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Abstract

Learning functional networks from spike trains is a funda-
mental problem with many critical applications in neuro-
science. However, most of existing works focus on infer-
ring the functional network purely from observational data,
which could lead to undiscovered or spurious connections.
We demonstrate that by adopting experimental data with
interventions applied, the accuracy of the inferred network
can be significantly improved. Nevertheless, doing interven-
tions in real experiments is often expensive and must be
chosen with care. Hence, in this paper, we design an ac-
tive learning framework to iteratively choose interventions
and learn the functional network. In particular, we propose
two models, the variance model and the validation model,
to effectively select the most informative interventions. The
variance model works best to reveal undiscovered connec-
tions while the validation model has the advantage of elimi-
nating spurious connections. Experimental results with both
synthetic and real datasets show that when these two models
are applied, we could achieve substantially better accuracy
than using the same amount of observational data or other
baseline methods to choose interventions.

1 Introduction

Spike trains are series of neural firing events, which are
considered as the language neurons use to encode the ex-
ternal world and communicate with each other. Learn-
ing functional networks from spike trains is a funda-
mental problem with many critical applications in neu-
roscience. For example, a functional network that de-
scribes the temporal dependence relations among neu-
rons is not only the first step to understand the function
of neural circuits [9], but also has practical applications
such as diagnosing neurodegenerative diseases [10].
Since Generalized Linear Model (GLM) is com-
monly used as a temporal generative model for spike
trains [7, 13, 1], the routine [15, 9] of inferring func-
tional networks from spike trains is shown in Figure 1
with an example. A spike train recording of 5 neurons
is used to infer the GLM, from which a functional net-
work is derived. The spike train dataset is a set of binary
arrays, where “1” represents a firing event (spike) and
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“0” describes quiet state (no spike). Meanwhile, in the
functional network, the edge between node 1 and node
4 with label “4+1” represents an excitatory connection
with time lag 1 (the firing of neuron 1 at time ¢ —1 stim-
ulates the firing of neuron 4 at time ¢). Similarly, the
directed edge from node 4 to node 3 with label “-[1,20]”
represents an inhibitory connection with time lags from
1 to 20 (the firings of neuron 4 at time ¢ — 20 through
t — 1 suppress the firing of neuron 3 at time t).
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Figure 1: An example of inferring a functional network
from spike trains.

Despite the popularity of this approach, we can not
rely on it to get accurate functional networks. To illus-
trate, we give two examples. Figure 2(a) shows spike
trains from three neurons where the firings of two of
them are being driven by another neuron with different
time lags. When a functional network is inferred, the
aforementioned algorithm could easily get confused and
a spurious excitatory connection will be drawn in the
resulted network. In another example shown in Figure
2(b), the activities of a neuron are suppressed by an in-
hibitory connection and thus, there are not enough evi-
dence to infer the inhibitory connection. Unfortunately,
most of existing works [15, 13, 11] suffer from this prob-
lem because they are learning functional networks from
purely observational data. As we will demonstrate in
Section 5, by adopting interventional data, in which we
could selectively fix the states of some neurons, the accu-
racy of the inferred functional network could be signif-
icantly improved. However, conducting interventional
experiments is often very expensive in terms of time



and money, so the interventions must be chosen with
care. Hence, in this paper, we focus on the problem of
how to design an active learning framework that could
utilize as few intervential experiments as possible to get
the maximum accuracy gain when inferring a functional
network.
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(b) Example of an inhibitory network

Figure 2: Examples of inferred networks with only
observational data.

There are previous works [7, 8] that focused on the
problem of selecting external stimuli for a better esti-
mation of GLM. But their approach can not be directly
used in our problem, because they only consider the case
where there is just one neuron while we are interested in
inferring functional connectivities among multiple neu-
rons. Meanwhile, learning functional networks should
not be confused with learning the structure of causal
networks [12] (static or dynamic Bayesian networks).
In structure learning of causal networks, possible topo-
logical structures are searched and evaluated based on
a statistical score function such as Minimum Descrip-
tion Length (MDL) [5] and Bayesian Dirichlet equiv-
alent (BDe) score [4]. In contrast, the structure and
parameters of a functional network are jointly learned
by inferring a temporal generative model. Several works
[17, 3, 16] focused on the problem of active learning for
structures of causal networks which is different from our
functional network learning problem.

