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Abstract

Collaborative networks are common in real life, where
domain experts work together to solve tasks issued by
customers. How to model the proficiency of experts is
critical for us to understand and optimize collaborative
networks. Traditional expertise models, such as topic
model based methods, cannot capture two aspects of
human expertise simultaneously: Specialization (what
area an expert is good at?) and Proficiency Level (to
what degree?). In this paper, we propose new models
to overcome this problem. We embed all historical
task data in a lower dimension space and learn vector
representations of expertise based on both solved and
unsolved tasks.

Specifically, in our first model, we assume that each
expert will only handle tasks whose difficulty level just
matches his/her proficiency level, while experts in the
second model accept tasks whose levels are equal to or
lower than his/her proficiency level. Experiments on
real world datasets show that both models outperform
topic model based approaches and standard classifiers
such as logistic regression and support vector machine
in terms of prediction accuracy. The learnt vector
representations can be used to compare expertise in a
large organization and optimize expert allocation.

1 Introduction

Collaborative platforms, such as crowdsourcing service
providers, community question answering forums, and
customer service centers, are becoming more and more
prevalent. Once managed effectively, the rich online hu-
man resources have shown great potential to solve prob-
lems more economically, efficiently, and reliably [1–3].
In order to effectively manage and utilize expert re-
sources, an essential problem is how to correctly un-
derstand/represent human expertise and identify right
experts for a certain task [4, 5]. In this paper, we take
collaborative networks as an example to derive expertise
representation so that multiple experts can be compared
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in the same framework.
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Figure 1: A sample collaborative network. Tasks are
routed among experts in a collaborative network until
they are resolved.

In collaborative networks, tasks are routed among
a network of experts until they are resolved. Fig. 1
shows a sample collaborative network. Task t1 starts
at expert e1 and is resolved by expert e5; task t2
starts at expert e1 and is resolved by expert e4. The
sequences e1 → e2 → e4 → e5 and e1 → e3 → e4 are
called routing sequences of task t1 and t2 respectively.
One fundamental problem in ticket routing is how to
represent experts’ knowledge and employ it to estimate
the probability of solving a task. Once this problem is
solved, the final resolver to a given task can be found
quickly.

An expert has to meet two constraints in order to
solve a task: (1) Topic Match: the specialized areas of
the expert shall match the topic of the task. For exam-
ple, a programmer can possibly solve a programming
problem while he is less likely to solve a physics prob-
lem; (2) Difficulty Level Match: the difficulty level of
the task should match the proficiency of the expert. A
programmer might be capable of implementing a Binary
Search algorithm while he is unable to solve the Eight
Queen Puzzle. These two constraints can be formalized
as: (1) Specialization, i.e., the field an expert is special-
ized in; (2) Proficiency level: to what degree an expert
is specialized in that field [6].

Previous studies [6,7] assumed that a list of possible
specialized areas for each expert is given. In real col-



laborative networks, manually creating these specialized
areas is laborious and hardly accurate. An intuitive so-
lution is to use topic modeling such as Latent Dirichlet
Allocation (LDA) [8] to automatically learn human ex-
pertise from the previously solved tasks. This solution
has two main problems: (1) Tasks that an expert has
failed to solve cannot be properly modeled to specify
what the expert cannot do. (2) Topic models essen-
tially capture the topic distribution of historical tasks.
They do not directly measure proficiency level and its
difference among experts.

To overcome the aforementioned issues and learn
better expertise representations, we propose two exper-
tise models in below:

(Model A) It assumes each expert has one or several
specialized functional areas in a collaborative network.
A task falling to one of the functional areas will be
solved by the expert; otherwise it will be transferred
to another expert. Based on this assumption, we
define an expertise space in which all experts’ expertise
and all tasks will be embedded as numerical vectors.
Tasks close to one of the expertise of an expert will be
resolved by the expert whereas those far from his/her
expertise will not. In this model, we combine the
two aspects, specialized area and proficiency level of
human expertise. The specialized area of an expert is
characterized as a ball centered at his expertise vector
and the radius of the ball signifies the range of the
expert’s duty. The ball is named functional area of the
expert. This model is referred to as Functional Area
Expertise (FAE).

