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ABSTRACT
With ever-increasing amounts of graph data from disparate
sources, there has been a strong need for exploiting signifi-
cant graph patterns with user-specified objective functions.
Most objective functions are not antimonotonic, which could
fail all of frequency-centric graph mining algorithms. In this
paper, we give the first comprehensive study on general min-
ing method aiming to find most significant patterns directly.
Our new mining framework, called LEAP(Descending Leap
Mine), is developed to exploit the correlation between struc-
tural similarity and significance similarity in a way that
the most significant pattern could be identified quickly by
searching dissimilar graph patterns. Two novel concepts,
structural leap search and frequency descending mining, are
proposed to support leap search in graph pattern space.
Our new mining method revealed that the widely adopted
branch-and-bound search in data mining literature is in-
deed not the best, thus sketching a new picture on scalable
graph pattern discovery. Empirical results show that LEAP
achieves orders of magnitude speedup in comparison with
the state-of-the-art method. Furthermore, graph classifiers
built on mined patterns outperform the up-to-date graph
kernel method in terms of efficiency and accuracy, demon-
strating the high promise of such patterns.

Categories and Subject Descriptors
H.2.8 [Database Applications]: data mining; I.5.1 [Pattern
Recognition]: Models—statistical
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1. INTRODUCTION
Graph data has grown steadily in a wide range of scien-

tific and commercial applications, such as in bioinformat-
ics, security, the web, and social networks. As witnessed in
the core tasks of these applications, including graph search
and classification, graph patterns could help build powerful,
yet intuitive models for better managing and understanding
complex structures. Their usage, therefore, is far beyond
traditional exercises, such as, association rules.

Many powerful data management and analytical tools like
R-tree and support vector machine, cannot adapt to the
graph domain easily due to the lack of vector representa-
tion of graphs. Recent advances in graph mining illustrated
that it is not only possible but also effective to vectorize
graphs based on frequent subgraphs discovered in a mining
process. Given a set of frequent subgraphs1 g1, g2, . . ., gd, a
graph G can be represented as a vector x = [x1, x2, . . . , xd],
where xi = 1 if gi ⊆ G; otherwise, xi = 0. Yan et al.
[28] (and Cheng et al. [6]) demonstrated that through such
vectorization, efficient indices could be built to support fast
search in graphs. In addition to graph search, graph data
analysis could benefit from pattern-based vectorization as
well. For example, pattern-based support vector machine
[7] has been shown achieving promising classification accu-
racy. Meanwhile, by explicitly presenting significant sub-
structures, these methods provide with users a direct way
to understand complex graph datasets intuitively.
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Figure 1: Graph Pattern Application Pipeline

Scalability Bottleneck. Figure 1 depicts the pipeline
of graph applications built on frequent subgraphs. In this
pipeline, frequent subgraphs are mined first and from which,

1Given a graph dataset D = {G1, G2, . . . , Gn} and a min-
imum frequency threshold θ, frequent subgraphs are sub-
graphs that are contained by at least θ|D| graphs in D.
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significant patterns are selected based on user-defined ob-
jective functions. Unfortunately, the potential of graph pat-
terns is hindered by the limitation of this pipeline, due to a
scalability issue. For instance, in order to find subgraphs
with the highest statistical significance, one has to enumer-
ate all of frequent subgraphs first, and then calculate their
p-value one by one. Obviously, this two-step process is not
scalable due to the following two reasons: (1) for many ob-
jective functions, the minimum frequency threshold has to
be set very low so that none of significant patterns will be
missed—a low-frequency threshold often means an exponen-
tial pattern set and an extremely slow mining process; and
(2) there is a lot of redundancy in frequent subgraphs; most
of them are not worth computing at all. Thus, the frequent
subgraph mining step becomes the bottleneck of the whole
pipeline in Figure 1. In order to complete mining in a limited
period of time, a user has to sacrifice patterns’ quality.

In this paper, we introduce a novel mining framework that
overcomes the scalability bottleneck. By accessing only a
small subset of promising subgraphs, our framework is able
to deliver significant patterns in a timely fashion, thus un-
leashing the potential of graph pattern-based applications.
The mining problem under investigation is as follows:

[Optimal Graph Pattern Mining] Given a graph dataset
D and an objective function F (g), where g is a subgraph in
D, find a graph pattern g∗ such that F (g∗) is maximized.

For a given objective function, optimal graph patterns
are the most significant ones. Here, we adopt a general
definition of pattern significance—it can be any reasonable
objective function including support, statistical significance,
discriminative ratio, and correlation measure. The solution
to optimal graph pattern mining can be extended to find
other interesting graph patterns, for example, top-k most
significant patterns or significant patterns above a thresh-
old. While very few algorithms were developed for optimal
graph pattern mining, there are an abundant number of op-
timal itemset mining algorithms available [24, 8, 17, 2, 20].
Although some of the objective functions discussed in these
algorithms are still valid for assessing graph patterns, their
mining methods could fail due to the high complexity of
graphs.
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Figure 2: Branch-and-Bound Search

Briefly speaking, most of existing algorithms rely on branch-
and-bound search to find optimal patterns [17, 3] and are
focused on deriving a tighter bound of a specific objective
function such as Chi-square and information gain. Figure 2
depicts a graph pattern search tree where each node repre-
sents a graph. Graph g′ is a child of g if g′ is a supergraph
of g with one more edge. g′ is also written g′ = g ¦ e, where
e is the extra edge.

In order to find optimal patterns, one can conduct a branch-
and-bound search in the above search tree and estimate the
upper bound of F (g) for all of descendants below each node.
If it is smaller than the value of the best pattern seen so
far, it cuts the search branch of that node. Under branch-
and-bound search, a tighter upper bound of F (g) is always
welcome since it means faster pruning. Existing optimal pat-
tern mining algorithms followed this strategy. However, we
recognized that due to the exponential graph pattern space,
the branch-and-bound method could be easily trapped at
local maxima. Therefore, instead of developing yet another
bounding technique, we are going to explore a general min-
ing strategy beyond branch-and-bound.