To the best of our knowledge, we are the first to
propose active learning models for inferring functional
networks from spike trains. Our active learning frame-
work is shown in Figure 3. The functional network is
iteratively updated by conducting interventional exper-
iments. In each iteration, the next intervention is cho-
sen based upon the results seen so far towards a full
identification of the functional network. In particular,
we introduce two models, the variance model and the
validation model, to choose interventions that are most
beneficial for learning the functional network.

The variance model (Section 3) uses a Gaussian dis-
tribution to approximate the posterior distribution of
GLM parameters given the data. And then the inter-

vention that can maximally reduce the expected entropy
of the posterior distribution is chosen. In addition, we
also propose an initialization method that takes higher
order interactions into consideration, which could signif-
icantly improve the performance of the variance model.
Meanwhile, the validation model (Section 4) has the ob-
jective to validate the most of our existing connections.
It picks interventions by maximizing the expected prob-
ability of our current knowledge about the GLM param-
eters.

These two models represent two different strategies
of choosing interventions. The variance model works
best to discover hidden inhibitory connection, while the
validation model focuses on eliminating spurious excita-
tory connections. Experimental results with both syn-
thetic and real datasets show that when these two mod-
els are applied, we could achieve substantially better
accuracy than using the same amount of observational
data or other baseline methods to choose interventions.
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Figure 3: Pipeline of the active learning framework.

2 Preliminaries

In this section, we first briefly introduce the Generalized
Linear Model (GLM) and then show the framework to
infer GLM when both observational and interventional
data are used. Table 1 summarizes some common
notations that we are going to use in this paper.

2.1 Generalized Linear Model Let m denote the
number of neurons being recorded and z;; be the
number of spikes of neuron ¢ at time ¢. Usually in spike
train data, there are at most one spike at any time point,
so x; + takes the value of 0 or 1. We assume z;; depends
on all the neurons’ activities in a history window that
spans from time ¢ — mazlag to time t — minlag, where
minlag and maxlag are the minimum and maximum
time lags we consider. Let 0; ;, be the parameter that
models the effect from neuron j to neuron 7 at time lag
[. For any neuron i, it also has a spontaneous firing rate
which is controlled by a bias term b;. We first model
the instantaneous firing rate of of neuron ¢ at time ¢,
Ai,t, as follows,

(2.1) i = bt i, S 0i5.1%5,6-1)

s



Table 1: Notations

Notations Description

m Number of neurons

minlag Minimum time lag to consider

maxlag Maximum time lag to consider

h maxlag — minlag + 1

n mxh+1

T Length of recordings

Tit The state of neuron i at time point ¢

0;.5.1 Parameters for the effect from neuron j
to neuron ¢ with time lag [

b; The bias term for neuron 7 which con-
trols the spontaneous firing rate

St Input vector at time ¢ with dimensions
nxl1

Tt Response vector at time ¢ with dimen-
sions m X 1

S1:¢ A matrix of input vectors from time
point 1 to time point ¢, with dimensions
nxt

1.t A matrix of response vectors from time
point 1 to time point ¢, with dimensions
m Xt

w Parameters of GLM as a matrix with
dimensions m X n

W (i,-) The i*" row of matrix W

w Flattened copy of matrix W

We then assume that z;; is drawn from a Poisson
distribution with mean A;;. In other words, we assume
that the firing of neurons follows a Poisson process
which is a common assumption [1, 15, 13]. Hence, the
log-likelihood for the observation of neuron i at time ¢,
log L; 4, is calculated as

(2~2) logL;; = 10gp($i,t|>\i,t) =z log Niy — Aig.

The log-likelihood for all the observations in a
recording with length T is

m T
logLZZ Z log L; ;.

i=1 t=mazlag

(2.3)

To simplify our analysis later, we rewrite the log-
likelihood function in matrix format. First, for a
recording with T time points, we reconstruct it into
an input matrix s1.¢+ and a response matrix r1.¢, where
t =T —mazlag. s1.¢1s anxt matrix with each column
sy representing the input vector at time point k, where
n=mxh+1 and h = maxlag — minlag+ 1. Similarly,
71.¢ 1S an m Xt matrix with each column 7y representing
the response vector at time point k. s and 7 are

constructed as follows.

