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ABSTRACT

A multitenant database management system (DBMS) in the cloud
must continuously monitor the trade-off between efficient resource
sharing among multiple application databases (tenants) and their
performance. Considering the scale of hundreds to thousands of
tenants in such multitenant DBMSs, manual approaches for con-
tinuous monitoring are not tenable. A self-managing controller of
a multitenant DBMS faces several challenges. For instance, how to
characterize a tenant given its variety of workloads, how to reduce
the impact of tenant colocation, and how to detect and mitigate a
performance crisis where one or more tenants’ desired service level
objective (SLO) is not achieved.

We present Delphi, a self-managing system controller for a mul-
titenant DBMS, and Pythia, a technique to learn behavior through
observation and supervision using DBMS-agnostic database level
performance measures. Pythia accurately learns tenant behavior
even when multiple tenants share a database process, learns good
and bad tenant consolidation plans (or packings), and maintains
a per-tenant history to detect behavior changes. Delphi detects
performance crises, and leverages Pythia to suggests remedial ac-
tions using a hill-climbing search algorithm to identify a new tenant
placement strategy to mitigate violating SLOs. Our evaluation us-
ing a variety of tenant types and workloads shows that Pythia can
learn a tenant’s behavior with more than 92% accuracy and learn
the quality of packings with more than 86% accuracy. During a
performance crisis, Delphi is able to reduce 99th percentile laten-
cies by 80%, and can consolidate 45% more tenants than a greedy
baseline, which balances tenant load without modeling tenant be-
havior.
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1. INTRODUCTION

Cloud application platforms and large organizations face the chal-
lenge of managing, storing, and serving data for large numbers of
applications with small data footprints. For instance, several cloud
platforms such as Salesforce.com, Facebook, Google AppEngine,
and Windows Azure host hundreds of thousands of small appli-
cations. Large organizations, such as enterprises or universities,
also face a similar challenge of managing hundreds to thousands of
database instances for different departments and projects. Allocat-
ing dedicated and isolated resources to each application’s database
is wasteful in terms of resources and is not cost-effective. Multi-
tenancy in the database tier, i.e., sharing resources among the dif-
ferent applications’ databases (or tenants), is therefore critical. We
focus on such a multitenant database management system (DBMS)
using the shared process multitenancy model where the DBMS
comprises a cluster of database servers (or nodes) where each node
runs a single database process which multiple tenants share.

1.1 Challenges in Multitenancy

A multitenant DBMS must minimize the impact of colocating
multiple tenants. The challenge lies in determining which tenants
to colocate and how many to colocate at a given server, i.e., learn
good tenant packings that balance between over-provisioning and
over-booking. Furthermore, the colocated tenants’ resource re-
quirements must be complementary to avoid heavy resource con-
tention after colocation.

To ensure of service, a multitenant DBMS must also associate
meaningful service level objectives (SLOs) in a consolidated set-
ting. If a tenant’s SLO is violated, the DBMS must adapt to
this performance crisis. The challenge lies in mitigating the cri-
sis which might be caused by a change in this tenant’s behavior,
a change in a colocated tenant’s behavior, or a degradation in the
node’s performance. A tenant’s behavioral change might be due
to a change in the query pattern, data access distribution, working
set size, access rates, or queries issued on non-indexed attributes
while typical queries are on indexed attributes—complexity arises
from the myriad of possibilities. Adapting to a crisis entails de-
tecting changes, filtering erratic behavior, and devising mitigation
strategies. Erratic behavior can arise from temporary shifts in ap-
plication popularity, periodic analysis, or ad-hoc queries.

The problem of designing a self-managing controller is further
complicated by the variety of tenant workload types. Many appli-
cations use their databases for multiple purposes, such as using the
same database for serving, analysis, and logging. Therefore, in ad-
dition to workload variations across tenants, a single tenant might
also exhibit different behaviors at different time instances. Behav-
ioral changes might have patterns (e.g., diurnal trends of serving



and reporting workloads) or might be erratic (e.g., flash crowds).
Moreover, dynamics in the workload might or might not have cor-
relation. For instance, hosted business applications observe a spike
in multiple tenants’ activity at the start of the business day. These
behavioral dynamics, the interplay of shared resources among colo-
cated tenants, and the complex interactions between the DBMS,
OS, and the hardware make analytical models and theoretical ab-
stractions impractical.

From the monitoring perspective, a system controller potentially
receives hundreds of raw performance measures from the database
process and the operating system (OS) at each node. Considering
the scale of tens to hundreds of nodes, using all these raw signals to
maintain an aggregate view of the entire system and the individual
tenants results in an information deluge. One challenge in effective
administration is to systematically filter, aggregate, and transform
these raw signals to a manageable set of attributes and automate ad-
ministration with minimal human guidance. An intelligent and self-
managing system controller is a significant step towards achieving
economies-of-scale and simplifying administration.

More than a decade of research has focused on effective multi-
tenancy at different layers of the stack, including sharing the file
system or the storage layer [15}[19]], sharing hardware through vir-
tualization [[10]], and in the application and web server layer [21].
Multitenancy in the database tier introduces novel challenges due
to the richer functionality supported by the DBMS compared to
the storage layer, and the complex interplay between CPU, mem-
ory, and disk I/O bandwidth observed in a DBMS compared to the
stateless applications and web servers. Recent work has focused
on various aspects of database multitenancy. Kairos [6]] is a tech-
nique for tenant placement and consolidation for a set of tenants
with known static workloads. Kairos uses direct measurements of
the tenants’ CPU, I/O, memory, and disk resource consumption to
suggest consolidation plans. SmartSLA [24]] is a technique for cost-
aware resource management using direct resource utilization mea-
surements to learn the average SLA penalty cost in a setting where
each tenant has its independent database process and virtual ma-
chine. Ahmad and Bowman [1]] use machine learning techniques to
predict aggregate resource consumption for various workload com-
binations and proposes a technique that relies on static and known
workloads. The authors argue that analytical models for perfor-
mance and consolidation are hard due to complex component inter-
actions and shifting bottlenecks. Lang et al. [14] propose a SLO-
focused framework for static provisioning and placement where
tenant workloads are known. In general, existing approaches do
not target the problem of continuous tenant modeling, dynamic ten-
ant placement, variable and unknown tenant workloads, and perfor-
mance crisis mitigation in the shared process multitenancy model,
which is critical for deploying shared database services.

1.2 Controller for a Multitenant DBMS

We present the design and implementation of Delphi, an intelli-
gent self-managing controller for a multitenant DBMS that orches-
trates resources among the tenants. Delphi uses Pythia, a tech-
nique to learn behavior through observation[] Pythia uses DBMS-
agnostic database-level performance measures available in any stan-
dard DBMS and supervised learning techniques to learn a tenant
model representing resource consumption. Pythia learns a node
model to determine which combination of tenant types perform
well after colocation (good packings) and which combinations do
not perform well (bad packings). Pythia continuously models be-
havior and maintains historical behavior which allows it to detect a

"Delphi is an ancient Greek site, where the oracle Pythia resided.
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Figure 1: Pythia incrementally learns behavior.

change in a tenant’s behavior. Once Delphi detects a performance
crisis, it leverages Pythia to suggest remedial actions. Identifying
a set of tenants to relocate, and finding destinations for these ten-
ants to alleviate latency violations is the core challenge addressed
by Pythia. Delphi employs a local search algorithm, hill-climbing,
to prune the space of possible tenant packings and uses the node
model to identify potential good packings. Pythia requires minimal
human supervision, typically from a database administrator, only
for training the supervised learning. Once the models are trained,
Delphi can independently orchestrate the tenants, i.e., monitor the
system to detect performance crises, load-balance and migrate ten-
ants to mitigate a crisis and to ensure that tenant SLOs are being
met. Figure[Il presents an overview of Delphi’s design.

