
Substructure Similarity Search in Graph Databases∗

Xifeng Yan† Philip S. Yu‡ Jiawei Han†

†
University of Illinois at Urbana-Champaign, {xyan, hanj}@cs.uiuc.edu

‡
IBM T. J. Watson Research Center, psyu@us.ibm.com

ABSTRACT
Advanced database systems face a great challenge raised by
the emergence of massive, complex structural data in bioin-
formatics, chem-informatics, and many other applications.
The most fundamental support needed in these applications
is the efficient search of complex structured data. Since
exact matching is often too restrictive, similarity search of
complex structures becomes a vital operation that must be
supported efficiently.

In this paper, we investigate the issues of substructure sim-
ilarity search using indexed features in graph databases. By
transforming the edge relaxation ratio of a query graph into
the maximum allowed missing features, our structural filter-
ing algorithm, called Grafil, can filter many graphs without
performing pairwise similarity computations. It is further
shown that using either too few or too many features can
result in poor filtering performance. Thus the challenge is
to design an effective feature set selection strategy for fil-
tering. By examining the effect of different feature selection
mechanisms, we develop a multi-filter composition strategy,
where each filter uses a distinct and complementary subset
of the features. We identify the criteria to form effective
feature sets for filtering, and demonstrate that combining
features with similar size and selectivity can improve the fil-
tering and search performance significantly. Moreover, the
concept presented in Grafil can be applied to searching ap-
proximate non-consecutive sequences, trees, and other com-
plicated structures as well.

1. INTRODUCTION
Database research has been facing a new challenge raised

by the emergence of massive, complex structural data, in

∗The work of the first and third authors was supported
in part by NSF IIS-02-09199/03-08215, an IBM Faculty
Award, and an IBM Summer Internship. Any opinions, find-
ings, and conclusions or recommendations expressed in this
paper are those of the authors and do not necessarily reflect
the views of the funding agencies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2005 June 14-16, 2005, Baltimore, Maryland, USA
Copyright 2005 ACM 1-59593-060-4/05/06$5.00.

the form of sequences, trees, and graphs. Among all the
complex structured data, graph is the most sophisticated
and general form of structure. Graphs have broad appli-
cations and have become the first-class citizens in widely
used datasets in chem-informatics and bioinformatics, such
as ChemIDplus [16], PDB [2], and KEGG [11].

Graph database has been largely involved in the develop-
ment of chemical structure search and registration systems.
In chemistry, the structures and properties of newly discov-
ered or synthesized chemical molecules are studied, classi-
fied, and recorded for scientific and commercial purposes.
ChemIDplus [16], a free data service offered by the National
Library of Medicine (NLM), provides access to structure and
nomenclature information. Users can query molecules by
their names, structures, toxicity, and even weight in a flexi-
ble way through its web interface. Given a query structure,
it can quickly identify a small subset of molecules for fur-
ther analysis [8, 24], thus shortening the discovery cycle in
drug design and other scientific activities. Nevertheless, the
usage of a graph database as well as its query system is
not confined to chemical informatics only. In computer vi-
sion and pattern recognition [17, 13, 1], graphs are used to
represent complex structures such as hand-drawn symbols,
3D objects, and medical images. Researchers extract graph
models from various objects and compare them to identify
unknown objects and scenes. The developments in bioinfor-
matics also call for efficient mechanisms in querying a large
number of biological pathways and protein interaction net-
works. These networks are usually very complex with multi-
level structures embedded [11]. All these applications indi-
cate the importance and the broad usage of graph database
and its accompanied similarity search system.

While the motif discovery in graph datasets has been stud-
ied extensively, a systematic examination of graph query be-
comes equally important. A major kind of query in graph
databases is searching topological structures, which cannot
be answered efficiently using the existing database infras-
tructure. The indices built on the labels of vertices or edges
are usually not selective enough to distinguish complicated,
interconnected structures.

Due to the limitation of processing graph queries using
the existing database techniques, tremendous efforts have
been put into building practical graph query systems. In
the past decade, sophisticated methods were developed to
handle different kinds of structure search queries. Most of
them fall into the following three categories: (1) full struc-
ture search: find the structure exactly the same as the query
graph [1]; (2) substructure search: find structures that con-

tain the query graph, or vice versa [19, 20, 25]; and (3) full
structure similarity search: find structures that are similar
to the query graph [17, 24, 18]. These kinds of queries are
very useful within their own applications. For example, in
substructure search, a user may not know the exact com-
position of the full structure he wants, but requires that it
contain a set of small functional fragments.

A common problem in substructure search is: what if no
matches occur for a given query graph? In this situation,
a subsequent query refinement process has to be taken in
order to find the structures of interest. Unfortunately, it is
often too time-consuming for a user to perform manual re-
finements. One solution is to ask the system to find graphs
that nearly match the query. This similarity search strategy
is more appealing since the user can first define the portion
of the query for exact matching and let the system change
the remaining portion slightly. The query could be relaxed
progressively until a relaxation threshold is reached or a rea-
sonable number of matches are found.

N

N

N

N

O

O

(a) caffeine

N

N

N

N

O

O

(b) thesal

N

N
S

O O

N

N
N

N

O

O

(c) viagra

Figure 1: A Chemical Database

N

N

N

N

O

Figure 2: A Query Graph

Example 1. Figure 1 is a chemical dataset with three
molecules. Figure 2 shows a substructure query. Obviously,
no match exists for this query graph. If we relax the query
with one edge miss, caffeine and thesal in Figures 1(a) and
1(b) will be good matches. If we relax the query further, the
structure in Figure 1(c) could also be an answer.

Unfortunately, few systems are available for this kind of
search scheme in large scale graph databases. The existing
tools such as ChemIDplus could only provide the full struc-
ture similarity search and the exact substructure search.
Other studies usually focus on how to compute the sub-
structure similarity between two graphs efficiently [15]. This
leads to the linear complexity with respect to the graph
database size since each graph in the database has to be
checked.

Given that the pairwise substructure similarity computa-
tion is very expensive, practically it is not affordable in a
large database. A näıve solution is to form a set of sub-
graph queries with one or more edge deletions and then use
the exact substructure search. This does not work when the
number of deletions is more than 1. For example, if we al-
low three edges to be deleted in a 20-edge query graph, it
may generate

(

20
3

)

= 1140 substructure queries, which is too

expensive to check. Therefore, a better solution is greatly
preferred.
Our Contributions. In this paper, we propose a feature-
based structural filtering algorithm, called Grafil (Graph
Similarity Filtering) to perform substructure similarity search
in a large scale graph database. Grafil models each query
graph as a set of features and transforms the edge deletions
into the feature misses in the query graph. With an up-
per bound on the maximum allowed feature misses, Grafil

can filter many graphs directly without performing pairwise
similarity computation. As a filtering technology, Grafil will
improve the performance of the existing pairwise substruc-
ture similarity search systems as well as the näıve approach
discussed above in large graph databases.

To facilitate the feature-based filtering, we introduce two
data structures, feature-graph matrix and edge-feature ma-
trix. The feature-graph matrix is an index structure to com-
pute the difference in the number of features between a query
graph and graphs in the database. The edge-feature matrix
is built on the fly to compute a bound on the maximum
allowed feature misses based on a query relaxation ratio.

