We obtained a total of 21 days of
traces from 3019 VMs that belong to 3 different customers
for analysis. The trace for each VM comprises a time series.
Due to space constraint, we only show the results with 1212
VMs that belong to customer A. The corresponding results for
customer B and C are available in the technical report [19].

Fig. 1 shows the sample time series for 3 VMs collected in
two weeks. We see that despite some “noise”, all VMs exhibit
certain patterns in their workload e.g., the diurnal workload
variations are obvious across all VMs shown in the figure. In
the bottom two figures, we can see workload pattern shifts
during certain period of time. It is also noticeable that there
exist correlated behaviors across different servers, either due
to time-of-day effect, or due to application-level workload cor-
relations. Hence, it is possible to mine the correlated workload
patterns, and use them to predict workload variations.
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Fig. 1. Sample CPU workload time series on three VMs

III. WORKLOAD CHARACTERIZATION

Our first goal is to identify common workload patterns
across multiple VMs. To achieve that, we discretize CPU
utilization time series into several levels. In our data, the CPU
utilization of each VM is represented as a continuous time
series, with values between 0 and 100 (in percentages). We
discretize each time series into five workload levels (e.g., 1 to
5), by fiting the data with a Gaussian Hidden Markov Model
(GHMM) [19], with each hidden Markov state corresponding
to a workload level. Next, we search for groups of VMs that
frequently show certain combinations of workload levels.

A. Group-based Workload Analysis

With the discretized time series data, we analyze its varia-
tions over time and in particular, search for common patterns
that can be potentially useful for workload prediction. Such
patterns can be both temporal and spatial. Temporally, VMs
that consistently have certain workload levels suggest that we
can predict their future workload levels based on historical
observations. However, as we show later in this paper, pre-
dictions based on data monitored from individual VM often
leads to inaccurate results. This is because individually, the
workload measures are more noisy and random, hence less pre-
dictable. We find that when VMs are configured to run some
applications collaboratively, their workloads tend to vary in a
correlated fashion. As a result, such spatial correlations can be
used to filter out the measurement noise at the individual VM
level, therefore to improve prediction accuracy. This motivates
us to develop a model that captures common workload patterns
along both temporal and spatial dimensions. In our study, we
adopt the concept of co-clustering [20] for this purpose.

B. VM Grouping by Co-clustering

Using discretized workload time series, we identify groups
of VMs that show recurring workload patterns. The input data
can be represented by an N ×M matrix A, where N is the
number of time intervals and M is the number of VMs. A co-
cluster is a sub-matrix of the original matrix where all rows
of this sub-matrix have similar values. For example, in Fig. 2,
we can potentially identify two VM groups or co-clusters: one
consisting of VMs s1, s2 and s3, and the other consisting of
VMs s2, s3, and s4. The first group showed workload pattern
{s1 = 3, s2 = 1, s3 = 4} in time intervals t1, t2 and tN , while
the second group showed workload pattern {s2 = 1, s3 =
4, s4 = 2} in t2 and t3. Note that a VM can potentially belong
to multiple groups. In the above example, workload patterns in
a group are identical in a number of time intervals. In practice,
however, this condition can be relaxed to accommodate noisy
measurement data. In other words, we search for groups of
VMs that show similar behavior over time. We next describe
a co-clustering method to identify such patterns.
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Fig. 2. An example of co-clustering

1) Co-clustering Method: Let us consider a matrix A with
N rows and M columns as discussed above. A co-cluster is
a submatrix C = (I, J) of A, with I being a subset of rows
(time intervals) and J a subset of columns (VMs). The rank
of a co-cluster is defined by |I|× |J |. We denote the element
at i-th row and j-th column of a co-cluster C = (I, J) as aij ,
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and the most frequent element at the j-th column as aj . Let
d denote the total number of discretized levels. We define the
consistency of co-cluster C as

const(C) = min
j∈J

∑
i∈I(1−

|aij−aj |
d )

|I|
, (1)

which measures the minimum variation in the columns of a
co-cluster. If const(C) = 1, then all rows in C are identical.
The closer is const(C) to 0, the less similar are the rows in
C. Formally, we define the co-clustering problem as follows.