Our Contributions. Our mining strategy, called LEAP
(Descending Leap Mine), explored two new mining concepts:
(1) structural leap search, and (2) frequency-descending min-
ing, both of which are related to specific properties in pat-
tern search space.

First, we observed that the existing branch-and-bound
method only performs “vertical” pruning. If the upper bound
of g and its descendants is less than the most significant
pattern mined so far, the whole branch below g could be
pruned. Our question is “can sibling branches be pruned
too, i.e., ‘prune horizontally’?” The answer is “very likely
they can”. This is called prune by structural proximity :
Interestingly, many branches in the pattern search tree ex-
hibit strong similarity not only in pattern composition, but
also in their frequencies and their significance. Details about
structural proximity are given in Section 4.

Second, when a complex objective function is considered,
pattern frequency is often put aside and never used in ex-
isting solutions. Through a careful examination, as we shall
see later, most significant patterns likely fall into the high-
quantile of frequency: If we rank all of subgraph patterns
according to their frequency, significant graph patterns of-
ten have a high rank. We name this phenomenon fre-
quency association . An iterative frequency-descending
mining method is thus proposed to profit from this asso-
ciation. By leveling down the minimum frequency thresh-
old exponentially, LEAP is able to improve the efficiency
of capturing significant graph pattern candidates by 3-20
times. The discovered candidates can then be taken as seed
patterns to identify the most significant one.

A major contribution of this study is an examination of
an increasingly important mining problem in graph data and
the proposal of a general approach for significant graph pat-
tern mining with non-monotonic objective functions. We
proposed two new mining concepts, structural proximity
and frequency association, which, to the best of our knowl-
edge, have not been studied before. Through our study,
we demonstrate that the widely adopted branch-and-bound
search in the research literature is not fast enough, thus
sketching a new picture on scalable graph pattern discov-
ery. Interestingly, the same mining strategy can also be
applied to searching other simpler structures such as item-
sets, sequences and trees. As to the usage of graph patterns
in real-life applications, a convincing case is presented in
this work: classifiers built on graph patterns could outper-
form the up-to-date graph kernel method in terms of effi-
ciency and accuracy, demonstrating the potential of graph
patterns.

The rest of the paper is organized as follows. Section 2
defines the preliminary concepts and gives problem analysis.
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Section 3 discusses the property of non-monotonic objective
functions. We introduce the ideas of structural proximity
in Section 4 and frequency association in Section 5. The
complete routine of LEAP is given in Section 6, followed
by related work in Section 7. Experimental examination is
presented in Section 8, and Section 9 concludes our study.

2. PROBLEM ANALYSIS
In this paper, the vertex set of a graph g is denoted by

V (g) and the edge set by E(g). The size of a graph pattern g
is defined as its number of edges, |E(g)|. A label function, l,
maps a vertex or an edge to a label. A graph g is a subgraph
of another graph g′ if there exists a subgraph isomorphism
from g to g′, denoted by g ⊆ g′. g′ is called a super-graph
of g.

Definition 1 (Subgraph Isomorphism). For two la-
beled graphs g and g′, a subgraph isomorphism is an injec-
tive function f : V (g) → V (g′), s.t., (1), ∀v ∈ V (g), l(v) =
l′(f(v)); and (2), ∀(u, v) ∈ E(g), (f(u), f(v)) ∈ E(g′) and
l(u, v) = l′(f(u), f(v)), where l and l′ are the labeling func-
tions of g and g′, respectively. f is called an embedding of g
in g′.

Definition 2 (Frequency). Given a graph dataset D =
{G1, G2, . . . , Gn} and a subgraph g, the supporting graph set

of g is Dg = {G|g ⊆ G, G ∈ D}. The frequency of g is
|Dg|
|D| .

2.1 Problem Formulation
For mining significant graph patterns measured by an ob-

jective function F , there are two related mining tasks: (1)
enumeration task, find all of subgraphs g such that F (g) is
no less than a threshold; and (2) optimization task, find a
subgraph g∗ such that

g∗ = argmaxgF (g). (1)

The enumeration task will encounter the same redundancy
issue as the traditional frequent subgraph mining problem:
a huge number of qualified patterns. To resolve this issue,
one may rank patterns according to their objective score and
select patterns with the highest value. Ideally, however, we
prefer to solve the optimization problem directly.

positive set negative set

setting II

graph set background dataset
setting I

Figure 3: Problem Setting

Usually, a graph mining task could have two typical prob-
lem settings: (1) graph dataset without class labels; and (2)
graph dataset with class labels, where each graph is assigned
either a positive or a negative label (e.g., compounds active
or inactive to HIV virus). In the second setting, one actu-
ally can divide the dataset into two subsets: positive graphs

and negative graphs as shown in Figure 3. Both settings
find a large number of application scenarios. For exam-
ple, in computational biology, by aligning multiple protein-
protein interaction networks together, researchers could find
conserved interaction pathways and complexes of distantly
related species [14] (setting I). By contrasting gene coex-
pression networks in cancer tissues and normal tissues, the
phenotype-specific interaction modules might be detected
(setting II). We can unify these two settings into one if de-
riving a background dataset in the first setting, e.g., using
a random model.

In both settings, the challenging issue is to find something
significant in one dataset. There could be various, even con-
flicting, definitions to measure significance. In statistics,
Pearson correlation, G-test, Chi-square test, etc. can mea-
sure the statistical significance of patterns. In data mining
and machine learning, discriminative measures such as in-
formation gain and cross entropy are used to distinguish
individuals or groups on the basis of underlying features.
Other interestingness measures such as Jaccard coefficient
and Cosine similarity also work properly in practice. Tan et
al. [22] summarized around twenty-one interestingness mea-
sures. It is the goal of our study to design a general mining
framework applicable to a wide range of those measures.

2.2 Framework Overview
In order to mine the most significant (optimal) graph pat-

terns, we have to enumerate subgraphs from small to large
sizes and check the value of their objective function. Al-
gorithm 1 outlines the baseline framework of branch-and-
bound for searching the optimal graph pattern. In the ini-
tialization, all of subgraphs with one edge are enumerated
first and these seed graphs are then iteratively extended to
large subgraphs. Since the same graph could be grown in
different ways, Line 5 checks whether it has been discovered
before; if it has, then there is no need to grow it again.

