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Expert networks are formed by a group of expert-professionals with different specialties to collaboratively

resolve specific queries posted to the network. In such networks, when a query reaches an expert who does

not have sufficient expertise, this query needs to be routed to other experts for further processing until it is

completely solved; therefore, query answering efficiency is sensitive to the underlying query routing mech-

anism being used. Among all possible query routing mechanisms, decentralized search, operating purely on

each expert’s local information without any knowledge of network global structure, represents the most basic

and scalable routing mechanism, which is applicable to any network scenarios even in dynamic networks.

However, there is still a lack of fundamental understanding of the efficiency of decentralized search in expert

networks. In this regard, we investigate decentralized search by quantifying its performance under a variety

of network settings. Our key findings reveal the existence of network conditions, under which decentralized

search can achieve significantly short query routing paths (i.e., between O (logn) and O (log2 n) hops, n: total

number of experts in the network). Based on such theoretical foundation, we further study how the unique

properties of decentralized search in expert networks are related to the anecdotal small-world phenomenon.

In addition, we demonstrate that decentralized search is robust against estimation errors introduced by mis-

interpreting the required expertise levels. The developed performance bounds, confirmed by real datasets,

are able to assist in predicting network performance and designing complex expert networks.

CCS Concepts: • Information systems → Expert search; • Human-centered computing → Social net-

works; • Networks → Network performance analysis;

Additional Key Words and Phrases: Expert networks, query answering, decentralized search, performance

bounds, theory

ACM Reference format:

Liang Ma, Mudhakar Srivatsa, Derya Cansever, Xifeng Yan, Sue Kase, and Michelle Vanni. 2019. Performance

Bounds of Decentralized Search in Expert Networks for Query Answering. ACM Trans. Knowl. Discov. Data

13, 2, Article 18 (March 2019), 23 pages.

https://doi.org/10.1145/3300230

This work was sponsored by the Army Research Laboratory and was accomplished under Cooperative Agreement Number

W911NF-09-2-0053 (the ARL Network Science CTA).

Authors’ addresses: L. Ma and M. Srivatsa, IBM T. J. Watson Research, 1101 Kitchawan Rd, Yorktown, NY, 10598; emails:

{maliang, msrivats}@us.ibm.com; D. Cansever, Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, MD, 20783;

email: derya.h.cansever.civ@mail.mil; X. Yan, University of California, Santa Barbara, Santa Barbara, CA, 93106; email:

xyan@cs.ucsb.edu; S. Kase and M. Vanni, Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, MD, 20783; emails:

{sue.e.kase.civ, michelle.t.vanni.civ}@mail.mil.

ACM acknowledges that this contribution was authored or co-authored by an employee, contractor, or affiliate of the

United States government. As such, the United States government retains a nonexclusive, royalty-free right to publish or

reproduce this article, or to allow others to do so, for government purposes only.

© 2019 Association for Computing Machinery.

1556-4681/2019/03-ART18 $15.00

https://doi.org/10.1145/3300230

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 2, Article 18. Publication date: March 2019.

https://doi.org/10.1145/3300230
https://doi.org/10.1145/3300230


18:2 L. Ma et al.

1 INTRODUCTION

Expert networks are composed of a group of expert-professionals, who cooperate with each other
to solve specific queries (e.g., reported by clients) using their professional knowledge in a va-
riety of related subjects. Such expert networks are abundant in real life especially in commer-
cial organizations, where networks with specialized experts are maintained to provide consult-
ing/troubleshooting services. The collaboration among experts is knowledge-driven, manifesting
in the process of expert searching: Upon receiving a query by an expert, she first attempts to solve
the problem specified in the query; if she fails, then this query is routed to another expert for
further processing. This process continues until the query is resolved. One canonical example of
expert networks is the enterprise call center. Specifically, in a call center, if a query ticket cannot
be solved by the first responding agent, then a series of processing/forwarding attempts are trig-
gered until qualified agents are found. The fundamental goal regarding expert networks is to route
each query to experts with sufficient expertise in a timely and accurate manner. This is a challeng-
ing issue as efficient query routing mechanisms depend on the professional knowledge of each
individual expert as well as the social knowledge of other experts’ specialties possessed at each
expert. When the expert profiles (e.g., expertise) are not properly maintained in expert networks,
finding the most knowledgeable experts with high probability while minimizing the number of
routing steps is explored in [2, 29]. On the other hand, even if each expert’s profile is accurately
exposed to all of her contacts, this routing issue remains challenging. In particular, under the as-
sumption that each expert has connections to only a limited number of other experts, a series of
routing rules are proposed in [30, 40] for improving the resolution efficiency in specific tasks (e.g.,
IT services). Under the same assumption, generative models [25] are developed for making global
expert recommendations by estimating all possible routes to potential resolvers. The efficacy of
these mechanisms, however, highly relies on the broad knowledge of network global structure; in
addition, these mechanisms, requiring non-negligible training periods, are generally complicated
and sensitive to operational scenarios, thus not applicable to large-scale or dynamic networks (e.g.,
with experts joining/leaving the network). All these limitations, therefore, motivate us to consider
if there exist simple yet efficient query routing solutions that function with only basic network
information and are robust against network variations.

Among all possible query routing mechanisms, decentralized search, operating purely on each
expert’s local information, represents the most basic and adaptive routing mechanism in expert
networks. Specifically, under decentralized search, before reaching experts with sufficient exper-
tise for a given query, each intermediate expert forwards this query to one of her contacts with
the highest problem solving abilities, which therefore forms a pure local-information-based for-
warding rule. Since no historical training data or network global structure is required for routing
decision making, decentralized search can be broadly adopted by any network scenarios for query
routing. However, decentralized search, greedy in nature at each routing step, is generally ignored
in the research community mainly for the following reason: When an expert forwards a query
to one of her contacts via decentralized search, she has no clue whether this decision would suc-
cessfully lead to a short path through the entire network, and thus the efficiency of decentralized
search is uncertain. We note, however, without fundamental understanding of such simple de-
centralized search, we can never justify the value/necessity of designing other complicated query
routing mechanisms for expert networks. Therefore, in this article, we consider this unsolved fun-
damental problem: What is the efficiency of decentralized search in expert networks? We study this
problem by quantifying the performance of decentralized search under various network settings
so as to understand under what conditions decentralized search can achieve efficiency/inefficiency
in query routing.
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In this article, the basic approach we employ to study the performance of decentralized search
is to establish its performance bounds in generic expert network models. Such models should cap-
ture two main connection properties among experts as follows: (i) experts are rich in connections
to peer experts with similar expertise; (ii) each expert also tends to connect to a few experts with
fairly dissimilar expertise. Integrating these two properties that characterize expert social connec-
tions, we propose two expert network models. In these models, local expert connections (experts
with similar expertise) enable the formation of the basic network structure, on top of which long-
range expert connections (experts with fairly dissimilar expertise) determine to what extent the
expert inter-connections do not respect such basic network structure. We prove that the natural
superposition of these two properties in expert networks can lead to high efficiency of decentral-
ized search without any centralized guidance under a range of network settings. Accordingly, if an
expert network is verified to satisfy such conditions that guarantee efficient decentralized search,
then there is no need to design complicated query routing mechanisms as the light-weighted de-
centralized search will suffice. Furthermore, by a case study of real datasets, we demonstrate how
commercial expert networks may take proactive actions to train their constituent experts, which
equivalently approaches the efficient query routing conditions discussed in this article.

