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ABSTRACT
Real-life graphs not only have nodes and edges, but also have
events taking place, e.g., product sales in social networks and
virus infection in communication networks. Among differ-
ent events, some exhibit strong correlation with the network
structure, while others do not. Such structural correlation
will shed light on viral influence existing in the correspond-
ing network. Unfortunately, the traditional association min-
ing concept is not applicable in graphs since it only works
on homogeneous datasets like transactions and baskets.

We propose a novel measure for assessing such structural
correlations in heterogeneous graph datasets with events.
The measure applies hitting time to aggregate the proximity
among nodes that have the same event. In order to calculate
the correlation scores for many events in a large network, we
develop a scalable framework, called gScore, using sampling
and approximation. By comparing to the situation where
events are randomly distributed in the same network, our
method is able to discover events that are highly correlated
with the graph structure. gScore is scalable; it can accom-
plish one proximity estimation in 0.2 second on a graph with
10 million nodes. gScore was successfully applied to the co-
author DBLP network and social networks extracted from
TaoBao.com, the largest online shopping network in China,
with many interesting discoveries.
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1. INTRODUCTION
The rise of the web, social networks, and bioinformatics

has presented scientists with numerous graphs, each con-
sisting of millions of nodes and edges. Hidden in these large
datasets are the answers to important questions in network-
ing, sociology, business, and biology. These graphs not only
have topological structures, but also contain events/activities
that occurred on their nodes. For example, an eBay cus-
tomer could sell or bid a product. A Facebook user could
play a Zynga game with his/her friends. This complex com-
bination raises new research problems in graph data analysis
[29, 22, 8, 2].

Figure 1: Structural Correlation

Among different events taking place in a network, some
exhibit strong correlation with the network structure, while
others do not. Such structural correlation might shed light
on viral influence existing in the corresponding network,
which is the key to many research problems in product mar-
keting [7], online advertisement [3], and recommendation
[16]. Figure 1 shows the distribution of three types of events
over the same graph. We can easily incarnate Figure 1
into different application scenarios. For example, it could
be three kinds of products that were bought by members
in a social network. Dark nodes in Figure 1(A), 1(B) and
1(C) represent members who purchased products A, B and
C, respectively. Intuitively, Figure 1 shows that in this net-
work, people who bought product A (or B) are closer to each
other. In contrary, black nodes for C seem to be randomly
distributed. In this scenario, the network would be suitable
for promoting A and B and we can promote A and B among
people who have not bought them. While it is hard to derive
deterministic relationship between sales and network struc-
ture, it is possible to study how the sales is correlated to the
structure. In fact, one can raise several interesting questions
related to structure and events distributed over structure:

1. In regard to the sales of products A and B, which one
is more related to the underlying social network?

2. Given two networks G and G′ for the same group of
users, e.g., their email network and Facebook network,
is the sales of product A more related to G than G′?



3. If we have snapshots of network G during different pe-
riods, can we measure how product A was dispersed
over the network over time? Was it purchased by a
small circle of friends at the very beginning?

In order to answer the above questions, we need to address
the following research problems:

1. How to define and measure the correlation between the
graph structure and events?

2. How to compute the measure efficiently in large graphs,
if we want to rank all events according to the measure?

Unfortunately, the classic association mining concept is
not applicable in this setting since it only works on homoge-
neous datasets like transactions and baskets [1, 30]. In this
paper, we propose a novel measure to assess structural cor-
relations in a graph. The measure aggregates the proximity
among nodes on which the same event has occurred, using a
proximity function such as hitting time [20]. We develop an
efficient computation framework, gScore (Graph Structural
Correlation Estimation), to quickly calculate correlation
scores in large scale networks. By estimating the deviation
from the expected correlation score of a random situation,
our method is able to discover the events of nodes that are
highly correlated with the graph structure.

Our contributions. We propose a novel concept, struc-
tural correlation, to measure how an event is distributed
over a graph and address a key research problem in ana-
lyzing the relation between structure and contents. While
many studies have demonstrated that social links could sig-
nificantly influence the behavior of human beings [5, 17, 7],
we suspect that such influence should be further scrutinized
for more fine-grained knowledge: in which kind of social
links (e.g., phone network, email network, employee net-
work, friend network, etc) social influence is observed, and
how strong, and for which kind of behaviors (e.g.,shopping,
hobby, interest, and opinion). In this study, we quantify
the correlation between link structure and human behav-
iors, and make different behaviors’ correlations comparable
using statistical significance. We discover that the corre-
lation actually fluctuates dramatically with regard to link
types, event types, and time, implying a need to further ex-
amine the cause of the fluctuation. Note that in this work,
we are not going to perform a causality study between cor-
relation and influence [2].

We systematically introduce a framework to define and
measure structural correlations in graphs. The principle is to
aggregate the proximity among nodes which have the same
event and compare the aggregated proximity against the sit-
uations where these events are randomly distributed in the
graph. This framework can integrate various graph prox-
imity measures [6] such as hitting time [20], personalized
PageRank [24, 14] and Katz [15].

We take hitting time as an example and propose a mod-
ified version named Decayed Hitting Time (DHT) to bet-
ter and faster calculate structural correlation. Scalable al-
gorithms are developed using sampling and approximation
techniques to calculate DHT for individual nodes and the
average DHT for all the nodes which share the same event.
We investigate the expectation and variance of the corre-
lation when an event is randomly distributed over a graph
and derive several important properties. These properties

can help us to quickly estimate the deviation from random
cases, thus making online computation of structural corre-
lations possible. Our algorithm was tested in real networks
including co-author DBLP network and social networks ex-
tracted from TaoBao.com, the largest online shopping net-
work in China, with many exciting discoveries. Finally, we
show that our method can accomplish one DHT estimation
in 0.2 second on a graph with 10 million nodes, indicating
that it is very scalable.

2. PROBLEM FORMULATION
An attributed graph G = (V, E) has an event set Q. The

event set of a node v is written as Q(v) ⊆ Q. In this work,
we consider undirected and unweighted graphs. Neverthe-
less, the proposed measure and algorithms can be easily gen-
eralized to weighted and/or directed graphs.

Suppose there is an event q (e.g. purchasing a specific
product) taking place in G. Each node v can take two values
in terms of q: fq(v) = 1 if q ∈ Q(v); otherwise, fq(v) = 0.
Let m =

∑
v fq(v) denote the number of nodes where q

occurred. Let n = |V | be the number of nodes in G. We
could formulate the following two research problems:

Problem 1: Determine whether there is a correlation be-
tween q and the graph structure of G. If not, q is just ran-
domly distributed in G.

Its accompanying ranking problem is as follows:
Problem 2: Given a set of different events Q = {qi} on G,

rank {qi} according to their correlation strength with respect
to the graph structure of G.

In order to address the above problems, we need a mea-
sure that captures the distribution of an event over a graph,
and evaluates whether (and to what degree) the event is cor-
related with the graph structure. A simple measure could
be to assess the probability that a node’s neighbors have q
given that node having q. However, such a measure has
drawbacks. Figure 2 shows a star structure in a graph,
where an influential person (the center node) recommended
a product to friends. These friends then buy the product in
this network. The center node might have bought the prod-
uct through other channels, e.g., but never recorded. The
above measure, which returns “0”, cannot catch this situa-
tion. Therefore, we need a more principled measure which
can reflect the topological proximity between nodes.