Algorithm 1 Branch-and-Bound

Input: Graph dataset D,
Output: Optimal graph pattern g∗.

1: S = {1-edge graph};
2: g? = ∅; F (g?) = −∞;
3: while S 6= ∅ do
4: choose g from S, S = S \ {g};
5: if g was examined then
6: continue;
7: if F (g) > F (g?) then
8: g? = g;

9: if F̂ (g) ≤ F (g?) then
10: continue;
11: S = S ∪ {g′|g′ = g ¦ e};
12: return g∗ = g?;

Let ≺ be an enumeration order of graphs employed in
Algorithm 1. g ≺ g′ means g is searched earlier than g′.
g ⊆ g′ does not imply g ≺ g′ and vice versa. During the
enumeration process, one has to design a termination con-

dition, otherwise it will continue infinitely. Let F̂ (g) be the
estimated upper bound for g and its supergraphs,

F̂ (g) = maxg⊆g′,g¹g′F (g′). (2)
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When the pruning condition in Line 9 is true,

F̂ (g) ≤ F (g?), (3)

the search branch below g can be discarded. Otherwise, it
continues growing with new edges added. This strategy is
the standard Branch-and-Bound method, which traverses
the pattern search tree and checks the upper bound at each
node. Note that the upper bound (Eq. 2) has to be calcu-
lated without enumerating g’s supergraphs.

Considering the graph pattern search space could be ex-
tremely huge, branch-and-bound search might get caught
in the subspace dominated by low-frequency patterns with
low objective scores. Low objective score means the prun-
ing of F (g?) in Algorithm 1 will not be effective, while low
frequency means an exponential search subspace. This two-
fold effect could trap the mining in local maxima.

There are two strategies to solve the above issue: (1) An

obvious way is to derive a tighter upper bound F̂ (g); and (2)
A less obvious way is to quickly find a near-optimal graph
pattern g? to raise the pruning bar as early as possible. We
are going to exploit the second strategy thoroughly in a gen-
eral framework called LEAP(Descending Leap Mine), which
comprises two components: structural leap search (Step 1)
and frequency-descending mining (Step 2). The framework
of LEAP is as follows,

Step 1. Mine a significant pattern g? with frequency thresh-
old θ = 1.0,

Step 2. Repeat Step 1 with θ = θ/2 until F (g?) converges.

Step 3. Take F (g?) as a seed score; perform branch-and-
bound search without frequency threshold; output
the most significant pattern.

The principle of LEAP is not to mine the most significant
graph pattern in one shot. Instead, it first iteratively derives
significant patterns with increasing objective score. In the
second shot, it runs branch-and-bound search to discover the
most significant one where unpromising branches will be cut
quickly (Step 3). With this new mining framework, LEAP
is able to capture the optimal pattern in a faster way. Fur-
thermore, LEAP is designed to offer a parameter to control
the mining speed, with a negligible trade-off of optimality.
Before introducing the two components in LEAP, we would
like to first examine the non-monotonicity present in most
of interesting objective functions.

3. NON-MONOTONICITY
According to our mining framework, graph patterns are

enumerated in increasing order of their size. Unlike fre-
quency measure, objective functions such as G-test score and
information gain are neither monotonic nor anti-monotonic
with respect to graph size. When a graph pattern becomes
larger, its value might increase or decrease without a deter-
ministic trend. Figure 4 shows the value of four objective
functions on a series of subgraphs, g1 ⊂ g2 . . . ⊂ g16, mined
from an AIDS anti-viral screening dataset, where gi has i
edges. Except the frequency measure, none of them is anti-
monotonic (the plotted G-test score should be scaled back
by 2m, check Eq. 6).

In the following presentation, we are going to use the sec-
ond setting (Figure 3) to illustrate the main idea. Never-
theless, the proposed technique can also be applied to the
first setting. Let p(g) and q(g) be the frequency of g in pos-
itive graphs and negative graphs, sometimes simply written

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

graph size (# of edges)

sc
or

e

Frequency
G−test
Cosine
Information Gain

Figure 4: Non-Monotonicity

as p and q. They are called positive frequency and negative
frequency respectively. Assume F (g) is a function of p, q,

F (g) = f(p(g), q(g)). (4)

This definition covers many objective functions including G-
test, information gain, as well as interestingness measures
covered by Tan et al. [22]. Although F (g) might not be
anti-monotonic, usually its design follows a basic rule: if the
frequency difference of a pattern in the positive dataset and
the negative dataset increases, the pattern becomes more
significant. That is, mathematically,

if p > q,
∂F

∂p
> 0,

∂F

∂q
< 0,

if p < q,
∂F

∂p
< 0,

∂F

∂q
> 0. (5)

Piatetsky-Shapiro et al. [19] included this critical property
as a must for good measures. Take G-test as an example,
which tests the null hypothesis telling whether the frequency
of a pattern in the positive dataset fits its distribution in the
negative dataset. If not, the pattern could be significant to
the negative dataset. G-test score [21] is defined as follows:

Gt = 2m(p · lnp

q
+ (1− p) · ln1− p

1− q
), (6)

where m is the number of graphs in the positive dataset.
Once the G-test score of a graph pattern is known, we can
calculate its significance using the chi-square distribution
χ2. With some simple calculation, we have

∂Gt

∂q
= 2m · q − p

(1− q)q
,

∂Gt

∂p
= 2m · lnp(1− q)

q(1− p)
.

Since p(1−q)
q(1−p)

< 1 when p < q, hence,

if p > q,
∂Gt

∂p
> 0,

∂Gt

∂q
< 0, and if p < q,

∂Gt

∂p
< 0,

∂Gt

∂q
> 0.