To gain more insights into decentralized search, we then consider how its efficiency relates to
the intriguing and pervasive small-world phenomenon [23, 26, 32], a principle stating that any two
individuals in the network are connected by a short chain of intermediate acquaintances. Note that
as opposed to observing small-world phenomenon in expert networks, we aim to study, using the
above theoretical results, the relationship between the existence of short routing chains and the
efficacy of decentralized search in finding such short chains, thus providing better understanding
of the uniqueness of small-world navigation via decentralized search in expert networks.

1.1 Further Discussions on Related Work

Expert networks essentially are graphs where nodes are associated with descriptions (i.e., expertise
profiles); therefore, there are many works on expert networks from the graph embedding perspec-
tive, with the goal to learn node vector representations that capture the network properties of
interest. Specifically, node2vec [13] designs flexible node sampling methodologies to allow feature
vectors to exhibit different properties. Subgraph2vec [27] extends these schemes to learn vector
representations of subgraphs. When network nodes are associated with auxiliary information (e.g.,
node expertise profiles), the work in [15], [36], and [17] further address the case where nodes are
associated with labels. [28] studies graph embedding when node/edge attributes are continuous.
The author in [7] investigates phrase ambiguity resolution via leveraging hyperlinks. However,
all these works operate under information or network constraints. On the other hand, the author
in [35], [38], and [33] explore embedding strategies in the context of knowledge graphs, where
the main goal is to maintain the entity relationships specified by semantic edges. In contrast, in
expert networks, only nodes are associated with semantic information. In this regard, EP [12] and
GraphSAGE [16] learn embeddings for structured graph data. However, the textual similarities
are only captured by linear combinations. Planetoid [37] computes node embeddings under semi-
supervised settings; metapath2vec [10] learns embeddings for heterogeneous networks (node can
be author or paper); and Graph-Neural-Network-based embeddings are explored in [18] and [24].
However, these papers only provide solutions to capture the structural properties and/or nodes’
descriptions in expert networks. In other words, the query routing in these networks are not ex-
plored. By contrast, the objective of this article is not only to study the query routing in expert
networks, but also to quantify its performance from the analytical perspective.

Regarding query routing in expertise networks, most existing works [2, 29, 30, 40] seek to de-
velop/improve query routing mechanisms, where different levels of network global knowledge
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are required. With network historical data, the author in [3] develops a Markov Decision Process
(MDP) model to optimize routing policies. However, the correlation between successful query an-
swering probability and each expert’s expertise level is ignored in the proposed model. Employing
game theory, the author in [22] proposes query incentive networks to understand agent collab-
orations and interactions in on-line communities. In addition, routing efficiency improvement is
investigated in [39] when additional expert contacts are carefully chosen. Our work belongs to a
different but closely related line of work that focuses on the fundamental understanding of the
most basic query routing mechanism in expert networks. Our work shares similar goals with [31]
in that [31] tries to build models to capture routing behaviors in expert networks, particularly in
modeling human factors that influence routing tendencies. However, the author in [31] does not
show how the efficiency of such routing behaviors are affected by network and social properties,
and no performance guarantee is investigated. By contrast, we not only present deep insights into
decentralized search (which is able to capture routing behaviors in some real networks; see the
case study in Section 6) in expert networks, but also show how its efficacy is related to network’s
structural and social properties.

For the underlying influence of network properties on the routing efficiency, the authors in [5]
and [4] show that every pair of nodes are joined by a path of length O (logn) (n: total number
of nodes in the network) in a randomly generated graph. The existence of such short paths is
maintained even when the network demonstrates certain structural properties [34]. Further, more
complicated statistical models are considered in [11] for node inter-connections (e.g., Poisson dis-
tributions). When the number of links incident to nodes follows the power-law distribution, the
work in [1] explores how such distribution may affect routing preference. In addition, with special
network properties, networks may exhibit small-world phenomenon [23, 26, 32]. The intriguing
characteristic of small-world phenomenon has stimulated numerous compelling research results
[9, 14, 19–21, 34], among which [20] is the first work showing that there exists one and only one
network setting that enables efficient searching algorithms. In this article, we do not seek to ob-
serve small-world phenomenon in another type of networks (i.e., expert networks); by contrast,
we aim to understand the small-world phenomenon with characteristics that uniquely exist in ex-
pert networks using our fundamental theoretical results on decentralized search. To this end, we
prove that the anycast nature of query routing (i.e., the number of qualified experts may be more
than one) can lead to decentralized search being highly efficient under a wide range of network
settings, which is completely different from prior works on the small-world phenomenon.

1.2 Summary of Contributions

We study, for the first time, decentralized search in expert networks from the perspective of fun-
damental performance quantifications. Our contributions are seven-fold:

(1) We build mathematical models to formulate abundant expert connections to similar ex-
perts and a few connections to dissimilar experts, in terms of their expertise differences.

(2) To capture the two properties in (1), we propose two expert network models: (i) unified
model, where all experts have the same overall problem solving abilities, but specialize
in different areas, and (ii) diversified model, where experts may have different per-area
expertise or different overall problem solving abilities. In the diversified model, the per-
expert total problem solving ability exhibits a Gaussian-like distribution as the number of
solvable subjects in the network increases.

(3) We prove that decentralized search is highly efficient under a wide range of network
settings for both unified and diversified models; the corresponding average routing path
length is between O (logn) and O (log2 n) (n: total number of experts).
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(4) We further establish conditions for the case when decentralized search is ineffective, and
develop the corresponding lower bounds to quantify its performance.

(5) We discuss how above theoretical results are related to the special characteristics of small-
world phenomenon in expert networks. We reveal that the existence of small-world phe-
nomenon (under wide conditions) directly leads to efficient decentralized search in expert
networks. However, in point-to-point (unicast) networks, one and only one of these con-
ditions enables efficient local-information-based search.

(6) We demonstrate that decentralized search is robust in the case where experts experience
interpretation errors regarding the expertise requirement in the received queries.

(7) We show that the above theoretical bounds can also approximate the routing performance
in real datasets, even though the network structures in these real datasets may not rigor-
ously respect the proposed network models; therefore, these theoretical results can pro-
vide guidance in planning practical complex expert networks.