1

T1,k—minlag

T,k
Tm, k—minlag
Sk = y Tk =

T,k
T1,k—maxlag

Lm,k—mazxlag

We also rewrite the parameters of GLM as a matrix
W with dimensions m x n. Each row in W contains
the parameters to predict responses of one neuron. For
example, W (i,-) contains the parameters responsible
for the response of neuron i, where W (i, -) denotes the
it" row of W. W is constructed as follows.

b1 bm

01,1,minlag am,l,minlag

ol,m,minlag om,m,minlag

el,l,mazlag em,l,mawlag

el,m,mazlag em,m,mamlag

Following Eq. (2.1), (2.2) and (2.3), the log-
likelihood function in matrix format is

log L(W, 81:4,71:¢) = sum(ri.4 0 (W - 81,4) — eV 52:t),

where sum is a function that sums over all the elements
in a matrix and o represents Hadamard product which
is essentially element-wise multiplication.

2.2 Active Learning of GLM Given a recording
with input matrix s;.; and response matrix 7., to learn
the GLM, we use batch gradient ascent to infer the
parameters that maximize the log-likelihood function.
The gradients with respect to W are calculated as

0log L(W, s1.t,T1:¢)
ow
=T1i 81y — €

D(Wy S1:t, rl:t) =

(2.4)
Wis1t | T

" S1:t
where D(W | 81.¢,71:¢) 1S @ m X n matrix.

In the active learning framework, the interventional
experiments are conducted iteratively to update the
GLM. Let I = {t1,t2,...,tc} be the set of interventions



we can choose from. In this paper, we focus on
deterministic interventions which means ¢; defines an
action of forcing one or several neurons to take a
fixed state. For example, ¢; could represent silencing
one neuron i. Let @ be the set of neurons that are
intervened. @ is empty when only observational data is
used. Intuitively, for any neuron ¢ in @, its state will no
longer depend on its parents in the functional network.
So when W is being updated, the parameters that are
responsible for the response of this neuron will not be
changed.

Assuming n recordings has been collected and Q;
is the set of neurons that are intervened in the 7"
recording. We first calculate the gradients D; for
the it" recording with Eq. (2.4), and then for all the
q € Q;, we set D,. = 0, where D, is the ¢'" row in
D. Eventually, the gradients for all the n recordings are
calculated as follows,

(2.5)

D= Z D;.
1=1

In summary, the pipeline of the active learning
framework is as follows: Given n recordings we have
seen so far, infer the GLM using batch gradient ascent
(Eq. (2.5)); Then choose an intervention from I and
conduct the intervention experiment to collect the (n +
1)*" recording; Repeat this procedure until the budget
for doing experiments has run out. In the following
sections, we introduce two models to intelligently choose
the next intervention.

3 Variance Model

By conducting interventional experiments, previously
undiscovered connections could be revealed. However,
how to choose the most informative intervention is still a
hard problem to be solved. In this section, we propose
the variance model to choose interventions based on the
following intuitions: (1) Inhibitory connections tend to
be undiscovered due to lack of evidence; (2) Lacking of
evidence means high uncertainty about our knowledge
of the inferred functional network; (3) The uncertainty
about our knowledge of the inferred functional network
could be quantified as the entropy of the posterior prob-
ability distribution of the parameters given the data.
Moreover, we also introduce an initialization method
that takes higher order interactions into consideration,
which proves to be very effective for further improving
the performance of the variance model.

3.1 Choose Interventions Assuming we have a
recording of ¢ time points which is formalized as an
input-output pair (81.,71:¢). Let w be the flattened

copy of the GLM parameter matrix W. Our knowl-
edge about w can be summarized by the posterior prob-
ability distribution p(w|s1.t,71:¢) and the entropy of
p(wlsi:t, T1:¢), H(p(w|s1:t,71:¢)), quantifies the uncer-
tainty of our knowledge. Our goal is to choose the in-
tervention that can maximally reduce the uncertainty.

In this paper, we focus on deterministic interven-
tions which gives us the ability to assume the next input
vector with intervention, s¢i1, is uniquely defined by
the intervention type chosen from I. Now the problem
can be formalized as choosing s¢11 such that the en-
tropy of p(w|s1:¢4+1,71:¢41) can be maximally reduced.
Since the response vector 7441 is unknown, we use the
expected entropy instead and the objective of the vari-
ance model is

(3.6) arg min Ert+1H(p(w|slzt+1,r1:t+1)),

St41
where 7441 is the response vector for s¢41.