(Model B) In some collaborative networks, there
is no clear division of experts’ responsibility. Experts
solve tasks just based on their true capability. In this
case, experts could deal with tasks in all difficulty levels
below his capacity of solving tasks. Therefore, instead of
unifying specialized areas and proficiency levels as in the
FAE, our second model learns a vector representation of
expertise and characterizes the two aspects separately:
dimensions of the expertise vector encode specialized
areas and the value in each dimension signifies the
proficiency level of the expert on the corresponding
area. Our intuitions in this formulation are as follows:
(1) If an expert can solve a task, his proficiency level
should be greater than or equal to the task difficulty;
(2) If an expert cannot solve a task, there must be
some dimensions in his expertise where their values
are smaller than those required by the task. In this
way, the specialized areas together with their proficiency
levels can be modeled naturally. We refer to this model
as All-Round Expertise (ARE).

FAE and ARE represent two different strategies
of assigning task to experts. FAE is going to reserve

the capacity of highly skilled experts for difficult tasks,
while ARE tries to shorten task processing time as much
as possible. We provide a comparison between FAE and
ARE w.r.t several properties of collaborative networks,
according to which one can decide the model that shall
be used. Experimental results on real collaborative
networks show that expertise learnt from our models
better predict ticket solving than topic model based
approaches and other methods in expertise modeling.

In comparison with previous studies on expertise
modeling, to the best of our knowledge, we make the
first attempt to consider all the factors together:

1. Not only do we utilize tasks solved by each expert
but also those unsolved by him, which shall better
characterize human expertise.

2. Not only do we characterize the specialized areas
of an expert, but also the proficiency level he has
in each area.

The rest of the paper is organized as follows. In
Section 2, we briefly describe our problem setting. In
Sections 3 and 4, the two proposed expertise models
FAE and ARE will be introduced. Section 5 presents
our experimental results. Related work is reviewed in
Section 6, followed by the conclusion in Section 7.

2 Preliminaries

In this section, we introduce the notations and discuss
the two aspects of expertise, i.e., specialized areas and
proficiency level, that shall be captured by an expertise
representation.

2.1 Task Routing and Resolution Records. In
a collaborative network, a set of experts work coopera-
tively to solve tasks. Here we use E = {Ei} to represent
the set of experts. Let T = {tj} be a set of tasks
resolved in the collaborative network, where each tj is
a bag-of-word vector with each dimension recording the
word frequency in the task description.

Apart from the textual description, each task is
also associated with a routing sequence starting from an
initial expert to the final resolver of the task. Table 1
shows one example problem ticket in an IT service
department. The ticket with ID 599 is a problem related
to operating system, specifically, the low percentage of
the available file system space. It was assigned to expert
IN039, then routed through expert SAV59, and got
resolved by expert SAV4F.

During task routing, an essential problem is to
understand a certain expert’s knowledge and estimate
whether he could solve the current task or not. In this
paper, we propose to automatically learn the expertise



Table 1: The Lifetime of A Task.

ID Entry Time Expert
599 New ticket: the available 9/14/06 IN039

space on the var 5:57:16
file system is low

599 ...(operations by IN039)... ... IN039
599 Ticket 599 transferred ... IN039

to SAV59
599 ...(operations by SAV59)... ... SAV59
599 Ticket 599 transferred ... SAV59

to SAV4F
599 ...(operations by SAV4F)... ... SAV4F
599 Problem resolved: free 9/14/06 SAV4F

up disk space 9:57:31
in the file system

of all the experts based on the task routing and reso-
lution records. Specifically, as shown in Table 1, the
fact that expert IN039 and SAV59 did not solve task
599 but SAV4F solved it, will be leveraged to infer their
expertise.