It is shown that using too many features will not improve
the filtering performance due to a frequency conjugation phe-
nomenon identified through our study. This counter intu-
itive result inspires us to identify better combinations of fea-
tures for filtering purposes. Therefore, we develop a multi-
filter composition strategy, where each filter uses a distinct
and complimentary subset of the features. The filters are
constructed by a hierarchical, one dimensional clustering al-
gorithm that groups features with similar selectivity into a
feature set. The experimental result shows that the multi-
filter strategy can improve performance significantly for a
moderate relaxation ratio. To our best knowledge, we are
not aware of any previous work using feature clustering to
improve the filtering performance.

A significant contribution of this study is an examina-
tion of an increasingly important search problem in graph
databases and the proposal of a feature-based filtering al-
gorithm for efficient substructure similarity search. The de-
velopment of our method explores the structural filtering
algorithm in this new field. Moveover, the concept pre-
sented in Grafil can be applied to searching approximate,
non-consecutive sequences, trees, and other complicated struc-
tures as well.

The rest of the paper is organized as follows. Section 2 de-
fines the preliminary concepts. We introduce our structural
filtering technique in Section 3, followed by an exploration of
feature set selection using clustering techniques in Section 4.
Section 5 describes the algorithm implementation, while our
performance study is reported in Section 6. Related work is
presented in Section 7. Section 8 concludes our study.

2. PRELIMINARY CONCEPTS
Graphs are widely used to represent complex structures

that are difficult to model. In a labeled graph, vertices and
edges are associated with attributes, called labels. The at-
tributes could be tags in XML documents, atoms and bonds
in chemical compounds, genes in biological networks, and
object descriptors in images. Using labeled graphs or un-
labeled graphs depends on the application need. However,
the filtering algorithm we proposed in this paper can handle
both types efficiently.

The vertex set of a graph G is denoted by V (G) and the

edge set by E(G). A label function, l, maps a vertex or an
edge to a label. The size of a graph is defined by the number
of edges it has, written as |G|. A graph G is a subgraph of
G′ if there exists a subgraph isomorphism from G to G′,
denoted by G ⊆ G′. G′ is called a supergraph of G.

Definition 1 (Subgraph Isomorphism). A subgraph
isomorphism is an injective function f : V (G) → V (G′),
such that (1) ∀u ∈ V (G), f(u) ∈ V (G′) and l(u) = l′(f(u)),
and (2) ∀(u, v) ∈ E(G), (f(u), f(v)) ∈ E(G′) and l(u, v) =
l′(f(u), f(v)), where l and l′ is the label function of G and
G′, respectively. f is called an embedding of G in G′.

Given a graph database and a query graph, we may not
find a graph (or a few graphs) in the database that con-
tains the whole query graph. Thus, it would be interesting
to find graphs that contain the query graph approximately,
which is a substructure similarity search problem. Based on
our observation, this problem has two scenarios, similarity
search and reverse similarity search.

Definition 2 (Substructure Similarity Search).
Given a graph database D = {G1, G2, . . . , Gn} and a query
graph Q, similarity search is to discover all the graphs that
approximately contain this query graph. Reverse similarity
search is to discover all the graphs that are approximately
contained by this query graph.

Each type of search scenario has its own applications.
In chemical informatics, similarity search is more popular,
while reverse similarity search has key applications in pat-
tern recognition. In this paper, we develop a structural fil-
tering algorithm for similarity search. Nevertheless, our al-
gorithm can also be applied to reverse similarity search with
slight modifications.

To distinguish a query graph from the graphs in a database,
we call the latter target graphs. The question is how to
measure the substructure similarity between a target graph
and the query graph. There are several similarity measures.
We can classify them into three categories: (1) physical
property-based, e.g., toxicity and weight; (2) feature-based;
and (3) structure-based. For the feature-based measure,
domain-specific elementary structures are first extracted as
features. Whether two graphs are similar is determined by
the number of common elementary structures they have.
For example, we can compare two compounds based on the
number of benzene rings they have. Under this similarity
definition, each graph is represented as a feature vector,
x = [x1, x2, . . . , xn]T , where xi is the frequency of feature
fi. The distance between two graphs is measured by the dis-
tance between their feature vectors. Because of its efficiency,
the feature-based similarity search has become a standard
retrieval mechanism [24]. However, the feature-based ap-
proach only provides a very rough measure on structure
similarity since it loses the global structural connectivity.
Moreover, it is hard to build an “elementary structure” dic-
tionary for a graph database, due to the lack of domain
knowledge.

In contrast, the structure-based similarity measure di-
rectly compares the topology of two graphs, which is often
costly to compute. However, since this measure takes struc-
ture connectivity fully into consideration, it is more accurate
than the feature-based measure. Bunke and Shearer [3] used
the maximum common subgraph to measure the full struc-
ture similarity. Researchers also developed the concept of

graph edit distance and graph alignment distance by simu-
lating the graph matching process in a way similar to the
string matching process (akin to string edit distance and
alignment distance). No matter what the definition is, the
matching of two graphs can be regarded as a result of three
edit operations: insertion, deletion, and relabeling. Accord-
ing to the substructure similarity search, each of these op-
erations relaxes the query graph by removing or relabeling
one edge (insertion does not change the query graph). With-
out loss of generality, we take the percentage of maximum
retained edges in the query graph as a similarity measure.

Definition 3 (Relaxation Ratio). Given two
graphs G and Q, if P is the maximum common subgraph1 of
G and Q, then the substructure similarity between G and Q

is defined by |E(P)|
|E(Q)|

, and 1− |E(P)|
|E(Q)|

is called relaxation ratio.

Example 2. Consider the target graph in Figure 1(a) and
the query graph in Figure 2. Their maximum common sub-
graph has 11 edges. Thus, the substructure similarity be-
tween these two graphs is around 92% with respect to the
query graph. That also means if we relax the query graph by
8%, Figure 1(a) contains the relaxed query graph. Note that
the relaxation ratio is not symmetric. We can also compute
the similarity of graphs in Figures 1(b) and 1(c) with the
query graph. It is 92% and 67%, respectively.

In this paper, we want to examine how to build a connec-
tion between the structure-based measure and the feature-
based measure so that we can use the feature-based mea-
sure to screen the database before performing the expen-
sive pairwise structure-based similarity computation. Using
this strategy, we take the advantages of both measures: ef-
ficiency from the feature-based measure and accuracy from
the structure-based measure.

3. STRUCTURAL FILTERING
Given a relaxed query graph, the major target of our

algorithm is to filter as many graphs as possible using a
feature-based approach. The features discussed here could
be paths [19], discriminative frequent structures [25], el-
ementary structures, or any structures indexed in graph
databases. Previous work did not investigate the connec-
tion between the structure-based similarity measure and the
feature-based similarity measure. In this study, we explic-
itly transform the query relaxation ratio to the misses of
indexed features, thus building a connection between these
two measures.

e1

e2 e3

Figure 3: A Sample Query

Let us first check an example. Figure 3 shows a query
graph and Figure 4 depicts three structural fragments. As-
sume that these fragments are indexed as features in a graph
1The maximum common subgraph is not necessarily con-
nected.