Apparently, G-test score follows the property shown in Eq.
5. The same property also holds for many other functions.
For two graphs g′ ⊃ g, since p(g′) ≤ p(g) and q(g′) ≤ q(g),
an upper bound of g and its supergraphs could be

F̂ (g) = max(f(p(g), 0), f(0, q(g))). (7)
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Since f(p, 0) or f(0, q) could be infinite, we assume a small
frequency ε for all of graph patterns that do not appear in
the positive or the negative dataset,

F̂ (g) = max(f(p(g), ε), f(ε, q(g))).

ε could be a function of g’ size as well. For a given graph g,
Eq. 7 is tight in the worst case, where its supergraphs could
have 0 frequency. Nevertheless, in average case, the pruning
of Eq. 7 is not powerful. This is a typical example where a
tight bound derived for the worst scenario turns out to be
loose in average case.

Eq. 7 gives the best upper bound we can get if only the
frequency of g is involved. However, it is possible to de-
rive a better bound based on the frequency of its subgraphs
and supergraphs that have been discovered earlier. Such
structure-related bounding technique was largely ignored by
previous studies. As shown in the following sections, it could
provide better pruning performance.

4. STRUCTURAL LEAP SEARCH
Eq. 5 could be interpreted as follows,

1. if p > q, p′ > p and q′ < q, then f(p′, q′) ≥ f(p, q),

2. if p < q, p′ < p and q′ > q, then f(p′, q′) ≥ f(p, q).

It says a graph pattern g′ is more significant than g if it has
higher frequency in the positive dataset and lower frequency
in the negative dataset. This property could be used to

derive a structural bound of F̂ (g). To simplify presentation,
in the rest of the paper, we assume p > q.

4.1 Frequency Envelope
Assume there is a set of graphs such that g0 ⊂ g1 ⊂ . . . ⊂

gn and g0 ≺ g1 ≺ . . . ≺ gn. According to Eq. 7, F̂ (g0) is
derived using the following frequency bound,

p(gi) ≤ p(g0), q(gi) ≥ 0.

In order to derive a tighter bound of F (g0), a tighter
bound of p(gi) and q(gi) is needed. For each graph gi, if
there exist gi’s subgraph gi and supergraph gi such that

gi = argmaxg′⊂gi,g′≺g0p(g′),

gi = argmingi⊂g′,g′≺g0q(g′),

we have

f(p(gi), q(gi)) ≤ f(p(gi), q(gi)) ≤ f(p(g0), 0). (8)

As one can see, f(p(gi), q(gi)) is smaller than f(p(g0), 0),
the bound of Eq. 8 is tighter than that of Eq. 7. (gi, gi) is
called frequency envelope of gi. Figure 5 illustrates the con-
cept of frequency envelope. The solid lines are the frequency
of {gi} starting with g0 in the positive and negative datasets,
while the upper and lower dotted lines are the frequency of
gi’s envelope (gi, gi).

Frequency envelope provides a better bounding technique.
However it needs the structural information of gi to find
gi and gi, which raises a chicken-or-egg question. On the
one hand, f(p(gi), q(gi)) has to be calculated before gi is
enumerated. Otherwise, why bother calculating the bound
aiming to prune gi? On the other hand, without knowing
gi’s structure, how to find gi’s subgraph and supergraph?
Fortunately, due to structural similarity in graph pattern
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Figure 5: Frequency Envelope

space, it is possible to find gi’s subgraph and supergraph
based on its ancestor g0.

Let S(g) be the supergraph set of g, i.e., S(g) = {g′|g ⊂
g′}. Assume there is a supergraph of g, g ¦ e, that is enu-
merated earlier than g in Algorithm 1. g ¦ e is formed by
g with a new edge e. Then for any graph g′ in S(g), one
could find a corresponding supergraph g′′ ∈ S(g ¦ e) such
that g′′ = g′ ¦ e. Let I(G, g, g ¦ e) be an indicator function
of G: I(G, g, g ¦ e) = 1, ∀g′ ∈ S(g), if g′ ⊆ G, ∃g′′ = g′ ¦ e
such that g′′ ⊆ G; otherwise 0. When I(G, g, g ¦ e) = 1, it
means if a supergraph g′ of g has an embedding in G, there
must be an embedding of g′ ¦ e in G. A typical example is
a graph G where g occurs always together with edge e [27].
That is, for any embedding of g in G, it can be extended to
an embedding of g ¦ e in G.

For a positive dataset D+, let D+(g, g¦e) = {G|I(G, g, g¦
e) = 1, g ⊆ G, G ∈ D+}. In D+(g, g ¦ e), g′ ⊃ g and
g′′ = g′ ¦ e have the same frequency. Define ∆+(g, g ¦ e) as
follows,

∆+(g, g ¦ e) = p(g)− |D+(g, g ¦ e)|
|D+| .

∆+(g, g ¦ e) is actually the maximum frequency difference
that g′ and g′′ could have in D+. Hence, the frequency of
g′ could be bounded as,

p(g′) ≤ p(g′′) + δ,

q(g′) ≥ q(g′′),

where δ = ∆+(g, g ¦ e). Therefore, we have

f(p(g′), q(g′)) ≤ f(p(g′′) + δ, q(g′′)), (9)

which might be tighter than f(p(g), 0).
Eq. 9 shows that without enumerating g’s supergraphs, we

are still able to estimate the value of their objective function
by exploring the pattern space from a neighbor structure
(g ¦ e) that has already been mined!

The above discussion shows that it is possible relying on
the patterns’ structure to grab more pruning power. How-
ever, due to the pessimistic bounding in the worst case (for
example, in average case, |p(g′)− p(g′′)| might be much less
than δ), the derived bound might not be the tightest in real-
life datasets. In the following discussion, we will explore an
alternative that abandons the accurate bound, resorting to
near-optimal solution, which is then taken to find the op-
timal one. The new strategy could cut computation cost
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dramatically, using the concept of structural pruning bor-
rowed from frequency envelope.