Problem Statement 1: Given an N ×M matrix A, find all
its submatrices C = (I, J), so that const(C) ≥ θ, where
0 < θ ≤ 1 is a predefined consistency threshold.

We develop a technique to identify all highly-ranked (i.e.,
of larger size) co-clusters by extending the method proposed
in [20]. Our algorithm contains three major steps. First, it
selects a pair of time intervals in which the most number of
VMs have same workload levels. Next, using this interval pair
and the selected VMs as seed, it expands the sub-matrix both
temporally and spatially, subject to the constraints on the size
and consistency measure of the resulting submatrix. These two
steps are iterated until no more qualifying submatrices can
be found. Finally, the algorithm examines all resulting sub-
matrices, removes highly overlapping ones, and the resulting
submatrices are the co-clusters we look for. The details of this
algorithm are explained as follows.

(a) Seed Selection: Given matrix A = {ai,j}, a pair of time
intervals (rows) (i1, i2) can be considered as a seed, if they
satisfy one of the following two conditions: i) neither row
i1 nor row i2 has been included for any VM in previously
identified co-clusters, or ii) both row i1 and row i2 have
been included in previously identified co-clusters, but not
in the same co-cluster, and there exists at least one VM s
that has not been included in any previously identified co-
clusters and satisfies s(i1) = s(i2) (i.e., the workload levels
of VM s are the same in time interval i1 and i2). With this
seed, the algorithm builds an initial co-cluster C = (I, J) as
I = {i1, i2}, J = {s : s(i1) = s(i2)}, and proceeds to the
next step, co-cluster expansion.

The algorithm also maintains a set of all qualifying time
interval pairs in the descending order of |{s : s(i1) = s(i2)}|,
i.e., the number VMs having unchanged workload in those
time intervals. The algorithm iterates through the seed set and
removes disqualified seeds after each iteration, based on the
additional co-clusters identified, until the set is empty.

(b) Co-cluster Expansion: After the seed selection step, the
consistency of the initial co-cluster C = (I, J) is 1. The
algorithm seeks to expand this initial co-cluster by including
both more time intervals (i.e., row-wise expansion) and more
VMs (i.e., column-wise expansion).

It first performs row-wise expansion as follows. It iteratively
adds a new row k ̸∈ I to I , so that the highest consistency of
the resulting co-cluster C can be maintained. The expansion
continues until there is no more qualifying rows to be added

Next, the algorithm performs column-wise expansion in a
similar way. It iteratively adds new column l ̸∈ J to J , while

maintaining the consistency of the resulting co-cluster to be
at least θ, until further expansion is no longer possible.

We note that row-wise expansion is performed before
column-wise expansion, since a co-cluster that exists for more
time intervals, rather than one that spans fewer time intervals
but contains more VMs, is better for prediction.

After each round of expansion, the algorithm goes back to
the seed selection step and repeats the above two procedures.

(c) Overlap Removal: After the iterations of step (a) and
(b), the resulting co-clusters may overlap with each other,
which make the co-cluster model unnecessarily complex. To
simplify the model, we post-process co-clusters by removing
those smaller ones that significantly overlap with other larger
ones. We define overlap between two co-clusters C1 = (I1, J1)
and C2 = (I2, J2) as

overlap(C1,C2) =
|{(i, j) : i ∈ I1

∩
I2, j ∈ J1

∩
J2}|

min{|I1| × |J1|, |I2| × |J2|}
. (2)

If overlap(C1,C2) is higher than 90%, we remove the
smaller co-cluster, Cr, r = argminr∈{1,2} |Ir| × |Jr|.

2) Validation of Co-clusters: We validate our co-clustering
algorithm using the CPU utilization data of 1212 VMs col-
lected from a single customer in the studied cloud environ-
ment. The data spans 400 15-minute intervals. The consistency
threshold θ is set as 90%. Since the co-clusters with very
small size are of less interest, we eliminate any co-cluster
that contains no more than 10 VMs or spans no longer than
20 15-minute time intervals. Since we are more interested in
VMs under high CPU utilization in practice, we tune our co-
clustering method to consider only the three highest workload
levels on each VM (i.e., level 3, 4 and 5). With that, our
algorithm find 98 co-clusters in this data set.