……

Figure 2: Limitation of assessing the probability
that neighbors have event q given a node having q.

3. STRUCTURAL CORRELATIONS
Given m nodes where event q took place, one would decide

if the occurrence of q is related to the graph structure or not.
Intuitively, if these m nodes are close to one another, then
the correlation is high. Otherwise, it will be more similar to
a random situation where q is randomly distributed in G.
Therefore, we propose using the average proximity between
one node in those m nodes and the remaining m − 1 nodes
to assess the structural correlation between q and G,

ρ(Vq) =

∑
v∈Vq

s(v, Vq \ {v})

|Vq |
, (1)



where Vq is the set of m nodes on which q occurred and
s(v, Vq \ {v}) is the closeness of the remaining nodes to v.
s(·) can be any graph proximity measure that measures the
proximity between a node and a set of nodes in a graph
topology notion. We could rewrite s(·) by decomposing the
contribution of each node in Vq \ {v},

s(v, Vq \ {v}) =
∑

u∈Vq\{v}

sq(v  u), (2)

where sq(v  u) is the contribution of u to s(v, Vq \ {v}).
Eq. (2) is naturally defined for pairwise measures, but not
for holistic measures. We assume holistic measures can be
decomposed to facilitate analysis. sq(v  u) could be either
invariant to q, or related to the distribution of q in G. For
the first case, one can choose personalized PageRank score
of u with respect to v, or the Katz measure [15]. Both of
them are invariant to q. Readers are referred to [23] for
an introduction of various graph proximity functions. For
the second case, sq(v  u) is determined not only by the
proximity between v and u, but also the other nodes in Vq \
{v}. One example is hitting time: starting from node v,
it calculates the expected number of steps needed to reach
one of nodes in Vq \ {v}. Hence, it is a holistic measure.
For different distribution of q, pq(v  u) is not fixed. In
this work, we will focus on hitting time. Nevertheless, our
framework is applicable to other proximity measures too.

v

u

Figure 3: Measuring Structural Correlations

Figure 3 illustrates the idea of measuring the proximity
between one node v and the remaining nodes that have the
same event. Intuitively, if those nodes are not close to v,
e.g., randomly distributed, then s(v, Vq \ {v}) will be close
to an average value calculated from random cases. This in-
dicates that we should also consider the ρ value for random

cases. Let ρ(V̂q) denote the correlation score for a randomly

selected set V̂q of m nodes where m = |V̂q| = |Vq |. As
m increases, there will be an increasing chance for m ran-
domly selected nodes to be close to one another (in the ex-
treme case m = n, nodes are obviously very close). Thus,
given two events q and q′, we cannot simply decide q is
more correlated with G if ρ(Vq) > ρ(Vq′). We should esti-

mate the “deviation” of ρ(Vq) from the expectation of ρ(V̂q).

Since it is hard to obtain the distribution of ρ(V̂q), we pro-

pose to estimate the expectation and variance of ρ(V̂q) (de-

noted by E[ρ(V̂q)] and V ar[ρ(V̂q)], respectively), and com-
pare ρ(Vq) with them. More details on this are presented
in Section 5.2. We refer this framework as gScore (Graph
Structural Correlation Estimation). In this work, we in-
stantiate it using hitting time discussed as follows.

3.1 Random Walk and Hitting Time
A random walk is defined as follows: we start from a node

v and perform a random move among neighboring nodes. If
in the t-th step we are at node vt, we move to a neighbor of

vt with probability 1
d(vt)

, where d(v) is the degree of node v.

The sequence {vt} is a Markov chain. Let A denote the ad-
jacency matrix of G. Aij equals 1 if there is an edge between
node vi and vj , and 0 otherwise. We use P = [pij ]n×n to de-
note the transition probability matrix of the random walk.
We have P = D−1A where D is a diagonal matrix with
Dii = d(vi). We use Pr(pa1 l) = p12p23 . . . p(l−1)l to denote
the probability that a random walk takes path v1, v2, . . . , vl,
starting from v1 (also called the probability of that path).

Let B be a subset of V . The hitting time (also called ac-
cess time) [20] from a node vi to B is defined as the expected
number of steps before a node vj ∈ B is visited in a random
walk starting from vi. Let h(vi, B) denote the hitting time
from vi to B and xt denote the position of the random walk
at time step t. By definition, we have

h(vi, B) =
∞∑

t=1

tPr(TB = t|x0 = vi), (3)

where Pr(TB = t|x0 = vi) is the probability that the random
walk starting from vi first hits a node in B after t steps. One
can easily derive [20]

h(vi, B) =
∑

vk∈V

pikh(vk, B) + 1. (4)

Eq. (4) expresses a one step look-ahead property of hitting
time. The expected time to reach a node in B from vi is
equivalent to one step plus the mean of hitting times of vi’s
neighbors to a node in B. By the definition of hitting time
(i.e. Eq. (3)), we have h(vi, B) = 0 for vi ∈ B. From
the above analysis, we obtain a linear system for computing
hitting time from all nodes to B:

{
h(vi, B) = 0 vi ∈ B
h(vi, B) =

∑
vk∈V pikh(vk, B) + 1 vi /∈ B

. (5)

It can be shown that this linear system has a unique solu-
tion [20]. Hitting time can be used to measure a notion of
asymmetrical proximity among nodes on a graph in terms
of graph topology, with applications such as Web query sug-
gestion [21], recommendation [4] and link prediction [23].

v
u

Figure 4: Hitting Time

Figure 4 shows one example of hitting time. For node v,
its hitting time with regard to the set of other dark nodes
is 1. In comparison with other proximity measures, e.g., the
average distance between v and other dark nodes, hitting
time will be less influenced by remote nodes and anomalies,
and focus on close neighbors. While hitting time has this
nice property, it has one drawback: its value range is be-
tween 1 and +∞. That is, if there is no connection between
two nodes u and v, it is possible to have infinite hitting time
because u can never be reached. This could also result in
infinite value of ρ(Vq) (Eq. (1)). In this work, we propose



decayed hitting time, which inverses the range of [1, +∞) to
[0, 1]. The meaning of hitting time also changes slightly.

3.2 Decayed Hitting Time
Inspired by hitting time, we propose a new graph proxim-

ity measure called Decayed Hitting Time (DHT), which is
defined as follows

h̃(vi, B) =
∞∑

t=1

e−(t−1) Pr(TB = t|x0 = vi). (6)

For DHT, when nodes in B are close to vi, h̃(vi, B) will
be high. The reason to substitute the exponentially decay-
ing term for the number of steps is two-fold. First, in our
problem setting, we want to emphasize the importance of
neighbors and discount the importance of longer range weak
relationships. Second, as we will show later, such a definition
can facilitate the approximation of the measure. Although
hitting time is shown to be empirically effective in practical
applications [4, 23], solving a linear system for a large scale
graph can be computationally expensive (i.e. O(n3)). Moti-
vated by this issue, Sarkar et al. proposed truncated hitting
time [26] and developed sampling techniques to approximate
hitting time [27]. However, a drawback of truncated hitting
time is that it sets an arbitrary upper bound (the truncated
path length) for actual hitting time. It is not accurate since
the bound treats all of hitting paths with length greater
than the bound equally. The definition in Eq. (6) allows us
to derive proper lower bounds for DHT.