2.2 Expertise Representation. [6] gives a formal
definition of expertise, which consists of two aspects:
(1) Specialized areas of an expert; (2) Proficiency level
of an expert in each specialized area. We formalize a
distributed representation of expertise as follows:

< level(area1), level(area2), ..., level(aread) >,

where level(areai) is the proficiency level of the expert
in areai and d is the number of all possible specialized
areas. Previous studies assume that all these specialized
areas are pre-specified [6, 7]. In real collaborative
networks, manually creating these specialized areas is
often laborious and hardly accurate.

Here we introduce a novel distributed representa-
tion of expertise by embedding expertise and task in
the same d dimensional space, referred to as the exper-
tise space. We use eki to represent the kth expertise of
expert Ei. Each task tj will be embedded in the exper-
tise space by a transformation matrix W :

(2.1) t̃j = Wtj ,

where t̃j is the representation of the ith task tj in the
expertise space. Based on all the solved and unsolved
tasks of each expert, we will learn their expertise rep-
resentation ei together with the transformation matrix
W .
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Figure 2: An intuitive example for Functional Area
Expertise when d = 2. Tasks t1 and t2 are in the first
functional area, t3 is in the second functional area of
E and can be solved by E. Tasks t4 are out of both
functional areas of expert E and thus cannot be solved
by E.

3 Modeling Functional Area Expertise

In this section, we introduce our first expertise model
called the Functional Area Expertise (FAE) model. In
this model we assume each expert in the collaborative
network may have one or more specialized functional
areas and they could only solve tasks which belong
to one of his functional areas. This assumption holds
for many real collaborative networks in which explicit
functional areas represent responsibilities.

Based on this assumption, we define a d dimensional
Functional Area Expertise (FAE) space. Each expert
will be assigned to one or several d × 1 vectors, each
represents the center of one functional area in expertise
space and a corresponding radius parameter r which
models the proficiency level in this area. In this new
space, as shown in Fig. 2, tasks located within one of the
functional areas of an expert E will be resolved by the
expert and tasks located outside all the functional areas
of the expert will not be resolved by E. An expert with
larger radius parameter is likely to solve more tasks.

The functional area expertise model can be learned
based on historical data. Intuitively, the learnt expertise
should be close to his solved tasks but far from those
tasks he cannot solve. We design the following objective
function based on this intuition.

argmin
W,e,re

∑
E solved t

min
k

frke (||e
k −Wt||2)

−
∑

E unsolved t

∑
k

frke (||e
k −Wt||2) + α||W ||1

+ β
∑

e,1≤k1,k2≤k

max(rk1
e + rk2

e − ||ek1 − ek2 ||2, 0),

(3.2)

where rke is the kth radius parameter for expert E, f
is a monotonic increasing function referred later as the
radius function, which will be described in detail later.
The first term in the objective minimizes the distance



between a solved task and solver’s closest expertise
center while the second term maximizes the distance
between an unsolved task to expert’s all expertise
centers. The third term is a L1 regularization term
used to reduce model complexity and avoid overfitting.
Intuitively different functional areas represent different
expertise areas and thus should not overlap with each
other. The last term in the objective gives penalty
to functional area overlapping: it returns 0 when the
distance between any two expertise centers is greater
than the sum of two corresponding radius parameters
and returns a positive penalty otherwise.

Simply setting function f as the identical function
leads to a trivial solution. For example if expert E fails
to solve task t, the objective function returns negative
infinity when we embed all expert centers of E to origin
and ticket t to infinity. To avoid this, we set f to be the
shifted sigmoid function defined as follows:

fr(x) =
1

1 + exp−(x− r)
,

where r is the radius parameter.
We applied well-established L-BFGS (Limited-

memory BFGS) algorithm [9] to optimize objective
function Eq. (3.2). L-BFGS is an optimization algo-
rithm in the family of quasi-Newton methods. Instead
of storing a dense approximation of the inverse Hessian
matrix, L-BFGS algorithm stores only a few vectors that
represent the approximation implicitly. This makes it
particularly well suited for optimization problems with
a large number of variables. Based on learnt W , re, and
e, the probability of an expert E solving a task t can be
predicted by:

1−min
k

frke (||e
k −Wt||2).

