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Abstract—Expert search has been studied in different contexts, e.g. enterprises, academic communities. We examine a

general expert search problem: searching experts on the Web, where millions of Web pages and thousands of names are

considered. It has mainly two challenging issues: (1) Web pages could be of varying quality and full of noises; (2) The expertise

evidences scattered in Web pages are usually vague and ambiguous. We propose to leverage the large amount of co-occurrence

information to assess the relevance and reputation of a person name for a query. The co-occurrence structure is modeled by

a hypergraph, on which a heat diffusion based ranking algorithm is proposed. Query keywords are regarded as heat sources,

and a person name which has strong connection with the query (i.e. frequently co-occur with query keywords and other names

related to query keywords) will receive most of the heat, thus being ranked high. Experiments on the ClueWeb09 Web collection

show that our algorithm is effective for retrieving experts and outperforms baseline algorithms significantly. This work would be

regarded as one step towards addressing the more general entity search problem without sophisticated NLP techniques.

Index Terms—Expert search, web mining, co-occurrence, diffusion

F

1 INTRODUCTION

E XPERT search gained increasing attention from
both industry and academia. The TREC enterprise

tracks [16] boomed research work on organizational
expert search [2], [8], [34], [43], [20]. Variant expert
search problems were also identified and addressed in
other domains such as question answering [26], online
forums [41] and academic society [31], [19], [42].

However, previous work on expert search is often
confined within specific contexts, e.g. an enterprise
corpus, an online forum, or an academic bibliography
collection. Recently, the desire to find experts on a va-
riety of daily life topics is increasing. We are observing
a rising search paradigm that allows users to search
for people who can answer their natural language
questions [22]. However, this system requires users
to register and join a community. In contrast, the Web
contains a huge amount of information about people
(e.g. personal home pages, blogs, Web news). It is
possible to build a powerful expert search engine by
exploiting the information about people on the Web.

In this paper we propose a general expert search
problem: expert search on the Web, which considers
ordinary Web pages and people names. This problem
is different from organizational expert search and is
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Fig. 1. Example noises in Web pages.

Fig. 2. A vague expertise evidence.

more like Google where our goal is to return a list
of experts with reasonable quality. It has new chal-
lenges: (1) Compared to an organization’s repository,
ordinary Web pages could be of varying quality (e.g.
spam [32]) and full of noises. Fig. 1 shows examples of
noises from a news page of CNN, i.e. links to popular
news stories and advertisements, which are usually
irrelevant to the current story. (2) The expertise evi-
dences scattered in Web pages are usually vague and
ambiguous. Fig. 2 shows a snippet from the Wikipedia
page of Ana Ivanovic, a former World No. 1 tennis
player. However, one can find there are many Web
pages saying she used to train in a swimming pool,
though she is not an expert in swimming.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, JANUARY 2007 2

In traditional organizational expert search, rele-
vance is the major concern. However, considering
the challenges mentioned above, we also need to
consider a name’s reputation for a query topic as
well as the trustworthiness of data sources. We sus-
pect the relevance and reputation can be captured
by the large amount of keyword-name and name-name
co-occurrences on the Web. Using a large amount
of co-occurrence information, noises could be sup-
pressed since noisy co-occurrences would not appear
frequently on the Web. The problem in Fig. 2 can
thus be alleviated because Ana Ivanovic probably
does not co-occur frequently with salient swimmers.
In particular, we aim to address the new challenging
issues by leveraging the linkage of experts exhibited
on the Web: (1) Relevance. Related experts should co-
occur frequently on many Web pages with the key-
words in the query. (2) Reputation. Related experts
should co-occur frequently with other people related
to the query, regardless of whether they are experts
or not. For example, a salient researcher could be co-
mentioned with other researchers in his/her research
areas many times; a senior user in an online forum
would actively pursue threads for which he/she has
expertise and co-occur with many other users. (3)
Trustworthiness. Related experts tend to occur in
high quality Web pages.

The second observation could be true for many
domains, since humans are socialized and social ac-
tivities shall be reflected on the Web. Following these
observations, we propose to model the co-occurrence
relationships among people names and words by
a heterogeneous hypergraph where Web pages are
treated as hyperedges with PageRank scores as their
weights. Then we develop a novel heat diffusion
model on the hypergraph. Based on this model, an
expert ranking algorithm, called Co-occurrence Dif-
fusion (CoDiffusion for short), is developed. Given a
query, we treat keywords in the query as heat sources
and perform heat diffusion. Names with the highest
heat scores are returned. Intuitively, people who have
strong connection with the query (i.e. frequently co-
occur with query keywords and frequently co-occur
with other people related to query keywords in high
quality pages) will be ranked high.

Connection with Renlifang. Renlifang1 is an object
level search engine which allows users to query about
people, locations, and organizations and explore their
relationships. It extracts structural information about
entities and their relationships by deep-parsing Web
pages [36], [27], [44]. In contrast, CoDiffusion does
not rely on complicated natural language processing
techniques to search experts. While Renlifang does
have an expert finding function, its ranking algorithm
seems not publicly known.