We first look at the coverage of the identified co-clusters.
Fig. 3(a) shows the number of VMs covered by each of the 98
co-clusters. We see that the largest number of VMs contained
in a co-cluster is 28, and on average, a co-cluster contains 15
VMs. Fig. 3(c) shows the time span of each co-cluster. The
largest number of time intervals spanned by a co-cluster is 302,
whereas 90% of the co-clusters span at least 100 intervals or 25
hours within the 400 intervals. We also show the distribution
of the VMs in different numbers of co-clusters in Fig. 3(b).
The x-axis is the number of co-clusters spanned by a VM
and the y-axis represents the cumulative distribution function
(CDF) of this number. It can be observed that 46% of VMs
did not have high workload for a significant amount of time,
hence are not included in any co-cluster. Furthermore, 40% the
VMs belong to only one co-cluster, which indicates that the
overlap between co-clusters in terms of VMs is quite limited.

To visually study the identified co-clusters, we plot in
Fig. 4(a) the discretized workload levels for all VMs during the
entire 400 intervals, using a color-scale map. In Fig. 4(b), we
show the corresponding map for the VMs and time intervals
captured by the 98 co-clusters. It can be observed that Fig. 4(b)
contains most of the higher workload levels of Fig. 4(a). This
confirms that our co-clustering method is effective in capturing
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Fig. 4. VM with high workloads: overall and those captured by co-clusters

the most prominent workload patterns, while identifying the
groups of VMs with correlated behavior.

IV. WORKLOAD PREDICTION

Through co-clustering, we identified groups of VMs that
have certain workload patterns. In this section, we explore the
temporal correlations in these co-clusters, and develop a Hid-
den Markov Model that utilizes such temporal correlations to
predict the existence of different co-clusters and the workload
levels of individual VMs in them.

A. Predictable Co-clusters

By analyzing the autocorrelation of individual workload
time series, we find that its temporal correlation is the strongest
at the minimum time granularity of 15 minutes [19]. Therefore,
we use a 15-minute prediction interval in our analysis. We
also note that not all co-clusters discovered have the same
predictability. This is because a co-cluster consists of a number
of VMs, of which the predictability of workload varies. As a
result, we need to determine, among all co-clusters discovered,
the ones that are more predictable.

Intuitively, a co-cluster is predictable because either (1)
its workload pattern is consistent over time, or (2) it shows
correlated (but delayed) behavior with other co-cluster(s).

The first scenario can be identified by measuring au-
tocorrelation function of a time series that represents the

existence of a co-cluster at each observed time interval,
C = {c1, c2, . . . , cn}, where ci(i = 1, 2, ..., n) is an indicator
variable representing whether this co-cluster exists at time
interval i. We measure its autocorrelation function as

RC =

n−1∑
t=1

[(ct − c̄)(ct+1 − c̄)]/(nσ2
c ). (3)

Here c̄ and σc represent the mean and standard deviation of
time series C, respectively. Note that, here we consider time
lag 1, which represents one prediction interval of 15 minutes.
In Fig. 5(a), we plot RC for the 98 co-clusters discovered
from the 1212 VMs previously. We can see that a significant
portion of them have fairly large autocorrelation.
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Fig. 5. Determination of predictable co-clusters

The second scenario can be identified by measuring the
following time-lagged cross-correlation function between two
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time series. Let C1 = {c1,1, c1,2, . . . , c1,n} and C2 =
{c2,1, c2,2, . . . , c2,n} be the two indicator time series repre-
senting the existence of co-clusters C1 and C2 during time
interval 1 to n, the time-lagged cross-correlation between the
ordered pair (C1, C2) is

RC1,C2 =
n−1∑
t=1

[(c1,t − c̄1)(c2,t+1 − c̄2)]/(nσ1σ2), (4)

where c̄1, c̄2 and σ1, σ2 are the means and standard deviations
of C1, C2, respectively. Note that RC1,C2 is not the same as
RC2,C1 , as RC1,C2 measures the likelihood of seeing co-cluster
C2 in the next time interval following the appearance of C1

in the current interval. Fig. 5(b) shows the cross-correlation
for all ordered pairs of the 98 co-clusters. We notice there are
also a significant number of co-cluster pairs that have strong
cross correlation, hence can be used in prediction.