4 Modeling All-Round Expertise

In some collaborative networks, the assumption above
for the functional area formulation may not hold. In-
stead, an expert can solve tasks whose difficulty level is
equal to or below his/her proficiency level. In this sec-
tion, we propose an All-Round Expertise (ARE) model
to handle this scenario. ARE is based on the follow-
ing intuition: (1) If an expert E can solve a task t, its
expertise should be greater than or equal to t in all di-
mensions. (2) If the expert cannot solve the task, its
expertise should be smaller than the task at least in
some dimensions. An example with d = 2 is shown in
Fig. 3. e1, (a, b), and e2, (c, d), are expertise of two
experts. Tasks lying inside the smaller rectangular can
be solved by expert E1. All tasks lying inside the bigger
rectangular can be solved by expert E2. In this model,
dimensions are considered as areas and the value on each

e1

Tasks can be solved by e1 and e2

Tasks can only be solved by e2

a

b

c

d
e2

Figure 3: An example for the All-Round Expertise
model. Expert E1 can only solve the tasks covered by
the small rectangular. But E2 can solve all the tasks
including those E1 can solve.

dimension is the proficiency level of an expert in that
area. Therefore, we no longer need to assign several
expertise vectors to one expert.

4.1 ARE for Solved Tasks. Let e =
(e(1), e(2), . . . , e(d)) be the expertise of expert E and

t̃ = (t̃(1), t̃(2), . . . , t̃(d)) be the vector representation of
task t in the expertise space. We define a new opera-
tion .− in the expertise space as follow:

e .− t̃ =
∑

1≤l≤d

(min(0, e(l) − t̃(l))).

Note that e .− t̃ is always smaller than or equal to 0 and
e .− t̃ = 0 if and only if e(l) ≥ t̃(l), ∀k. We define the
objective function of ARE for solved tasks is as follows:

(4.3) argmax
W,e

∑
e solved t

(e .− t̃).

We denote dimension k as a strong dimension for
expert E with respect to task t if e(l) ≥ t̃(l), and as a

weak dimension with respect to t if e(l) < t̃(l). When
E solved t, the objective function in Eq. 4.3 penalizes
all weak dimensions and do not care how ’strong’ the
strong dimensions are. If all the dimensions are strong,
we have e .−t̃ = 0, which maximizes e .−t̃. The motivation
is, if the expert can solve the task, this expert shall have
knowledge deep enough on all the areas required by t.

Only learning experts’ expertise from the solved
tasks will not work well. For example in order to tell
one task tj is more difficult than another task ti, we
need information like some expert E solved ti but not
tj . This can also be illustrated by a trivial solution of
the above model which embeds all the tasks to 0 and
all expertise to some positive number. This solution



clearly maximizes the above objective but fails to learn
the difficult level for each task. Base on this intuition,
we shall include unsolved tasks in learning expertise.

4.2 ARE for Unsolved Tasks. For unsolved
tasks, we believe there must be some weak dimensions
for expert E. For the optimization purpose, we set a
margin parameter α ≥ 0 to measure how weak these
dimensions are. To be specific, if expert E fails to solve
task t, the sum of differences between expertise e and
t over all weak dimensions should be smaller than a
negative threshold, which is set to be −α. Fig. 4 shows
an example of this margin with d = 2. If an expert
E could solve task t, the learnt expertise e should be
located in area 1, while if e fails to solve t, the learnt
expertise representation should be located in area 2.
We use following formula to measure the penalty for
unsolved tasks:

min(−α− (e .− t̃), 0),

where e .− t̃ can be considered as the sum of differences
between e and t over all weak dimensions. If the sum
is larger than −α, the formula equals to −α − (e .− t̃),
which is negative. Otherwise, the formula returns 0.