(a) fa (b) fb (c) fc

Figure 4: Features

database. For simplicity, we ignore all the label information
in this example. The symbols e1, e2, and e3 in Figure 3 do
not represent labels but edges themselves. Suppose we can-
not find any match for this query graph in a graph database.
Then a user may relax one edge, e1, e2, or e3, through a dele-
tion or relabeling operation. He/she may deliberately retain
the middle edge, because the deletion of that edge may break
the relaxed query graph into pieces, which certainly should
be avoided. Because the relaxation can take place among
e1, e2, and e3, we are not sure which feature will be affected
by this relaxation. However, no matter which edge is re-
laxed, the relaxed query graph should have at least three
occurrences of these features. Equivalently, we say that the
relaxed query graph may miss at most four occurrences of
these features in comparison with the original query graph,
which have seven occurrences: one fa, two fb’s, and four
fc’s. Using this information, we can discard graphs that
do not contain at least three occurrences of these features.
We name the above filtering concept feature-based structural
filtering.

3.1 Feature-Graph Matrix Index
Here we introduce an index structure, referred to as the

feature-graph matrix, to facilitate the feature-based filtering.
Each column of the matrix corresponds to a target graph in
the graph database, while each row corresponds to a fea-
ture being indexed. Each entry records the number of the
embeddings of a specific feature in a target graph. Suppose
we have a sample database with four graphs, G1, G2, G3,
and G4. Figure 5 shows an example of feature-graph ma-
trix index. For instance, G1 has two embeddings of fc. The
feature-graph matrix index is easily maintainable: as each
time a new graph is added to the graph database, only an
additional column needs to be added.

G1 G2 G3 G4

fa 0 1 0 0

fb 0 0 1 0

fc 2 3 4 4

Figure 5: Feature-Graph Matrix Index

Using the feature-graph matrix, we can apply the feature-
based filtering on any query graph against a target graph
in the database using any subset of the indexed features.
Consider the query shown in Figure 3 with one edge relax-
ation. According to the feature-graph matrix in Figure 5,
even if we do not know the structure of G1, we can filter
G1 immediately based on the features included in G1, since
G1 only has two of all the embeddings of fa, fb, and fc.

This feature-based filtering process is not involved with any
costly structure similarity checking. The only computation
needed is to retrieve the features from the index that belong
to a query graph and compute the possible feature misses for
a relaxation ratio. Since our filtering algorithm is fully built
on the feature-graph matrix index, we need not access the
physical database unless we want to calculate the accurate
substructure similarity.

We implement feature-graph matrix based on a list, where
each element points to an array representing the row of the
matrix. Using this implementation, we can flexibly insert
and delete features without rebuilding the whole index. In
the next subsection, we will present the general framework
of processing similarity search, and illustrate the position of
our structural filtering algorithm in this framework.

3.2 Framework
Given a graph database and a query graph, the substruc-

ture similarity search can be performed in the following four
steps.

1. Index construction: Select small structures as fea-
tures in the graph database, and build the feature-
graph matrix between the features and the graphs in
the database.

2. Feature miss estimation: Determine the indexed
features belonging to the query graph, select a feature
set (i.e., a subset of the features), calculate the num-
ber of selected features contained in the query graph
and then compute the upper bound of feature misses
if the query graph is relaxed with one edge deletion
or relabeling. This upper bound is written as dmax.
Some portion of the query graph can be specified as
not to be altered, e.g., key functional structures.

3. Query processing: Use the feature-graph matrix to
calculate the difference in the number of features be-
tween each graph G in the database and query Q. If
the difference is greater than dmax, discard graph G.
The remaining graphs constitute a candidate answer
set, written as CQ. We then calculate substructure
similarity using the existing algorithms and prune the
false positives in CQ.

4. Query relaxation: Relax the query further if the
user needs more matches than those returned from the
previous step; iterate Steps 2 to 4.

The feature-graph matrix in Step 1 is built beforehand
and can be used by any query. The similarity search for a
query graph takes place in Step 2 and Step 3. The filtering
algorithm proposed should return the candidate answer set
as small as possible since the cost of the accurate similarity
computation is proportional to the size of the candidate set.
Quite a lot of work has been done at calculating the pairwise
substructure similarity. Readers are referred to the related
work in [15, 8, 18].

In the step of feature miss estimation, we calculate the
number of features in the query graph. One feature may
have multiple occurrences in a graph; thus, we use the num-
ber of embeddings of a feature as a more precise term. In
this paper, these two terms are used interchangeably for
convenience.

In the rest of this section, we will introduce how to es-
timate feature misses by translating it into the maximum
coverage problem. The estimation is further refined through
a branch-and-bound method. In Section 4, we will explore
the opportunity of using different feature sets to improve
filtering efficiency.

3.3 Feature Miss Estimation
Substructure similarity search is akin to approximate string

matching. In approximate string matching, filtering algo-
rithms such as q-gram achieve the best performance because
they do not inspect all the string characters. However, filter-
ing algorithms only work for the moderate relaxation ratio
and need a validation algorithm to check the actual matches
[14]. Similar arguments also apply to our structural filter-
ing algorithm in substructure similarity search. Fortunately,
since we are doing substructure search instead of full struc-
ture similarity search, usually the relaxation ratio is not very
high in our problem setting.

A string with q characters is called a q-gram. A typical
q-gram filtering algorithm builds an index for all q-grams
in a string database. A query string Q is broken into a set
of q-grams, which are compared against the q-grams of each
target string in the database. If the difference in the number
of q-grams is greater than the following threshold, Q will not
match this string within k edit distance.

Given two strings P and Q, if their edit distance is k, their
difference in the number of q-grams is at most kq [21].

It would be interesting to check whether we can similarly
derive a bound for size-q substructures. Unfortunately, we
may not draw a succinct bound like the one given to q-
grams due to the following two issues. First, in substructure
similarity search, the space of size-q subgraphs is explosive
with respect to q. This contrasts with the string case where
the number of q-grams in a string is linear to its length.
Secondly, even if we index all of the size-q subgraphs, the
above q-gram bound will not be valid since the graph does
not have the linearity that the string does.

fa fb(1) fb(2) fc(1) fc(2) fc(3) fc(4)

e1 0 1 1 1 0 0 0

e2 1 1 0 0 1 0 1

e3 1 0 1 0 0 1 1

Figure 6: Edge-Feature Matrix

We use an edge-feature matrix to build a map between
edges and features for a query graph. In this matrix, each
row represents an edge while each column represents an em-
bedding of a feature. Figure 6 shows the matrix built for the
query graph in Figure 3 and the features shown in Figure
4. All the embeddings of features are recorded. For exam-
ple, the second and the third columns are two embeddings
of feature fb in the query graph. The first embedding of fb

covers edges e1 and e2 while the second covers edges e1 and
e3. The middle edge does not appear in the edge-feature
matrix if a user prefers retaining it. We say that an edge ei

hits a feature fj if fj covers ei.

It is not expensive to build the edge-feature matrix on-
the-fly as long as the number of features is small. Whenever
an embedding of a feature is discovered, we append a new
column to the matrix. The feature miss estimation problem
can be stated as follows: Given a query graph Q and a set
of features contained in Q, if the relaxation ratio is θ, what
is the maximal number of features that can be missed? In
fact, it is the maximum number of columns that can be hit
by k rows in the edge-feature matrix, where k = ⌊θ · |G|⌋.
This is a classic maximum coverage (or set k-cover) problem,
which has been proved NP-complete. The optimal solution
that finds the maximal number of feature misses can be
approximated by a greedy algorithm. The greedy algorithm
first selects a row that hits the largest number of columns
and then removes this row and the columns covering it. This
selection and deletion operation is repeated until k rows are
removed. The number of columns removed by this greedy
algorithm provides a way to estimate the upper bound of
feature misses.