Combining the two scenarios, we define predictable co-
cluster as follows. We select an empirical threshold of γ = 0.4,
and consider a co-cluster C as predictable, if its autocorrela-
tion RC > γ, or if there exists at least one other co-cluster
C ′, so that the time-lagged cross correlation RC′,C > γ 1. In
other words, a predictable co-cluster shows relatively strong
temporal correlation either by itself or with some other co-
clusters observed prior to its appearance. We denote the second
scenario by C ′ → C. We call C ′ a predicting co-cluster, which
may or may not be a predictable co-cluster itself.

From the 98 co-clusters discovered previously, we find 65
are predictable. Among the 65 predictable co-clusters, 51 are
self-predictable, and 23 are deemed predictable due to cross-
correlation with other co-clusters, while 9 are both. In addition,
there are 12 co-clusters that are purely serving as predicting
co-clusters but are not predictable themselves. We next build
a prediction model using these 77 co-clusters.

B. Prediction Model
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Fig. 6. Model for predicting the appearence of a set of co-clusters

1The selection of γ represents a trade-off between prediction accuracy
and coverage of co-clusters. Limited by space, we omit this discussion here.
Detailed discussions can be found in [19].

In order to predict workload changes for those predictable
co-clusters, we divide them into prediction groups. A predic-
tion group is a self-contained set of co-clusters that are either
self-predictable or predictive of other co-clusters in the same
set. In other words, each prediction group only consists of
one or multiple predictable co-clusters and their corresponding
predicting co-clusters. A prediction group represents a number
of VMs, of which the workload is predictable through histori-
cal observations within this group. Separate prediction models
will be developed for different prediction groups.

We model the workload variations across all co-clusters
in a prediction group as a continuous-time Markov process.
Each Markov state represents a specific type of application
behavior, hence corresponds to the appearance of some co-
clusters with certain probabilities. Using a Hidden Markov
Model (HMM) [21], we define the following parameters (see
Fig. 6).

• R states, denoted as H = {H1,H1, ...,HR}, that rep-
resent R different application behaviors in a prediction
group; the state at time t is qt.

• 2k distinct observations per state. Assume there are k co-
clusters in the prediction group, each can either appear
or not in an observation interval, our observation space
has 2k possible outcomes: O = {o0, o1, ..., o2k}.

• The state transition probabilities A = {aij}, where

aij = P{qt+1 = Hj |qt = Hi},Hi,Hj ∈ H.

• The observation probabilities in state j, B = {bk}, where

bj(k) = P{ok at t|qt = Hj},Hj ∈ H, ok ∈ O.

All parameters H,O,A and B can be estimated using
the expectation-maximization method (e.g., Baum-Welch al-
gorithm [21]). With an initial training data, a set of values
for these parameters can be determined off-line. As new
data samples are added to the training data, we update the
parameters incrementally, so that the updates can be performed
fast enough for the model to be used online [21], [19].

Once we estimated the state transition and observation
probabilities, given the current observation ot at time t, we
calculate the probability of observing ot+1 at time t+ 1 as:

P (ot+1|ot) = (5)∑
Ht

{P (Ht|ot)
∑
Ht+1

P (Ht+1|Ht)P (ot+1|Ht+1)}

In Eq.(6), the first term, P (Ht|Ot), can be determined using
the Viterbi’s algorithm [22], while the second and third terms
are the state transition probabilities and observation probabili-
ties that have been estimated. With this probability estimation,
we then predict the most likely observation at time t+ 1 as:

o′t+1 = argmax
oi

P (oi|ot), oi ∈ O. (6)

Note that, the next observation represents a possible combina-
tion of which co-clusters in a prediction group would appear.
Therefore, if a co-cluster is predicted to appear in the next time
interval, we can predict the workload levels of all associated
VMs accordingly.
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V. EXPERIMENTAL RESULTS

We conduct a series of experiments to verify the proposed
workload prediction method. Our experiments are based on
21 days of CPU utilization time series collected from one
enterprise customer. We first use 17 days (i.e., time interval 1
to 1632) of historical data as the initial training set to bootstrap
the co-clustering algorithm described in Section III and to
derive the HMM-based predictor introduced in Section IV.
Using this predictor, we make predictions of workload level
changes for all VMs in the predictable co-clusters, for every
15-minute interval in the next 4 days (i.e., time intervals 1633-
2016). After each round of prediction, we add the data from the
current interval into the training set, and incrementally update
the predictor, which will then be used in the next round.