Margin α distinguishes between solved tickets and
unsolved tickets of an expert in the expertise space.
Setting margin α to 0 leads to a trivial solution: the
objective function returns a global minimum value 0
for both solved and unsolved tasks when mapping all
expertise and ticket vectors to the origin. We will
describe in detail how to select α later in the experiment
section.

We define the objective function of ARE for un-
solved tasks as follows:

(4.4) argmax
W,e

∑
e unsolved t

(min(−α− (e .− t̃), 0)).

When E fails to solve t, this objective function
penalizes all dimensions when e .− t̃ is above the margin.

4.3 Objective Function of ARE. We now com-
bine penalties from both solved and unsolved tasks to
the objective function:

argmin
W,e

−
∑

E solved t

(e .− t̃)(4.5)

−
∑

E unsolved t

(min(−α− (e .− t̃), 0))

+ β||W ||1.

Similar to the FAE model, we add an additional L1

regularization term and apply L-BFGS algorithm to
optimize ARE. Denote the objective function in Eq. 4.5

α

α
t

area 1

area 2

Figure 4: An example of applying margin α in the All-
Round Expertise model with d = 2. The expertise of all
experts who are capable of solving t is expected to be
located in area 1, while the expertise of all experts who
cannot solve t is expected to be located in area 2.

as H(W, e). The derivative of H with respect to {W, e}
is given by:

∂H
∂Wij

=
∑

E solved t

t(j) ∗ I(e(i) < t̃(i))(4.6)

−
∑

E unsolved t

t(j) ∗ I(E .− t̃ > −α)

+β ∗ sgn(wij),

∂H
∂e(i)

=
∑

E solved t

−1 ∗ I(e(i) < t̃(i))

+
∑

E unsolved t

1 ∗ I(e .− t̃ > −α),

where sgn(x) is the sign function and I(x) is the
indicator function which returns 1 if statement x is true
and returns 0 otherwise. Based on W and e learnt
from ARE, whether an expert can or cannot solve a
task can be predicted by e − t̃. The decision boundary
is determined using 5-fold cross validation on training.
The scale of e’s each dimension indicates how good the
expert is in the corresponding area. Similarly, the scale
of t’s each dimension indicates how difficult the task is
in that dimension.

5 Experiments

In this section, we evaluate the proposed two expertise
models, FAE and ARE, on real-life datasets. We test
their performance in predicting whether an expert E
can solve a task t.

5.1 Baselines. The performance of FAE and ARE is
compared with standard classifiers and other popular
methods in expertise modeling.

(1) Logistic Regression (LR). We train a logistic
regression model [10] for each expert. This model
takes a bag-of-word vector as input and outputs the



probability that this expert solves the task. This
probability, denoted as Pi(t), is defined as follows:

Pi(t) =
1

1 + exp(−(Wi ∗ t+ bi))
,

where Wi is the weight vector associated with expert
Ei which has the same size as the bag-of-word vector of
tasks. Wi can be viewed as an expertise vector learnt for
each expert; Wi ∗ t computes the dot product similarity
between Ei and t, which is used to predict task solving.
The parameters in the model are learned by minimizing
the square-loss error, based on the < expert, task >
pairs in the training dataset.

argmin
W,b

=
∑

<ei,t>

(Pi(t)− y<Ei,t>)
2,

where y is 1 if Ei solved t and is 0 otherwise.

(2) SVM. We build an SVM classifier for each
expert and use it to predict whether he/she can solve
the tasks in the testing set. We tried different kernels
including linear, polynomial, quadratic and multilayer
perceptron; their best results are reported.