However, it’s difficult to directly compute and opti-
mize the expected entropy exactly. Since the likelihood
function of w also belongs to the exponential family, we
approximate
p(w|s1:t4+1,T1:¢41) as a Gaussian distribution,

w\sl:t+1, Ti:t41 ™~ N(ut+1, Ct-{—l)v

where u;41 and Ciyq denote the mean and covariance
of w given (S1:t41,71:¢41). Accordingly, we have the
following theorem.

THEOREM 3.1. When p(w|S1:t41,T1:¢+1) 1S approzi-
mated as a Gaussian distribution, we could solve the
objective function (Eq. (3.6)) as

(3.7)

argmax (e )T (54417 @ I) - Cy - (141 ® J),

St41

Proof. First, we have
1
H(N(ut+17 Ct_|_1)) = 5 lOg ‘Ct+1| + COTL.St,

where |Cyy1| represents the determinant of Cyy1.
In order to calculate C¢11, we have

~1 _ 0%logp(wlugir, Crya)
t+1 = Jw? )
because the inverse covariance matrix equals to the
second partial derivative of the log-Gaussian density
function w.r.t. w.
By expending log p(w|u¢4+1, Cey1) (see supplemen-
tary materials for more details), we can get

Cti1 =C; '+ F(w, s¢41,Tt41)

(3.8)
= (se41 @ I) - diag(e™ *1) - (s41" @ I),



where ® represents Kronecker product, diag is a func-
tion that takes all the elements of a matrix and recon-
struct them into a diagonal matrix, I is a m xm identity
matrix, and

o 10gp(7‘t+1|w7 5t+1)
B Oow? ’

which is the Fisher information (the negative of the
second derivative of the log likelihood with respect to
w). It’s interesting to see that the Fisher information
does not depend on the response vector r¢41.

Finally, Eq. (3.6) can be solved as

F(w, st41,7¢41) =

arg min Ert+1H(p(w|31:t+1> T1:t41))

St41

= argmaxlog|C; ' + F(w, S¢.41,7¢41)|

St41

= arg max tr(log (I + Cy - F(w, St+1, ?‘t+1)))
St41

= argmax (e ¥+ (5,137 @ 1) - Cy - (4421 © J),

St+1

where ¢r is the function to calculate the trace of a matrix
and J is a m x 1 vector with ones in all its entries.

As we can see from Eq. (3.7), the expected
entropy relies on the value of W.  We can use the
expectation of W to eliminate this unknown variable.
To simplify the calculation, we assume W (i, -), the i*"
row of W, which contains the parameters to predict
the responses of neuron ¢, also follows a Gaussian
distribution N (uf, C¥). wui and Cf are subsets of u;
and C} that correspond to the parameters in W (i, ).

Now Eq. (3.6) becomes

arg min EWErH_l H(p(w|s1:t+1,T1:641))
St41
/A arg max
St41
T

T wii.)T
By (i yonup,ope®tt )

: ) o
Ew (i, )N (up,cry €5t W (i,)
(39) . (8t+1T R Ime) . Ct . (3t+1 ® Jm)(]_)
= arg max
St41

T
ot St+11355¢41°Ci St4a
e"T'st+1+%Sf+1'Cl”'st+1
T
(841" @I)-Cy- (8441 ® J),

Eq. (3.9) consists of two terms. The first term is a
1 x m vector and the second term is a m x 1 vector.

From Eq. (3.9), we can get some intuitions about
the variance model. The term e%:$t+1 indicates that
the model is trying to find the interventions that can
increase the activities of the neurons so that previously
undiscovered connection would have a higher chance of
get revealed. The term (sg417 @ I) - Cy - (8441 ® J)
indicates that the model will give larger weights to the
interventions that have influences on the connections
with higher variance.

3.2 Update u and C Without losing generality,
we assume % recordings has been seen so far and C;
corresponds to the most updated covariance matrix.
When the (i + 1)** recording comes, we show how to
calculate u;41 and C;41. When i = 0, we use Cp to
denote the initial covariance matrix. In the next section,
we will show how to initialize Cy to take higher order
interactions into consideration.

Since the log-likelihood function of GLM and the
log-Gaussian density function are both concave, every
time a new recording comes, we just redo the inference
with the method introduced in Section 2.2 and use the
inferred w to approximate w;41. Given u;4+1 and Cj,
we use Eq. (3.8) to update Cjy1.