4.2 Structural Proximity
In this section, we examine the big picture behind the

bounding technique of frequency envelope. Figure 6 shows
a search space of subgraph patterns. The leaf node is the
stop node in a branch-and-bound search. As one can see,
the search space is pruned in a vertical way. All of the nodes
below the leaf nodes are pruned completely. On the other
hand, if we examine the search structure horizontally, we
find that the subgraphs along the neighbor branches likely
have similar compositions and frequencies, hence similar ob-
jective score.

proximity

A B

g

Figure 6: Structural Proximity

Take the branches A and B as an example. Suppose A
and B split on a common subgraph pattern g. Branch A
contains all the supergraphs of g ¦ e and B contains all the
supergraphs of g except those of g ¦ e. For a graph g′ in
branch B, let g′′ = g′ ¦ e in branch A.

If in a graph dataset, g ¦ e and g often occur together,
then g′′ and g′ might also often occur together. Hence, likely
p(g′′) ∼ p(g′) and q(g′′) ∼ q(g′), which means similar ob-
jective scores. This is resulted by the structural similarity
and embedding similarity between the starting structures
g ¦ e and g. We call it structural proximity: Neighbor
branches in the pattern search tree exhibit strong similarity
not only in pattern composition, but also in their embed-
dings in the graph datasets, thus having similar frequencies
and objective scores. In summary, a conceptual claim can
be drawn,

g′ ∼ g′′ ⇒ F (g′) ∼ F (g′′). (10)

Structural proximity is an inevitable result of huge redun-
dancy existing in the graph pattern space. Given m positive
graphs and n negative graphs, the absolute frequency of sub-
graphs ranges from 0 to m and 0 to n, respectively. As we
know, the number of subgraphs could easily reach an astro-
nomic number when their frequency decreases. Therefore,
an exponential number of subgraphs have to be crowded in a
small frequency rectangle area mn. Let N be the number of
subgraphs whose absolute frequency is at least (mo, no), the
average number of subgraphs that have the same frequency
pair is

E(p, q) =
N

mn−mono
≥ N

mn
.

Any exponential raise of N , which is often observed with
decreasing frequency threshold, will dramatically increase
the collisions of subgraphs with the same frequency pair. It

means many similar subgraphs are going to have the same
objective score!
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Figure 7: Frequency Distribution

Figure 7 depicts the subgraph frequency distribution of
the AIDS anti-viral dataset with minimum frequency (0.03, 0.03).
The color represents the number of subgraphs in each cell.
As we can see, most of subgraphs are crowded in the left-
lower corner, sharing the same frequency and the same ob-
jective score.

4.3 Structural Leap Search
Eq. 8 is a rigorous reflection on structural proximity: the

score of a subgraph is bounded by the score of its closest
supergraph and subgraph. According to structural proxim-
ity, we can go one step further: skipping the whole search
branch once its nearby branch is searched, since the best
scores between neighbor branches are likely similar. Here,
we would like to emphasize “likely” rather than “surely”
since our algorithm is not going to stick to the bound given
by Eq. 8. Based on this intuition, if the branch A in Figure
6 has been searched, B could be “leaped over” if A and B
branches satisfy some similarity criterion. The length of leap
can be controlled by the frequency difference of two graphs
g and g ¦ e. If the difference is smaller than a threshold σ,
then leap,

2∆+(g, g ¦ e)

p(g ¦ e) + p(g)
≤ σ and

2∆−(g, g ¦ e)

q(g ¦ e) + q(g)
≤ σ. (11)

σ controls the leap length. The larger σ is, the faster the
search is. Structural leap search will generate an optimal
pattern candidate and reduce the need for thoroughly search-
ing similar branches in the pattern search tree. Its goal is
to help program search significantly distinct branches, and
limits the chance of missing the most significant pattern.

Algorithm 2 outlines the pseudo code of structural leap
search (sLeap). The leap condition is tested on Lines 7-8.
Note that sLeap does not guarantee the optimality of result.
In Section 6, we will introduce a cross-checking process to
derive a guaranteed optimal result.

5. FREQUENCY-DESCENDING MINING
Structural leap search takes advantages of the correla-

tion between structural similarity and significance similar-
ity. However, it does not exploit the possible relationship
between patterns’ frequency and patterns’ objective scores.
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Algorithm 2 Structural Leap Search: sLeap(D, σ, g?)

Input: Graph dataset D, difference threshold σ,
Output: Optimal graph pattern candidate g?.

1: S = {1− edge graph};
2: g? = ∅; F (g?) = −∞;
3: while S 6= ∅ do
4: S = S \ {g};
5: if g was examined then
6: continue;

7: if ∃g ¦ e, g ¦ e ≺ g,
2∆+(g,g¦e)

p(g¦e)+p(g)
≤ σ,

2∆−(g,g¦e)

q(g¦e)+q(g)
≤ σ

8: continue;
9: if F (g) > F (g?) then
10: g? = g;

11: if F̂ (g) ≤ F (g?) then
12: continue;
13: S = S ∪ {g′|g′ = g ¦ e};
14: return g?;

Existing solutions have to set the frequency threshold very
low so that the optimal pattern will not be missed. Unfortu-
nately, low-frequency threshold could generate a huge set of
low-significance redundant patterns with long mining time.

Although most of objective functions are not correlated
with frequency monotonically or anti-monotonically, they
are not independent of each other. Cheng et al. [5] derived
a frequency upper bound of discriminative measures such as
information gain and Fisher score, showing a relationship
between frequency and discriminative measures. Inspired
by this discovery, we found that if all of frequent subgraphs
are ranked in increasing order of their frequency, significant
subgraph patterns are often in the high-end range, though
their real frequency could vary dramatically across different
datasets.
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Figure 8: Frequency vs. G-test score

Figure 8 illustrates the relationship between frequency
and G-test score for the AIDS Anti-viral dataset. It is a
contour plot displaying isolines of G-test score in two di-
mensions. The X axis is the frequency of a subgraph in the
positive dataset, while the Y axis is the frequency of the
same subgraph in the negative dataset. The curves depict
G-test score (to avoid infinite G-test score, we assume a de-
fault minimum frequency for any pattern whose frequency

is 0 in the data). Left upper corner and right lower corner
have the higher G-test scores. The “circle” marks the high-
est G-score subgraph discovered in this dataset. As one can
see, its positive frequency is higher than most of subgraphs.
Similar results are also observed in all the graph datasets we
have, making the following claim pretty general in practice.