Note that in this article, the focus is the fundamental understanding of query routing
behaviors under the assumption that experts’ expertise and social connections are fixed.
We acknowledge that both professional and social knowledge of experts may improve over
time, thus benefiting the query routing efficiency. In such case where improved routing
information is available, the above results remain valid as long as the network parameters
in the newly formed expert network (e.g., experts’ improved expertise and richer inter-
connections) are retrieved and updated (see the case study in Section 6 where the routing
efficiency is compared in networks with expertise and connection evolvement).

The remainder of the article is organized as follows. Section 2 formulates the problem. Two
models for expert networks are proposed in Section 3. Main results of decentralized search in
expert networks are presented and analyzed in Section 4, where the corresponding proofs are
shown in Section 5. Experiments are conducted under both synthetic networks and real datasets
in Section 6. Finally, Section 7 concludes the article.

2 PROBLEM FORMULATION

In this section, we propose mathematical models to capture expert inter-connections, and then
formally present decentralized search and state our research objective.

2.1 Expert Inter-Connections

We assume that in an expert network with n experts, experts can collectively solve problems in
up to m different areas. To model such an expert network, we use directional edges to represent
expert inter-connections. In particular, expert u can route a query to expert w if and only if there

exists a directional edge from u to w , denoted by −−→uw , where w is called a contact of u. For all
experts, we assume that their expertise in different areas are quantifiable to non-negative integers,
and thereby each expert is associated with an expertise vector defined as follows: The expertise

vector of expert u, denoted by e
(u ) , is an m × 1 column vector with the value in entry i (i.e., e (u )

i )

indicating u’s skill in area i (larger value corresponds to superior skill); e (u )
j = 0 if u does not have

any skill in area j. We call | |e(u ) | |1 :=
∑

i |e
(u )
i | the total ability of expert u. Using this concept,

we can compare the expertise levels in different areas for one individual expert or in the same
area across multiple experts. Furthermore, we define the expertise distance from expert u to expert

w as d (u → w ) :=
∑

i max(e (w )
i − e (u )

i , 0). Intuitively, expertise distance characterizes the superior
skills of one expert against another, and it implies that generallyd (u → w ) � d (w → u). Moreover,
when d (u → w ) = 0, it does not mean u and w have similar expertise; on the contrary, it only
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suggests that e
(u ) � e

(w ) , i.e., u is superior than w in all expertise areas; see later discussions on
how expertise distance is used in constructing expert inter-connections. With all these concepts,
we are ready to model homophily and heterophily of expert inter-connections.

Homophily refers to the tendency that each expert is rich in connections to peer experts with
similar expertise. To characterize such expertise similarity, both inferior and superior skills should
be considered when comparing two experts, i.e., expertise difference in all areas between two
experts must be within a threshold. Therefore, a natural way to model homophily is as follows:
For a universal constant integer δ ≥ 1, called similarity degree, each expert (denoted byu) connects

to all experts in set R := {w ∈ V \ {u} : | |e(w ) − e
(u ) | |1 ≤ δ }, where V is the set of experts in the

entire network and “\” is set minus. All experts in set R are called local contacts of expert u. When
experts are connected by the homophily rule (adding local contacts for each expert), an expert
network basis, called network substrate, is formed. The network substrate is determined purely
by the constant parameter δ , and thus the network substrate does not exhibit any randomness
(assuming that the expertise vectors of all experts are fixed).

Heterophily refers to the phenomenon that each expert has a few connections to experts with
fairly dissimilar expertise. These dissimilar experts are called long-range contacts, which are crucial
in determining the network diameter (average length of the shortest path connecting each pair of
nodes). However, unlike homophily, there exists randomness in observing which two dissimilar
experts are connected. Therefore, we use a statistical model to capture heterophily, which consists
of the following two steps: (i) for expertu, compute the set of candidatesCu that can be long-range

contacts of u by Cu := {w ∈ V \ {u} : e
(w ) � e

(u ) }; (ii) for a universal constant integer k ≥ 1 and
constant r ≥ 0, expertu has k out-going edges to connect to long-range contacts with independent
probabilities. Specifically, for the k out-going edges from u, each edge terminates at expertw (w ∈
Cu ) with probability, denoted by Pr(u → w ), proportional to [d (u → w )]−r . In other words, Pr(u →
w ) = [d (u → w )]−r /

∑
v ∈Cu

[d (u → v )]−r , called the inverse r th power distribution.
In practical expert networks, the goal of having long-range contacts is for efficient query rout-

ing; therefore, one expert’s long-range contact must exhibit superior expertise in certain areas, as
otherwise such long-range contact is useless for routing. Hence, this heterophily model captures
that expert u connecting to a long-range expert w if and only if w has superior skills in certain
areas compared to u; therefore, expertise distance d (u → w ) can be used to capture such exper-
tise dissimilarity. Moreover, when d (u → w ) = 0,w is not a contact ofu for the query routing task;
nevertheless, since all connection edges are directional,u might be a contact ofw for query routing
as it is possible that d (w → u) > 0. Note that the long-range contact construction rule indicates
that the ith and jth edges from u may terminate at the same expert (may even be one of u’s local
contacts); therefore, k is the maximum number of long-range contacts for each expert. Moreover,
r serves as a structural parameter that controls the scale of long-range contacts for each individual
expert. In particular, when r = 0, all experts in the candidate set Cu are equally likely to be long-
range contacts of u, which corresponds to a purely random case; when r increases, long-range
contacts of an expert tend to only exist within her vicinity (measured by the expertise distance);
when r approaches +∞, all long-range contacts disappear, i.e., there is no heterophily in the expert
network. In this article, we study how these parameters relate to the efficiency of decentralized
search. All notations used in this article are summarized in Table 1.

Illustrative Example: Figure 1(a) shows a sample network with six experts, where the expertise
distance between two experts is also the difference of their IDs. In Figure 1(a), each expert has
the most similar experts as local contacts. The probability of Expert 1 having long-range contacts
with other experts is sketched in Figure 1(b), which shows that when r increases, the impact of
expertise distances becomes salient, thus causing decreased connection probability.
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Table 1. Notations

Symbol Meaning

V , n Set/number of experts (n = |V |)
r Long-range contact follows an inverse r th power distribution

Cu Set of candidates who can become long-range contacts of u
k Maximum number of long-range contacts for each expert

h Number of rows in the unified model

m Number of elements in an expertise vector

e
(u ) Expertise vector (m × 1 column vector) of expert u

(i,τ )
Query in problem area i with difficulty level being τ (query (i,τ ) is solvable by an

expert u with e (u )
i ≥ τ )

λ Maximum expertise level in each area for any expert in the diversified model

δ Similarity degree

c
Scaling factor in the standard deviation of query interpretation: σ = c (τ − e (u )

i ) for
query (i,τ ) at expert u

d (u → w ) d (u → w ) =
∑

i max(e (w )
i − e (u )

i , 0) expertise distance from u to w

Fig. 1. Illustrative example: (a) sample network (expertise distance from Expert i to Expert i + j is j);
(b) probability of Expert 1 having other experts in (a) as long-range contacts under different values of r .