In contrast to existing techniques that directly use OS or VM
level resource utilization, such as Kairos [6] and SmartSLA [24]],
Pythia uses database-level performance measures such as cache
hit ratio, cache size, read/write ratio, and throughput. This al-
lows Pythia to maintain a detailed per-tenant profile even when
tenants share a database process. OS level measures either pro-
vide aggregate resource consumption metrics of all tenants, and
the alternative of hosting one tenant per database process degrades
performance [6]. In contrast, Pythia results in negligible perfor-
mance impact by using performance measures available from any
standard DBMS implementation. Additionally, Pythia learns ten-
ant behavior without any assumptions or in-depth understanding of
the underlying systems. In addition, unlike workload driven tech-
niques [TI[6l14]], Pythia does not require advanced knowledge of the
tenants’ workload or limit the workload types. Moreover, Pythia
does not require profiling tenants in a sandbox, a dedicated node for
running tenants in isolation, thus making it applicable even in sce-
narios where production workloads cannot be replayed due to oper-
ational or privacy considerations [2]]. Therefore, we expect Pythia
to have applications in a variety of multitenant systems and envi-
ronments, while requiring minimal changes to existing systems.

Delphi is the first end-to-end framework for the accurate and
continuous modeling of tenant behavior in a shared process multi-
tenancy environment. We built a prototype implementation of Del-
phi in a multitenant DBMS running a cluster of Postgres RDBMS
servers. Our current implementation uses a set of classifiers to
learn tenant and node models, although Pythia can be extended to
use additional tenant resource models, or other machine learning
techniques such as clustering or regression learning [23]]. Pythia
learns tenant models with a 92% accuracy, and node models with
a 86% accuracy. Once a performance crisis is detected, Delphi can
mitigate the crisis by reducing the 99th percentile latency violations
by 80% on average.

This paper makes the following major contributions:

e Pythia, a technique to accurately learn tenant behavior using
database-level attributes agnostic of a specific DBMS imple-
mentation. Pythia dynamically detects changes to a tenant’s
behavior even when tenants share a database process, and
automatically learns good and bad tenant packings through
observation.
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Figure 2: Overview of Delphi’s architecture.

e An end-to-end design and implementation of Delphi, an in-
telligent self-managing controller for a multitenant DBMS.
Delphi non-intrusively collects system wide statistics, load-
balances to mitigate performance crises, and ensures tenant
SLOs.

e A detailed evaluation and comparison against a greedy base-
line, using a custom distributed multitenant benchmarking
framework.

Organization: Section 2] provides background on database multi-
tenancy and formulates the problem. Section[Blexplains how Pythia
learns the tenant and node models. Section [ presents the detailed
end-to-end implementation of Delphi. Section [3] presents a thor-
ough evaluation using a variety of workloads and tenant types. Sec-
tion[Blsurveys the related work and Section[Z]concludes the paper.

2. DATABASE MULTITENANCY
2.1 Multitenancy Models

Different multitenancy models arise from resource sharing at dif-
ferent levels of abstraction; the shared hardware, shared process,
and shared table models are well known [13]]. Salesforce.com
uses the shared table model where tenants share the database tables.
SQL Azure [3] and Relational Cloud [7] use the shared process
model where tenants share the database process. Xiong et al. [24]
use the shared hardware model where tenants share the physical
hardware but have independent VMs and database processes.

The choice of multitenancy model has implications on a sys-
tem’s performance, consolidation, and dynamics. For instance,
the shared hardware model provides strong VM level isolation and
elastic scaling. However, as shown in a recent study [6], such a
model results in up to an order of magnitude lower performance
and consolidation compared to the shared process model. On the
other hand, the shared table model allows efficient resource shar-
ing amongst tenants but restricts the tenant’s schema and requires
custom techniques for efficient query processing. The shared pro-
cess model, therefore, provides a good balance of effective resource
sharing, schema diversity, performance, and scale. The shared pro-
cess model has also been widely adopted in commercial and re-
search systems [31[7]. We therefore focus on the design of an auto-
nomic controller for the shared process multitenancy model.

2.2 Delphi Architecture

Figure [2] provides an overview of the DBMS architecture we
consider in this paper. The system consists of a cluster of shared-
nothing DBMS nodes where each node runs an RDBMS engine
which multiple tenants share. Delphi is the overall framework for a

self-managing system controller and comprises Pythia, which mod-
els tenant and node behavior and maintains historical information, a
crisis detection and mitigation engine, and a statistics collector,
which gathers system-wide performance statistics.

Every DBMS node has a lightweight agent which collects us-
age statistics at that node. A lightweight embedded web server
interfaces the agent to the statistics collector. Delphi periodically
requests a snapshot of the performance measures from all nodes.
On receipt of a snapshot request, the agent obtains per-tenant and
aggregate performance statistics from the database process and the
OS, collectively called the performance features. The agent then
returns the snapshot to Delphi. We choose a pull based approach
over a push based approach where the agents periodically push the
snapshot to the Delphi. A pull based approach enables an agent
to operate without any persistent state information and allows the
snapshot frequency to be configured by Delphi. The agent collects
and aggregates statistics only when requested by Delphi.

All snapshots collected by Delphi are stored in a history data-
base that stores the per-tenant and per node history and serves as
a persistent repository for historical information such as tenant be-
havior, packings, and actions taken by Delphi to mitigate a perfor-
mance crisis. The history database can also be used for off-line
analysis of Delphi’s actions and performance by an administrator.

2.3 Service Level Objectives

In order for a shared multitenant DBMS to be attractive for the
tenants, the DBMS must support some form of performance guar-
antees such as response times. Typically, the tenants and the DBMS
provider agree on a set of service level agreements (SLAs). How-
ever, agreeing on SLAs is typically an arms race between the provider
and the tenant often governed by business logic [2]. Automatically
assigning performance SLAs based on workload characteristics is
a hard problem and beyond the scope of this paper. Instead, we
focus on service level objectives (SLOs) as a mechanism for quan-
tifying the quality-of-service of a multitenant DBMS for a given
tenant’s workload. We rely on using a uniform percentile-based
latency SLOs for all tenants.

2.4 Effects of Colocation

In the shared process multitenancy model, tenants share the DBMS,
OS, and hardware. This includes sharing the DBMS’s buffer pool,
the OS’s file system cache (or page cache), the available I/O band-
width, and CPU cycles. DBMSs are typically optimized for scaling-
up a single tenant and are not designed to fairly share resources
among tenants. Therefore, it is critical to understand the impact of
resource sharing and contention on performance. It is well under-
stood that when colocating multiple tenants, no resource should be
over-utilized. Approaches, such as Kairos [6]], are known to deter-
mine which tenants can be colocated based on the tenant’s resource
consumption. Furthermore, it is also imperative that colocated ten-
ants have complementary resource consumption. As an example,
colocating a mix of disk-heavy and CPU-heavy tenants is probably
better than colocating multiple disk-heavy tenants.

In addition to the above heuristics, when multiple tenants share
the cache, it is important to consider how the tenants access the
cache. Assume we have two tenant databases D1, and D> colo-
cated at a node with enough resources to serve both tenants. If
Dy ’s throughput is higher than that of Do, the least recently used
(LRU) eviction policy, commonly used in buffer pool implemen-
tations, will result in D; stealing cache pages from Ds. This is
because D is accessing more pages, thus making D>’s pages can-
didates for likely eviction. This reduction in D’s cache hit ratio
will affect its performance. Figure 3ldemonstrates this behavior in



0.94

Cache Hit Ratio
o
o
()

0.92 =~ -

50 100 150 200 250
Operations Per Second Difference

Figure 3: Effects of throughput on cache impedance.

an experiment on a node serving a set of identical tenants where
a tenant A has its throughput gradually increasing while the other
tenants (B) have a fixed throughput; B represents the average be-
havior of the remaining tenants. As the throughput difference in-
creases, A steals more cache from the other tenants resulting in an
increase in A’s cache hit ratio and a decrease in the cache hit ratio
of all the remaining tenants (B-Avg), thus affecting performance
of the slower tenants.