[Frequency Association]Significant patterns often fall
into the high-quantile of frequency.

To profit from frequency association, we propose an it-
erative frequency-descending mining method. Rather than
performing mining with very low frequency, we should start
the mining process with high frequency threshold θ = 1.0,
calculate an optimal pattern candidate g? whose frequency
is at least θ, and then repeatedly lower down θ to check
whether g? can be improved further. Here, the search leaps
in the frequency domain, by leveling down the minimum
frequency threshold exponentially.

Algorithm 3 Frequency-Descending Mine: fLeap(D, ε, g?)

Input: Graph dataset D, converging threshold ε.
Output: Optimal graph pattern candidate g?.

1: θ = 1.0;
2: g = ∅; F (g) = −∞;
3: do
4: g? = g;
5: g=fpmine(D, θ);
6: θ = θ/2;
7: while (F (g)− F (g?) ≥ ε)
8: return g? = g;

Algorithm 3 (fLeap) outlines the frequency-descending strat-
egy. It starts with the highest frequency threshold, and then
lowers the threshold down till the objective score of the best
graph pattern converges. Line 5 executes a frequent sub-
graph mining routine, fpmine, which could be FSG [16],
gSpan[26] etc. fpmine selects the most significant graph pat-
tern g from the frequent subgraphs it mined. Line 6 imple-
ments a simple frequency descending method. We varied the
descending ratio from 1.5 to 4 and found that the runtime
often fluctuated within a small range.

One question is why frequency-descending mining can speed
up the search in comparison with the branch-and-bound
method, where frequency threshold is not effectively used.
As discussed in Section 2.2, branch-and-bound search could
get stuck in the search space dominated by low-frequency
subgraphs with low objective score. Frequency-descending
mining could alleviate this problem by checking high-frequency
subgraphs first, which has two-fold effects: (1) The num-
ber of high-frequency subgraphs is lower than that of low-
frequency ones, meaning a smaller search space. (2) It likely
hits a (near)-optimal pattern due to frequency association.

In retrospect, what structural leap search does is to thin
the search tree so that the mining algorithm could escape
from local maxima. Structural leap search and frequency-
descending mining employ completely different pruning con-
cepts.

6. DESCENDING LEAP MINE
With structural leap search and frequency-descending min-

ing, we build a general mining pipeline for mining significant
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graph patterns in a complex graph dataset. It consists of
three steps, as shown in Figure 9,

Step 1. perform structural leap search with threshold θ =
1.0, generate an optimal pattern candidate g?.

Step 2. repeat frequency-descending mining with structural
leap search until the objective score of g? converges.

Step 3. take the best score discovered so far; perform struc-
tural leap search again (leap length σ) without fre-
quency threshold; output the discovered pattern.

1. Structural Leap Search
with frequency threshold

2. Support-Descending Mining

3. Structural Leap Search

F(g*) converges

Figure 9: LEAP: Descending Leap Mine

In this pipeline, structural leap search is embedded to
frequency descending mining where fpmine in Line 5 of Al-
gorithm 3 is replaced with Algorithm 2, sLeap, equipped
with an additional parameter θ. sLeap is going to mine op-
timal graph pattern candidates whose frequency is at least
θ. Note that since the second step might converge in a lo-
cal maxima, it is necessary to conduct another round of
structural leap search without frequency threshold (Step 3).
This step should generate a (near)-optimal result. Among 11
graph datasets we tested, the above mining pipeline, called
LEAP(Descending Leap Mine), is able to discover optimal
patterns in most cases in a much faster way. If a user needs
an optimality guarantee, the leap length σ should be set
to 0 in Step 3 so that the output result is guaranteed to be
optimal. Our experiments show that LEAP can achieve bet-
ter pruning performance than branch-and-bound in several
tough datasets.

7. RELATED WORK
Frequent subgraph mining has been extensively studied

in data mining community with various efficient algorithms
developed such as AGM [12], FSG [16], and gSpan [26], fol-
lowed by Path-Join, MoFa, FFSM, SPIN, Gaston, and so
on. These algorithms studied efficient mining of complete
pattern sets. Few of them recognized the needs for mining
only significant ones. The weakness of using the current
mining strategy to derive such patterns is largely ignored.

Since it is hard for human beings to manually analyze rea-
sonably large graph datasets, a small set of significant graph
patterns could help researchers discover important struc-
tures hidden in complex graph datasets more easily. Besides
data exploratory task, advanced application of graph pat-
terns are emerging in graph-related management and min-
ing tasks such as graph query and classification. Yan et al.
[28] demonstrated that pattern-based graph indexing can

achieve faster graph search. Cheng et al. [6] proposed a
verification-free graph query system based on frequent sub-
graphs. In addition to graph search, graph classification
could also benefit from graph patterns; pattern-based classi-
fication models were demonstrated in [15, 7, 23]. In these ap-
plications, only significant discriminative patterns are used,
where complete sets of frequent subgraphs could even bring
poor performance and low accuracy, e.g., redundant indices
and overfitted classifiers.

Few mining algorithms are available for significant graph
pattern mining. He and Singh [11] introduced a statisti-
cal significance measure for graphs using a feature vector
representation. Pennerath and Napoli [18] proposed a lo-
cal maximum criterion of most informative graph patterns.
Unfortunately, both methods need to mine all of (closed)
frequent subgraphs first. Hasan et al. [10] discussed how
to mine the set of representative orthogonal graph patterns
using a randomized search approach.

The problem of evaluating statistical significance of pat-
terns arises first in itemset mining, as illustrated by associ-
ation rule discovery [1], k-optimal rule/pattern mining [24,
20, 25], emerging/contrast pattern discovery [8, 2], etc.. The
return of all patterns that satisfy user-defined constraints
might suffer high risk of type-1 error, that is, of finding pat-
terns that appear due to chance. Webb [25] studied two sta-
tistical solutions, Bonferroni correction and handout evalu-
ation, to evaluate statistical significance of itemset patterns.