2.2 Decentralized Search

We now formally present decentralized search for query routing. For the queries posted to the
expert network, they are generally first categorized into problem areas, and then these queries
are routed to one or more experts with sufficient expertise to resolve. In this article, to simplify
the problem formulation, we consider the case where each received query belongs to one and
only one problem area. If a query contains problems in p (p > 1) areas, then this query will be
treated as p separate queries. In this regard, we model each query as a 2-tuple (i,τ ), where i is
the problem area to which this query belongs and τ (τ > 0) indicates the corresponding difficulty
level, i.e., query (i,τ ) is solvable by experts with expertise level in area i being at least τ . We
assume that there is no ambiguity in determining the problem areas of queries, and there exist
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ALGORITHM 1: Decentralized Search

input: Expert network, query (i,τ ), first query holder u
output: Routing path P for resolving query (i,τ )
P ← u; // "←":assignment operation

while e
(u )
i − τ < 0 do

u = arg maxw ∈N (u )

(
min(e

(w )
i − τ , 0)

)
; // N (u): set of all (local and long-range) contacts

of u

P ← P + u ; // append u to P
end

qualified experts in the network to solve each query, i.e., for any query (i,τ ), ∃ expert w with

expertise in area i and e (w )
i ≥ τ . In this article, the most crucial assumption is that for each query

holder, besides knowing the expertise vector and (local and long-range) contacts of herself, she
also knows the expertise vectors of all her (local and long-range) contacts; however, she does not
have knowledge of expertise vectors or contacts of other experts, i.e., no experts have the global
view1 of the network. Under these assumptions, decentralized search is detailed in Algorithm 1.
In Algorithm 1, for a given query, if the current query holder u cannot solve this query, then line 5
searches for the best expert from all u’s contacts (with ties broken arbitrarily) as the next routing
step. This process continues until a qualified expert is found.

Remark: In decentralized search, if a query holder’s contacts cannot solve the received query,
then this query holder has no knowledge of where the qualified experts are. Therefore, one may
concern that the condition in line 4 may never be satisfied for some queries, thus resulting in
endless loops. We will show in Section 3 that the structural properties of the two representative
network models abstracted from real networks ensure that at least one expert satisfying the con-
dition in line 4 can be found by Algorithm 1 (although the resulting routing path may be long).

2.3 Objective

Suppose that the problem area and the difficulty level in each query are independently and uni-
formly distributed (subject to the maximum problem solving ability in the network) and the first
query holder is also randomly chosen. Our goal is to understand decentralized search in expert
networks by computing its upper/lower bound of the average routing path length (measured by
the number of hops) under different network structures and expert inter-connections.

3 EXPERT NETWORK MODELS

Based on expert inter-connection models in Section 2, we now present two expert network models,
i.e., unified and diversified models, which differ by the distribution of expert total abilities. The
significance of these models is that each of them captures unique features in real expert networks.

3.1 Unified Model

The first network model is called the unified model, where all experts have the same total abilities,
i.e., the sum of all entries in the expertise vector of any expert is a constant, though expertise in
different areas may vary. The unified model captures the main features in real expert networks
where experts have (almost) the same problem solving abilities (e.g., within the same organization
or with similar payment), yet also have their own specialties (e.g., they are hired according to

1If the global picture of the network is fully known to each expert, then simple breadth-first search will suffice to find the

shortest query routing path, which is not of interest to this article.
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Fig. 2. Unified model (δ = 2, k = 2, [·] : expertise vector).

company’s multi-development goals). Suppose the expert network can solve queries in up to two
specific areas (i.e.,m = 2), then the unified model is structured as follows:

(1) n experts are distributed in an h × n
h

grid (h rows and n/h columns as shown in Figure 2,
assuming n/h is an integer);

(2) experts in the same column have the same expertise vector;
(3) in each row, expertise in the first area increases from 0 to n

h
− 1 by 1 at each expert in

the direction from left to right, while the expertise in the second area increases from 0 to
n
h
− 1 by 1 at each expert in the opposite direction;

(4) w.r.t. each expert in a row, she has the most similar experts (i.e., similarity degree δ = 2)
as local contacts. Thus, each expert with expertise vector [0, (n/h) − 1]T or [(n/h) − 1, 0]T

has 2h − 1 local contacts; all other experts each has 3h − 1 local contacts (see Figure 2).

Then, based on the above network substrate, long-range contacts are constructed following the
inverse r th power distribution (see Section 2) for each expert; see Figure 2.

Discussions: In practical networks where all experts have similar expertise levels, the network
structure may not strictly follow such unified model. However, we can simplify the given network
and use the minimum or the maximum number of experts in each column as the value of h (h
rows in the unified model) so as to estimate the performance bound of the decentralized search.
Moreover, this unified model can be extended to cases where m > 2 (i.e., the network can solve
problems in more than two areas). Such extension will be discussed after presenting the diversified
model as one subgraph in the diversified model is required for extending the unified model to the
case where m > 2. Finally, we point out that the significance of the unified model presented in
this article is that it serves as the fundamental building block for complex models with experts all
having the same total abilities.

3.2 Diversified Model

The second network model is called the diversified model, in which both the total abilities and spe-
cialties may vary for different experts. One advantage of this model is that it naturally captures the
Gaussian-like distribution of expert total abilities in real expert networks. Suppose up tom (m ≥ 1)
specific areas can be solved in the expert network. Let λ denote the maximum expertise level in
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Fig. 3. Diversified model (δ = 1,m = 2, k = 2, [·] : expertise vector).

each area (i.e., the maximum value for every entry in any expertise vector), then the diversified
model is structured as follows:

(1) in the network with n experts, let λ := m
√
n. Suppose for any expertise vector e, ∀i , ei is an

integer between 1 and λ (i.e., [1, 1, . . . , 1]T � e � [λ, λ, . . . , λ]T ), and each possible value
of e corresponds to one expert.

(2) each expert only has the most similar experts (i.e., similarity degree δ = 1) as local con-
tacts, thus forming anm-dimensional grid (Figure 3 illustrates a sample two-dimensional
grid). As Figure 3 shows, if an expert is not at the grid boundary, then she has 2m local
contacts; otherwise, the number of local contacts is betweenm and 2m.

Then, again based on the above network substrate, long-range contacts are constructed following
the inverse r th power distribution for each expert (see the example in Figure 3).

Discussions: Unlike the unified model, in the diversified model, the total abilities across dif-
ferent experts may be different. In particular, the number of experts with the total ability ϕ is∑min(m, (ϕ−m)/λ)

q=0 [(−1)q
(
m
q

) (
ϕ−1−qλ

m−1

)
], and the expected value of total ability is (m +m m

√
n)/2. By

these numerical expressions, the distribution of total abilities is reported in Figure 4 under differ-
ent values ofm. The most important property of the diversified model revealed by Figure 4 is that
the expert total ability follows a Gaussian-like distribution as m increases. Therefore, the diversi-
fied model (whenm > 2) represents a real expert network that is abundant in experts with average
problem solving abilities, while lacks experts with significantly superior/inferior total abilities [8].