We introduce the concept of cache impedance as a measure of
compatibility between tenants to effectively share a cache. A sce-
nario where one tenant dominates the cache over the other tenants
is due to a cache impedance mismatch. Therefore, to ensure that
tenants continue to perform well after colocation, it is important
their cache impedance matches. Four major aspects affect cache
access: key or tuple access distribution, database size, throughput,
and the read/write distribution; though from our experiments, we
have seen throughput to be the most dominant factor.

A similar impact of cache impedance is also observed for ac-
cesses to the OS page cache and how the tenants share the page
cache. However, the interactions between the two levels of caches,
the buffer pool and page cache, are complex due to the stateful
interactions between the OS and DBMS [1]]. We therefore take
an empirical approach to infer a tenant’s cache impedance through
observed behavior, thus avoiding solutions tailored to a specific im-
plementation. We incorporate the knowledge of cache impedance
into the design of Pythia by using signals from both the buffer pool
and the page cache to determine the class labels that represent ten-
ant behavior. Pythia learns which combinations of tenant classes
are amenable for colocation. While specialized solutions can be
built with strong resource isolation between tenants or bypassing
the page cache using direct I/O, we aim to present an approach re-
quiring minimal changes to current DBMS architectures.

2.5 Problem Formulation

Let D be the set of tenant databases and N be the set of DBMS
nodes. Each tenant D; € D is represented by a vector of perfor-
mance features F; and F = {F;|D; € D}. Let C be a set of class
labels corresponding to tenant behavior. Pythia learns the tenant
model T : F — C, i.e., given a performance feature F; of tenant
D;, the tenant model T assigns a label ¢ € C to D;. Let P; be the
set of tenants at /N;, such that each tenant entry, D;, has a corre-
sponding class label C; derived from T and performance measure
(e.g..latency), M;, that constitutes the SLO. Pythia also learns the
node model P : P; — G, i.e., given a set of tenants P;, and thus
corresponding labels, [P assigns a label g € G that indicates the
packing’s quality. We set G = {v'*, v, x}, where v denotes a
good packing, v' T is a good packing with under-utilized resources,
and X is a bad packing.

Delphi periodically collects snapshots from all the DBMS nodes.
Each node reports the performance features of all the tenants hosted
at that node and the overall node level usage statistics. Delphi
monitors all the nodes and ensures that all the tenants’ SLOs are
being met and every node in the system is performing well, i.e.,

VN; € N,P(P;) = v'. For every tenant, Pythia maintains a slid-
ing window of the last W snapshots and their corresponding labels.
Given a performance crisis at a node NV;, i.e., one or more tenants in
the packing P; are violating their SLOs, Delphi mitigates the crisis
by finding a packing P; C P; such that P(Pj) = v'. Delphi also
finds destination node(s) (/N}) for the tenants P; — PJ{ that must be
moved out of N;.

3. PYTHIA: LEARNING BEHAVIOR

Pythia seeks to learn tenant and node models through observa-
tion. Using machine learning classification, Pythia assigns a class
label to a tenant that approximately describes the tenant’s behav-
ior and resource consumption. Pythia also learns which tenant
packings are performing well and which ones are violating SLOs.
Pythia’s design goals are to learn behavior while: (¢) requiring min-
imal changes to the underlying multitenant DBMS, (4¢) having no
foreknowledge or assumptions (such as static or predefined work-
loads or working set fitting in memory) on tenant workloads, and
(#i7) causing negligible performance impact.

Pythia uses supervised learning techniques, specifically classi-
fiers, to learn tenant behavior. We use tenant classes that are repre-
sentative of their resource consumption. Pythia also learns which
combination of tenant types perform well together (good packings)
and which tenant packings are likely to over consume resources or
violate latency SLOs (bad packings). We now explain our feature
selection process to identify a small set of performance features
that can accurately model a tenant’s behavior and then explain how
Pythia uses these features to learn the tenant and node models.

3.1 Tenant Feature Selection

Pythia uses DBMS-agnostic database-level performance mea-
sures. Database-level performance measures allow per-tenant mon-
itoring for detailed analysis even in shared process multitenancy. A
plethora of performance measures can be extracted from any stan-
dard DBMS. Examples are number of cache accesses and cache
misses, number of read/update/insert/delete requests, number of
pages accessed by each transaction, average response time, and
transactions per second. However, using all the measures to char-
acterize a tenant is not desirable since the complex relationship be-
tween attributes can be difficult for classifiers to infer. We therefore
use our domain knowledge to select a subset of measures.

The challenge lies in selecting the measures that correlate to ten-
ants’ behavior and resource requirements while ensuring high mod-
eling accuracy. To allow Pythia to be used in a large variety of sys-
tems, we only select measures available from any standard DBMS
implementation, be it SQL or NoSQL, with negligible or no im-
pact on normal operation. We select the feature set guided by our
knowledge of the attributes’ semantics.

We now explain the different measures, some of which are de-
rived from other raw measures, we choose as the tenant perfor-
mance features and also explain the rationale behind their selection.
Write percent. The percentage of operations issued by a tenant
that are writes, i.e., inserts, deletes, and updates. This measure
gives an estimate of the rate at which the pages are updated and is
also an indirect indicator of the expected disk traffic resulting from
the writes due to cache pages being flushed, checkpointing, and
appends to the transaction log.

Average operation complexity. Average number of (distinct) data-
base pages accessed by a single transaction. When transactions are
specified in a declarative language, such as SQL, operation com-
plexity is a measure of the resources consumed (such as CPU cy-
cles) to execute that operation. This measure differentiates a tenant
issuing simple read/write transactions from one issuing complex



transactions performing joins or scans, even though both transac-
tion types might issue the same number of SQL statements.
Percent cache hits. Number of database pages accessed that were
served from the cache. This measure approximates the number of
disk access requests issued by the database process for the tenant.
Buffer pool size. Number of pages allocated to the tenant in the
DBMS buffer pool, approximates the tenant’s memory footprint.
OS page cache size. Number of pages allocated in the OS page
cache to the tenant’s database files. Along with buffer pool size,
provides an estimate of the tenant’s total memory footprint.
Database size. Size of the tenant’s persistent data and is represen-
tative of the disk storage consumption. Size has an indirect impact
on the tenant’s disk I/0.
Throughput (Transactions per second). Average number of trans-
actions completed for a given tenant in a second. Transactions com-
pleted include both the transactions committed and rolled-back.
Throughput is an indicator of behavior (such as cache impedance)
and resource requirements (such as CPU and disk bandwidth).
Our experiments (Section[3) demonstrate that these attributes al-
low Pythia to train accurate models, representative of resource con-
sumption, that can be used by Delphi for effective crisis mitigation.

3.2 Resource-based Tenant Model

We characterize a tenants’ behavior in terms of its expected re-
source consumption. The rationale for selecting resource-based
models is to allow Pythia to associate semantics to a tenant’s behav-
ior and reason about resources consumed. Furthermore, the number
of critical resources are limited and known to a system adminis-
trator. Therefore, tenant behavior can be classified into a handful
of resource-based classes without requiring knowledge of tenant
workloads. Recent work has investigated classifying workload-
based modeling by running queries in isolation [18]]. However,
using queries to build accurate models and understand tenant in-
teraction, assumes new queries follow existing patterns and limits
the opportunity for ad-hoc queries. Additionally, queries that rely
on caching to minimize expensive operations, such as nested loop
joins, can make modeling interactions difficult. In designing Pythia
we sought to avoid these assumptions. We now explain how we se-
lect the resource-based class labels, how we determine the rules to
assign labels to the tenants, and how we train the tenant model.