Algorithm 1 GreedyCover

Input: Edge-feature Matrix M ,
Maximum edge relaxations k.

Output: The number of feature misses Wgreedy.

1: let Wgreedy = 0;
2: for each l = 1 . . . k do
3: select row rl that maximizes |M(rl, ·)|;
4: Wgreedy = Wgreedy + |M(rl, ·)|;
5: for each column c s.t. M(rl, c) = 1 do
6: set M(·, c)=0;
7: return Wgreedy;

Algorithm 1 shows the pseudo-code of the greedy algo-
rithm. Let M(r, c) be the entry in the rth row, cth column
of matrix M . M(r, ·) denotes the rth row vector of matrix
M , while M(·, c) denotes the cth column vector of matrix
M . |M(r, ·)| represents the number of non-zero entries in
M(r, ·).

Theorem 1. Let Wgreedy and Wopt be the total feature
misses computed by the greedy solution and by the optimal
solution. We have

Wgreedy ≥ [1 − (1 −
1

k
)k] Wopt ≥ (1 −

1

e
) Wopt, (1)

where k is the number of edge relaxations.

Proof. [4]

Theoretic result shows that the optimal solution cannot
be approximated in polynomial time within a ratio of (e/(e−
1) − o(1)) unless P = NP [5]. We rewrite the inequality in
Theorem 1.

Wopt ≤
1

1 − (1 − 1
k
)k

Wgreedy

Wopt ≤
e

e − 1
Wgreedy

Wopt ≤ 1.6 Wgreedy (2)

Traditional applications of the maximum coverage prob-
lem focus on how to approximate the optimal solution as

better as possible. Here we are only interested in the up-
per bound of the optimal solution. Let maxr |M(r, ·)| be the
maximum number of features that one edge hits. Obviously,
Wopt should be less than k times of this number,

Wopt ≤ k × max
r

|M(r, ·)|. (3)

3.4 Estimation Refinement
A tight bound of Wopt is critical to the filtering perfor-

mance. A tighter bound often leads to a smaller set of can-
didate graphs. Although the bound derived by the greedy
algorithm cannot be improved asymptotically any more, we
may still improve the greedy algorithm in practice.

Let Wopt(M, k) be the optimal value of the maximum fea-
ture misses for k edge relaxations. Suppose row rl maxi-
mizes |M(rl, ·)|. Let M ′ be M except M ′(rl, ·) = 0 and
M ′(·, c) = 0 for any column c that is hit by rl, and M ′′ be
M except M ′′(rl, ·) = 0.

Any optimal solution that leads to Wopt should be in the
following two cases: (Case 1) rl is selected in this solution;
or (Case 2) rl is not selected (we call rl disqualified for the
optimal solution). In the first case, the optimal solution
should also be the optimal solution for the remaining matrix
M ′. That is, Wopt(M, k) = |M(rl, ·)|+Wopt(M

′, k−1). k−1
means that we need to remove the remaining k−1 rows from
M ′ since row rl is selected. In the second case, the optimal
solution for M should be the optimal solution for M ′′, i.e.,
Wopt(M, k) = Wopt(M

′′, k). k means that we still need to
remove k rows from M ′′ since row rl is disqualified. We
call the first case the selection step, and the second case the
disqualifying step. Since the optimal solution is to find the
maximum number of columns that are hit by k edges, Wopt

should be equal to the maximum value returned by these
two steps. Therefore, we can draw the following conclusion.

Lemma 1.

Wopt(M, k) = max

{

|M(rl, ·)| + Wopt(M
′, k − 1),

Wopt(M
′′, k).

(4)

Lemma 1 suggests a recursive solution to calculating Wopt.
It is equivalent to enumerating all the possible combinations
of k rows in the edge-feature matrix, which may be very
costly. However, it is worth exploring the top levels of this
recursive process, especially for the case where most of the
features intensively cover a set of common edges. For each
matrix M ′ (or M ′′) that is derived from the original matrix
M after several recursive calls in Lemma 1, M ′ encountered
interleaved selection steps and disqualifying steps. Suppose
M ′ has h selected rows and b disqualified rows. We restrict
h to be less than H and b to be less than B, where H and
B are predefined constants, and H + B should be less than
the number of rows in the edge-feature matrix. In this way,
we can control the depth of the recursion.

Let Wapx(M, k) be the upper bound of the maximum fea-
ture misses calculated using Equations (2) and (3), where M
is the edge-feature matrix and k is the number of edge re-
laxations. We formulate the above discussion in Algorithm
2. Line 7 selects row rl while Line 8 disqualifies row rl.
Lines 7 and 8 correspond to the selection and disqualifying
steps shown in Lemma 1. Line 9 calculates the maximum
value of the result returned by Lines 7 and 8. Meanwhile,

we can also use the greedy algorithm to get the upper bound
of Wopt directly, as Line 10 does. Algorithm 2 returns the
best estimation we can get. The condition in Line 1 will
terminate the recursion when it selects H rows or when it
disqualifies B rows. Algorithm 2 is a classical branch-and-
bound approach.

Algorithm 2 West(M, k, h, b)

Input: Edge-feature Matrix M ,
Number of edge relaxations k,
h selection steps and b disqualifying steps.

Output: Maximum feature misses West.

1: if b ≥ B or h ≥ H then
2: return Wapx(M, k);
3: select row rl that maximizes |M(rl, ·)|;
4: let M ′ = M and M ′′ = M ;
5: set M ′(rl, ·)=0 and M ′(·, c)=0 for any c if M(rl, c) = 1;
6: set M ′′(rl, ·)=0;
7: W1 = |M(rl, ·)| + West(M

′, k, h + 1, b) ;
8: W2 = West(M

′′, k, h, b + 1) ;
9: Wa = max(W1, W2) ;
10: Wb = Wapx(M, k);
11: return min(Wa, Wb);

We select parameters H and B such that H is less than
the number of edge relaxations, and H + B is less than the
number of rows in the matrix. Algorithm 2 is initialized
by West(M, k, 0, 0). The bound obtained by Algorithm 2 is
not greater than the bound derived by the greedy algorithm
since we intentionally select the smaller one in Lines 10-
11. On the other hand, West(M, k, 0, 0) is not less than the
optimal value since Algorithm 2 is just a simulation of the
recursion in Lemma 1, and at each step, it has a greater
value. Therefore, we can draw the following conclusion.

Lemma 2. Given two non-negative integers H and B in
Algorithm 2, if H ≤ k and H + B ≤ n, where k is the
number of edge relaxations and n is the number of rows in
the edge-feature matrix M , we have

Wopt(M, k) ≤ West(M, k, 0, 0) ≤ Wapx(M, k). (5)

Given a query Q and the maximum allowed selection and
disqualifying steps, H and B, the cost of computing West is
irrelevant to the number of the graphs in a database. Thus,
the cost of feature miss estimation remains constant with
respect to the database size.

3.5 Frequency Difference
Assume that f1, f2, . . . , fn form the feature set used

for filtering. Once the upper bound of feature misses is
obtained, we can use it to filter graphs in our framework.
Given a target graph G and a query graph Q, let u =
[u1, u2, . . . , un]T and v = [v1, v2, . . . , vn]T be their corre-
sponding feature vectors, where ui and vi are the frequency
(i.e., the number of embeddings) of feature fi in graphs G
and Q. Figure 7 shows the two feature vectors u and v.
As mentioned before, for any feature set, the corresponding
feature vector of a target graph can be obtained from the
feature-graph matrix directly without scanning the graph
database.