3.3 Initialization When calculating the covariance
matrix with the initial recording, we could just set Cy
to be an identity matrix. We refer to this method as the
basic variance model. However, we demonstrate that
the performance of the variance model can be further
improved by proposing a heuristic initialization method
that considers higher order connections.

A deeper analysis about how we update C' gives us
the following theorem.

THEOREM 3.2. When C' is initialized as an identity
matriz and being updated according to equations (3.8),
Vi#j,i€(l,m], j€[l,m], ke€[l,n] and c € [1,n],
the covariance between W (i, k) and W (3§, ¢) will always
equal to 0, where W (i, k) is the GLM parameter in i
row and k" column of W (similarly for W (j,c)).

Proof. According to Eq. (3.8), we have
C=(Cy'+ (s®1)-diag(e"*) - (sT @ I))~!

By applying the Sherman-Morrison-Woodbury for-
mula, we get

C=Co—Co- (sx1I)
(diag(e"*) ™' + (s" ®I)-Co- (s® 1)) - (s" ®1I) - Co

When Cj is initialized as an identity matrix, we can
prove Theorem 3.2 by carrying out matrix operations.



The intuition behind Theorem 3.2 is that the pa-
rameters responsible for different neurons (different
rows in W) are independent with each other. As an
example shown in Figure 4, two connections form a
chain and the covariance between their corresponding
parameters will not be updated. However, this chain
represents higher order interactions in the functional
network. Taking them into consideration is beneficial
when choosing interventions. Accordingly, we propose
a heuristic initialization method that proves to be work-
ing very well.

lag=1

lag=2 lag=0

C}
O C
O

Figure 4: An example of higher order interactions.

We first calculate the average firing rates,
(a1,a2...ay), for all the neurons using the initial
recording. Then an input vector s is constructed by us-
ing the average firing rates as the values for each neuron
in all time lags. For any two parameters W (i, k) and
W (j,c) where i # j, let Cw(ir)—w(j) denote their
covariance. We initialize this value as follows,

c _ 1
W (i,k)—=W (j,c) — apageW ()5 gW (G,

where we use the most updated u to approximate
W. This initialization method is designed to follow
the intuition that more information indicates smaller
(co)variance. Here, the amount of information is quan-
tified by the average or predicted firing rate.

4 Validation Model

The variance model works pretty well for many cases.
However, it still has some weaknesses. For example, in
Figure 5, we have three neurons connected in a chain
with spontaneous firing rates (0.05,0.0001,0.0001) and
the firings of neuron 2 and 3 are mainly driven by neuron
1. When a functional network is inferred, a spurious
connection is likely to appear. Assuming we have the
ability to silence one of the neurons, and our goal is to
use the interventional data to maximally decrease the
strength of the spurious connection. Using the variance
model, neuron 3 will be picked to be silenced. Clearly,
it’s not the best option as when the state of neuron 3 is
fixed, all the parameters for the incoming connections

will not be updated. The variance model picks neuron

Picked by the

validation model Picked by the

variance model

Spurious
connection

Figure 5: A chain network where the variance model
picks neuron 3 and the validation model picks neuron 2.

3 because it’s trying to reduce the uncertainty about
the parameters by increasing the neuronal activities of
the whole network. Picking other neurons would reduce
more activities than neuron 3. However, if we are able
to pick neuron 2 as the target, the spurious connection
will be filtered because the incoming connection that
is driving the firing of neuron 3 is blocked and we will
know whether there is a connection from neuron 1 to
neuron 3 or not. So in some cases, the variance model
is not picking the best interventions.

Hence, we propose another model, called validation
model, in accompany with the variance model. Instead
of trying to increase activities of the system so that
we can discover previously missed connections, the goal
of the validation model is to maximally validate our
existing knowledge about the functional network. Our
current knowledge can be represented as the most up-
dated GLM parameters, us. For a new inverventional
input vector s¢41, the objective is to maximally in-
crease our confidence about wug, which is measured by
p(ut|S1:¢+1,T1:¢41). The objective function is formal-
ized as

(4.10) arg max log p(u¢|S1:t4-1, T1:641)-

St41

To have more intuitions about the validation model,
consider a procedure of making decisions about the con-
nections in a functional network given the GLM param-
eters. The significance of the parameters is measured by
their posterior probabilities. Any parameter that has a
posterior probability higher than a threshold will result
in a connection in the functional network. By pursuing
the objective function, we can increase our confidence
about connections in the functional network or filter out
spurious connections.