3.2.1 Resource-based classes

A tenant’s resource consumption has four important components:
CPU consumed to fulfill the tenant’s requests, main memory (RAM)
consumed to cache data, disk capacity consumed to store persis-
tent data, and the disk I/O bandwidth (or disk IOPS) consumed.
While networking is an important resource, for now we assume
that database connections are ample due to connection pooling and
workloads use minimal data transfer. In scenarios where this is crit-
ical, network attributes can be be added. In most cases, commodity
servers have disks (order of terabytes) much larger than the tenants
(order of few gigabytes). Therefore, disk capacity is almost always
abundant. However, irrespective of how much RAM is provided,
the DBMS and the OS in a running server will invariably use most
of the available RAM to cache existing tenants. Therefore, RAM
usage is almost always constrained and excess capacity for new
tenants is not reserved. However, in practice, a large fraction of the
cached pages are not actively used and a newly added tenant will
carve out cache capacity, provided the tenant’s cache impedance,
as described in Section2.4] matches that of the tenants already be-
ing served at the node. In addition to cache impedance, the disk
IOPS and the available CPU capacity are two critical resources that
determine how well the tenants perform after colocation. In a con-

solidated setting, we cannot directly determine the exact CPU and
disk IOPS consumption or the cache impedance of each tenant, so
we model them indirectly. We use the performance features to ap-
proximate resource consumption. We base our class labels based
on three dimensions: expected disk IOPS (D), throughput (T), and
operation complexity (0). We loosely associate D, T, and 0 to disk
bandwidth consumption, cache impedance, and CPU consumption.

A human administrator is required to derive resource boundaries
for the labels. These boundaries can be derived by observing re-
source distributions in a system where Pythia will be used. In
our evaluation, we partition each continuous dimension into a few
buckets whose boundaries are determined by analyzing the distri-
bution of values obtained from an operational system. The D di-
mension is subdivided into four buckets: small (DS), medium (DM),
large (DL), and extra-large (DXL). The T dimension is subdivided
into three buckets: small (TS), medium (TM), and large (TL). The 0
dimension is subdivided into two buckets: small (0S) and large (OL).
The rationale for such a subdivision is that the disk bandwidth is a
critical resource for data intensive applications; a finer subdivision
allows closer monitoring of a tenant’s disk bandwidth consump-
tion. Throughput impacts CPU consumption, disk IOPS, and cache
impedance. We therefore consider throughput second after disk and
use a coarser subdivision into three buckets. Operation complexity
affects CPU consumption and is primarily targeted to differentiate
tenants issuing complex queries such as scans, reports, or joins.
Complexity comes last and is subdivided into two buckets.

We use class labels composed of D, T, and 0. For instance, DS-TS-0S
represents a tenant with low expected disk consumption, low through-
put, and low complexity. Among the possible 24 classes, in prac-
tice, some classes fold into one encompassing class as some di-
mension override the others. As an example, a DXL tenant’s re-
source consumption is high enough that the operation complexity
does not matter; we only consider two throughput buckets for such
tenants: DXL-TL and DXL-TMS (medium and small). Similarly, for a
DL-TL tenant, complexity is irrelevant. Following is the set of class
labels we used: C = {DL-TL, DL-TM-OL, DL-TM-0S, DL-TS-OL,
DL-TS-0S, DM-TL-OL, DM-TL-OS, DM-TM-OL, DM-TM-OS, DM-TS-OL,
DM-TS-0S, DS-TL-OL, DS-TL-OS, DS-TM-OL, DS-TM-0S, DS-TS-OL,
DS-TS-0S, DXL-TL, DXL-TMS}.

3.2.2  Training the model

Throughput and operation complexity are directly measured from
the database process. The number of disk requests issued per-tenant
must be estimated since the OS only provides aggregate measures
and the DBMS we use does not directly report resource metrics per-
tenant. The database process provides a measure of the number of
disk read requests issued to the OS. However, due to the OS page
cache, an actual disk access happens only after a miss in the OS
page cache. Our first approximation was that every access to the
page cache has a uniform probability of a miss. This approach to
modeling the OS page cache is inaccurate since it overlooks cache
impedance in the page cache level. An artifact of using a DBMS
that utilizes the page cache and does not use direct I/O. If a tenant
D1 misses the database cache more frequently compared to another
tenant Do, D1 issues more requests to the page cache compared to
Do, thus dominating D3 in the page cache. Therefore, a request by
Do has a higher likelihood of a miss compared to that of D;. The
probability of a page cache miss is also dependent on other factors
such as the tenant’s database size, what fraction is cached, and the
page cache eviction policy.

Let P(A) be the probability that an access to a page missed the
buffer pool. If h is the cache hit ratio, then P(A) = 1 — h. Let
P(B) be the probability of a miss in the page cache. If p is the



total number of database pages for the tenant and m is the number
of the tenant’s pages in the page cache, then P(B) = 1 — m/p.
The probability of a page being read from the disk is P(A N B).
For simplicity, if we assume that A and B are independent, then
P(AnB) = P(A)P(B) = (1 — h)(1 — m/p). The number
of pages accessed per second is given as the product of the oper-
ation complexity (o) and throughput (¢). Writes contribute to disk
activity due to dirty buffer pages, and WAL writes. Update oper-
ations provide fixed disk-write activity due to logging, and have a
probability of creating another disk-write, if a clean buffer page is
dirtied. Outside of logging, updates to an already dirty buffer page
may not force a new disk-write. This results in disk activity being
difficult to accurately model. Let u be the update operations per
second, d be the percentage of pages that are dirty in the buffer
pool, and « be a slack variable for updates causing additional disk
writes. Therefore, we have Expected Disk IOPS :
(oxt)(1—h) (1 —m/p) +u+aluxdx (1—"h)) (1)

This measure (d)) is an approximation since it simplifies the ef-
fect of updates on disk-writes and assumes buffer pool misses and
page cache misses are independent. However, our experiments in
Section 5.2 reveal that () is close enough as a guideline for la-
beling the training set. We provide all the performance measures
to the tenant classifier that learns the function using the attributes,
but use the transformed expected disk IOPS in generating labels for
our training set.

Training the tenant model requires minimal guidance from a hu-
man administrator. An administrator analyzes the distribution of
the values along the dimensions D, T, and O to determine the bound-
aries for the buckets that form the class labels for training. For our
evaluation, we derived boundaries by examining the distributions of
attributes against server resource consumption when tenants were
run in isolation. Once the bucket-boundaries are determined, the
administrator assigns labels to the tenants based on their respec-
tive performance features. Pythia trains a classifier on the labeled
training set to learn the tenant model T.

Pythia is designed to work with various tenant models, as long
as a model label exists that captures the multiple dimensions of re-
source utilization. Modeling database interaction in a multitenant
environment is challenging due to shifting bottlenecks and unfore-
seen interactions. This work focuses on demonstrating the potential
of a framework that relies on machine learning to model tenant be-
havior and predict interaction. The tenant model presented in this
paper is a representative example. For future work, we plan to ex-
amine additional tenant models, such as online models based on
query analysis [[18]], providing administrators feedback on models,
and assisting tenant modeling through unsupervised learning.

3.3 Node Model for Tenant Packing

Pythia uses the tenant model to learn which tenant classes per-
form well together and which do not. The goodness of a packing
depends on the class of tenants that comprise the packing. A node
model is trained for a single hardware configuration.

A set of tenants at a node is represented as the packing vector.
If |C| is the number of tenant classes, then a tenant packing is repre-
sented by a vector of length |C|. A position in the vector represents
a tenant class and the number of tenants of that class contained
in the packing; if a type is absent in the packing, the corresponding
count is set to 0. For example, if c1, c2, and c3 are the known tenant
classes and a packing had two tenants of type c; and three tenants
of type cs, the vector for the packing is [2, 0, 3]. The node feature
representing a packing at a node is the packing vector.

We train the node model (IP) by providing a set of labels (G)
representing the goodness of a packing. In its simplest form, G can

be {v'*, v, x} representing good or bad packings respectively. A
packing is good (v) if all tenants meet their SLOs and under(v' ™)
if SLOs are met and server resources are under-utilized. A latency
SLOs is composed of an upper bound time for a given percentile.
Let S be the set latencies, composed of s;, the latency limit for
the ith percentile in milliseconds. For our evaluation we set S =
{595 : 500, sg9 : 2000} based on discussions with several cloud
service providers. Relaxing or tightening SLOs depends entirely
on the applications using the service.