Extension of the Unified Model to m > 2: There are many strategies to extend the unified model
to the case of m > 2. Here, we introduce one intuitive method; other methods are left for future
work. Specifically, whenm = 2, each row in the unified model essentially corresponds to the nodes
in the diagonal dotted circle in the diversified model (see Figure 3). Therefore, one way to extend
the unified model to the case of m = 3 is replacing each row in the unified model by the diagonal
two-dimensional plane in the diversified model (marked by color green in Figure 5). Hence, for
the case ofm > 3, each row in the unified model can be replaced by an (m − 1)-dimensional plane,
where all experts have the same total abilities. Detailed analysis under such model extensions can
be performed based on the results in this article, thus omitted due to space limitations.
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Fig. 4. Total ability distribution in the diversified model (n = 4096).

Fig. 5. Diversified model (δ = 1,m = 3, [·] : expertise vector).

Remark: The theoretical results in this article are based on the network models proposed in this
section, where specific expertise distributions over experts are required. Nevertheless, we point out
that even if such requirement is not strictly satisfied, our theoretical results still demonstrate high
accuracy in predicting query routing performance (see the case study of real datasets in Section 6),
thus making contributions from both theoretical and practical perspectives.

4 EFFICIENCY OF DECENTRALIZED SEARCH IN EXPERT NETWORKS

Recall that we assume (in Section 2) that the problem area and the difficulty level in queries are
generated uniformly (up to the maximum problem solving ability per area in the expert network)
at random, and the first query holder is also arbitrarily chosen. We now present the corresponding
quantitative performance bounds and analysis2 of decentralized search under the network models

2All these theoretical results are investigated under the assumption that all query difficulties and the first query holders

are uniformly distributed; for other distributions, they are left for future work.
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proposed in Section 3. We then discuss how the small-world phenomenon is related to decentral-
ized search in expert networks. Complete theoretical proofs are presented in Section 5.

4.1 Statement of Main Results

Under the unified and diversified models, we have the performance bounds of decentralized search
stated as below, where ln(·) denotes natural logarithm. In these results, we assume that n is suffi-
ciently large such that n > 8h in the unified model, m

√
n > 8 in the diversified model, and n >> k in

both models (these assumptions are used to avoid the trivial cases where the first query holders are
already very close to the destinations even without long-range contacts; see the theorem proofs
in Section 5 for details).

Theorem 4.1. The average routing path length generated by decentralized search is monotonically

increasing with r in both unified and diversified models.

Theorem 4.2. The average routing path length generated by decentralized search in the unified

model is upper bounded by

O

((
ln

n

h

)r+1
)

for 0 ≤ r ≤ 1.

Theorem 4.3. The average routing path length generated by decentralized search in the unified

model is lower bounded by

Ω

(
1

k1/r
·
(n
h

) r−1
r

)
for r > 1.

Theorem 4.4. The average routing path length generated by decentralized search in the diversified

model is upper bounded by

O
(

1

mr
· (lnn)r+1

)
for 0 ≤ r ≤ 1.

Theorem 4.5. The average routing path length generated by decentralized search in the diversified

model is lower bounded by

Ω
(

1

k1/r
· n

r−1
mr

)
for r > 1.

Corollary 4.6. Any routing path length generated by decentralized search is upper bounded by

n/h in the unified model, and m
√
n in the diversified model.

4.2 Performance of Decentralized Search in Expert Networks

4.2.1 0 ≤ r ≤ 1. Theorems 4.2 and 4.4 show that when 0 ≤ r ≤ 1, the average routing path
length using decentralized search is upper bounded by a polylogarithmic function, i.e., a polyno-
mial function of lnn. Therefore, decentralized search is highly efficient in expert searching when
0 ≤ r ≤ 1. Such high efficiency occurs mainly for the following two reasons: (i) In expert networks,
experts exhibit a certain level of randomness in inter-connections, which causes the formation of
a network gradient that drives the query to the destination via decentralized search. (ii) Qualified
experts for a given query may not be unique, i.e., query routing terminates at any expert who
is capable of resolving this query; therefore, the query routing problem in expert networks is an
anycast problem. Hence, if a query is routed to an over-qualified expert, then this query does not
need to be further routed to the expert with the exact required knowledge level as the problem is
already solvable. Another significant insight revealed by Theorems 4.2 and 4.4 is that decentralized
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search is most effective when r = 0 (i.e., long-range contacts are randomly selected) as the num-
ber of experts n is sufficiently large according to our assumption (i.e., ln(n/h) > 1 in the unified
model and (lnn)/m > 1 in the diversified model); the corresponding routing path length is only
logarithmic in the network size.

4.2.2 r > 1. When r increases, Theorem 4.1 shows that the average routing path length also
rises. When r > 1, as shown in Theorems 4.3 and 4.5, the average routing path length can no
longer be expressed as a polylogarithmic function, which indicates the ineffectiveness of decen-
tralized search. Nevertheless, Corollary 4.6 proves that for any values of r , there is always an upper
bound, which is determined by the network size. Therefore, the worst performance of decentral-
ized search happens when r approaches +∞, for which the lower bound is Ω(n/h) for the unified
model, and Ω(m

√
n) for the diversified model. Comparing to Corollary 4.6, this result suggests that

the performance bounds in Theorems 4.3 and 4.5 are tight when r is large. On the other hand,
Theorems 4.3 and 4.5 also show that although a larger k may increase the probability of connect-
ing to qualified experts, the impact of k in reducing the average routing path length is weakened
when r > 1. This is because when r is large, long-range contacts tend to only exist in the vicinity of
each expert or even overlap with local contacts, and thus the contribution of a large k diminishes.

4.3 Uniqueness of Small-World Phenomenon in Expert Networks

As shown in [4, 5, 21], the basic standard for justifying networks with the small-world phenomenon
is that the associated network diameters can be expressed as a polylogarithmic function of n. Thus,
by Theorems 4.2 and 4.4, we conclude that not only does the small-world phenomenon exist in
expert networks under both unified and diversified models when 0 ≤ r ≤ 1, but also decentralized
search is able to find these short paths. This is in sharp contrast with the unicast problem in
prior works on the small-world phenomenon. Specifically, assuming that individual connections
also follow the inverse r th power distribution (constructed based on their lattice distances) in the
unicast problem, the work in [20] shows that though the small-world phenomenon is pervasive
for a range of r , decentralized search is only efficient under a unique value of r . This is because
in a unicast problem with the destination being t , along the way from the current message holder
to t , if one intermediate node routes this message to a long-distant node (corresponding to one
over-qualified expert in expert networks) that is beyond t , then this message needs to be routed
back to t , thus resulting in longer routing paths.