(3)Query Likelihood Language Model (QLL).
In QLL [11], each document is represented as a multino-
mial distribution over words. The maximum likelihood
estimate of this distribution is the frequency of each
word in the document divided by the total number of
words in the document. We apply Dirichlet smoothing
to the distribution as most of the words in the vocabu-
lary do not show together in each individual document.
The likelihood of a query task t generated from a docu-
ment d under a language model with Dirichlet smooth-
ing is defined as:

p(t|d) =
∏
w∈t

Nd

Nd + µ
p(w|d) + µ

Nd + µ
p(w),

p(w|d) = Nd(w)

Nd
,

where Nd is the number of words in d, Nd(w) is the
number of word w in d, µ is a smoothing parameter,
and p(w) is the probability of the word w in the entire
corpus. For each expert E we construct two document
collections, C+

e , which is a collection of all his/her
solved tasks, and C−

e , which is a collection of all his/her
unsolved tasks. Intuitively, for an expert E, if a new
task is close to one task in the solved task collection,
then this new task is highly likely to be solved by E.
Similar argument works for the unsolved task collection.
Thus we define the likelihood of a query task t obtained
from a document collection C as:

p(t|C) = max
d∈C

p(t|d).

For expert E and a new task t, we predict E solve t if
p(t|C+

e ) > p(t|C−
e ) and E cannot solve t otherwise.

(4) Topic Modeling. Topic modeling can be used
to learn expertise. Specifically, we first create two doc-
uments for each expert by merging task descriptions in
C+

e and C−
e , and denote them as d+e and d−e respec-

tively. Latent Dirichlet Allocation (LDA) [8] is then
used to train topic models. For each expert, two topic
distributions θ+e and θ−e are learned corresponding to
d+e and d−e . θ+e conveys what expert E can do and θ−e
tells what he/she cannot do. The likelihood of a task t
generated from a topic distribution is defined as:

p(t|θe) =
∏
w∈t

∑
z∈Z

θze × p(w|z),

where z is one of Z topics and p(w|z) is the word
probability under topic z which is output by the topic
model. For expert E and a new task t, we predict
E solve t if p(t|θ+e ) > p(t|θ−e ) and e cannot solve t,
otherwise. Advanced topic models, such as [12], are
not chosen as baselines because they do not fit our
problem setting. For example, there is no multiple
authors for a task as a scientific paper does. Since each
task description in our dataset typically contain a few
words, directly applying complex topic models will not
work well due to sparse word co-occurrence [13].

5.2 Datasets. We use real-world problem ticket data
collected from a problem ticketing system in an IT
service department throughout 2006. Two datasets in
different problem categories are explored: Windows and
AIX, which contain problem tickets occurring in the
Windows and AIX operating systems. The details of
both datasets are shown in Table 2. The data is quite
sparse: Only a few tasks were recorded for each expert
and there are a few words in each task description.

For each dataset we only keep experts who have
solved and unsolved at least 3 tasks.

Table 2: Two Datasets on Task Resolution

Datasets # of tasks # of experts
WIN 32349 1278
AIX 10519 1988

We apply well-established L-BFGS algorithm to op-
timize the objective function in FAE, ARE, and LR. All
parameters are initialized randomly from [−1, 1] and up-
dated iteratively using the second order gradients esti-
mated by L-BGFS. We conduct a 80% − 20% random
split on the dataset and generate training and testing



Table 3: Accuracy on task resolving prediction

Models WIN(%) AIX(%)
FAE 85.09± 0.49 85.38± 1.06
ARE 86.52± 0.62 88.18± 0.63
LR 81.44± 0.65 79.48± 0.78
SVM 80.14± 0.40 79.17± 0.59
QLL 78.44± 0.47 67.55± 3.92
LDA 65.60± 0.67 74.20± 0.49

data. 5-fold cross validation is used on the training
dataset for hyper parameters selection on all the meth-
ods including FAE and ARE, e.g., α, β in Eq. 3.2 and β
in Eq. 4.5. The margin parameter α in ARE should not
effect the expertise learning: if W and e are local mini-
mal for Eq. 4.5 with α then 2W and 2e are local minimal
for Eq. 4.5 with 2α. We use the 5-fold cross validation
to determine the decision boundary for both FAE and
ARE. The whole process is repeated for 5 times; the
mean and standard deviation of the classification ac-
curacy over the 5 runs are reported. The bag-of-word
representation uses the top 2, 000 most frequent words
in all the tickets as used in [14]. The dimensionality of
expertise is set at 20 for both FAE and ARE models.
In the FAE model, each expert is assumed to have 2
specialized areas (k is set at 2 empirically).