In terms of decayed hitting time, s(v, Vq \ {v}) can be

instantiated as h̃(v, Vq \ {v}). In the following discussion,
we will first discuss how to compute DHT and approximate
it efficiently in large scale graphs. Then we turn to the issue

of efficiently estimating ρ(Vq), E[ρ(V̂q)] and V ar[ρ(V̂q)].

4. COMPUTING DECAYED HITTING TIME
Typical social networks usually contain millions of nodes.

Thus, computational efficiency is a critical issue. We present
techniques for efficiently estimating DHT.

4.1 Exact Solution
For DHT from any node vi to a subset B ⊂ V , we can

also derive a linear system. For vi /∈ B, we have

h̃(vi, B) =
∞∑

t=1

e−(t−1)
∑

vk∈V

pik Pr(TB = t − 1|x0 = vk)

= e−1
∑

vk∈V

pikh̃(vk, B) +
∑

vk∈B

pik. (7)

By the definition of DHT, we have h̃(vi, B) = 0 for vi ∈ B.
Then the linear system is
{

h̃(vi, B) = 0 vi ∈ B

h̃(vi, B) = e−1
∑

vk∈V pikh̃(vk, B) +
∑

vk∈B pik vi /∈ B
.

(8)

Solving this linear system, we can derive h̃(vi, B) for all vi /∈
B. However, solving a linear system can be computationally
expensive. Moreover, examining our correlation measure in
Eq. (1), one can find that for each target node set (i.e. Vq \
{v}) we only need the DHT from one node v. Computing

h̃(vi, Vq \ {v}) for all vi /∈ Vq \ {v} is wasteful.

4.2 Iterative Approximation
Suppose we want to compute the DHT from vi to a node

set B. Examining the definition in Eq. (6), we know that
if we can obtain Pr(TB = t|x0 = vi), t = 1, 2, . . . , then we

can compute h̃(vi, B). Let Pr(TB̄,vj
= t|x0 = vi) be the

probability that the random walk starting from vi hits vj

after t steps without visiting any node in B. In other words,
it means xi /∈ B for i ∈ {1, 2, . . . , t− 1}. Therefore, we have

Pr(TB = t|x0 = vi) =
∑

vj∈B

Pr(TB̄,vj
= t|x0 = vi).

The problem becomes how to compute Pr(TB̄,vj
= t|x0 =

vi). In particular, we have

Pr(TB̄,vj
= t|x0 = vi) =

∑

vk /∈B

Pr(TB̄,vk
= t − 1|x0 = vi)pkj ,

which implies that one can first get to vk /∈ B using t − 1
steps (without visiting any vj ∈ B), and then move from vk

to vj with probability pkj . It takes the sum over all possible
vk’s. Therefore, we can derive the following iterative com-
putation method: let PB be a modification of the original
transition probability matrix P where rows corresponding
to the nodes in B are set to all zeros. Let ut be a n × 1
vector containing Pr(TB̄,vk

= t|x0 = vi) as its k-th element.
u0 is the vector with i-th element set to 1 and all other el-
ements to 0. One can easily verify ut =

(
PT

B

)t
u0. In fact,

PB and u0 define the corresponding random walk model for
computing DHT from vi to B. Letting zB be the vector
with elements corresponding to nodes in B set to 1 and all
other elements to 0, we can rewrite Eq. (6) as

h̃(vi, B) = e0zT
Bu1 + e−1zT

Bu2 + . . .

= e0zT
BPT

Bu0 + e−1zT
BPT

Bu1 + . . .

We can iteratively compute u1,u2, . . . and accumulate ele-
ments corresponding to nodes in B from these vectors (mul-
tiplied by e0, e−1, . . . respectively). If we stop after a num-
ber of iterations, it results in an approximation of the actual
DHT. In the following discussion, we will derive the upper
bound and lower bound for DHT from such an approxima-
tion. From now on, we use dB(vk) to denote the number of
neighbors of vk which are in B and λkB = dB(vk)/d(vk) to
denote the corresponding fraction.
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Figure 5: Upper Bound for One Path

Lemma 1. Let pal
i k be a length-l path from vi to vk

which has not yet hit any node in B. Let Pr(pal
i k) be the

probability that the random walk takes this path. We call
paths sharing pal

i k as a prefix subpaths of pal
i k. The con-

tribution to h̃(vi, B) of all subpaths of pal
i k which finally

hit a node in B is upper bounded by λkB Pr(pal
i k)e−l +(1−

λkB)Pr(pal
i k)e−(l+1).

Proof. According to the Markov property of random
walks, the sum of probabilities of all paths sharing the same



prefix equals to the probability of that prefix. Therefore,
when the random walk follows pal

i k to get vk, it will fur-
ther distribute Pr(pal

i k) to pal
i k’s subpaths and some sub-

paths will eventually hit a node in B. By querying the neigh-
bors of vk, we know the probability λkB Pr(pal

i k) will be
distributed on length-(l + 1) hitting subpaths and the prob-
ability those length-(l +1) non-hitting subpaths account for
(i.e. (1 − λkB) Pr(pal

i k)) will be further distributed on
their subpaths with longer lengths, as illustrated in Fig-
ure 5. We can apply the above analysis iteratively to the
length-(l+1) non-hitting subpaths of pal

i k to obtain tighter
upper bound, but it is equivalent to performing one more it-
eration. Thus, we can just optimistically assume the whole
(1 − λkB)Pr(pal

i k) is distributed on length-(l + 2) hitting
subpaths. Then, the conclusion follows.

Theorem 1. Let h̃t(vi, B) = e0zT
Bu1 + · · ·+ e−(t−1)zT

But

be the approximation of h̃(vi, B) after ut is computed. We

have h̃t(vi, B) ≤ h̃(vi, B) ≤ h̃t(vi, B) +
∑

vk /∈B Pr(TB̄,vk
=

t|x0 = vi)
(
λkBe−t + (1 − λkB)e−(t+1)

)
.

Proof. Omitted.

4.3 A Sampling Algorithm for h̃(vi, B)

We propose a standard Monte Carlo sampling method for
estimating h̃(vi, B). The straightforward sampling scheme
can be as follows: we run c independent random walk sim-
ulations from vi and in each random walk we stop when a
node in B is encountered. Suppose these random walks’ path

lengths are l1, . . . , lc. Then we use the average h̃(vi, B) =∑c
j=1 e−(lj−1)/c as the estimate of h̃(vi, B). However, this

scheme is not a wise choice due to the following two reasons:
1) if we cannot reach any node in B from vi, the random
walk will never stop; 2) for a large scale graph, if we do not
impose a maximum number of steps that a random walk
can take, the sampling algorithm will be time consuming.
In fact, since we adopt an exponentially damping factor (i.e.

e−(t−1)), the contribution of long paths are negligible.
With the above concerns, we adopt a sampling scheme

as follows: we run c independent random walk simulations
from vi and in each random walk we stop when a node in
B is visited or a maximum number of s steps is reached.
Suppose out of c runs ch random walks hit a node in B and
the corresponding path lengths are l1, . . . , lch

, respectively.
Let c̄ = c−ch be the number of random walks which reach s
steps and do not hit any node in B. We can provide bounds

for h̃(vi, B).