1. http://renlifang.msra.cn/

Our contributions. A major contribution of this study
is an examination of a new expert search problem:
searching experts on the Web, and the proposal of
utilizing co-occurrence relationships to assess the rel-
evance and reputation of a person name with re-
spect to a query simultaneously. This work would be
regarded as one step towards addressing the more
general entity search problem without sophisticated
NLP techniques, where different types of entities
are considered, e.g. people, organizations, locations.
We abstract the co-occurrence relationships using a
heterogeneous hypergraph and develop a novel heat
diffusion method on this hypergraph to address the
expert search problem. The diffusion method consid-
ers both relevance and reputation for ranking experts,
as well as the quality of data sources. We also try
to boost performance by re-ranking based on name
pseudo relevance feedback. Empirical results on the
ClueWeb09 Web collection2 show that our method
outperforms baseline methods and well-known lan-
guage model-based approaches significantly. We also
demonstrate the usefulness of people co-occurrence
information in ranking experts. We are not going to
discuss person name extraction and disambiguation
[1], [39], [35], [11], which are out of scope of this work.

2 RELATED WORK

Expert search is a growing research area. Early ap-
proaches for expert search involve building a knowl-
edge base which contains the descriptions of people’s
skills within an organization [15]. However, creating
a knowledge base manually is time-consuming and
laborious. Therefore, automatic approaches have been
developed for building people profiles [17], [38]. Ex-
pert search became a hot research area since the start
of the TREC enterprise track [16] in 2005. A lot of stud-
ies were dedicated to organizational expert search.
Balog et al. proposed a language model framework
for expert search [2]. Their Model 1 is equivalent
to a profile-centric approach where text from all the
documents associated with a person is amassed to
represent that person. Their Model 2 is a document-
centric approach which first computes the relevance
of documents to a query and then accumulates for
each person the relevance scores of the documents
that are associated with the person. This process was
formulated in a generative probabilistic model. Balog
et al. showed that Model 2 outperformed Model 1 [2]
and it became one of the most prominent methods
for expert search. In their following work, Balog et al.
tried to apply and refine their language model on a
smaller dataset comprising multilingual data crawled
from Tilburg University’s Website [4].

Researchers have investigated using additional in-
formation to boost retrieval performance, such as
PageRank, indegree, and URL length of documents

2. http://boston.lti.cs.cmu.edu/Data/clueweb09/
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[43], person-person similarity [4], internal document
structures that indicate people’s association with doc-
ument content [6], query expansion and relevance
feedback using people names [30], [7], non-local ev-
idence [8], [33], proximity between occurrences of
query words and people names [21], [3]. Besides
language models, other methods have been proposed.
Macdonald and Ounis proposed a method based on
voting and data fusion techniques [29]. Serdyukov et
al. modeled associations between people and docu-
ments as a bipartite graph and performed probabilis-
tic random walks to find relevant experts [34]. Fang et
al. proposed a relevance-based discriminative learning
framework for expert search [20]. Many other meth-
ods for organizational expert search were proposed
during TREC Enterprise tracks.

Two benchmark datasets, W3C [16] and CSIRO [9],
are the focus of these organizational expert search
works, which are crawls of the Websites of W3C and
Commonwealth Scientific and Industrial Research Or-
ganization, respectively. However, searching experts
on the Web is different from organizational expert
search in that we consider ordinary Web pages and
people names. Besides relevance, in our case we also
need to consider the reputation of a name. This is
because (1) compared to an organization’s Website
or document repository, Web collections could be of
low quality and noisy; (2) the expertise information
contained in ordinary Web pages could be vague.
In this paper, we propose to use co-occurrences to
assess the relevance and reputation of a person name
with respect to a query simultaneously and we will
demonstrate its effectiveness in experiments.

There are other expert retrieval problems. Balog and
de Rijke studied the problem of finding similar ex-
perts, given example experts [5]. Zhang et al. studied
characteristics of online forums and tested using link
analysis methods to identify users with high expertise
[41]. Liu et al. studied expert finding in community-
based question answering Websites and treated it
as an IR problem [26]. Mimno and McCallum used
topic modeling to address the problem of matching
papers with reviewers [31]. Later Karimzadehgan et
al. addressed this review assignment problem based
on matching of multiple aspects of expertise [24],
[23]. Deng et al. explored using language modeling
and a topic-based model for expert finding in the
DBLP bibliography data [19]. Zhou et al. proposed co-
ranking authors and their publications using coupled
random walks [42].

Recently, the idea of heat diffusion was extended
to the discrete graph setting, with applications
such as dimension reduction [12], classification [25],
topic modeling [14], matrix factorization [13], anti-
spamming [37], social network marketing [28] and
online advertisement matching [10]. These studies
considered diffusion in homogeneous graphs. We de-
velop a diffusion model on heterogeneous hyper-
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Fig. 3. An example heterogeneous hypergraph.

graphs for our expert search problem.