The binary labeling technique captures the SLOs but does not
consider utilization of the node. For instance, a packing might
be good but the node’s resources might be under-utilized or over-
utilized. We therefore augment G to include information about
utilization. As noted earlier, disk IOPS and CPU are two criti-
cal resources. We use idle CPU percent and the percentage CPU
cycles spent on 10 (IOWait) as indicators of node utilization both
in terms of CPU and disk bandwidth; too many disk requests are
reflected in high [OWait. A node’s utilization is subdivided into
three categories: if idle is above a certain upper bound (I4,,) then
the node is under-utilized (Under), if idle is below a lower bound
(U;) or IOWait is over a threshold U4, then the node is over-utilized
(over), idle percent in the range (U;, U, ] and IOWait less than U, is
considered good utilization (Good). If any tenant violates a latency
SLO the node is labeled as Over, regardless of resource consump-
tion. Composing the utilization based division with the SLO based
division results in a set of labels that captures both utilization and
SLOs: G = {Under(v' 1), Good(v), Over(x)}.

To train the node models, a human administrator specifies the
parameters S, U, U, and U,,. A simple rule-based logic assigns
labels to the node based on the node feature. Once the training set
is labeled, Pythia trains a classifier to learn the node model P.. The
node model is incrementally updated to reflect new observations in
the running system.

3.4 Utilizing Machine Learning

We use Weka, an open-source machine learning library, to train
Pythia’s models. We experimented with multiple classifiers such as
decision trees, random forests, support vector machines, and classi-
fiers based on regression [23]. The training data is obtained by aug-
menting an operational system, for which Pythia will be trained, to
collect the tenant and node features which are then labeled as de-
scribed earlier. In our evaluation Pythia utilizes Random Forests,
an ensemble decision tree classifier, due to its high accuracy and re-
sistance to overfitting. Once the tenant and node models are trained,
they are stored and served in-memory; Delphi uses these models for
intelligent tenant placement.

In this section, we presented one way of training the models in
Pythia as a representative example. However, Pythia can be adapted
to work with a different set of performance features, tenant and
node labels, and semantics associated with the label. The role of a
domain expert or a system administrator is to determine represen-
tative features and assign labels so that the tenant and node models
can be trained accordingly. For example, disk I/O is limited by
the underlying hardware and experienced administrators can eas-
ily identify and categorize ranges of disk consumption. Moreover,
Pythia can also be extended to use other forms of machine learn-
ing such as clustering or regression learning [23]]. Exploring such
directions are possible directions of future work; our initial focus
was to leverage classification with domain knowledge to explore
the end-to-end design space.



4. DELPHI IMPLEMENTATION

We implemented Delphi on a multitenant DBMS with each node
running Postgres, an open-source RDBMS engineH All the data-
base level performance features (IF) are obtained using two Post-
gres extensions and without any modification to the Postgres code.
Early in our project, we also explored MySQL and found the major-
ity of performance measures comprising [ are available through a
third-party MySQL extension ExtSQL ] In this section, we explain
Delphi’s components other than Pythia, i.e., the statistics gathering
component, and the crisis detection and mitigation component.

4.1 Statistics Collection

Each DBMS node has an agent which interfaces with Delphi.
The agent collects the tenants’ performance statistics by querying
the database process. In our prototype, tenants share the same Post-
gres instance and have independent schemas (or databases, in Post-
gres terminology). To gather the performance statistics, we use
two extensions to Postgres in addition to Postgres’ internal statis-
tics. The extension pg_buffercache provides detailed information
about the state of the database buffer by table, and the extension
pgfincore peeks into the OS’s page cache to determine which parts
of a tenant’s database is cached by the OS. Both extensions ex-
pose the statistics as a table which the agent queries using SQL
issued through a local JDBC connection. A number of queries
are issued to Postgres, pg_buffercache, and pgfincore to obtain
statistics such as per-tenant database and OS page cache allocation,
cache-hit rations, number of dirty pages, and read/write ratios.

The agent also collects aggregate node-level usage statistics such
as percentage idle CPU, CPU cycles blocked on 1/O calls, CPU
clock speed and number of cores, memory usage, number of disk
blocks read or written, and disk I/O operations per second for all
drives hosting database files or the transaction log. The agent can
also be configured to follow database logs to record database events
such as a checkpoint initialization or slow queries.

The statistics collector requests a snapshot via the agent’s web
server which obtains the performance measures from the local data-
base; statistics are reset after collection. The response by the agent
wraps all the statistics and the time since the last report in a flexible
interchange format, JSON in our case, allowing easy extensibility.
This entire process takes on the order of few milliseconds and al-
lows lightweight statistics collection. The impact of monitoring on
database latency was observed to be a few milliseconds.

4.2 Crisis Detection and Mitigation

4.2.1 Monitoring and Crisis Detection

The statistics collector periodically gathers statistics from all the
DBMS nodes to create an aggregate view of the system. For ev-
ery incoming snapshot, Delphi uses Pythia’s tenant model to de-
termine each tenant’s class. Delphi maintains a per-tenant sliding
window of the last W snapshots; all Delphi’s actions are based on
W. The class labels in W are used to determine a representative la-
bel for each tenant. For instance, assume Delphi maintains 5 snap-
shots, and in this window a tenant D; has 4 labels corresponding to
class c¢; and 1 label corresponding to cj. Delphi represents D; as
{0.8¢;,0.2¢k }, i.e., D; is of type c¢; with confidence 80% and type
cx, with confidence 20%.

Delphi’s use of a window W, rather than using the last snap-
shot, provides a more confident view about shifts in behavior. It
allows Delphi to filter spurious behavior, such as sudden spikes in

2http ://www . postgresql.org/
3MySQLZ http://www.mysql.com/, ExtSQL: http://www.extsql.com/.

activity or higher than average response times resulting from sys-
tem maintenance activities such as checkpoints. Using percentile
latency SLOs also limits the impact of a few queries with high la-
tency. Crisis mitigation steps, such as migrating some tenants out
of a node, are expensive and hence Delphi must filter out spurious
behavior and react only when a shifting trend is observed.

For a given tenant packing P; at node N;, Delphi determines
whether all tenants’ SLOs, S, are being met. If all SLOs are met
and no resource is being over-utilized, then this packing is an in-
stance of a good packing for the node model. The slack in resource
consumption determines the aggressiveness of consolidation. If
one or more SLOs are violated, then this packing is an instance
of a bad packing. Once a performance crisis corresponding to a
bad packing is detected, Delphi searches for a good packing and
takes the remedial measures.

The node model P receives continuous feedback about good and
bad tenant packings and is incrementally updated as Delphi ob-
serves new packings and their outcomes. We incrementally re-train
P using the negative examples, i.e., cases where the model’s predic-
tion was inaccurate, and a sampling of positive examples that are
not repetitive, as many packings and their outcomes are repetitive
during steady state.