Theorem 2. If we run c independent random walk simu-
lations for estimating h̃(vi, B) and impose a maximum num-

ber of s steps for each random walk, we have
∑ch

j=1 e−(lj−1)/c

≤ h̃(vi, B) ≤ (
∑ch

j=1 e−(lj−1) + e−sc̄)/c.

Proof. In the sampling scheme having the constraint of
maximum number of steps, only ch random walks have cer-

tain contribution to h̃(vi, B). Hence, we turn to the bounds
for the contribution of remaining c̄ random walks which do
not hit any node in B. For each of these c̄ random walks,

the contribution to h̃(vi, B) is upper bounded by e−s (i.e.
hitting a node in B at (s + 1)-th step). Aggregating those c̄

random walks, we have h̃(vi, B) ≤ (
∑ch

j=1 e−(lj−1) +e−sc̄)/c.
A lower bound for the contribution of those c̄ random walks
is 0. This leads to

∑ch
j=1 e−(lj−1)/c ≤ h̃(vi, B).

Algorithm 1: Sampling Approximation

Input: P: transition probability matrix, vi: start node,
B: target node set, s: maximum # of walk
steps, c: number of random walks

Output: low, up: lower and upper bounds of h̃(vi, B)
begin1

low, up = 02

for k = 1 to c do3

v = vi, step = 04

while v /∈ B do5

if step ≥ s then6

break7

end8

Randomly set v to its neighbors according to9

P.
step = step + 110

end11

if v ∈ B then12

low = low + e−(step−1)
13

else14

up = up + e−s
15

end16

end17

up = (low + up)/c, low = low/c18

end19

We use h̃′
iB and h̃′′

iB to represent the above lower and

upper bounds for h̃(vi, B), respectively. The following the-
orem provides the lower bound for the number of samples c
required in order to obtain an ǫ-correct answer with respect
to [h̃′

iB , h̃′′
iB ] with probability 1 − δ.

Theorem 3. Suppose we run c independent random walk
simulations for estimating h̃(vi, B) and impose a maximum
number of s steps for each random walk. In order to obtain
Pr(h̃′

iB − ǫ ≤ h̃(vi, B) ≤ h̃′′
iB + ǫ) ≥ 1 − δ, the number of

samples c should be at least 1
2ǫ2

ln( 2
δ
).

Proof. Omitted.

We summarize the sampling algorithm in Algorithm 1.

4.4 Complexity
Suppose we use adjacency lists to store graphs and ma-

trices. The space complexity of the iterative and sampling
algorithms is O(|E|). The major time costing parts of the
iterative algorithm are the iterative matrix-vector multi-
plication and the construction of PB . The corresponding
time complexity is O(t|E|), where t is the number of iter-
ations. For the sampling algorithm, the major time cost
is the membership judgement for v to B (line 5 in Algo-
rithm 1). We can either sort B and use binary search, or
build index array for B. The corresponding time costs are
O(cs log |B| + |B| log |B|) and O(cs + |V |), respectively.

5. ASSESSING STRUCTURAL CORRELA-
TIONS

This section provides methods for efficient estimation of

ρ(Vq), E[ρ(V̂q)] and V ar[ρ(V̂q)]. We also present our method

for estimating the deviation of ρ(Vq) from E[ρ(V̂q)].



5.1 Estimating ρ(Vq)

To compute ρ(Vq), we need to compute h̃(vi, Vq \ {vi})
for all vi ∈ Vq. However, for large scale graphs, Vq may also
have a large size, posing a challenge for efficient computation
of ρ(Vq). Since those h̃’s form a finite population, we can
use sampling techniques to efficiently estimate ρ(Vq) [12].
Specifically, we randomly select c′ nodes from Vq, denoted by
v1, . . . , vc′ , to estimate their DHTs to the remaining nodes
and take the average ρ(Vq) as an estimate of ρ(Vq). Here we
can use either iterative algorithm or sampling algorithm for
estimating each h̃(vi, Vq \ {vi}). If the iterative algorithm is

used, from Theorem 1 we obtain bounds for each h̃(vi, Vq \
{vi}) in the sample set. Aggregating those bounds, we can

get lower and upper bounds for ρ(Vq). Following the same
manner for the proof of Theorem 3, we can obtain the lower
bound for c′ in order to obtain an ǫ′-correct answer with
respect to bounds for ρ(Vq). We omit the details due to
space limitation. When the sampling algorithm is used, we
provide the lower bound for c′ in order to obtain an ǫ′-correct
answer with respect to bounds for ρ(Vq) in the following
theorem.

Theorem 4. Suppose we randomly select c′ nodes from
Vq to estimate their DHTs to the remaining nodes and take

the average ρ(Vq) as an estimate of ρ(Vq). For the sake of
clarity, let Bi = Vq \ {vi}. Suppose we have used Algo-

rithm 1 to obtain an ǫ-correct answer for each h̃(vi, Bi) (i =

1, . . . , c′) with respect to [h̃′
iBi

, h̃′′
iBi

] by setting the number of

samples c ≥ 1
2ǫ2

ln( 2
δ
). In order to obtain Pr(

∑c′

i=1 h̃′
iBi

/c′−

ǫ− ǫ′ ≤ ρ(Vq) ≤
∑c′

i=1 h̃′′
iBi

/c′ + ǫ + ǫ′) ≥ 1− δ′, the number

of samples c′ should satisfy (1− δ)c′(1− 2e−2c′ǫ′2) ≥ 1− δ′.

Proof. We have Pr(h̃′
iBi

− ǫ ≤ h̃(vi, Bi) ≤ h̃′′
iBi

+ ǫ) ≥

1 − δ for i = 1, . . . , c′. Notice ρ(Vq) =
∑c′

i=1 h̃(vi, Bi)/c′.
Multiplying those probabilities inequalities together, we ob-

tain Pr(
∑c′

i=1 h̃′
iBi

/c′ − ǫ ≤ ρ(Vq) ≤
∑c′

i=1 h̃′′
iBi

/c′ + ǫ) ≥

(1− δ)c′ . Since 0 ≤ h̃(vi, Bi) ≤ 1 for i = 1, . . . , c′, according
to Hoeffding’s inequality for finite populations [12] we know

Pr(|ρ(Vq)−ρ(Vq)| ≤ ǫ′) ≥ 1−2e−2c′ǫ′2 . Combining the above

two probability inequalities, we have Pr(
∑c′

i=1 h̃′
iBi

/c′ − ǫ −

ǫ′ ≤ ρ(Vq) ≤
∑c′

i=1 h̃′′
iBi

/c′ +ǫ+ǫ′) ≥ (1−δ)c′(1−2e−2c′ǫ′2).

Setting (1− δ)c′(1− 2e−2c′ǫ′2) ≥ 1− δ′, we get the inequal-
ity c′ should satisfy. Note δ should be large enough so that

(1−δ)c′(1−2e−2c′ǫ′2) can go beyond 1−δ′ as c′ increases.