Since 7441 is unknown, we use its expectation and
rewrite the objective functions as follows,



argmax By, log p(wt|S1:441, T1:641)
St41

= argmax E,, , (logus + log p(r1:¢|81:¢, ue)+
St+41

(4.11) log p(r41|se41, ue) + const)
= argmax E"t+1logp(rt+1 ‘St+1, 'u,t)

St41

m
= argmax Z B ylog p(re41(3)[se41, ue),

St+1 =

where 7441 (%) represents the i*" element in the response
vector r¢y1. When spike train data is considered,
r¢4+1(%) can only take the value of 0 or 1. So, we have

(4.12)

>

=17y 44(3)=0,1

arg max E
St41

log p(req1(2)|St41, Ut)

m .
i %St
= arg max E (—e¥e%tt1 . 7€

Setl =

i u}s uls —e¥tt+1
(UgSpp1 — €¥toet1) - ¥ttt . e )

m .
i Uittt , i
= arg max E (e¥e%tt1 . 7€ (ugSpqq — e+t — 1)
Setl o
m
= arg max g e N (logAi — A\ — 1),
St+1 =

where \; = e¥t%¢+1 and u} represents the parameters in
uy that are responsible for the response of neuron ¢ in
a row vector.

5 Experiments

In this experimental study, we use both synthetic and
real spike train data sets to test the effectiveness of
our active learning models. All the computations are
conducted on a server with 2.67GHz Intel Xeon CPU
(32 cores) and 1TB RAM.

5.1 Data Sets

Interventions. A very recent equipment called Neu-
ronal Circuit Probe (NCP) was developed to do inter-
ventional experiments when recording spike trains from
neurons. NCP could locate a single neuron and deliver
drugs locally to this neuron. In our experiments, a drug
that could silence neurons is used. In other words, as-
suming we have m neurons being recorded, there are m
types of interventions we can do with each one corre-
sponding to fixing the sate of a neuron to 0.

Synthetic data. We use three steps to generate simu-
lated spike train data. First, the structure of the func-

pelected by different methods.

tional network is proposed. Then, a GLM parameter
matrix is created according to the functional network.
Finally, simulated spike train data is generated by run-
ning the GLM. If a neuron is intervened in the simulated
experiment, its value will be always set to 0. We use 1
millisecond as the time bin in the recordings and each
recording has a length of 20 seconds which are 20,000
data points. All the parameters in the simulation pro-
cess are chosen to mimic real neurons. Due to space
constraints, more details about the synthetic data could
be found in the supplementary materials.

Real data. We use a Multielectrode Array (MEA) with
120 channels to record signals from neurons on a culture.
Each channel corresponds to a node in the functional
network we want to learn. We use 1 millisecond as the
time bin to discretize neuronal signals to ensure there is
at most 1 spike at each time bin.

The spike train recordings can be divided into two
categories: observational recording and interventional
recording. For the observational recording, the neurons
are recorded without any drug deliveries. For the
interventional recording, the neurons are recorded while
drugs that can silence neurons are delivered at channels
Each interventional
experiment is conducted after the neurons have fully
recovered from the previous experiment. We use an
observational recording with 60 seconds as the initial
recording and each additional recording has a length of
20 seconds. Finally, another 60 seconds observational
recording is reserved as the test set.

5.2 Evaluation

Methods. To illustrate the effectiveness of our ac-
tive learning models, we compare our approaches with
several baselines. The models we have proposed could
be organized as four approaches: (1) Basic variance
model. The variance model using identity matrix as ini-
tialization; (2) Variance model. The variance model
using our initialization method; (3) Validation model;
(4) Mixture. Alternately using wvariance model and
validation model to choose interventions. We use two
baselines to compare with: (1) Extend. Simply adding
more observational recordings without any interven-
tions. (2) Firing rate. Choosing the neuron that has
the highest firing rate as the intervention target.

Metrics. For the synthetic datasets, since we have
the ground truth which is the GLM parameter matrix
W, the inferred W is directly compared with W. The
Frobenius norm of their difference is used to characterize
the error of the inferred model,



Since we want to repeat our tests with different
experimental settings (structure of the functional net-
works and parameters of the GLM) and report the
average, we need to normalize the errors. Let F =
{e1,€a,...,e.} denote the set of errors when different
number of recordings and different models are used. We
normalize e; as

€ — U
)

g

where u is the mean of E' and o is the standard deviation
of F.