5 THEORETICAL PROOFS

To prove the theorems in Section 4, let (i,τ ) denote a query posted to the network, and s the first
holder of (i,τ ). We define L, a random variable, as the total number of hops spent on finding a
qualified expert for (i,τ ) (i.e., starting from s and terminating at any expert that can solve (i,τ )).
Then, it suffices to determine the expected value E[L] under different network settings.

5.1 Proof of Theorem 4.1

Regarding query (i,τ ), there exists at least one qualified expert according to our assumption. LetT
be the set of all experts qualified to solve (i,τ ). We sort all experts inT in an increasing order w.r.t.

their expertise in area i such that e (t1 )
i ≤ e (t2 )

i ≤ · · · ≤ e
(tζ )

i , whereT = {t1, t2, . . . , tζ }. For all other
experts, let U denote the set containing all experts with expertise better than s but less than t1 in
area i . Then, when delivering (i,τ ) from s to T , only experts in U can become the relay experts.

Furthermore, from s to T , at each relay expert w , e (t1 )
i − e (w )

i is strictly decreasing, as each expert
in both unified and diversified models has at least one (local or long-range) contact who has better
expertise in area i . Therefore, we can divide this routing process (before reaching any expert inT )
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into several phases, where in phase j, e (t1 )
i − e (w )

i w.r.t. the current query holder w is greater than
jΔ and at most (j + 1)Δ (Δ is a constant). Then, suppose the query routing process is currently
in phase j, then the probability of leaving phase j in the next routing step is proportional to the
probability of experts in phase j having long-range contacts to experts in phase q (q < j) or experts
inT (note that the normalization factor in the inverse r th power distribution w.r.t. an expert is fixed
as it only relies on the underlying network structure). Moreover, the probability of having such
long-range contacts is strictly increasing with 1/r according to the inverse r th power distribution.
Thus, if experts associated with phase j are employed as relay experts, then the average number
of hops in phase j is monotonically increasing with r . We note that by the definition of phase,
the number of hops in certain phases can be zero. Nevertheless, the probability of experiencing a
certain phase, say phase j, is also strictly increasing with r . Thus, the overall average number of
hops in phase j remains monotonically increasing with r . As E[L|(i,τ )] for the given query (i,τ )
is the sum of average number of hops in each phase, we have that E[L|(i,τ )] is monotonically
increasing with r . The above argument remains valid regarding all other queries, we therefore
conclude that the total expectation E[L] is monotonically increasing with r for both the unified
and diversified model. �

5.2 Proof of Theorem 4.2

To prove Theorem 4.2, we first prove that the following inequality holds:

d−r∑n′
j=1 j

−r
≥ 1

n′(
∑n′

j=1 j
−1)r

for 0 ≤ r ≤ 1, and 1 ≤ d ≤ n′. (1)

Let д(x ) := xr , where 0 ≤ r ≤ 1. Define random variabley as follows:y = 1/j with probability 1/n′

for j = 1, 2, . . . ,n′. Then, we have

д(E[y]) = �
�

∑n′
j=1 j

−1

n′
�
�

r

, E[д(y)] =

∑n′
j=1 j

−r

n′
.

Since д(x ) is a concave function, by Jensen’s theorem [6], the inequality д[E(x )] ≥ E[д(x )] holds.
Therefore,

n′ ��
�

n′∑
j=1

j−1��
�

r

≥ (n′)r
n′∑

j=1

j−r ≥ dr
n′∑

j=1

j−r ,

as 1 ≤ d ≤ n′. Thus, (1) is correct.
Now, we can prove Theorem 4.2. In the unified model, starting from one expert u, there are at

most 2h experts with the expertise distance being j (j is an integer). Thus, we have

∑
w ∈Cu

[d (u → w )]−r ≤
(n/h)−1∑

j=1

2hj−r . (2)

According to the distribution of long-range contacts, Pr(u → w ) = [d (u → w )]−r /
∑

v ∈Cu
[d (u →

v )]−r ; therefore, by (2),

Pr(u → w ) ≥ [d (u → w )]−r

∑(n/h)−1
j=1 2hj−r

. (3)
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Since d (u → w ) ≤ (n/h) − 1 and 0 ≤ r ≤ 1, by (1), (3) is further lower bounded by

[d (u → w )]−r

∑(n/h)−1
j=1 2hj−r

≥ 1

2h
(

n
h
− 1

) (∑(n/h)−1
j=1 j−1

)r

≥ 1

2(n − h)
(
1 + ln n

h

)r ≥
1

2(n − h)
(
ln 3n

h

)r .

Thus, Pr(u → w ) ≥ [2(n − h) (ln 3n
h

)r ]−1. For the received query (i,τ ), suppose there are η qual-
ified experts in each row of the unified model. Then, together there are ηh experts, denoted by
set T , capable of solving (i,τ ). Let Pr(u → T ) denote the probability that u has a contact in T
when there are k out-going edges, then Pr(u → T ) ≥ ∑

w ∈T Pr(u → w ) ≥ ηh[2(n − h) (ln 3n
h

)r ]−1.

Let Γ := ηh[2(n − h) (ln 3n
h

)r ]−1 and Yη denote the total number of hops that are spent for solving
(i,τ ) when there are ηh qualified experts. We have

E[Yη] =

∞∑
j=1

Pr[Yη ≥ j] ≤
∞∑

j=1

(1 − Γ) j−1 =
1

Γ
. (4)

Recall that L denotes the total number of hops spent for solving (i,τ ). Since i and τ in (i,τ ) are
uniformly distributed (i = {1, . . . ,m}, 0 < τ ≤ (n/h) − 1), we can derive

E[L] =

(n/h)−1∑
η=1

1

(n/h) − 1
E[Yη]

≤
2(n − h)

(
ln 3n

h

)r

h
· h

n − h ·
(n/h)−1∑

η=1

η−1

≤ 2
(
ln

3n

h

)r (
1 + ln

n

h

)
≤ 2

(
ln

3n

h

)r+1

.

(5)

Therefore, the average routing path length E[L] is upper bounded by O ((ln n
h

)r+1), when
0 ≤ r ≤ 1. �

5.3 Proof of Theorem 4.3

In the unified model, for any expert u,
∑

w ∈Cu
[d (u → w )]−r is lower bounded by a constant ξ (ξ

is the cardinality of set S := {w ∈ V \ {u} : d (u → w ) = 1, e (w )
i − e (u )

i = 1}). Then, the probability

that u has a long-range contact w with e (w )
i − e (u )

i greater than l , denoted by Pr[e (w )
i − e (u )

i > l], is

Pr[e (w )
i − e (u )

i > l] ≤
∑(n/h)−1

j=l+1
ξ j−r

ξ
≤

∫ ∞

l

x−rdx =
l1−r

r − 1
. (6)

Then, following similar arguments in [20], we define α := 1/r , β := (r − 1)/r , and θ :=
min(r − 1, 1)/(8k ). Let T denote the set of all experts who can solve (i,τ ) (|T | ≥ 1). We define
Aj to be the event that in the jth hop since decentralized search starts query routing, query (i,τ )

reaches an expert w (w � T ) that has a long-range contact v with e (v )
i − e (w )

i ≥ (kn/h)α . Then, let

A :=
⋃

1≤j≤θ (kn/h)β Aj denote the event that this occurs in the first θ (kn/h)β hops. As the prob-
ability of a union of events is upper bounded by the sum of their individual probabilities, we have

Pr[A] ≤
∑

1≤j≤θ (kn/h)β

Pr[Aj ] ≤ θ (kn/h)β k (kn/h)α−αr

r − 1
≤ 1

8
. (7)
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Let t1 be the expert in T with the minimum expertise in solving (i,τ ). Define B to be the event

that e (t1 )
i − e (s )

i >
n
8h

(recall that s denotes the first query holder). Since n/h > 8 according to our
assumption, we have

Pr[B] =

n
h
− n

8h∑
x=1

1

(n/h) − 1
·

n
h
− x − n

8h

n/h
> 1/3.