5.2 Estimating the Deviation of ρ(Vq) from Ran-
dom Cases

As aforementioned in Section 3, we cannot just rely on
ρ(Vq) to measure the correlation between q and the graph
structure. We should measure the deviation of ρ(Vq) from
the expected ρ value of a set of randomly selected m nodes

(m = |Vq |), i.e., E[ρ(V̂q)], in order to distinguish structural
correlations from random results. In particular, we have

E[ρ(V̂q)] =

∑
Vm⊆V ρ(Vm)

Cm
n

, (9)

where Vm is any set of m nodes. The ideal solution is to

obtain the distribution of ρ(V̂q) and use the ratio of the
number of node sets with size m whose ρ values are greater
than or equal to ρ(Vq) to Cm

n as the significance score for

q. However, for a large scale graph it is very hard to get
the distribution since Cm

n is very large. Here we propose

an approximation method. Notice ρ(V̂q) is defined as the

average of h̃(vi, V̂q \ {vi}) where vi ∈ V̂q. If we assume these

h̃’s are independent, according to Central Limit Theorem,

ρ(V̂q) can be approximated by a normal distribution, where

V ar[ρ(V̂q)]=V ar[h̃(vi, V̂q \{vi})]/|V̂q |. If we obtain E[ρ(V̂q)]

and V ar[ρ(V̂q)], we can calculate the adjusted structural
correlation ρ̃ for q as follows

ρ̃(Vq) =
ρ(Vq) − E[ρ(V̂q)]√

V ar[ρ(V̂q)]

. (10)

Note that this idea is similar to using Z scores to assess the
significance of data mining results [11]. Eq. (10) can be used
to derive the significance of q for a hypothesis that q is not
randomly distributed over G. In the following we provide

efficient methods for estimating E[ρ(V̂q)] and V ar[ρ(V̂q)].

Intuitively, E[ρ(V̂q)] would increase as m increases. We

actually can prove the monotonic property of E[ρ(V̂q)].

Lemma 2. Given an arbitrary node vi and an arbitrary
node set B (vi /∈ B), for any vk ∈ V \ (B ∪ {vi}) we have

h̃(vi, B) ≤ h̃(vi, B ∪ {vk}).

Proof. We can interpret h̃(vi, B) as the sum of paths’

probabilities weighted by corresponding e−(length−1) over all
paths which start from vi and first hit a node vj ∈ B at
the end. We can divide the paths involved in the computa-
tion of h̃(vi, B) into two categories: 1) those containing vk

as intermediate nodes; 2) those not containing vk. Paths in
category 2 will be directly included in the computation of
h̃(vi, B ∪{vk}) and their contribution will remain the same.

For paths in category 1, when computing h̃(vi, B ∪ {vk})
all category-1 paths will be reduced to their prefix paths
down to the first occurrences of vk. Due to the Markov
property of random walks, the sum of probabilities of all
paths sharing the same prefix equals to the probability of
that prefix. Hence, the sum of probabilities of those prefix
paths must be greater than or equal to that of all category-
1 paths. Furthermore, now those prefix paths’ probabili-
ties are weighted by higher weights due to length reduc-
tion. Based on the above analysis, we can safely conclude
h̃(vi, B) ≤ h̃(vi, B ∪ {vk}).

Theorem 5. Suppose 1 < m < n. E[ρ(V̂q)] will mono-

tonically increase as m = |V̂q | increases.

Proof. We denote V̂q as V̂m using the number of nodes in

V̂q. We show that for an arbitrary m satisfying 1 < m < n,

we have E[ρ(V̂m)] ≤ E[ρ(V̂m+1)]. Recall that E[ρ(V̂m)] =∑
Vm

ρ(Vm)/Cm
n . We can transform E[ρ(V̂m)] as follows

E[ρ(V̂m)] =

∑
Vm

∑
vi∈Vm

h̃(vi,Vm\{vi})

m

Cm
n

=

∑
vi,Vm−1

h̃(vi, Vm−1)

C1
nCm−1

n−1

(11)

where vi /∈ Vm−1. It means E[ρ(V̂m)] is the expected DHT
from any vi to any set of m−1 nodes which does not contain

vi. Similarly, we can rewrite E[ρ(V̂m+1)] as

E[ρ(V̂m+1)] =

∑
vi,Vm

h̃(vi, Vm)

C1
nCm

n−1

. (12)
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Figure 6: Comparison of sampling and geometric

distribution heuristic for estimating E[ρ(V̂m)].

For each pair (vi, Vm−1), we have n−m corresponding pairs
of the form (vi, Vm−1 ∪ {vk}) where vk ∈ V \ (Vm−1 ∪ {vi}).
For each pair (vi, Vm) there are m corresponding pairs of
the form (vi, Vm \ {vk}) where vk ∈ Vm. This is a many-
to-many mapping. Multiplying n−m

n−m
and m

m
to (11) and

(12) respectively, we can construct a one-to-one mapping
between the two summations in the numerators of (11) and
(12) where in the second pair there is one more target node.
Notice that (n − m)C1

nCm−1
n−1 = mC1

nCm
n−1. By Lemma 2,

we conclude E[ρ(V̂m)] ≤ E[ρ(V̂m+1)].

We provide two methods for efficiently estimating E[ρ(V̂m)].
The first one is a sampling method: we randomly select c†

different sets of m nodes from V and estimate their ρ values
using the sampling method described in section 5.1. The av-

erage of these ρ values is taken as an estimate of E[ρ(V̂m)].
By following the same manner for Theorem 4’s proof, we can
derive the lower bound for c† in order to obtain an ǫ†-correct
answer with respect to bounds aggregated from the bounds
of underlying sample ρ’s with probability 1−δ†. Recall that

from Eq. (11) we know E[ρ(V̂m)] is equal to the expected
DHT from any vi to any set Vm−1 which does not contain
vi. Thus, we can also directly sampling (vi, Vm−1) pairs and
take the average DHT among those pairs as an estimate of

E[ρ(V̂m)]. For a fixed graph, we can pre-compute E[ρ(V̂m)]
for a number of different m values and employ interpolation

to estimate E[ρ(V̂m)] for arbitrary m.
Alternatively, we can derive an approximation method for

E[ρ(V̂m)] by a geometric distribution. This approximation
method is empirical. A geometric distribution is a proba-
bility distribution of the number t of Bernoulli trials needed

to get one success. When we randomly generate V̂m, each
node of G has probability m

n
to be chosen. In the follow-

ing discussion, we assume each node of G is chosen inde-

pendently with probability m
n

. With this relaxation, |V̂m|
becomes a binomial random variable with m as its expected

value. Let us consider starting from a node vi ∈ V̂m to hit

the remaining nodes in V̂m. Let p = m−1
n−1

be the probability

of each node other than vi being in V̂m. The probability
that we first hit (i.e. stop) a target node after one step is∑

j pijp = p. The probability that we stop after two steps

is
∑

j,k pijpjk(1 − p)p = (1 − p)p. We do not consider cases
where the surfer comes back to vi in this approximation.
This forms a geometric distribution where the probability
that we “succeed” after t steps is (1 − p)t−1p. By the def-

inition of DHT (i.e. Eq. (6)), h̃(vi, V̂m \ {vi}) is actually

the expectation of e−(t−1) under the geometric distribution
described above:

h̃(vi, V̂m \ {vi}) =
∞∑

t=1

e−(t−1)(1 − p)t−1p =
p

1 − e−1(1 − p)
.