Target Graph G

Query Graph Q

u1

u2

u3

u4

u5

v1

v2

v3
v4

v5

f1 f2 f3 f4 f5

Figure 7: Frequency Difference

We want to know how many more embeddings of feature
fi appear in the query graph, compared to the target graph.
Equation (6) calculates this frequency difference for feature
fi,

r(ui, vi) =

{

0, if ui ≥ vi,

vi − ui, otherwise.
(6)

For the feature vectors shown in Figure 7, r(u1, v1) = 0; we
do not take the extra embeddings from the target graph into
account. The summed frequency difference of each feature
in G and Q is written as d(G, Q). Equation (7) sums up all
the frequency differences,

d(G, Q) =
n

∑

i=1

r(ui, vi). (7)

Suppose the query can be relaxed with k edges. Algorithm
2 estimates the upper bound of allowed feature misses. If
d(G, Q) is greater than that bound, we can conclude that
G does not contain Q within k edge relaxations. For this
case, we do not need to perform any complicated structure
comparison between G and Q. Since all the computations
are done on the preprocessed information in the indices, the
filtering actually is very fast.

4. FEATURE SET SELECTION
In Section 3, we have explored the basic filtering frame-

work and our bounding technique. For a given feature set,
the performance could not be improved further unless we
have a tighter bound of allowed feature misses. Neverthe-
less, we have not explored the opportunities of composing
filters based on different feature sets. An interesting ques-
tion is “should we use all the features together in a single
filter?” or “does a filter achieve good filtering performance if
all the features are used together?” Intuitively, such a strat-
egy would improve the performance since all the available
information is used. Unfortunately, very different results are
observed in our experiments: Using all the features together
in one filter will deteriorate the performance rather than
improve it. This counter-intuitive result is observed uni-
versally. In this section, we will explain the reason behind
this phenomenon and discuss how to solve this issue by sep-
arating features with different characteristics to construct
multiple filters.

Let u = [u1, u2, . . . , un]T and v = [v1, v2, . . . , vn]T be the
feature vectors built from a target graph G and a query
graph Q. Assume that dmax is the maximum allowed fea-

ture misses. The feature space of a candidate graph can be
described as follows,

r(u1, v1) + r(u2, v2) + . . . + r(un, vn) ≤ dmax. (8)

Any graph whose feature vector satisfies the above inequal-
ity is a candidate answer for the query graph. Let P be
the maximum common subgraph of G and Q. Vector u′ =
[u′

1, u
′
2, . . . , u

′
n]T is its feature vector. If G contains Q within

the relaxation ratio, P should contain Q within the relax-
ation ratio as well, i.e.,

r(u′
1, v1) + r(u′

2, v2) + . . . + r(u′
n, vn) ≤ dmax. (9)

Since for any feature fi, ui ≥ u′
i, we have

r(ui, vi) ≤ r(u′
i, vi),

n
∑

i=1

r(ui, vi) ≤
n

∑

i=1

r(u′
i, vi).

Inequality (9) is stronger than Inequality (8). Mathemat-
ically, we should check Inequality (9) instead of Inequality
(8). However, we do not want to calculate P , the maximum
common subgraph of G and Q, beforehand, due to its com-
putational cost. Inequality (8) is the only choice we have.
Assume that Inequality (9) does not hold for graph P , and
furthermore, there exists a feature fi such that its frequency
in P is too small to make Inequality (9) hold. However, we
can still make Inequality (8) true for graph G, if we compen-
sate the misses of fi by adding more occurrences of another
feature fj in G. We call this phenomenon feature conjuga-
tion. Feature conjugation likely takes place in our filtering
algorithm since the filtering does not distinguish the misses
of a single feature, but a collective set of features. As one
can see, because of feature conjugation, we may fail to filter
some graphs that do not satisfy the query requirement.

Example 3. Assume that we have a graph G that con-
tains the sample query graph in Figure 3 with edge e3 relaxed.
In this case, G must have one embedding of feature fb and
two embeddings of fc (fb and fc are in Figure 4). However,
we may slightly change G such that it does not contain fb

but has one more embedding of fc. This is exactly what G4

has in Figure 5. The feature conjugation takes place when
the miss of fb is compensated by the addition of one more
occurrence of fc. In such a situation, Inequality (8) is still
satisfied for G4, although Inequality (9) is not.

However, if we can divide the features in Figure 4 into
two groups, we can partially solve the feature conjugation
problem. Let group A contain feature fa and fb, and group
B contain feature fc only. For any graph containing the
query shown in Figure 3 with one edge relaxation (edge e1,
e2 or e3), it must have one embedding in Group A. Using
this constraint, we can drop G4 in Figure 5 since G4 does
not have any embedding of fa or fb.

The above example also implies that the filtering power
may be weakened if we deploy all the features in one filter. A
feature has filtering power if its frequency in a target graph
is less than its frequency in the query graph; otherwise, it
does not help the filtering. Unfortunately, a feature that is
good for some graph may not be good for other graphs in
the database. Therefore, we want to find a set of features
that are uniformly good for a large number of graphs. We
use selectivity defined below to measure the filtering power

of a feature f for all the graphs in the database. Using the
feature-graph matrix, it takes little time to compute since
we need not access the physical database.

Definition 4 (Selectivity). Given a graph database
D, a query graph Q, and a feature f , the selectivity of f
is defined by its average frequency difference within D and
Q, written as δf (D, Q). δf (D, Q) is equal to the average of
r(u, v), where u is a variable denoting the frequency of f in
a graph belonging to D, v is the frequency of f in Q, and r
is defined in Equation (6).

To put features with the same filtering power in a single
filter, we have to group features with similar selectivity into
the same feature set. Before we elaborate this idea, we first
conceptualize three general rules that provide guidance on
feature set selection.

Rule 1. Select a large number of features.

Rule 2. Make sure features cover the query graph uniformly.

Rule 3. Separate features with different selectivity.

Obviously, the first rule is necessary. If only a small num-
ber of features are selected, the maximum allowed feature
misses may become very close to

∑n

i=1 vi. In that case, the
filtering algorithm loses its pruning power. The second rule
is more subtle than the first one, but based on the same in-
tuition. If most of the features cover several common edges,
the relaxation of these edges will make the maximum allowed
feature misses too big. The third rule has been examined
above. Unfortunately, these three criteria are not consis-
tent with each other. For example, if we use all the features
in a query, the second and the third rules will be violated
since sparse graphs such as chemical structures have features
concentrated in the graph center. Secondly, low selective
features deteriorate the potential filtering power from high
selective ones due to frequency conjugation. On the other
hand, we cannot use the most selective features alone be-
cause we may not have enough highly selective features in a
query.

Since using a single filter with all the features included is
not expected to perform well, we devise a multi-filter compo-
sition strategy: Multiple filters are constructed and coupled
together, where each filter uses a distinct and complimen-
tary feature set. The three rules we have examined provide
general guidance on how to compose the feature set for each
of the filters. The task of feature set selection is to make
a trade-off among these rules. We may group features by
their size to create feature sets. This simple scheme satis-
fies the first and the second rules. Usually the selectivity of
features with varying sizes is different. Thus it also roughly
meets the third rule. This simple scheme actually works as
verified by our experiments. However, we may go one step
further by first grouping features with similar size and then
clustering them based on their selectivity to form feature
sets.