A. Effectiveness of Prediction Method

We first evaluate the overall effectiveness of our method.
We apply the co-clustering algorithm and the prediction model
to 1212 VMs from customer A. As shown in Table I, our
method identified 98 co-clusters from them during this time
period. This represents 48% of all VM-intervals observed. Out
of these 98 co-clusters, 65 were considered predictable using
the filtering mechanism described in Section IV-A. These 65
predictable co-clusters contains 434 VMs, or 36% of all VMs
monitored. During the 384 time intervals (or 4 days) we made
prediction, there are a total of 55, 243 instances in which some
VM had high workload level (i.e., 3, 4 or 5). Our prediction

model can be applied to predict 32, 216 or 59% of these VM-
intervals.

TABLE I
STATISTICS OF PREDICTION FOR CUSTOMER A

Count Percentage
Co-clusters 98 48% of VM-Intervals
Predictable Co-clusters 65 41% of VM-Intervals
Predicted VMs 434 36% of VMs
Predicted VM-Interval’s 32,216 59% of high workload
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To better assess the overall effectiveness, we plot in Fig. 7(a)
and 7(b), respectively, the actual and predicted workloads for
each VM during the 4-day period in our experiment. We can
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see that most of the high workload instances were correctly
predicted by our method.

To evaluate prediction accuracy, we consider the following
three scenarios: If a VM’s workload level is correctly predicted
by our model, we consider it a correct prediction; if the
predicted workload level is lower than the actual, we consider
it an under-prediction; otherwise, we considered it an over-
prediction. In Fig. 8, we plot percentages of correct, under-
and over-prediction for each VM in the predictable co-clusters
over all 384 prediction intervals, while the actual workload
level is 3, 4 or 5, respectively. It can be observed that, the
overall prediction accuracy is ranging from 60% to 95% for
VMs at workload level 3, 80% to 85% for VMs at workload
level 4. and 75% to 80% for VMs at workload level 5. Note
that for VMs at workload level 5, there are no cases of over-
prediction for obvious reasons.

The predictions generated by our model are discretized
workload levels, each of which represents a normal distribution
of CPU utilization percentage [19]. One can either explore the
statistics of the predicted distributions or simply predict CPU
utilization as the mean of the predicted distribution. For the
latter, we compare the predicted and original CPU utilizations
in Fig. 9. The x-axis represents the difference (in absolute
percentage) between the predicted and actual utilizations. The
CDF of this prediction error is shown along the y-axis for
all predicted VM-intervals, as well as for those VM-intervals
with correctly predicted workload levels. It can be observed
that, 66% of the all predicted VM-intervals and 91% of
the correctly predicted VM-intervals lie within ±10% of the
predicted (mean) values. This indicates that our prediction has
a fairly narrow error margin, with the number of discretized
workload levels only set to 5.
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Fig. 10. Single and multiple time-series based predictions

B. Comparison with Single Time-Series Prediction

A key benefit of the proposed method is that it is based on
multiple time series and explores the cross-correlation among
them through the discovery of co-clusters and prediction
groups. To verify this benefit, we compare the prediction
accuracy of our technique with two other benchmark methods
and one state-of-the art algorithm proposed in [18]. The first
benchmark is single time series (VM) prediction. In this
method, we treat each VM as a “co-cluster” in our algorithm,

and build HMM for each predictable co-cluster/VM. The sec-
ond benchmark is single co-cluster prediction. In this method,
we discover the co-cluster as in the proposed method, but
do not form prediction groups. That is, we build HMM for
each self-predictable co-cluter, without considering other co-
clusters that might be a predicting co-cluster for it. We also
compare our prediction technique against the SPAR model
[18], which is single time-series based prediction method
considering both periodic patterns and local adjustments.
Fig. 10 shows the percentage of correct predictions for these
four methods for the same set of VMs. Compared to the
single-VM prediction approach and the SPAR model, our co-
clustering-based method can improve the prediction accuracy
from 55% to 73%. By exploiting the cross-correlation between
co-clusters, we can further boost the accuracy to 79%.