(13)

Since vi is an arbitrary node in V̂m, we have

ρ(V̂m) =
p

1 − e−1(1 − p)
. (14)

Since we assume each node of G is chosen independently,

the obtained ρ(V̂m) is an approximation of E[ρ(V̂m)]. In
case the graph contain 0-degree nodes, we just need to mul-
tiply Eq. (14) by the probability that a randomly selected
node is not a 0-degree node. We empirically compare this
heuristic approximation method with the sampling method
on the DBLP co-author network. The results are shown
in Figure 6. Regarding the sampling method, we sample
1500 (vi, Vm−1) pairs for each m and use Algorithm 1 to
estimate DHT. The error bars on the curve of the sampling
method represent lower and upper bounds for the estimates

of E[ρ(V̂m)]. We can see that results obtained by sampling
roughly fit the curve of the heuristic method. Therefore,
we can either use sampling method and interpolation or the

heuristic method to estimate E[ρ(V̂m)]. In experiments we
employ the heuristic method.

Regarding V ar[ρ(V̂m)], we also propose a sampling method.

Directly sampling V ar[ρ(V̂m)] requires computing ρ for each
sampled Vm and is time consuming since m can be large. If

we assume h̃(vi, V̂m \ {vi})’s in the numerator of the defini-

tion of ρ(V̂m) are independent, we can approximate V ar[ρ(V̂m)]

by V ar[h̃(vi, V̂m \ {vi})]/m. For a given m, we just sample
(vi, Vm−1) pairs and take the sample variance of the corre-

sponding DHTs divided by m as an estimate of V ar[ρ(V̂m)].
Again, pre-computation and interpolation can be used here

to estimate V ar[ρ(V̂m)] for arbitrary m.

Table 1: Applying gScore on examples in Figure 1.
Example p-value Approximate Z score (ρ̃)
Fig. 1(A) 0.0191 2.0776
Fig. 1(B) 0.0309 1.9015
Fig. 1(C) 0.7418 -0.7117

5.3 Illustrative Examples
In order to show intuitively the capability of our measure,

we report exact p-values and approximate Z scores (i.e. ρ̃)
for the three toy examples of Figure 1 in Table 1. If we
adopt significance level α = 0.05, according to our measure,
events in Figure 1(A) and (B) are deemed to be correlated
with the network, indicating our measure can capture these
two different distributions of correlation. While the event
in Figure 1(C) does not have a correlation. The approxi-
mate Z scores (ρ̃) reflect relative correlation degree and can
be used to rank structural correlations. Since distributions
of ρ(V̂m) are not exactly normal, we cannot simply convert
these scores to p-values to determine the existence of correla-
tions. In practice gScore is suitable for ranking correlations
since it is hard to obtain p-values.
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Figure 7: Exploring the convergence of (a) Iterative-alg with respect to the number of iterations, and (b)
Sampling-alg with respect to the maximum number of steps a random walk performs.

6. EMPIRICAL STUDIES
This section present experimental results on three real

world datasets: DBLP, TaoBao and Twitter. We report the
top-k interesting events discovered by our approach and also
perform some manual verification. We provide an interesting
study of correlation changes of product sales and research
topics over time. We also examine our measure on synthetic
events and under structure alteration. Finally, we analyze
the scalability of gScore with a Twitter network. All exper-
iments are run on a PC with Intel Core i7 CPU and 12GB
memory. The source code of gScore can be downloaded at
“http://www.cs.ucsb.edu/∼xyan/software/gScore.html”.

6.1 Datasets
We empirically evaluate our correlation measure and gScore

on three real world datasets: DBLP, TaoBao and Twitter.

DBLP The DBLP snapshot was downloaded on Oct. 5th,
2010 (http://www.informatik.uni-trier.de/∼ley/db). Its pa-
per records were parsed to obtain the co-author social graph.
Keywords in paper titles are treated as events associated
with nodes (authors) on the graph. The first time an au-
thor used a keyword was also recorded. It contains 815,940
nodes, 2,857,960 edges and 171,614 events.

TaoBao The TaoBao dataset was derived from China’s most
famous customer-to-customer shopping Website named TaoBao
(http://www.taobao.com). By the end of 2009, TaoBao has
about 170 million users and 1 billion products. We extracted
users from three cities (Beijing, Shanghai and Hangzhou),
their product purchase history, and constructed the friend
social graph among them. It consists of 794,001 nodes,
1,370,284 edges. We selected 100 typical products from
TaoBao to show the effectiveness of our measure.

Twitter The Twitter dataset has about 40 million nodes
and 1.4 billion edges (http://twitter.com). We do not have
events for this dataset. It is mainly used to test the scala-
bility of gScore.

6.2 Performance of DHT Approximation
We investigate the convergence and running time of the

two DHT approximation algorithms proposed in Section 4.
DBLP is used as the test bed. We use Iterative-alg and
Sampling-alg to denote the iterative algorithm and sam-
pling algorithm, respectively. Iterative-alg has one param-
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Figure 8: Comparison of Iterative-alg and Sampling-
alg with respect to the time used to estimate one
DHT.

eter (number of iterations t) and Sampling-alg has two pa-
rameters (maximum number of steps s and number of ran-
dom walks c). For Iterative-alg, we investigate its converg-
ing speed with respect to t. For Sampling-alg, we find when
c > 600, increasing c hardly improves the obtained bounds.
Thus, we set c = 600 and investigate the converging speed
of Sampling-alg with respect to s. The results are shown
in Figure 7 with various m values (the number of nodes
that have the same event). For each m value, we randomly
select a node v and a set B of m − 1 nodes and apply the
two algorithms to estimate h̃(v, B). This process is repeated
50 times and the averaged results are reported. As shown
in Figure 7, both algorithms converge quickly after about
5 iterations. Note that Iterative-alg gives lower and upper
bounds for h̃, while Sampling-alg gives bounds for an esti-

mate of h̃, i.e. h̃. Comparing Figure 7(a) and 7(b), one can
find that the two algorithms converge to roughly the same
values. It means empirically Sampling-alg provides a good
estimation of h̃.

The running time of Iterative-alg and Sampling-alg for
estimating one DHT under different m values is shown in
Figure 8. For Iterative-alg, we report the running time for
t = 1 and t = 9 and for Sampling-alg, s = 1 and s = 17. It
shows that Sampling-alg is much faster than Iterative-alg.
Note that regarding Iterative-alg, the time cost of “s=9”
is not 9 times of that of “s=1”. This is because not only
matrix-vector multiplication but also the construction of
PB account for time cost. In fact, Iterative-alg runs even
faster when m increases: less rows of P are needed to con-



Table 2: Correlation scores for top five products in
category “Laptops and tablets” in TaoBao.
# Product Bounds for ρ̃ ρ (×10−2) |Vq |
1 ThinkPad T400 [554.43, 554.47] [6.2396, 6.2400] 47
2 Apple iPad [227.56, 227.57] [6.7979, 6.7984] 698
3 ThinkPad X200 [91.39, 91.42] [1.0799, 1.0802] 60
4 Toshiba L600 [20.36, 20.41] [0.2009, 0.2014] 31
5 ThinkPad T410 [−1.13,−1.09] [0.0004, 0.0009] 72

Table 3: Correlation scores for top five products in
category “Mobile and handheld devices” in TaoBao.