4.2.2 Crisis Mitigation

Mitigating a performance crisis for a bad packing P; at node
Nj entails identifying a packing P; C P; such that P(P}) # x,
where X corresponds to an over packing according to the node
model P. We formulate this problem of finding the packing P as
a search problem through the combinations of the tenant packings,
a well-studied problem in artificial intelligence [17]. The search
algorithm performs what-if analysis using the tenant model P to
determine potential destinations node that can accommodate a sub-
set of tenants in PjM without itself deteriorating to a bad packing
as predicted by P. Once a good packing P; is determined, the
tenants P = (P; — Pj) must be migrated out of N;. Pythia
must find one or more destination nodes that can accommodate
P]-M . Therefore any tenant in pj-” € PJ-M requires a destination
node Ny, serving a packing Py such that P(Py) # x AP(P}) # x
where P}, = P, U pjw . Destinations must be found for all tenants
included in P}

We implemented a few different search algorithms in designing
Pythia. Breadth first search (BFS) first tries all combinations
of migrating one tenant, then combinations of a pair of tenants, and
so on until it finds a good packing according to IP. Using an ex-
haustive search algorithm would often not converge on a solution,
either due to the search space complexity or not being able to sat-
isfy a goal test of having no nodes in violation. Additionally, we do
not expect BFS to scale with a large number of tenants and nodes.
The local search algorithm, hill-climbing becomes the natural se-
lection, due to the ability to provide a time-bounded best solution,
and the ability to treat packing as an optimization problem [17].
With hill-climbing, all immediate neighbors (potential migrations)
are examined, and the move providing the largest improvement is
selected. Therefore only the local state is considered when making
search decisions. This process is repeated, until no additional step
can improve the state (a local maximum) or time has expired. Each
step is evaluated with a heuristic cost estimate A to find a migration
which provides the largest improvement to the tenant packing, by
finding a local minimum for h. The naive cost function h attempts
to minimize the number of nodes which are labeled as over(x).

h= Z 1 )

{N;EN|P(P;)=x}


http://www.postgresql.org/
http://www.mysql.com/
http://www.extsql.com/

However, in packings with minimal excess capacity, this cost func-
tion (2) to minimize the number of over nodes, would simply over-
load one node to the point of being unresponsive. The next step
would be to minimize the number of tenants in violation. This
requires we extend the node model to provide a confidence score
A for a given label. In place of a single label, most classifiers
can produce a set of labels and confidences. We denote a func-
tion that provides a confidence rating given a packing and label, as
MC,G) — R € [0, 1]. The new cost function follows as:

h= > (AP, x)-|P|)? 3)

N;EN

This cost function has an artifact of migrating tenants between
nodes that were not in violation, to reduce the overall score. Healthy
nodes with a large number of nodes, can be labeled as having a
small confidence of being over(x). This cost function would favor
migrating from a large number of tenants with a low over-score,
rather than a small number of tenants, in violation, with a higher
over-score. We use a minimal threshold, o for A to register a score.
After examining latencies and IO wait times for A(d X) we set-
tled on o = 0.35, due to reduced likelihood of high latencies or
strained I/0. These results are included in Section[5.2.21 Our final
cost function is set to:

h= >
{N;EN|X(P;,x)>0}

In case the search algorithm cannot find a suitable packing, or
cannot converge after a few iterations, it concludes that new nodes
need to be added to accommodate the changing tenant requirements
and behaviors. In a cloud infrastructure, such as Amazon EC2,
Delphi can automatically add new servers to elastically scale the
cluster. In a statically-allocated infrastructure typical in classical
enterprises, Delphi flags this event for capacity planning by a hu-
man administrator. Since the workloads are dynamic and we em-
ploy heuristics to find a solution, a stable state is not guaranteed.
Additional heuristics, such as maximum allowed moves in a time
period, are used to prevent excessive tenant movement.

Delphi must migrate the tenants p;»w for which it found a po-
tential destination node. This problem of migrating a tenant data-
base in a live system is called live database migration [9]. Once
a tenant is migrated, the outcome is recorded in the history data-
base. Migrating a tenant incurs some cost, such as a few aborted
transactions and an increase in response times. Our current search
algorithm does not consider this cost in determining which tenants
to migrate. Ideally, Delphi will factor migration cost into decision
making, however this requires accurate models to predict migration
cost, which is influenced by tenant attributes, colocated workloads,
and network congestion. We evaluated regression models based on
the attributes in Section [3.1] to predict migration cost, but interfer-
ence from source and destination workloads resulted in inaccurate
models. Accurate models to predict migration cost, augmenting the
search algorithm to consider a predicted migration cost, and tech-
niques to recognize patterns in workloads are worthwhile directions
of future extensions.

It is possible to use replicas for crisis mitigation and load bal-
ancing in Pythia. Leveraging existing replicas to migrate workload
instead of data migration reduces the migration cost. Synchronous
replication protocols make this operation simple and quick, but at
the cost of increased latency for update operations during normal
operation. Asynchronous replication could also be used, but au-
tomating the process of migrating workload to a secondary replica,
when the replicas can potentially be lagging, while preserving data
consistency requires careful system design and additional approaches.
Moreover, even in a system with multiple replicas, Pythia can help
select a candidate replica to migrate the workload to. In scenarios

(A(P:, %) - |Pi])® )

where the existing replicas are not suitable destinations (since they
might become overloaded as a result of this workload migration),
Pythia can also help select a viable destination where a new replica
can be regenerated. Our decision to focus on migration limits the
problem’s scope. In the future, we plan to explore how Pythia can
be extended to support a hybrid of workload and data migration.

5. EXPERIMENTAL EVALUATION

We deployed and evaluated Delphi on a cluster of 16 servers
dedicated to database processes, six servers dedicated to generat-
ing client workloads (workers), and one server dedicated to host-
ing Delphi and a benchmark coordinator. The database servers run
PostgreSQL 9.1 on CentOS 6.3, with two quad-core Xeon proces-
sors, 32 GB RAM, 1 GB Ethernet, and 3.7 TB striped RAID HDD
array. Adhering to PostgreSQL best practice, the buffer pool size
is configured to 8 GB, with the remaining memory dedicated to use
by the OS page cache. Default settings are used for other config-
uration options. The following section describes benchmarks used
for workload generation, the methodology used to generate various
tenant workloads, a validation of the tenant and node models, and
a detailed evaluation of Pythia.

5.1 Benchmark and Tenant Description

Delphi targets multitenant environments that serve a wide va-
riety of tenant types and workloads where the tenants often use
their database for multiple purposes. Classical database bench-
marks, such as the TPC suite, focus on testing the performance
and limits of a single high performance DBMS dedicated either for
transaction processing (TPC-C) or for data analysis (TPC-H). Ex-
isting benchmarks provide little support for evaluating the effects of
colocating multiple tenants, systematically generating workloads
for large numbers of small tenants, generating correlated and un-
correlated workload patterns, or generating workloads that change
or evolve with time. We therefore designed and implemented a cus-
tom framework to evaluate and benchmark multitenant DBMSs.

Our multitenant benchmark is capable of generating a wide vari-
ety of workloads, such as lightweight tenants with minimal load
and resource consumption, a mix of reporting and transactional
workloads, and workloads that change behavior with time, thus em-
ulating the variety of tenants a multitenant DBMS can host [2]]. The
benchmark is a distributed set of load generator workers orches-
trated by a master. The core of the load generator comprises a set
of configurable predefined workload types. Our current implemen-
tation supports the following workload classes: a light workload
of short transactions, composed of 1-4 read and write operations;
a lightweight market-based web application which tracks frequent
clicks, reads products for browsing, places transactional orders, and
reports on related items and popular ads; a time series database with
a heavy insert workload and periodic reporting; a YCSB-like [3]
workload on larger databases with 80% of operations, on 20% of
the data; and a set of YCSB-like workloads with bounded random
configurations. A tenant’s workload is specified as one workload
type, a database size varying between 100MB to 14 GB, and a vec-
tor of randomized configuration parameters, including throughput
and number of client threads. Therefore a tenant’s workload can
potentially comprise multiple combinations of workload configu-
rations in different time intervals. Using the randomized configu-
ration, 350 tenants were generated and associated with a random
id. Each tenant was run in isolation for a warm-up period of at
least 30 minutes, and then latencies were measured over 10 min-
utes. To ensure tenants are amenable to consolidation with our la-
tency SLOs, tenants with latency 95th percentile greater than 500
milliseconds (ms) or 99th percentile greater than 2000 ms are re-
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Figure 4: Tenant model resource consumption when run in iso-
lation.

moved from the set of candidate tenants, which left 314 tenants.
While this workload combination does not encapsulate the variety
of workloads encountered in a real database platform, it is more
robust than using a combination of heterogeneous workloads, such
as only using YCSB or TPC-C for all tenants.