By (7), Pr[B ∨ A] < 2
3 +

1
8 ; therefore, Pr[B ∧ A] > 5

24 .

We now prove that if B occurs andA does not occur, then E[L|B ∧ A] ≥ θ (kn/h)β as follows:
If A does not occur, then at each routing step, query (i,τ ) can move toward T by a distance of at
most (kn/h)α in area i; then after θ (kn/h)β steps, the total moved distance in area i is at most

θ (kn/h)α+β = θk (n/h) = min(r − 1, 1)n/(8h) ≤ n

8h
,

i.e., (i,τ ) cannot reach any expert inT if B occurs andA does not occur. Therefore, E[L|B ∧ A] ≥
θ (kn/h)β . Accordingly,

E[L] ≥ E[L|B ∧ A] · Pr[B ∧ A]

>
5

24
θ (kn/h)β =

5 min(r − 1, 1) · k− 1
r

192

(n
h

) r−1
r

.

Therefore, when r > 1, the average routing path length in the unified model is lower bounded by

Ω(k−
1
r ( n

h
)

r−1
r ). �

5.4 Proof of Theorem 4.4

We follow similar arguments as those in the proof of Theorem 4.2. In the diversified model, there
are up to c0λ

m−1 (c0: a constant) experts with the same expertise distance from any expert; there-
fore, under the diversified model, (2) in the unified model is changed to

∑
w ∈Cu

[d (u → w )]−r ≤∑mλ−m
j=1 c0λ

m−1j−r in the diversified model. Since d (u → w ) ≤ mλ −m, (3) becomes

Pr(u → w ) ≥ [d (u → w )]−r

∑mλ−m
j=1 c0λm−1j−r

by (1), ≥ 1

mc0λm
(∑mλ−m

j=1 j−1
)r ≥

1

mc0λm (ln (3mλ))r
.

To compute E[L] for query (i,τ ), let η := λ − τ + 1. Then, there are ηλm−1 qualified experts,
denoted by set T . Let Pr(u → T ) be the probability that u has a long-range contact in T ,
then Pr(u → T ) ≥ ηλm−1 ∑

w ∈T Pr(u → w ) ≥ η(c0mλ)−1 (ln (3mλ))−r .Then, following similar ar-
guments for computing (4–5) in the unified model, we have E[L] ≤ c0m (ln(3mλ))r+1. Thus, when
0 ≤ r ≤ 1, E[L] is upper bounded by O (m−r (lnn)r+1), where we use λm = n. �

5.5 Proof of Theorem 4.5

Let T denote the set of all experts who can solve query (i,τ ). Similar to the proof of Theo-
rem 4.3, in the diversified model,

∑
w ∈Cu

[d (u → w )]−r is lower bounded by a constant ξ (defined in

Section 5.3); therefore, similar to (6), we have Pr[e (w )
i − e (u )

i > l] ≤ (
∑mλ−m

j=l+1 ξ j−r )/ξ ≤ l1−r /(r − 1).

Again, define α := 1
r

, β := r−1
r

, and θ :=
min(r−1,1)

8k
. Define Aj to be the event that in the jth hop,

query (i,τ ) reaches an expert w (w � T ) that has a long-range contact v with e (v )
i − e (w )

i ≥ (kλ)α .
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Then, let A :=
⋃

1≤j≤θ (kλ)β Aj denote the event that this occurs in the first θ (kλ)β hops. Thus,
Pr[A] ≤ ∑

1≤j≤θ (kλ)β Pr[Aj ] ≤ 1/8.
Next, similar to the proof of Theorem 4.3, let t1 be the expert in T with the minimum ex-

pertise in solving (i,τ ), and B the event that e (t1 )
i − e (s )

i >
λ
8 (recall s is the first query holder).

Since λ = m
√
n > 8 according to our assumption, we again have Pr[B] > 1

3 and Pr[B ∧ A] > 5
24 .

Then, using similar arguments for proving Theorem 4.3, we have E[L|B ∧ A] ≥ θ (kλ)β . Hence,

E[L] ≥ E[L|B ∧ A] · Pr[B ∧ A] > ρk−
1
r λ

r−1
r , where ρ := 5 min(r − 1, 1)/192. Since λ = m

√
n, the

lower bound in the diversified model is Ω(k−
1
r n

r−1
mr ) when r > 1. �

5.6 Proof of Corollary 4.6

The statement in Corollary 4.6 follows by considering the worst routing case: Query (i,τ ) is of the

maximum difficulty level (i.e., τ = maxu ∈V e (u )
i ), and the expert with the worst expertise in area i

is selected as the first query holder. �

6 EXPERIMENTS

In this section, we evaluate the performance of decentralized search by computing its average rout-
ing path length under the unified/diversified model and explaining the corresponding observations
using the performance bounds in Section 4. Then, we study the robustness of decentralized search
against query interpretation errors. Finally, we compare the predicted query routing time using
the performance bounds to the actual routing time in a case study of real datasets for justifying
the applicability of the performance bounds to real networks.

Performance Under the Unified/Diversified Model: To evaluate the performance of decentralized
search, we select n = 240 and h = 4, 6, 8 for the unified model, and n = 729 and m = 1, 2, 3 for the
diversified model, both under k = 1, 2, 3. We generate queries by randomly selecting the corre-
sponding problem area and the required expertise level (subject to the network-wise maximum
problem solving capability) in both the unified and diversified model; moreover, the first query
holders are also randomly chosen. For each network parameter setting, 100 random network re-
alizations are generated, and 500 Monte Carlo runs (each run corresponds to a newly generated
query that is randomly distributed to an expert as the first query holder) are conducted on each
network realization. Using decentralized search, the resulting routing path length averaged over
all network realizations and Monte Carlo runs are reported in Figure 6(a) (unified model) and
Figure 6(b) (diversified model).