# Product Bounds for ρ̃ |Vq|
1 iPod Touch 3 [92.06, 92.09] 484
2 Nokia 6300 [90.97, 90.99] 188
3 iPhone 4 [69.07, 69.09] 520
4 Nokia N82 [53.20, 53.24] 84
5 HTC G3 [36.48, 36.49] 732

struct the desired matrix. Since Sampling-alg is much faster
than Iterative-alg and also provides reasonable estimates for
DHTs, for the following experiments we employ Sampling-
alg to estimate DHT. gScore is also referred to Sampling-alg.
We set s = 12 and c = 600.

6.3 Structural Correlation Estimation
We employ our adjusted correlation measure ρ̃ (Eq. (10))

to rank products and keywords in TaoBao and DBLP, re-
spectively. Using Eq. (10), we obtain an estimate (lower
and upper bounds) of ρ̃ for each product and keyword. A
ranked list of events can be generated according to these
bounds. If the bounds of two events overlap, we increase
sample numbers and the maximum steps to break a tie.

Before presenting the results, we would like to emphasize
that our correlation findings are just for the specific social
networks involved in this study. For example, if a product
has no correlation with the TaoBao social network, it does
not mean the product sales is not influenced by other social
channels. For the sake of clarity, products in TaoBao are
divided into three categories: Laptops and tablets, Mobile
and handheld devices and Other. Due to space limitation,
we show the results for top five correlated products in each
category.

Table 2 and Table 3 show the ranked lists for top five
products in the former two categories, respectively. We also
show ρ values in Table 2. ThinkPad and Apple products
usually have high correlation with the underlying network,
indicating there are fan communities for these brands. An
interesting exception is ThinkPad T410 (Table 2), which is
a new version of Thinkpad T400. In comparison with T400,

Table 4: Correlation scores for top five products in
category “Other” in TaoBao.
# Product Bounds for ρ̃ |Vq |
1 Mamy Poko baby diapers [238.50, 238.51] 4892
2 Beingmate Infant milk powder [227.71, 227.72] 163
3 EVE game cards [198.56, 198.58] 374
4 Mabinogi game cards [189.56, 189.58] 446
5 Gerber cookies [149.51, 149.52] 1491

Table 5: Correlation scores for the five most uncor-
related products in category “Other” in TaoBao.

# Product Bounds for ρ̃ |Vq|
1 Tiffany rings [2.71,2.72] 1092
2 Jack&Jones suits [−0.48,−0.46] 311
3 Ray-Ban sunglasses [−0.78,−0.77] 4958
4 Swarovski anklets [−0.88,−0.84] 72
5 Jack&Jones shirts [−3.28,−3.27] 1606

its correlation score is very close to that of random cases.
The reason may be people in the fan community already
bought T400 and they would not further buy a new version
for T400 since they are quite similar and not cheap.

The ranked list for top five products from category“Other”
is shown in Table 4. Here “EVE” and “Mabinogi” are two
online games and players in China must buy game cards to
obtain gaming time. We find products for infants, like diaper
and powder tend to be correlated with the network. This in-
dicates people tend to follow friends’ recommendation when
choosing this kind of products. Game card is another kind of
highly correlated products. Intuitively playing with friends
is an important attractive feature of online games.

Finally, we show the correlation scores for the five most
uncorrelated products from category “Other” in Table 5.
These products’ scores are very close to those of random
cases (some scores deviate a little from random cases due to
estimation errors in variance). This indicates for clothing
and accessories people usually follow their own preference.

Table 6: Manual investigation of consumers for three
products. “k-hop friend relationship”means the dis-
tance between two consumers is k.

Products
# k-hop friend relationships

|Vq|k = 1 k = 2 k = 3
ThinkPad T400 4 7 10 47
ThinkPad T410 0 1 19 72

Swarovski anklets 0 1 32 72

To further verify the effectiveness of gScore, we manually
examine the consumers for three products: ThinkPad T400,
ThinkPad T410 and Swarovski anklets. The numbers of k-
hop friend relationships among the corresponding consumers
are reported in Table 6 for k = 1, 2, 3. A k-hop friend re-
lationship means the distance between two consumers is k.
It is easy to see the consumers of ThinkPad T400 are closer
than those for the other two products. Our measure cor-
rectly reflects the situation described by Table 6. We find
for ThinkPad T400, there is a small community which con-
tains 4 people and 4 edges. By investigating their profiles
in TaoBao, we find they are geographically near each other
and all like buying electronic products. It is this small com-
munity that makes the correlation score of ThinkPad T400
high.

For DBLP, due to space limitation, we only show the re-
sults of 12 representative keywords (Table 7), together with
the numbers of authors who published papers with these
keywords. It is observed that keywords representing gen-
eral topics (e.g. Computation) are less correlated with the
underlying co-author network than those representing more
focused topics (e.g. Hadoop, Microarray). General keywords
often randomly occur in the research network, while dedi-



Table 7: Correlation ranking for keywords in DBLP.
# Keyword Bounds for ρ̃ |Vq |
1 Hadoop [1225.22, 1225.46] 57
2 Microarray [958.64, 958.67] 4738
3 OLTP [912.52, 912.68] 105
4 AJAX [857.61, 857.74] 179
5 Virus [825.14, 825.21] 905
6 E-Learning [811.85, 811.91] 3552
7 Database [775.80, 775.83] 19522
8 Mining [760.33, 760.36] 15371
9 Relational [697.17, 697.22] 6225
10 Retrieval [647.60, 647.64] 13996
11 Indexing [624.94, 625.00] 5069
12 Computation [586.58, 586.63] 11187
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Figure 9: Correlation evolution in TaoBao.

cated keywords are usually topics pursued by a relatively
small community of researchers. Scores on DBLP are gen-
erally higher than those on TaoBao. This is because if a
keyword appears in the title of a paper, it will appear on all
authors of that paper between whom there is a fully con-
nected subgraph. Notice that the ranked list obtained by
our measure is not just a ranking of keyword popularity. For
example, comparing “Database” and “Indexing”, we can see
“Database” is not only more popular than “Indexing” (19522
vs. 5069), but also more correlated with the network struc-
ture. This is intuitive because “Indexing” is more general
than “Database” and researchers from different communities
would pursue it.

6.4 Evolution of Structural Correlation
When incorporating the time factor, our structural corre-

lation measure can be used to investigate the evolution of
an event’s correlation with the underlying structure, which
will shed light on users’ behaviors. We compute correlation
scores for an event at different time points. At each time
point, all nodes on which an event q had occurred before
that time point are used to form Vq . Intuitively, structural
correlation of an event q would increase if newly engaging
nodes for q are close neighbors of those where q had already
occurred, and decrease if newly engaging nodes are random
nodes (that is, these nodes are not influenced by network
structure). We call these two types of newly engaging nodes
link-following newly engaging nodes and random newly en-
gaging nodes, respectively.

The TaoBao dataset contains purchase transactions be-
tween Nov. 2009 and Oct. 2010. Hence, we take month as
the time unit. Figure 9 presents the evolution curves for four
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Figure 10: Correlation evolution in DBLP.

products. It was observed that for almost all the products
which have correlations close to random cases in our previous
experiments, their curves remain around 0 (e.g., “Thinkpad
T410” in Figure 9). We suspect that it would be difficult to
promote those products (e.g. viral marketing) using the un-
derlying social network. For the other three products shown
in Figure 9, at the beginning, purchases just occur randomly
(i.e. the curve is close to 0); after a while one or more peaks
will appear, indicating many link-following newly engaging
nodes appear. The sales of these products is likely influenced
by social links, thus suitable for promotion. The correlation
may drop since people may found the product from other
channels. An interesting observation is that the first peak of
Mabinogi game cards appears between January and March
of 2010, which collides with Spring Festival, the most impor-
tant festival in China. The peak implies players successfully
invited their friends to play this online game in holidays.