Besides statistical significance and discriminative measure,
other objective functions were also proposed to evaluate the
interestingness of patterns [13]. Tan et al. [22] surveyed 21
existing measures. In order to find these interesting pat-
terns, most of existing methods adopted branch-and-bound
search with a derived bound for a specific measure, e.g., Chi-
square and information gain[17]. Bringmann and Zimmer-
mann [3] applied this approach into tree structure classifica-
tion. Due to extremely large search space in graphs, branch-
and-bound search could fall into local maximum easily. In
contrast, the descending leap mining method proposed in
this paper successfully overcomes this issue. All of these in-
terestingness measures can be treated just as another objec-
tive function and LEAP is capable of finding graph patterns
with the highest score.

8. EXPERIMENTS
In this section, we report our experiments that validate

the effectiveness and efficiency of the LEAP mining frame-
work on a series of real-life graph datasets. The performance
of LEAP is compared with the baseline branch-and-bound
approach shown in Algorithm 1 (abbr. as BB).

The baseline approach traverses the pattern search tree
without frequency threshold and cuts the search branch with

the estimated upperbound F̂ (g). The pattern discovered
in BB is optimal. Two popular objective measures, G-test
score and information gain are used in our experiments.
G-test could help evaluate statistical significance of a pat-
tern, while information gain could measure the discrimina-
tive power of a pattern. They are representative measures
in hypothesis testing and data mining.

Our experiments are going to demonstrate that:

1. Efficiency and Scalability: LEAP outperforms BB by
up to 20 times in the real-life graph datasets we tested.
LEAP is linearly scalable to the database size.
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Figure 10: Runtime: G-test
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Figure 11: Runtime: Information Gain

2. Effectiveness: The two components in LEAP, structural
leap search and frequency-descending mining, are both
effective in search space pruning.

3. Application Demo (Classification): graph classifiers built
on patterns discovered by LEAP could outperform the
up-to-date graph kernel method (optimal assignment ker-
nel [9]) in terms of scalability and accuracy.

All our experiments were performed on 3.2GHZ dual core,
2GB memory PC running Red Hat Enterprise Linux AS 4.
Both BB and LEAP are complied with g++.

Name Assay ID Size Tumor Description

MCF-7 83 27770 Breast
MOLT-4 123 39765 Leukemia
NCI-H23 1 40353 Non-Small Cell Lung
OVCAR-8 109 40516 Ovarian

P388 330 41472 Leukemia
PC-3 41 27509 Prostate

SF-295 47 40271 Central Nerv Sys
SN12C 145 40004 Renal
SW-620 81 40532 Colon

UACC-257 33 39988 Melanoma
Yeast 167 79601 Yeast anticancer

Table 1: Anti-Cancer Screen Datasets

8.1 Graph Datasets
LEAP is tested on a series of graph datasets available at

the PubChem website (http://pubchem.ncbi.nlm.nih.gov).
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Figure 12: G-test Score: BB vs. LEAP
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Figure 13: Information Gain: BB vs. LEAP

PubChem provides information on the biological activities
of small molecules, containing the bioassay records for anti-
cancer screen tests with different cancer cell lines. Each
dataset belongs to a certain type of cancer screen with the
outcome active or inactive. From these screen tests, we
collected 11 graph datasets with active and inactive labels.
Table 1 provides a brief description of the NCI bioassays.

For all the NCI bioassay datasets we experimented, the
active class is very rare (around 5%). We randomly sample
500 active compounds and 2000 inactive compounds from
each dataset for performance evaluation. The number of
vertices in most of these compounds ranges from 10 to 200.

8.2 Efficiency and Scalability
Figures 10 and 11 show the runtime performance of BB

and LEAP for G-test and information gain, with leap length
σ set to 0.05. We denote the datasets in Table 1 by the first
two letters of their name. As shown in each figure, LEAP
outperforms BB on runtime by a significantly large margin,
up to 20 times.

Figures 12 and 13 plot the best G-test and information
gain score derived by BB and LEAP(σ = 0.05). As one can
see, the results of LEAP are very close to the optimal one
outputted by BB – differing by 3.5% on G-test and 2% on
information gain on average.

We then test the runtime and result quality of LEAP as
we vary the parameter of leap length σ. Note that when
σ = 0, the output of LEAP is guaranteed to be optimal.
In both tests, we include the runtime performance and the
best G-test score achieved by BB.

Figures 14 (in log-scale) and 15 show the runtime versus
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Figure 14: Runtime vs. Leap Length: P388
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Figure 15: Runtime vs. Leap Length: Yeast

leap length σ on dataset P388 and Yeast. As shown in both
figures, LEAP is much more efficient than BB, with one to
two orders of magnitude speedup. In addition, as the leap
length σ increases, the runtime decreases systematically, val-
idating the concept of structural leap search in terms of ef-
ficiency. Note that in dataset P388, LEAP outperforms BB
significantly with optimality guarantee (σ = 0). A similar
result is also observed when we build decision tree on graph
datasets, where in each split node, a discriminative graph
pattern is selected. In that case, if the subsets of graphs in
a split node become more and more similar, BB could run
very slowly while LEAP can still finish quickly.

Figure 16 shows the G-test score versus leap length σ on
these two datasets. When the leap length σ is in the range
of [0, 0.05], the quality of mining results is as good as that
discovered by BB, which validates the concept of structural
leap search in terms of effectiveness. When σ increases above
0.05, G-test score of the discovered pattern decreases a little
bit and the speed-up increases significantly.

Figure 17 depicts the scalability of LEAP (σ = 0.05) and
BB with respect to the dataset size. In this set of experi-
ments, we vary the negative dataset size from 1000 to 8000
graphs (the positive dataset size is equal to 1/4 of negative
dataset size). Obviously, LEAP runs much faster than BB
in all the settings. Furthermore, LEAP is linearly scalable
to the dataset size.