We devise a simple hierarchical agglomerative clustering
algorithm based on the selectivity of the features. The final
clusters produced represent the distinct feature sets for the
different filters. The algorithm starts at the bottom, where
each feature is an individual cluster. At each level, it recur-
sively merges the two closest clusters into a single cluster.
The “closest” means their selectivity is the closest. Each

cluster is associated with two parameters: the average se-
lectivity of the cluster and the number of features associated
with it. The selectivity of two merged clusters is defined by
a linear interpolation of their own selectivity,

n1δ1 + n2δ2

n1 + n2
, (10)

where n1 and n2 are the number of features in the two clus-
ters, and δ1 and δ2 are their corresponding selectivity.

f1 f2 f3 f4 f5 f6

3 clusters

Figure 8: Hierarchical Agglomerative Clustering

Features are first sorted according to their selectivity and
then clustered hierarchically. Assume that δf1

(D, Q) ≤ δf2

(D, Q) ≤ δf3
(D, Q) ≤ Figure 8 shows a hierarchical

clustering tree. In the first round, f5 is merged with f6.
In the second round, f1 is merged with f2. After that, f4

is merged with the cluster formed by f5 and f6 if f4 is the
closest one to them. Since the clustering is performed in one
dimension, it is very efficient to build.

5. ALGORITHM IMPLEMENTATION
In this section, we formulate our filtering algorithm, called

Grafil (Graph Similarity Filtering).
Grafil consists of two components: a base component and

a clustering component. Both of them apply the multi-filter
composition strategy. The base component generates fea-
ture sets by grouping features of the same size and uses
them to filter graphs based on the upper bound of allowed
feature misses derived in Section 3.4. It first applies the fil-
ter using features with one edge, then the one using features
with two edges, and so on. We denote the base component
by Grafil-base. The clustering component combines the fea-
tures whose size differs at most by 1, and groups them by
their selectivity. Algorithm 3 sketches the outline of Grafil.
Fi in Line 2 represents the set of features with i edges. Lines
2-4 form the base component and Lines 5-11 form the clus-
tering component. Once the hierarchical clustering is done
on features with i edges and i + 1 edges, Grafil divides them
into three groups with high selectivity, medium selectivity,
and low selectivity. A separate filter is constructed based on
each group of features. For the hierarchical clusters shown
in Figure 8, Grafil will choose f1 and f2 as group 1, f3 as
group 2, and f4, f5 and f6 as group 3.

To deploy the multiple filters, Grafil can run in a pipeline
mode or a parallel mode. The diagram in Figure 9 depicts
the pipeline mode, where the candidate answer set returned
from the current step is pumped into the next step.

Algorithm 3 is written in the pipeline mode. We can
change it to the parallel mode by replacing Line 4 and Line
11 with the following statement,

CQ = { G|d(G, Q) ≤ dmax, G ∈ D },

Algorithm 3 Grafil

Input: Graph database D, Feature set F ,
Maximum feature size maxL, and
A relaxed query Q.

Output: Candidate answer set CQ.

1: let CQ = D;
2: for each feature set Fi, i ≤ maxL do
3: calculate the maximum feature misses dmax;
4: CQ = { G|d(G, Q) ≤ dmax, G ∈ CQ };
5: for each feature set Fi

⋃

Fi+1, i < maxL do
6: compute the selectivity based on CQ;
7: do the hierarchical clustering on features in Fi

⋃

Fi+1;
8: cluster features into three groups, X1, X2, and X3;
9: for each cluster Xi do
10: calculate the maximum feature misses dmax;
11: CQ = { G|d(G, Q) ≤ dmax, G ∈ CQ };
12: return CQ;

Query feature set 1

feature set n

...

C1

Cn

Figure 9: Filtering Pipeline

and CQ in Line 6 with D. With these modifications, Grafil

can be parallelized directly. The final candidate answer set
is the intersection of the candidate sets returned by each fil-
ter. However, there is a slight difference between the pipeline
mode and the parallel mode. Grafil in the pipeline mode can
achieve a smaller candidate answer set. The reason is the
clustering component (Line 6) in the pipeline mode calcu-
lates the selectivity based on the candidate graphs returned
in the previous step, while the parallel mode does not. We
will show the performance impact raised by this difference
in the next section.

6. EMPIRICAL STUDY
In this section, we conduct several experiments to examine

the properties of Grafil. The performance of Grafil is com-
pared with two algorithms based on a single filter: one using
individual edges as features (denoted as Edge) and the other
using all features of a query graph (denoted as Allfeature).
Many similarity search algorithms [8, 18] can only apply the
edge-based filtering mechanism since the mapping between
edge deletion/relabeling and feature misses was not estab-
lished before this study. In fact, the edge-based filtering
approach can be viewed as a degenerate case of the feature-
based approach using a filter with single edge features. By
demonstrating the conditions where Grafil can filter more
graphs than Edge and Allfeature, we show that Grafil can
substantially improve substructure similarity search in large
graph databases.

Two kinds of datasets are used through our empirical
study: one real dataset and a series of synthetic datasets.

The real dataset is an AIDS antiviral screen dataset con-
taining the topological structures of chemical compounds.
This dataset is available on the website of the Developmental
Therapeutics Program (NCI/NIH)2. In this dataset, thou-
sands of compounds have been checked for evidence of anti-
HIV activity. The dataset has around 44,000 structures.
The synthetic data generator was kindly provided by Ku-
ramochi et al. [12]. The generator allows the user to specify
various parameters, such as the database size, the average
graph size, and the label types, to examine the scalability of
Grafil.

We built Grafil based on the gIndex algorithm [25]. gIndex
first mines frequent subgraphs with size up to 10 and then
retains discriminative ones as indexing features. We thus
take the discriminative frequent structures as our indexing
features. Certainly, other kinds of features can be used in
Grafil too, since Grafil does not rely on the kinds of features
to be used. For example, Grafil can also take paths [19] as
features to perform the similarity search.

Through our experiments, we illustrate that

1. Grafil can efficiently prune the search space for sub-
structure similarity search and generate up to 15 times
less candidate graphs than the alternatives in the chem-
ical dataset.

2. Bound refinement and feature set selection for the mul-
tiple filter approach developed by Grafil are both effec-
tive.

3. Grafil performs much better for graphs with a small
number of labels.

4. The single filter approach using all features together
does not perform well due to the frequency conjugation
problem identified in Section 4. Neither does the ap-
proach using individual edges as features due to their
low selectivity.

Experiments on the Chemical Compound Dataset.

We first examine the performance of Grafil over the AIDS an-
tiviral database. The test dataset consists of 10, 000 graphs
that are randomly selected from the AIDS screen database.
These graphs have 25 nodes and 27 edges on average. The
maximum one has 214 nodes and 217 edges in total. Note
that in this dataset most of the atoms are carbons and most
of the edges are carbon-carbon bonds. This characteristic
makes the substructure similarity search very challenging.
The query graphs are directly sampled from the database
and are grouped together according to their size. We de-
note the query set by Qm, where m is the size of the graphs
in Qm. For example, if the graphs in a query set have 20
edges each, the query set is written as Q20. Different from
the experiment setting in [25], the edges in our dataset are
assigned with edge types, such as single bond, double bond,
and so on. By doing so, we reduce the number of exact sub-
structure matches for each query graph. This is exactly the
case where the substructure similarity search will help: find
a relatively large matching set by relaxing the query graph
a little bit. When a user submits a substructure similarity
query, he may not allow arbitrary deletion of some critical
atoms and bonds. In order to simulate this constraint, we
retain 25% of the edges in each query graph.