In Figure 6, as expected, we first observe that the average routing path length increases with r
(supported by Theorem 4.1). The most significant conclusion we can draw from Figure 6 is that
they confirm the high efficiency of decentralized search when 0 ≤ r ≤ 1 for both network models
(as proved in Theorems 4.2 and 4.4). Specifically, compared to the network size (240 and 729 ex-
perts in the unified and diversified models), decentralized search achieves extremely small routing
path length, i.e., between 2 to 5 when r = 0 and 3 to 8 when r = 1. Moreover, Figure 6 demonstrates
that the performance of decentralized search is similar under different network parameters/models
when r is small (e.g., around 0). However, when r increases, the performance under different pa-
rameters begins to depart, and the performance under small h (orm) degrades significantly when
r > 1, for which Theorems 4.3 and 4.5 provide quantitative bounds to capture such performance
deterioration. Nevertheless, such performance degradation converges when r is large, because all
routing path lengths are constrained by the upper bound (independent of r ) established in Corol-
lary 4.6. Moreover, Figure 6 shows that the benefit of a larger number of long-range contacts is
not obvious, especially in the case when r is large. This is because, as shown in Theorems 4.3
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Fig. 6. Average routing path length (100 random network realizations for each network parameter setting,

500 Monte Carlo runs per network realization).

and 4.5, for each expert, having a single contact with significantly different specialties (controlled
by r ) is more effective than having multiple contacts (controlled by k) with only limited expertise
dissimilarity in reducing the average routing path length.

Robustness of Decentralized Search: Thus far, we assume that each expert has accurate estima-
tion of problem difficulties; in other words, the expertise levels required by the queries in different
areas are perceived exactly the same as the ground truth for all experts in the network. However,
this may not always be true. Therefore, we study how the performance of decentralized search is
affected by misinterpreting query difficulties as follows: When attempting to solve query (i,τ ), if

expert u has sufficient expertise in area i (i.e., e (u )
i ≥ τ ), then she solves (i,τ ); otherwise, her esti-

mation of the expertise required for solving (i,τ ) follows the truncated Gaussian distribution with
minimum value τmin, mean μ, and standard deviation σ being functions ofu and (i,τ ). In particular,
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Fig. 7. Average routing path length with query interpretation errors (k = 3, 100 random network realizations

for each network parameter setting, 500 Monte Carlo runs per network realization).

τmin =: e (u )
i , μ := τ , and σ := c (τ − e (u )

i ), where c is a scaling factor. She then uses this estimated
value τ ′ to find the best next hop from her contacts following the decentralized search rule. In
this estimation error model, we capture the fact that in real networks, query estimation accuracy
increases as the expert expertise gets closer to the actual requirement. The results of decentralized
search under different levels (controlled by the scaling factor c) of such estimation errors aver-
aged over multiple Monte Carlo runs are shown in Figure 7(a) (unified model) and Figure 7(b)
(diversified model). These results confirm that under query estimation errors, the performance of
decentralized search remains stable; therefore, decentralized search is a robust and reliable solution
for query routing in expert networks.

Case Study of Real Datasets: Next, using our theoretical results, we analyze real-world query
routing data collected from the IT service department of one of Fortune 500 companies throughout
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Table 2. Performance in Real Expert Networks (Captured by the

Diversified Model Using Decentralized Search, Wherem = 2 and

k = 1. Li : Average Query Routing Path Length under ri , i = 1, 2)

Datasets n r1 r2 Real L1/L2 Predicted L1/L2

OS-1 184 1.98 1.44 1.44 1.63
OS-2 122 1.24 1.04 1.31 1.45

Database 305 1.61 1.01 2.37 2.87
Web service 266 1.14 1.04 1.19 1.26

2006. Depending on query contents, these datasets are categorized into four independent classes:
Operating System 1 (OS-1), Operating System 2 (OS-2), Database, and Web Service. Table 2 lists
the network parameters in these datasets. For these datasets, we first observe that their network
structures can be characterized by the diversified model for the case ofm = 2 and k = 1. In Table 2,
two values of r (i.e., r1 and r2) are derived from these datasets based on expert inter-connections,
where r2 corresponds to new connections after applying a mentoring program to the original expert
networks (associated with r1). In this mentoring program, some less-skilled experts are mentored
by experienced experts, which equivalently reduces the value of r . Note that in Table 2, the expert
network associated with each dataset is not as strictly structured as the grid structure in Figure 3,
i.e., some experts in Figure 3 may be missing; however, the performance prediction remains accu-
rate (see Table 2 for details). In order to apply our theoretical results in Section 4, we still need to
justify if the query routing behaviors in these real datasets share any similarities with decentral-

ized search. To this end, we define relative expertise difference as | |e(w ) − e
(u ) | |1/| |e(u ) | |1, wherew

is the next hop expert selected by expert u. The query forwarding probability versus relative ex-
pertise difference averaged over all queries received in the four networks of the datasets is shown
in Figure 8(a). As comparison, we also compute the same metric based on decentralized search in
the diversified model as reported in Figure 8(b), where three networks of similar network sizes
and similar values of r1 and r2 as those in the real datasets are evaluated. We note that Figure 8(a)
and (b) has similar shapes, i.e., the expert with neither too similar nor too different expertise is
selected with high probability as the next hop; therefore, the routing behaviors in these datasets
do exhibit a certain level of decentralized search. Hence, we can use our results in Section 4 on
decentralized search to predict the routing performance in these real datasets. Let Li denote the

average query routing path length under ri (i = 1, 2). We compare the real L1/L2 with the pre-

dicted L1/L2 using Theorem 4.5 (as r1, r2 > 1 for all datasets). The comparison in Table 2 shows
that using the theoretical performance bounds, the predicted routing path length is accurate (the
error is 21.1% for Database, and 5.9∼13.2% for other datasets); therefore, the theoretical results in
this article can naturally serve as an efficient tool for analyzing/predicting behaviors in real expert
networks. Moreover, these datasets also suggest that to achieve high routing efficiency, network
owners can take proactive actions to adjust the expert connections such that the resulting network
condition (r2 is close to 1) approaches the high efficiency region (i.e., 0 ≤ r ≤ 1).

7 CONCLUSION

We investigated the efficiency of local-information-based decentralized search for query answer-
ing in expert networks, focusing on quantifying the performance of decentralized search under
various network settings. Incorporating common expert social inter-connection tendencies, we
proposed two expert network models, each representing a unique distribution of expert problem
solving abilities in the network. Under these two network models, we established fundamental
theories demonstrating when decentralized search is exceptionally effective in finding short query
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Fig. 8. (a) Query routing behavior in real datasets; (b) query routing behavior of decentralized search in the

diversified model (m = 2, k = 1, 100 random network realizations for each network parameter setting, 500

Monte Carlo runs per network realization).

routing paths. In cases where decentralized search is ineffective, we also quantified how the per-
formance deterioration is correlated to network structures. Evaluations and comparisons of these
theoretical results in both synthetic networks and real datasets confirm the efficiency/robustness
of decentralized search in expert networks as well as the significance of the developed performance
bounds in guiding real network design.
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