8.3 Effectiveness
In the following experiments, we are going to examine the

effectiveness of the two components, structural leap search
(sLeap) and frequency-descending mining (fLeap) employed
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Figure 16: G-test Score vs. Leap Length
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Figure 17: Scalability: Data Size

by LEAP. Inside fLeap, we can use either traditional fre-
quent subgraph mining routines such as FSG[16] and Close-
Graph[27], or sLeap. Therefore, we compare three algo-
rithms’ performance, BB as the baseline, fLeap+fp (fLeap
with CloseGraph inside), and fLeap+sLeap (fLeap with sLeap
inside). In both fLeap+fp and fLeap+sLeap, in order to
demonstrate the additional speed up brought by each com-
ponent, we do not include the third step of LEAP.
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Figure 18: Runtime Comparison on G-test

Figure 18 shows the computation time of these three al-
gorithms, while Figure 19 depicts the G-test score of the
best patterns discovered by these three algorithms. By com-
paring these two figures, we found that both fLeap and
sLeap significantly speedup the mining process with sacrific-
ing only a little optimality. This result verified that our de-
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Figure 19: Score Comparison on G-test

sign goal of structural leap search and frequency-descending
mining is achieved successfully.

8.4 Classification Application
In this subsection we are going to investigate the usage

of graph patterns discovered by LEAP in graph classifica-
tion. LEAP provides a scalable approach to find discrim-
inative subgraph patterns and one can take them as fea-
tures to classify, in a way faster than other subgraph-based
classification approach [15, 7, 23]. As LEAP produces one
discriminative pattern a time, we run LEAP iteratively on
the training data until every training example can be rep-
resented by some discovered graph patterns. The data is
then represented by the graph patterns and used for model
learning. We measure the runtime of LEAP by mining a set
of graph patterns sufficient for representing a training set.

In the following experiments, we are going to see the ad-
vantage of our pattern-based classification framework over
graph kernel method, not only in terms of scalability, but
also accuracy. Studies of kernel-based approach aim at de-
signing effective kernel functions to measure the similarity
between graphs. We choose the state-of-the-art graph kernel
– optimal assignment kernel (abbr. OA) [9] for comparison.
Its implementation is kindly provided by the authors. The
runtime of OA is measured as the time to compute the ker-
nel.

Since OA is unable to handle the large scale NCI bioas-
say datasets, we sample 5% of the active compounds and
a comparable size of inactive compounds from each dataset
to derive a compact balanced sample set. The classifica-
tion accuracy is evaluated with 5-fold cross validation. On
each training fold a model selection for the necessary pa-
rameters was performed by evaluating the parameters by
an extra level of 5-fold cross validation. For both methods,
we run the same implementation of support vector machine,
LIBSVM [4], with parameter C selected from [2−5, 25]. We
choose linear kernel for our graph pattern-based classifier.

We compare the area under the ROC curve (AUC) achieved
by LEAP and OA kernel. ROC curve shows the trade-off
between true positive rate and false positive rate for a given
classifier. A good classifier would produce a ROC curve as
close to the left-top corner as possible. The area under the
ROC curve (AUC) is a measure of the model accuracy, in
the range of [0, 1]. A perfect model will have an area of 1.

As an additional test, we increase the training size to 6
times (6x) and run both LEAP and OA. While LEAP runs
efficiently for both cases, OA can hardly scale to 6x train-

Table 2: AUC Comparison between OA and LEAP

Dataset OA LEAP OA (6x) LEAP (6x)

MCF-7 0.68 0.67 0.75 0.76
MOLT-4 0.65 0.66 0.69 0.72
NCI-H23 0.79 0.76 0.77 0.79
OVCAR-8 0.67 0.72 0.79 0.78

P388 0.79 0.82 0.81 0.84
PC-3 0.66 0.69 0.79 0.76

SF-295 0.75 0.72 0.79 0.77
SN12C 0.75 0.75 0.76 0.80
SW-620 0.70 0.74 0.76 0.76

UACC257 0.65 0.64 0.71 0.75
Yeast 0.64 0.71 0.64 0.71

Average 0.70 0.72 0.75 0.77

ing set. Table 2 shows AUC by OA and LEAP on the 1x
training set as well as the 6x ones. As shown in Table 2,
LEAP achieves comparable results with OA on 1x training
set, with 0.02 AUC improvement over OA on average. Both
methods achieve further improvement on 6x training set,
while LEAP still outperforms OA on average. We also use
precision as the measure and observe similar performance.
This result demonstrates that, (1) LEAP could efficiently
discover highly discriminative features which lead to satis-
factory classification accuracy; and (2) Better classification
performance could be achieved, given sufficient training ex-
amples and a computationally scalable method.
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Figure 20: Runtime: OA vs. LEAP

Figure 20 shows the runtime in log scale by LEAP and
OA kernel with 1x and 6x training set respectively. LEAP
scales linearly with the data size, whereas the runtime of OA
kernel increases quadratically with the data size. In practice,
the scalability issue of OA actually limits its capability of
achieving higher accuracy since it cannot handle large scale
training sets.

9. CONCLUSIONS
In this paper, we examined an increasingly important is-

sue in frequent subgraph mining: the huge number of fre-
quent subgraphs makes it impossible for experts to analyze
returned patterns and blocks the use of graph patterns in
several key application areas such as indexing and classifica-
tion. A comprehensive study on general mining strategy was
performed, which is able to mine the most significant graph
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patterns measured by different kinds of non-monotonic ob-
jective functions. We proposed a new mining framework,
called LEAP(Descending Leap Mine), to exploit the correla-
tion between structural similarity and significance similarity
in a way that the optimality of significance could be calcu-
lated quickly by searching dissimilar graph patterns. Two
novel mining concepts, structural leap search and frequency-
descending mining, were proposed to find (near)-optimal
patterns quickly by leaping in graph pattern space. The new
mining method revealed that the widely adopted branch-
and-bound search in data mining literature is indeed not
fast enough, thus providing new insights for fast graph min-
ing. Interestingly, the mining strategy included in LEAP
can also be applied to searching other simpler structures
such as itemsets, sequences and trees.

10. REPEATABILITY ASSESSMENT
Figures 10-19 have been verified by the SIGMOD repeata-

bility committee. The experiment described in Figure 20 of
this paper has not been repeated by the repeatability com-
mittee due to the lack of license for a commercial software
used in the experiment.
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