For the DBLP dataset, we use year as the time unit and in-
vestigate the varying trends of keywords’ structural correla-
tions from 1985 to 2010. Figure 10 shows evolution patterns
for two keywords, “Database” and “AJAX”. For relatively
newer and more focused topics (e.g. “AJAX”), the correla-
tion curve decreases abruptly in the evolution process. This
represents the topic dispersion phenomenon: at the begin-
ning, several researchers proposed the topic; then more and
more different researchers (random newly engaging nodes)
started to pursue this topic, making the keyword less corre-
lated with the social network. For long standing and more
general research topics like “Database”, the correlation re-
mains relatively stable: every year professors engaged in the
topic would hire new students to pursue that topic and some
random researchers would also publish papers on that topic
(accounting for link-following and random newly engaging
nodes, respectively).

6.5 Results on Synthetic Data
We apply our measure on synthetic events and graphs with

changing neighborhood properties. DBLP graph is used. We
create synthetic events using the cascade model for influence
spread [17]: at first a random set of 100 nodes is chosen as
the initial Vq; then in each iteration nodes joining Vq in the
last iteration can activate each currently inactive neighbor
with probability pac; we stop when |Vq| > 10000. pac can
be regarded as representing the level of participation in an
event. Intuitively, higher pac would lead to higher correla-
tion. The results are shown in Figure 11. “Random” means
we expand the initial 100 random nodes with a number of
randomly selected nodes from the remaining nodes in order
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Figure 11: Applying gScore on synthetic events.
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Figure 12: Variation of structural correlation when
randomly removing edges.

to match the corresponding event sizes of cascade model.
We can see as pac increases, the curve of cascade model goes
up, while that of “Random” remains around 0.

For the graph alteration experiment, we randomly remove
edges from the DBLP graph (each edge is removed with
probability prm). The structural correlations of four key-
words under different prm are reported in Figure 12. It is
observed that randomly removing edges from the network
affects the correlation scores of events. In general, the cor-
relation scores decrease with increasing prm since edge re-
moval would damage the correlation structure of an event
and make the event less correlated. Occasionally, the curves

go up. This is because edge removal also affects E[ρ(V̂q)]

and V ar[ρ(V̂q)].

6.6 Scalability of Sampling-alg
Finally, we investigate the scalability of Sampling-alg when

the graph size n increases. The Twitter graph is used to
perform this experiment. We extract subgraphs with dif-
ferent sizes (i.e. n) and for each n, different values of m
are tested. Results are averaged over 50 sampled DHTs.
Figure 13 shows that Sampling-alg is scalable and only need
0.17s to estimate one DHT on a graph with 10 million nodes.
Although the time cost of Sampling-alg is linear in n, it only
involves creating an index array of size n in memory. Re-
garding ρ, the estimation time is only 8.5s on a graph with
10 million nodes if we set the number of samples c′ = 50.
Note that this can also be regarded as the time used for com-
puting one adjusted correlation ρ̃ since E(ρ) and V ar(ρ) can
be obtained from pre-computed results. Intuitively, when n
is fixed and m increases, the running time should decrease
since it is easier to hit a target node (most random walks do
not need to reach the maximum steps, s). This is the reason
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Figure 13: Running times of Sampling-alg for esti-
mating one DHT when varying the graph size.

that the curve of m = 0.05n is below that of m = 0.005n.
Since we only store the adjacency list, the memory cost is
linear in the number of edges in the graph. We do not show
the curve here due to space limitation.

7. RELATED WORK
Broadly speaking, our work is related to graph cluster-

ing [28, 31, 9, 13] and dense subgraph mining [10, 25, 32].
A graph cluster shall contain many internal edges but rela-
tively few edges to other clusters. Dense subgraph mining is
to find subgraphs with high intra-connectivity and low inter-
connectivity. However, these problems only aim at finding
closely related nodes on graphs and they do not consider the
attributes (events) associated with nodes.

Recently, researchers have investigated node attributes in
graph mining. For example, Ester et al. found attribute
data can be used to improve clustering performance [8].
Zhou et al. constructed clustering algorithms based on struc-
tural and attribute similarities [33]. Silva et al. [29] pro-
posed a novel structural correlation pattern mining problem
which aims to find pairs (S,V ) in which S is a frequent
attribute set and V is a dense subgraph where each node
contains all the attributes in S. The key difference between
this problem and ours is that we study the correlation be-
tween an attribute and the entire network structure globally.
In [22], the authors examined how to find dense subgraphs
where nodes had homogeneous attributes. Again, they also
focused on local patterns but not global structural correla-
tions studied in this work.

Our work is also related to research in social influence.
In social networks, behaviors of two people tend to be re-
lated if they are friends. Anagnostopoulos et al. [2] stud-
ied the problem of distinguishing social influence from other
sources of correlation using time series of people behaviors.
La Fond and Neville [19] presented a randomization tech-
nique for distinguishing social influence and homophily for
temporal network data. Our work is different from theirs
in two aspects. First, these studies assume the existence of
correlations, while we try to determine if there is a corre-
lation. Second, they are concerned with direct friendship,
while our structural correlation is defined in a more general
graph proximity notion.

There are many graph proximity measures proposed in
the literature. Here we name a few. Common neighbors
and Jaccard’s coefficient are two measures based on node
neighborhood [23]. Common neighbors computes the num-
ber of common neighbors of two nodes. Jaccard’s coefficient



is defined as the number of common neighbors divided by
the number of all distinct neighbors of two nodes. Katz [15]
defined a measure which sums over all paths between two
nodes, exponentially damped by their length to make short
paths more important. Hitting time [20] and personalized
PageRank [24] are random walk based graph proximity mea-
sures. Our structural correlation framework can adopt any
graph proximity measure. We use hitting time in this work
since it is a more holistic measure.

The randomization and sampling techniques used in this
work have been studied extensively. Gionis et al. used swap
randomization to assess data mining results [11], while [18]
provided a rigorous bound for identifying statistically sig-
nificant frequent itemsets. We successfully extended related
techniques to the graph domain and showed that these tech-
niques with appropriate modifications are scalable in large-
scale graphs.

8. CONCLUSIONS
In this paper, we studied the problem of measuring how

strongly an event that took place in a graph is correlated
to the graph structure. A novel measure, called structural
correlation, was introduced to assess this correlation. It can
also be used to derive statistical significance to test if an
event is randomly distributed over a graph or not. We pro-
posed using hitting time to instantiate our framework and
derived a set of sampling and approximation algorithms so
that the correlation score can be estimated very quickly in
large-scale graphs. By comparing the score with the situa-
tion where the event is randomly distributed in the same net-
work, our method is able to discover the events of nodes that
are highly correlated with the graph structure. Our method
is scalable and successfully applied to the co-author DBLP
network and social networks extracted from TaoBao.com,
the largest online shopping network in China, with many
exciting discoveries.
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