5.3 Accuracy. Table 3 summarizes the performance
of all the methods. As shown, the proposed two mod-
els work significantly better than all the baselines in
terms of prediction accuracy. As the ticket dataset is
sparse, LR, SVM and QLL cannot learn very good clas-
sifiers as they learn a classifier for each individual ex-
pert. Our models learn expertise for all the experts
together and embed all the tasks in the same expertise
space. The learnt transformation matrix W is shared
by all the tasks and the sparsity issue is overcome in
this way. The performance of our models is better than
these three baselines. Not surprisingly, the topic model
method, LDA, works badly in this case. The reason is
topic models highly rely on word co-occur information.
Tasks in our data are very short (the average number of
words in a task is around 5) and only a few short docu-
ments are associated with each expert. Therefore, topic
modeling cannot learn proper topic distributions. ARE
outperforms FAE significantly in the AIX dataset indi-
cating that the WIN and AIX collaborative networks
might adopt different task assignment strategies.

5.4 Efficiency. The time complexity of the FAE and
ARE models is determined by the number of gradient
update iterations multiplied by the complexity of com-
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Figure 5: Classification accuracy versus the number of
iterations for FAE and ARE on the AIX dataset. Both
models almost converge after 50 iterations.

Table 4: Efficiency on model learning

Models WIN AIX
FAE 5′21′′ 3′38′′

ARE 5′20′′ 3′02′′

LR 27′′ 28′′

SVM 3′23′′ 7′9′′

QLL 1′3′′ 2′31′′

LDA 11′59′′ 18′23′′

puting the objective derivatives in each iteration. As
shown in Eq. 4.6, the complexity of the derivatives
computation is O((dt + N) ∗ d), where dt is the di-
mensionality of ticket bag-of-word representation, d is
the dimensionality of the expertise space, and N is the
number of ticket-expert pairs. We did not show the
derivative of the objective function in FAE due to the
space limit. However, it is easy to see that the complex-
ity is the same as ARE. Note that both models may
take a long time to converge. Here we set a limit on it-
erations and stop the model training after 50 iterations.
Figure 5 shows how we empirically select this number
by plotting the classification accuracy versus the num-
ber of training iterations for both models on the AIX
dataset.

Table 4 summarizes the running time for each
model. We list the training time for all the methods.
These algorithms are implemented using MATLAB on
a 8-core 3.40GHz Intel CPU with 16G memory. The
testing time for all the methods is shorter than 1 second,
which means after expertise learning all the methods
can do prediction in a timely manner.

6 Related Work

In this section, we first introduce the background of col-
laborative platforms and then review previous methods
on expertise modeling and representation.



Collaborative Platforms. Recent years have wit-
nessed blossoms of various collaborative platforms, such
as community question answering forums Quora1 and
Stack Overflow2. Collaborative network is a typical ex-
ample of collaborative platforms, where a task is routed
through the network until being resolved. Studies have
been focused on developing automated routing algo-
rithms to route a task to its final resolver as fast as
possible [15–17]. Miao et al. [18] studied a network
model and a routing model to jointly simulate the struc-
ture and the task routing procedure in a collaborative
network. Sun et al. [14] studied the routing behaviors
of experts in collaborative networks and modeled their
decision making process on where to transfer a task.
In this paper, we study a key problem in collaborative
networks: expertise modeling and representation, which
serves the central role in many applications, such as ex-
pert search and expertise comparison.