2http://dtpsearch.ncifcrf.gov/FTP/AIDO99SD.BIN

104

103

102

10
 0 1 2 3 4 5

of

 c
an

di
da

te
 a

ns
w

er
s

of edge relaxations

Edge
All

Grafil

Figure 10: Structure Query with 16 edges

We made some slight modifications on the Allfeature ap-
proach by removing features whose size is greater than the
query graph size divided by the number of edge relaxations.
This modification improves the performance of Allfeature.
Figure 10 depicts the performance of Edge, Allfeature and
Grafil for the query set Q16. The X-axis shows the number of
edge relaxations done for a query graph. The Y -axis shows
the average number of candidate graphs returned by each
algorithm. As explained in Section 1, it is always prefer-
able to filter as many graphs as possible before performing
real similarity computation. The accurate pairwise similar-
ity checking is very time-consuming. If we allow one edge
to be lost for queries with 16 edges, the Edge approach can
prune 96% of the dataset while Grafil can prune 99.7%. If
a user wants to check whether there are real matches in the
remaining 0.3% of the dataset, they can apply the similar-
ity computation tools developed in [8, 18] to check them.
If they are not satisfied with the result, the user can relax
the edge loss to 3. The Edge approach will return 18% of
the dataset and Grafil will return 11% of the dataset. The
running time of Grafil is negligible in comparison to the accu-
rate substructure similarity computation. Using the feature-
graph matrix, the filtering stage takes less than 1 second per
query for this query set.

Figure 10 demonstrates that Grafil outperforms Edge and
Allfeature significantly when the relaxation ratio is within 2
edges by a factor of 5-10 times. However, when the relax-
ation ratio increases, the performance of Grafil is close to
Edge. The reason is very simple. The structures of chemical
compounds are very sparse, and are mainly tree-structured
with several loops embedded. If we allow three edges to
be deleted or relabeled for a query that has 16 edges, it is
likely that the relaxed edges divide the query graph into four
pieces. Each piece may only have 4-5 edges in total which
virtually cannot hold any significant features. These small
pieces have very weak pruning power. Eventually, only the
number of remaining edges in a query graph counts. There-
fore, we expect that when the relaxation ratio increases,
Grafil will have the performance close to Edge. However,
at this time the number of matches will increase dramati-
cally. Since a user may not like the relaxed query graph to
deviate too far away from her/his need, she/he may stop
with a small relaxation ratio. Take the query set Q16 as
an example, on average it only has 1.2 exact substructure
matches. If we allow two edges to be relaxed, it has 12.8
matches on average, which may be enough for examination.

And this figure is proportional to the number of graphs in
the database.

The above result is further confirmed through another ex-
periment. We test the queries that have 20 edges. Figure
11 shows the performance comparison among these three
algorithms. Again, Grafil outperforms Edge and Allfeature.

104

103

102

10

1
 0 1 2 3 4 5

of

 c
an

di
da

te
 a

ns
w

er
s

of edge relaxations

Edge
All

Grafil

Figure 11: Structure Query with 20 edges

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 0 1 2 3 4 5

of

 c
an

di
da

te
 a

ns
w

er
s

of edge relaxations

with bound refinement
without bound refinement

Figure 12: Feature Miss Estimation Refinement

Having examined the overall performance of Grafil in com-
parison with the other two approaches, we test the effective-
ness of each component of Grafil. We take Q20 as a testing
set. Figure 12 shows the performance difference before and
after we apply the bound refinement in Grafil. In this ex-
periment, we set the maximum number of selection steps
(H) at 2, and the maximum number of disqualifying steps
(B) at 6. It seems that the bound refinement makes critical
improvement when the relaxation ratio is below 20%. At
the high relaxation ratio, bound refinement does not have
apparent effects. As explained in the previous experiments,
Grafil mainly relies on the edge feature set to filter graphs
when the ratio is high. In this case, bound refinement will
not be effective at all. In summary, it is worth doing bound
refinement for the moderate relaxation ratio.

Figure 13 shows the filtering ratio obtained by applying
the clustering component in Grafil. Let CQ and C′

Q be the
candidate answer set returned by Grafil (with the clustering
component) and Grafil-base (with the base component only),
respectively. The filtering ratio in the figure is defined by
|C′

Q|

|CQ|
. The test is performed on the query set Q20. Overall,

Grafil with the clustering component is 40%–120% better

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 1 2 3 4 5

fil
te

rin
g

ra
tio

of edge relaxations

Grafil - clustering vs. base
Grafil - pipeline vs. parallel

Figure 13: Clustering and Pipeline Improvement

than Grafil-base. We also do a similar test to calculate the
filtering gain achieved by the pipeline mode over the parallel
mode. The pipeline mode is 20%–60% better.

Experiments on the Synthetic Datasets.

The synthetic data generator first creates a set of seed struc-
tures randomly. Seed structures are then randomly com-
bined to form a synthesized graph. Readers are referred to
[12] for details about the synthetic data generator. A typical
dataset may have 10,000 graphs and use 200 seed fragments
with 10 kinds of nodes and edges. We denote this dataset
by D10kI10T50L200E10V 10. E10 (V 10) means there are
10 kinds of edge labels (node labels). In this dataset, each
graph has 50 edges (T50) and each seed fragment has 10
edges (I10) on average.

Since the parameters of synthetic datasets are adjustable,
we can examine the conditions where Grafil outperforms
Edge. One can imagine that when the types of labels in
a graph become very diverse, Edge will perform nearly as
well as Grafil. The reason is obvious. Since the graph will
have less duplicate edges, we may treat it as a set of tuples
{node1 label, node2 label, edge label} instead of a complex
structure. This result is confirmed by the following exper-
iment. We generate a synthetic dataset, D10kI10T50L200
E10V 10, which has 10 edge labels and 10 node labels. This
setting will generate (10 × 11)/2 × 10 = 550 different edge
tuples. Most of graphs in this synthetic dataset have 30 to
100 edges. If we represent a graph as a set of edge tuples, few
edge tuples will be the same for each graph in this dataset.
In this situation, Edge is good enough for similarity search.
Figure 14 shows the results for queries with 24 edges. The
two curves are very close to each other, as expected.

We then reduce the number of label types in the above
synthetic dataset and only allow 2 edge labels and 4 vertex
labels. This setting significantly increases the self similarity
in a graph. Figure 15 shows that Grafil outperforms Edge

a lot in this dataset. We can further reduce the number of
label types. For example, if we ignore the label information
and only consider the topological skeleton of graphs, the
edge-based filtering algorithm will not be effective at all. In
that situation, Grafil has more advantages than Edge.

7. RELATED WORK
Structure similarity search has been studied in various

fields. Willett et al. [24] summarized the techniques of finger-
print-based and graph-based similarity search in chemical

 5

 10

 15

 20

 25

 0 1 2 3 4 5 6 7

of

 c
an

di
da

te
 a

ns
w

er
s

of edge relaxations

Edge
Grafil

Figure 14: Numerous Types of Labels

10

102

103

104

 0 1 2 3 4 5

of

 c
an

di
da

te
 a

ns
w

er
s

of edge relaxations

Edge
Grafil

Figure 15: Few Types of Labels

compound databases. Raymond et al. [18] proposed a three
tier algorithm for full structure similarity search. Recently,
substructure search has attracted lots of attention in the
database research community. Shasha et al. [19] developed
a path-based approach for substructure search, while Srini-
vasa et al. [20] built multiple abstract graphs for the index-
ing purpose. Yan et al. [25] took the discriminative frequent
structures as indexing features to improve the search per-
formance.