For real datasets, since we don’t have the ground
truth, we reserve some observational recordings as the
test set, and use the predictive ability of the inferred
model to measure its accuracy. So, the negative log-
likelihood on the test dataset is used as the evaluation
metric. A lower negative log-likelihood means the
inferred model is more accurate.

5.3 Random Networks To test the effectiveness of
our models, we conduct simulated experiments with
random networks of different sizes. Given the size
of the network, we randomly generate 10 networks
and report the average of the normalized errors. All
the simulated experiments are done interactively which
means every time a new additional recording is added,
the intervention models are re-calculated to pick the
next intervention.

We first test the case when the functional network
contains 10 nodes. As shown in Figure 6(a), for
all the methods, when more additional recordings are
added, the inferred model is getting more accurate.
However, when Mizture is used to guide the intervention
experiments, we can achieve the most accuracy gains.
Another observation is that the variance model works
better than the basic variance model because of our
initialization method. It’s worth mentioning that the
validation model is not working very well because the
size of the network is too small such that there are not a
lot of spurious connections when the network is inferred.
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Figure 6: Averages of normalized errors with random
networks.

We then increase the size of the random networks
to 20 nodes and redo the experiments. As shown in
Figure 6(b), the variance model, the validation model
and the mixture method achieves the best results.
The variance model shows consistent advantages over
other models. The validation model shows a huge
performance improvement compared to the previous
experiment for the reason that the size of the random
networks is larger and more spurious connections will be
eliminated by the validation model. Interestingly, when
the interventions are chosen by firing rate, it performs
even worse than simply adding observational recordings.

5.4 Real Data For biological reasons the neurons
can not be recorded for too long. So, in real exper-
iments, instead of choosing interventions interactively,
we use batch experimental design. An initial recording
of 60 seconds is collected to train the GLM and inter-
vention models. Then a ranking of interventions is gen-
erated by each intervention model. We use this ranking
without updating it to guide following experiments. We
also use the negative log-likelihood on a test set with a
recording of 60 seconds to measure the accuracy of the
inferred model.

As shown in Figure 7, the variance model, the
validation model and the mixture method could achieve
lower negative log-likelihood (higher accuracy) than
simply extending observational recording or picking
interventions according to firing rate. The performance
gain of our models over the Firing rate method is not
as obvious in the second intervention experiment as in
the first one. The reason may be because we are not
able to update our intervention models by using the
new recording. When the experiments can be done
interactively, more accuracy gain will be achieved.
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Figure 7: Evaluation by real data.

6 Related Work

The problem of learning functional networks should
not be confused with the problem of learning the
structure of a causal network [12] (static or dynamic
Bayesian networks). In structure learning of static
or dynamic causal Bayesian networks, numerous works
[2, 19, 18, 4, 5] have been proposed. However, these



works focus on how to efficiently search the structure
space or how to evaluate the the proposed structure.

When learning a static causal Bayesian network, it
can be proved that given only observational data, we
can not differentiate networks in a Markov equivalence
class, in which the networks have the same skeleton but
may have different directions for some edges [14]. So
some researchers [3, 16] try to tackle this problem with
an active learning framework. In these methods, they
will choose interventions that can orientate most edges.
Another work [17] based on active learning framework
keeps a distribution of possible structures and choose
interventions that can maximally reduce the entropy of
this distribution, but the ordering of nodes needs to be
given.

We study the problem of learning functional net-
works. The structure and parameters are jointly learned
by inferring a Generalized Linear Model. GLM is widely
used in spike train analysis, but most works [15, 13] fo-
cus on learning GLM from observational data. J. Lewi
et al proposes methods [8, 6, 7] to select external stim-
uli for a better estimation of GLM when there is only
one neuron. However, we are interested in modeling in-
teractions among multiple neurons, which is a different
problem.

7 Conclusions

In this work, we study the problem of learning func-
tional networks from spike trains in an active learn-
ing setting. In particular, we propose two models, the
variance model and the validation model, to choose
the most informative intervention so that we can get
the maximum accuracy gain for the inferred network.
Our experimental results with both synthetic and real
data show that by applying our approaches, we could
achieve substantially better accuracy than using the
same amount of observational data or other baseline
methods to choose interventions.
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