Expert Search. Expert search aims at finding
experts who are knowledgable on a given topic and
capable of solving a given problem [19–22]. Expert
search became an important research area since it
started at the TREC enterprise track [19] in 2005.
The crucial problem in expert search is how to rank
experts given a query. Many papers in this line consider
expertise modeling as a part of expert ranking. No
explicit expertise representations are learned [23, 24].
For example, Deng et al. formalized expert ranking
by statistical language model and topic-based model
[24]. Fang et al. [22] proposed a discriminative learning
framework to directly model the conditional probability
of relevance between an expert and a query. In this
paper, we try to learn a vector representation for each
expert, which can be used to compare expertise in a
large organization and optimize expert allocation.

Expertise Modeling. In different application sce-
narios, various types of data are used to model exper-
tise, such as project descriptions and professional ar-
ticles [11, 20–22]. For example, Mimno et al. [11] mod-
eled a reviewer’s expertise by the papers she has written
when matching reviewers with submitted papers. Guan
et al. [25] mined the fine-grained knowledge of a Web
user, by analyzing their Web surfing data, to facilitate
expert search in collaborative environments. In ques-
tion answering, Zhang et al. [5] used language models
to compute user expertise based on the threads a user
contributes to, where each thread contains a question
post and a number of reply posts. Li et al. [26] incor-
porated question category into question routing, where

1http://www.quora.com/
2http://stackoverflow.com/

question category is used to estimate answerers’ exper-
tise. Chang et al. [27] proposed a routing framework
that uses compatibility, availability and expertise of the
users to recommend answerers and commenters to a
question. Expertise is modeled by using questions an
expert has answered and questions’ tags annotated by
askers.

As social media becomes prevalent, studies (e.g.,
[4, 28, 29]) on using social media data to derive user
expertise, have emerged recently. Yeniterzi et al. [28]
employed authority signals such as votes, comments,
and follower/following information to estimate user
expertise. In [4], Guy et al. provided an extensive
study that explores the use of social media to infer
user expertise, by evaluating the data users produced
through a large survey. Varshney et al. [29] inferred the
expertise of employees in the IBM corporation through
mining social data that is not specifically generated and
collected for expertise inference. Our work on modeling
expertise distinguishes itself from these studies: We
not only take into account tasks that are solved by
an expert, but also those unsolved by her, in order to
characterize her expertise.

Expertise Representation. For expertise rep-
resentation, early approaches built a knowledge base
which contained the descriptions of people’s skills within
an organization [30] or used tags to represent expertise
of each expert [31]. More advanced methods are based
on topic modeling [11,12]. Topic Modeling is a standard
approach to explain the observed data. Latent Dirichlet
Allocation (LDA) [8], which takes a set of documents as
input and simultaneously learn the document-topic and
topic-word distributions. For each expert, one can com-
bine the set of tasks solved as a single document. LDA
takes the documents of all the experts and outputs the
topic distribution for each expert as his/her expertise
representation. However, topic distributions learnt by
LDA essentially capture experts’ historical task distri-
butions but not their true capability on task solving,
such as the proficiency level on a specialized area. In
contrast, expertise learnt by our models conveys both
aspects of human expertise: specialization and profi-
ciency level.

7 Conclusion

Expertise modeling is considered as the core content in
improving the efficiency of collaborative networks. The
goal is to represent experts’ abilities in terms of special-
ization and proficiency level. In this paper, we devel-
oped two models to learn distributed representations of
expertise which can convey both aspects. The shared
insight of these two models is embedding both exper-
tise and tasks that were solved/unsolved by experts in



the same space. The embeddings are optimized over all
historical data points: which expert solved which task
and which expert failed to solve which task. The first
model assumes that an expert only solves tasks match-
ing his/her specialization and proficiency level. Alter-
natively, in the second model, the expert can solve all
the tasks whose difficulty level is equal to or lower than
his/her proficiency level in his/her specialized area. Ex-
perimental results on real datasets demonstrated that
the proposed models can learn meaningful expertise rep-
resentations and are effective in predicting task resolu-
tion.
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