As to substructure similarity search, in addition to graph
edit distance and alignment distance, maximum common
subgraph is used to measure the similarity between two
structures. Unfortunately, it is NP-complete [6]. Nilsson[15]
presented an algorithm for the pairwise approximate sub-
structure matching. The matching is greedily performed
to minimize a distance function for two structures. Ha-
gadone [8] recognized the importance of substructure simi-
larity search in a large set of graphs. He used the atom and
edge label to do screening. Holder et al. [9] adopted the prin-
ciple of minimum description length for approximate graph
matching. Messmer and Bunke [13] studied the reverse sub-
structure similarity search problem in computer vision and
pattern recognition. These methods did not explore the po-
tential of using more complicated structures to improve the
filtering performance, which is studied extensively by our
work. In [19], Shasha et al. also extended their substruc-
ture search algorithm to support queries with wildcards, i.e.,
don’t care nodes and edges. Different from their similarity
model, we do not fix the positions of wildcards, thus allowing
a general and flexible search scheme.

Besides the full-scale graph search problem, researchers
also studied the approximate tree search problem. Wang et
al. [23] designed an interactive system that allows a user to
search inexact matchings of trees. Kailing et al. [10] pre-
sented new filtering methods based on tree height, node de-
gree and label information.

The structural filtering approach presented in this study is
also related to string filtering algorithms. A comprehensive
survey on various approximate string filtering methods was
presented by Navarro [14]. The well-known q-gram method
was initially developed by Ullmann [22]. Ukkonen [21] inde-
pendently discovered the q-gram approach, which was fur-
ther extended in [7] against large scale sequence databases.
These q-gram algorithms work for consecutive sequences,
not structures. Our work generalized the q-gram method to
fit structural patterns of various sizes.

8. CONCLUSIONS
In this study, we have investigated the problem of sub-

structure similarity search in large scale graph databases,
a problem raised by the emergence of massive, complex
structural data. Different from the previous work, our so-
lution explored the filtering algorithm using indexed struc-
tural patterns, without doing costly structure comparisons.
The successful transformation of the structure-based sim-
ilarity measure to the feature-based measure renders our
method attractive in terms of accuracy and efficiency. Our
filtering algorithm is fully built on the feature-graph matrix,
thus performing very fast without accessing the physical
database. We show that the multi-filter composition strat-
egy adopted by Grafil is far superior to the single filter ap-
proach using all features together due to the frequency con-
jugation problem identified in this paper. We also demon-
strated the direct usage of clustering techniques in feature
set selection, which can leverage the filtering performance
further. Moreover, the new concept developed in Grafil can
be directly applied to searching inexact non-consecutive se-
quences, trees, and other complicated structures as well.

9. REFERENCES
[1] S. Beretti, A. Bimbo, and E. Vicario. Efficient

matching and indexing of graph models in content
based retrieval. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 23:1089–1105, 2001.

[2] H. Berman, J. Westbrook, Z. Feng, G. Gilliland,
T. Bhat, H. Weissig, I. Shindyalov, and P. Bourne.
The protein data bank. Nucleic Acids Research,
28:235–242, 2000.

[3] H. Bunke and K. Shearer. A graph distance metric
based on the maximal common subgraph. Pattern
Recognition Letters, 19:255 – 259, 1998.

[4] D. Hochbaum (ed.). Approximation Algorithms for
NP-Hard Problems. PWS Publishing, MA, 1997.

[5] U. Feige. A threshold of ln n for approximating set
cover. Journal of the ACM, 45:634 – 652, 1998.

[6] M. Garey and D. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-Completeness. Freeman & Co., New York, 1979.

[7] L. Gravano, P. Ipeirotis, H. Jagadish, N. Koudas,
S. Muthukrishnan, L. Pietarinen, and D. Srivastava.
Using q-grams in a dbms for approximate string
processing. Data Engineering Bulletin, 24:28–37, 2001.

[8] T. Hagadone. Molecular substructure similarity
searching: efficient retrieval in two-dimensional
structure databases. J. Chem. Inf. Comput. Sci.,
32:515–521, 1992.

[9] L. Holder, D. Cook, and S. Djoko. Substructure
discovery in the subdue system. In Proc. AAAI’94
Workshop on Knowledge Discovery in Databases
(KDD’94), pages 169 – 180, 1994.

[10] K. Kailing, H. Kriegel, S. Schnauer, and T. Seidl.
Efficient similarity search for hierarchical data in large
databases. In Proc. 9th Int. Conf. on Extending
Database Technology (EDBT’04), pages 676–693, 2004.

[11] M. Kanehisa and S. Goto. Kegg: Kyoto encyclopedia
of genes and genomes. Nucleic Acids Research,
28:27–30, 2000.

[12] M. Kuramochi and G. Karypis. Frequent subgraph
discovery. In Proc. 2001 Int. Conf. on Data Mining
(ICDM’01), pages 313–320, 2001.

[13] B. Messmer and H. Bunke. A new algorithm for
error-tolerant subgraph isomorphism detection. IEEE
Trans. on Pattern Analysis and Machine Intelligence,
20:493 – 504, 1998.

[14] G. Navarro. A guided tour to approximate string
matching. ACM Computing Surveys, 33:31 – 88, 2001.

[15] N. Nilsson. Principles of Artificial Intelligence.
Morgan Kaufmann, Palo Alto, CA, 1980.

[16] National Library of Medicine.
http://chem.sis.nlm.nih.gov/chemidplus.

[17] E. Petrakis and C. Faloutsos. Similarity searching in
medical image databases. Knowledge and Data
Engineering, 9(3):435–447, 1997.

[18] J. Raymond, E. Gardiner, and P. Willett. Rascal:
Calculation of graph similarity using maximum
common edge subgraphs. The Computer Journal,
45:631–644, 2002.

[19] D. Shasha, J. Wang, and R. Giugno. Algorithmics and
applications of tree and graph searching. In Proc. 21th
ACM Symp. on Principles of Database Systems
(PODS’02), pages 39–52, 2002.

[20] S. Srinivasa and S. Kumar. A platform based on the
multi-dimensional data model for analysis of
bio-molecular structures. In Proc. 2003 Int. Conf. on
Very Large Data Bases, pages 975–986, 2003.

[21] E. Ukkonen. Approximate string matching with
q-grams and maximal matches. Theoretic Computer
Science, pages 191–211, 1992.

[22] J. Ullmann. Binary n-gram technique for automatic
correction of substitution, deletion, insertion, and
reversal errors in words. The Computer Journal,
20:141–147, 1977.

[23] J. Wang, K. Zhang, K. Jeong, and D. Shasha. A
system for approximate tree matching. IEEE Trans.
on Knowledge and Data Engineering, 6:559 – 571,
1994.

[24] P. Willett, J. Barnard, and G. Downs. Chemical
similarity searching. J. Chem. Inf. Comput. Sci.,
38:983–996, 1998.

[25] X. Yan, P. Yu, and J. Han. Graph indexing: A
frequent structure-based approach. In Proc. 2004
ACM Int. Conf. on Management of Data
(SIGMOD’04), pages 335 – 346, 2004.