The benchmark master receives a mapping of tenants-to-servers
from Delphi, and executes all workloads by distributing workloads
at the thread granularity in round-robin to all worker nodes. Worker
nodes connect directly to database servers via JDBC. Periodically
the master collects rolling logs of all latencies, tagged by opera-
tion type, workload class, and tenant ID. Implementing such a dis-
tributed load testing environment is necessary to generate enough
client load to stress 16 database servers concurrently, aggregate us-
age statistics, and emulate a distributed tenant query router.

5.2 Model Evaluation

Before describing the experimental evaluation of Pythia, we briefly

revisit model generation and provide a basic validation that the pro-
posed models capture behavior that Pythia utilizes for placement
decisions. Pythia’s models must be trained before Delphi can lever-
age Pythia for managing the tenants. Training data is collected from
the operational system and a human administrator provides rules
to label the training data, which is then fed into Pythia to learn
tenant and node models. A model’s accuracy is computed as the
percentage of occurrences where Pythia’s predicted tenant or node
label matches that provided by the administrator. To measure accu-
racy, we used cross-validation, where the labeled data is partitioned
into a training set and a validation set, the models are trained on
the training set and tested on the validation set. Accuracy of the
tenant model was about 92% while that of the node accuracy was
about 86%. We also validated that when a node’s resources are not
thrashing, then a tenant’s class label is static if the tenant’s work-
load is static. When resource capacity becomes constrained, due to
migration or thrashing, we did observe that tenant labels do fluc-
tuate. Labeling based on a sliding window can reduce fluctuation,
but fluctuations could result in a misclassification of a node, and
requires additional iterations to resolve. Improving tenant interfer-
ence modeling is left for future work.

Delphi is an initial step in building a multitenant controller, and
to focus the problem on tenant placement we currently do not factor
the cost of migration in placement decisions. Therefore in all evalu-
ations, when any new combination of colocated tenants is evaluated
(a run), the framework runs a staggered half-hour warm up period
followed by a statistic reset. After warm up, evaluations run for a
given time period with snapshots recorded every five minutes and
node statistics captured every 30 seconds.

5.2.1 Tenant Model Evaluation

In determining which generated tenants are amenable to the de-
fined latency SLOs, all tenants are run in isolation on a database
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server. Here the tenants’ performance features are labeled using the
rules described in Section The labeled data set serves as our
initial training set for tenant models. To validate that the resource-
based tenant models do capture relative resource consumption, we
examine the tenant models when run in isolation. The models are
labeled using only the database features captured by an agent, and
the servers resource utilization is only used for validation. Fig-
ure 4] shows that our models are representative of actual resource
usage, without direct monitoring. Disk activity is examined in Fig-
urewhere we compare label buckets of small, medium, large,
and extra-large against average disk IOPS and the max CPU cy-
cles blocked on /0 (I0 Max). As predicted the disk component
of a tenant’s label corresponds to the average observed disk activ-
ity. Figure shows that average operation complexity (num-
ber of pages accessed per transaction), which translates into CPU
consumption. Our hypothesis is that high operation complexity in-
cludes CPU intensive queries, including, reporting queries that ac-
cess many pages, complex join operations, or long running trans-
actions that require concurrency validation. Here we show labels
with small and large operation complexity against mean and max
CPU cycles used on user processes, which is primarily composed
of the database processes. The range for CPU cycles appear low,
but these percentages are across 16 OS threads. Servers with fewer
cores, would exhibit higher percentages.

To experiment with the robustness of the tenant model, we ran
a TPC-C like tenant without having any TPC-C workloads in the
training set. We ran the workload with five warehouses and a throt-
tled single terminal. As expected the model labeled the tenant
DM-TS-OL, as having medium disk access, low throughput and large
operational complexity due to complex transactions.

5.2.2 Node Model Evaluation

In contrast to the tenant model, labeling the node training data
can be substantially automated. The input to the node model is
a vector of tenant model counts that are colocated on this node.
The training requires observing many combinations of colocated
tenant workloads. An administrator sets the parameters for deter-
mining a node’s health, by determining acceptable ranges of re-
source consumption, such as disk IOPS or CPU consumption, and
the percentile-based latency response time SLOs. With the model
parameters defined and the ability to run synthetic workloads, Del-
phi is able to the automatically build the node model. Node models
are valid for one type of hardware configuration.

Figure [3] presents average resource consumption by the node’s
label and Pythia’s confidence of the provided label. Figure
shows the average tenant 95th percentile latency, and Figure [5(b)]
the average maximum percentage of CPU cycles blocked on 1/0
(IO Wait). The distribution for CPU utilization is similar to I/O,
but with a sharp plateau for over labels. The corresponding graph
is omitted for space. These results demonstrate that as Pythia be-
comes more confident about a predicted node label, the results trend
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towards expected behavior. For example, as a node label increases
in confidence of being over, we observe latencies, CPU utilization,
and cycles blocked on I/O spike. As a node label becomes more
confidently under, latencies, CPU utilization, and blocked I/O cy-
cles decrease. These results imply that Pythia is able to predict the
expected resource consumption for tenants. These figures include
data collected from the experiments described in Section[3.3]

5.3 Crisis Mitigation

To evaluate Pythia’s effectiveness in mitigating a performance
crisis, we provide a random tenant packing with a set of nodes in
violation, and initiate load-balancing to resolve the crisis. We then
iteratively add new tenants to the system, which can result in new
tenant violations. If any step does not contain a violation, we con-
tinue to add tenants to trigger a violation. The process is repeated
until a violation cannot be resolved. We compare Pythia to a greedy
baseline load-balancing algorithm Hottest-to-Coldest (HtoC).

HtoC is modeled on the greedy load-balancing baseline used in
the evaluation of the large scale storage system, Ursa [23]. This
algorithm attempts to iteratively balance load, by moving tenants
from over-loaded (hot) nodes to under-loaded (cold) nodes. Faced
with a violation, non-violating nodes are inserted into a queue of
possible destinations for violating tenants. The queue is sorted in
descending order for excess CPU capacity (Idle CPU). Idle CPU
capacity is a natural single metric to use for resource capacity, as
non-idle cycles include cycles for the database process, kernel us-
age, and CPU cycles blocked on I/0. HtoC iterates through violat-
ing nodes by lowest idle cycles, and migrates one random tenant to
a node removed from the head of the destination queue. This pro-
cess repeats until a solution can be found, or until a maximum iter-
ation count is reached and no solution is found. We compared mov-
ing a random tenant with moving all violating tenants, and found
that a random tenant resulted in fewer violations, had lower average
latencies, and resolved crisis with fewer iterations.

For this evaluation we initially assign a small uniform number
(two or three) of tenants to all servers and iteratively run the fol-
lowing steps. Initially, all tenants are warmed up for thirty minutes,

agent statistics are reset, and then collect a snapshot after running
all tenants for five minutes. Delphi checks if any tenant is experi-
encing a performance crisis with any tenant violating performance
SLOs. If no node is in violation, we distribute one new random
tenant per server and repeat, starting with a new warm up. If any
node is in violation, we attempt to mitigate the crisis by balancing
the load through tenant migration. After the tenant repacking is ex-
ecuted, a snapshot is measured after warm up. This re-balancing
is allowed to repeat for six iterations, if the re-packing cannot con-
verge by then the experiment interval ends. We alternate complete
incremental packing runs between Pythia and our greedy baseline
load-balancing HtoC, giving both algorithms an identical list of ten-
ants to use. We start with a low number of initial tenants, and al-
low each load-balancing algorithm to pack tenants incrementally
to avoid using an arbitrary dense starting point that may favor one
solution. This also allows both algorithms to be evaluated in light
and dense tenant packings.