C. Feasibility of Online Prediction

A typical application of our workload prediction method is
to use it to forecast workload for the “hot spots” in a cloud.
To make such application feasible, we need to ensure that
the model training procedure can be executed fast enough, so
that predictions can be made before actual workload changes
happen. In Table II, we show the average running time of
our co-clustering and HMM learning algorithms. It is worth
noting that the initial steps of parameter learning from the
historical training data require most of the time. In particular,
it requires multiple iterations for the Baum-Welch algorithm
to converge, when we derive the HMM parameters. However,
co-clustering and initial learning steps can be performed off-
line. After the initial steps, the identified co-clusters do not
need to be updated in each round of prediction, and the HMM
for prediction can be incrementally updated when new data are
added to the training data set. On average, the online parameter
update and prediction can be finished within 96 seconds for all
35 predictable co-cluster groups (2.7 seconds per group). Thus,
it is quite feasible to apply our method for online prediction
of workload changes given the workload monitoring data is
collected every 15 minutes.

TABLE II
RUNNING TIME OF PREDICTION ALGORITHM

Step Running Time (seconds)
Co-clustering 604
Initial HMM learning 22,730
Incremental HMM learning 2.7 per group

VI. RELATED WORK

Server workload characterization and prediction have been
studied extensively in the past. However, most existing works
have a somewhat different focus or use a different approach.
For instance, theoretical models [9], [3] have been devel-
oped to generate representative workload traces. Focusing on
specific application environment, Arlitt et al. [7] studied the
workload characteristics on Web servers, while Cherkasova et
al. [8] conducted a study on media servers. More recently,
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Gmach et al. studied the workload for data center applica-
tions [12], and Mishra et al. analyzed workload in a cloud
environment [11]. Different from these works, which focus
on workload modeling at individual server level, our study fo-
cuses on understanding the correlated workload patterns within
groups of VMs that result from application dependencies.

Also related to this study are the works on capacity man-
agement and virtual server placement [23], [24], [25], [26],
[27], [28], which typically employ some workload modeling
and prediction techniques. For example, Bobroff et al. [15]
used regression models to forecast workload variations, in
order to dynamically place virtual machines. Verma et al. [16]
proposed to consolidate servers using correlation or peak
cluster based placement. A trace-based workload forecasting
method was used in [17] for capacity management. These
approaches reply on the statistics (e.g., percentiles, peaks, etc.)
of individual server or application’s workload to predict future
capacity demand. In contrast, our approach explores cross-VM
workload correlations, therefore has better prediction accuracy.

Compared to the existing works, our study provides an
application-agnostic method for cloud provider to better man-
age its resources. For instance, cloud provider often faces the
challenges of resource consolidations [27], [29]. Our workload
characterization method can help understand the scope and
magnitude of workload variations, hence provides guidance
on how consolidation should be performed. Other applications
include elastic resource provisioning: a provider can use our
model to predict how workload patterns will change, and
dynamically scale the resources to meet the demand [26], [30].

VII. CONCLUSION

In this paper, we introduced a new method of character-
izing and predicting workload in a cloud environment, when
complete application configurations on customers’ VMs are
unavailable to the cloud providers. Our method discovers
and leverages repeatable workload patterns within groups of
VMs that belong to a cloud customer. We developed a co-
clustering technique for identifying such VM groups and
the common workload patterns. Based on the co-clusters
discovered, we further designed an HMM-based method to
capture the temporal correlations and to predict the changes
of workload pattern. Compared to the traditional method of
predicting workload changes at individual sever level, this
method showed significantly higher prediction accuracy. In
future work, it will be interesting to combine the periodic
daily patterns observed for individual servers with our current
prediction model.
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