Because Pythia is more judicious with tenant packings, we can
also use this experiment to evaluate the ability for tenant packing,
or consolidation. Throughout all of these experiments, HtoC was
never able to pack more tenants than Pythia. On average Pythia
was able to successfully pack 71 tenants, a 45% improvement over
HtoC’s 49 tenants. The maximum number of tenants packed us-
ing Pythia was 80, and 64 for HtoC. We expect a larger number
of tenants could have been packed for both algorithms if smaller
tenants were used, durability settings were relaxed, or an array of
SSDs were used. On successful load-balances, Pythia converged
after 1.75 iterations, where HtoC resolved after 2.25 iterations on
average. Pythia migrated an average 5.25 tenants per round, and
HtoC migrated 2.25 tenants per round. One reason for increased
tenants migrated is that Pythia would often shuffle tenants between
non-violating nodes, in order to make capacity on ideal destinations
for tenants from violating nodes.

Figure [6] demonstrates Pythia and HtoC’s ability to mitigate a
crisis by examining the impact of load balancing on tenant latency
and resource consumption. The data here is captured from all in-
cremental growth rounds that are successfully load-balanced. Fig-
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Figure 7: Tenant latencies by platform total tenant count.

ure [6(2)] shows the before and after median tenant latencies hosted
on nodes experiencing a performance crisis. Figure [6(d)] shows the
same data, but only the decrease in median latencies from load-
balancing, instead of the before and after latencies. It is important
to note, while HtoC and Pythia exhibit comparable performance
gains for mean and 95th percentile latencies, Pythia decreases the
99th percentile latency by about 50% more, despite hosting 45%
more tenants on average. Figures[6(b)]and [6(¢)] show the impact of
load-balancing on nodes not experiencing a SLO violation. As ex-
pected, Pythia has a larger impact on latency due to the increased
number of tenants migrated from violating nodes. For both ap-
proaches, the increase in latency is small compared to the decrease
in latency of violating nodes. Again, we assume that any database
hosted in a multitenant environment can tolerate some variance in
latency, provided latency SLOs are met. While violating latencies
are similar for both approaches, Figure [6(c)] shows HtoC’s violat-
ing resource consumption is substantially worse than Pythia. Ad-
ditionally, the resolved state for Pythia has lower CPU usage than
non-violating nodes(not depicted) by 1% point on average.

A goal of load-balancing with Pythia is to implicitly consider
cache impedance when matching tenants, in order to provide ten-
ants with adequate cache access to meet latency SLOs. Figure [6(T)]
compares the relative differences in resource attributes between the
resolved states of Pythia and HtoC. Pythia’s resolved state results
in a higher average tenant cache hit ratio and a higher percentage of
the database that is in the page cache and buffer pool (cache cov-
erage), which results in reduced disk activity for the tenants. An
improvement of 13% on cache coverage and 8% on cache hit ra-
tio alleviates a substantial amount of disk seeks, thus reducing disk
contention between tenants. Interestingly, after Pythia mitigates
a performance crisis, the tenants remaining on previously violat-
ing nodes have a higher cache hit ratio, a smaller average buffer
size, and a lower variation in buffer size, when compared with the
resolved HtoC nodes. The higher cache hit ratio combined with
smaller buffer size suggests that tenants with smaller working sets
remain together. The reduced variation, measured by standard de-
viation, means that the buffer size is more uniform, each tenant is
getting a relatively equal share of the buffer pool, and that the cache
is not cannibalized by dominate tenants. We therefore, conclude
that Pythia is matching tenants’ cache impedance when selecting
the ideal packing to resolve a crisis.

To gather additional insight into the packing limits of both algo-
rithms, we selected two successful packings of 64 tenants to grow
at a smaller rate. We repeatedly grew these packings for both algo-
rithms, by adding one tenant to four random nodes in each growth
round. Pythia was able to successfully pack 72, 76, and 80 ten-
ants; HtoC could not successfully pack beyond 68 tenants. Fig-
ure [7lshows latency distributions by total tenant count, for all suc-
cessful growth rounds for both experiments described in this sec-
tion. The boxplots show sampled minimum, lower quartile, me-

dian, upper quartile, and sampled maximum percentile latencies.
The 95th percentile latencies for HtoC are very similar to Pythia’s,
so this graph is omitted. As we can see from Figure [7] the 99th
percentile latencies are a primary driver for SLO violations, in both
Pythia and HtoC. The sampled maximum and upper quartile laten-
cies for HtoC rise much faster than Pythia, resulting in violations
from fewer tenants. Our belief is that Pythia is optimizing pack-
ings for the 99th percentile, as most packing violations result in
violations for the 99th percentile. This is a likely reason why this
latency category has the biggest gains for Pythia. Experimenting
with a 99th percentile latency of 10,000 ms and a 95th percentile of
500 ms, Pythia successfully packed 88 tenants, while HtoC could
still not pack more than 68 tenants due to 95th percentile violations.

6. RELATED WORK

A vast corpus of research exists for problems related to Del-
phi’s design. This includes database multitenancy, consolidation,
resource orchestration, performance modeling, and crisis mitiga-
tion. Section [[1] discusses the related work in managing multi-
tenant DBMSs [[11[61[14}[24]. Issues related to the design of multi-
tenant systems are covered in Section 211 [31[7.131122].

Modeling resource consumption for application placement and
load balancing has been successfully applied to many domains.
Modeling performance of n-tiered web services has proven effec-
tive for predicting response time [20]]. Regression based analytic
modeling for n-tier applications has been used for capacity plan-
ning and placement, by approximating CPU demand [26]. These
analytic models do not translate well for multitenant DBMS en-
vironments, due to dynamic and ad-hoc usage, and high latencies
from shifting bottlenecks due to multivariate resource contention [

Storage systems are another domain which has utilized modeling
for placement. Pesto, builds sampling-based models to understand
workload performance, and load-balance 1/O utilization [I1]]. The
models are based on a linear relationship between outstanding 1/0
requests and latency, an assumption that does not hold for DBMSs.
Similar to Pythia, Romano builds statistical models to predict work-
load performance, and to predict the impact of colocated work-
loads [16]. Load-balancing in Romano uses Simulated Annealing
to avoid local maximums when finding new packing plans, and a
greedy approach to minimize migrations when implementing the
re-packing. Both Romano’s interference models and search opti-
mizations could extend Pythia in future work. Ursa, targets large
scale storage systems by optimizing load balancing to only mitigate
hot-spots and leverage topology-aware migrations to minimize re-
packing costs [23]]. This approach can be leveraged when migration
costs are factored into Pythia.

Beyond provisioning and orchestration, Pythia’s tenant model
can be extended to better understand usage patterns. This can in-
clude characterizing service spikes [4]], or predicting shifts in work-
loads [12]. Models for predicting storage consumption could ex-



tend disk-activity estimation of the tenant model [15]. In making
placement decisions, additional tenant and workload combination
models could improve interference prediction, when changing re-
source consumption limits resource-based models [8}[18].

7. CONCLUSION

Multitenant DBMSs consolidate large numbers of tenants with
unpredictable and dynamic behavior. Designing a self-managing
controller for such a system faces multiple challenges such as char-
acterizing tenants, reducing the impact of colocation, adapting to
changes in behavior, and detecting and mitigating a performance
crisis. The complex interplay among tenants, DBMS, and the OS,
as well as aggregated resource consumption measures make the
task of monitoring and load balancing difficult. We designed and
implemented Delphi, a self-managing controller for a multitenant
DBMS that monitors and models tenant behavior, ensures latency
SLOs, and mitigates performance crises without requiring major
modifications to existing systems. Delphi leverages Pythia, a tech-
nique to classify tenant behavior, and learn good tenant packings.
Pythia does not make assumptions about the tenant workloads or
the underlying DBMS and OS implementations. Our analysis re-
vealed unexpected interactions arising from tenant colocation and
identified tenant behavior that are most sensitive to resource star-
vation. Our experiments, using a variety of tenant types and work-
loads, demonstrated that Pythia can learn a tenant’s behavior with
more than 92% accuracy and learn quality of packings with more
than 86% accuracy. Using Pythia, Delphi can mitigate a perfor-
mance crisis by selectively migrating tenants to improve 99th per-
centile response times by 80%.
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