3 HEAT DIFFUSION ON HETEROGENEOUS

HYPERGRAPHS

3.1 Notations and Problem Formulation

In a hypergraph, edges (called hyperedges) can con-
nect two or more vertices. Formally, let G = (V, E)
be a hypergraph with vertex set V and edge set E.
A hyperedge e ∈ E can be regarded as a subset of
vertices. e is said to be incident with a vertex v if
v ∈ e. Each hyperedge e is associated with a weight
denoted by w(e). In our case, there are three types
of objects: people (names), words, and Web pages,
denoted by P , W and D, respectively. By the co-
occurrence relationships among P and W established
by Web pages, we can construct a heterogeneous
hypergraph GP,W = (V, E) where V contains all the
people and words and each e ∈ E corresponds to a
Web page (Fig. 3). w(e) is the PageRank score of e’s
corresponding Web page. The problem is, given P , W ,
GP,W and query keywords from W , to rank P according
to their expertise in the topic represented by the query.

We propose using heat diffusion to address this
ranking problem. Let Vp and Vw represent the vertex
sets corresponding to people and words, respectively.
Consequently, V = Vp ∪ Vw. Let Hp be a |Vp| × |E|
weighted incidence matrix where an entry Hp(v, e) =
wtv,e if v ∈ e (v ∈ Vp) and 0 otherwise. Hw is defined
similarly for Vw. wtv,e reflects the connection strength
between object v and page e. We set Hp(v, e) to the
number of times person v appears in page e and set
Hw(v, e) to the TF-IDF score of word v in e. The degree
of a vertex v is defined as

d(v) =

{
∑

e∈E w(e)Hp(v, e) v ∈ Vp
∑

e∈E w(e)Hw(v, e) v ∈ Vw
. (1)

The degree of a hyperedge is defined as

δ(e) = δp(e) + δw(e), (2)

where δp(e) =
∑

v∈Vp
Hp(v, e) and δw(e) =

∑

v∈Vw
Hw(v, e). We define fp

i (t) and fw
j (t) to be the

heat of vertex i ∈ Vp and that of vertex j ∈ Vw at
time t, respectively. Let f

p(t) and f
w(t) be the heat

distribution vectors at time t with sizes |Vp| × 1 and
|Vw| × 1, respectively. The initial heat distribution is
represented by f

p(0) and f
w(0). Then the problem is

to derive the heat distribution at time t (fp(t) and
f
w(t)) given an initial distribution at time 0 (fp(0)
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and f
w(0)). In other words, we can set query objects

(people and/or words) as heat sources and rank other
objects according to the heat distribution at time t,
which reflects the affinity between the objects and
heat sources. This is a general ranking model. In our
problem, words are queries and we need to get the
ranking of people.

3.2 Diffusion Model

In real world, heat diffuses in a medium from posi-
tions with higher temperatures to those with lower
temperatures. The most important property of heat
diffusion is that the heat flow rate at a point is
proportional to the second order derivative of heat
with respect to the space at that point [25], [37]:

∂f(x, t)

∂t
= γ∇2f(x, t), (3)

where f(x, t) represents the heat at position x and at
time t, ∇2 denotes the Laplacian operator and γ is
the thermal conductivity coefficient. In the following,
we present our diffusion model for heterogeneous
hypergraphs.

Different medium have different thermal conductiv-
ity coefficients. Therefore, we define three coefficients:
γpp, γww and γpw to characterize the thermal con-
ductivity among people, among words and between
people and words, respectively. The diffusion model
is constructed as follows. At time t, each vertex i ∈ V
will receive an amount of heat from its neighbors
(i.e. neighboring people and words) during a small
time period ∆t. In other words, regarding hyperedges
as pipes connecting vertices, i will receive heat from
all hyperedges which contain i. For each i ∈ Vp, the
amount of heat it receives from j through hyperedge e
which contains both i and j should be proportional to
(1) the time period ∆t, (2) the conductivity coefficients
γpp (if j ∈ Vp) or γpw (if j ∈ Vw), (3) the edge weight
w(e): heat diffuses quickly through high quality Web
pages, and (4) the heat difference fp

j (t) − fp
i (t) (if

j ∈ Vp) or fw
j (t) − fp

i (t) (if j ∈ Vw). Therefore, the
heat difference at vertex i between t + ∆t and t is

fp
i (t + ∆t) − fp

i (t)

=
∑

e∈E

Hp(i, e)
w(e)

δp(e)

∑

j∈Vp

Hp(j, e)[
fp

j (t)

d′(j)
−

fp
i (t)

d′(i)
]γpp∆t

+
∑

e∈E

Hp(i, e)
w(e)

δw(e)

∑

j∈Vw

Hw(j, e)[
fw

j (t)

d′(j)
−

fp
i (t)

d′(i)
]γpw∆t,

(4)

where we take the sums over all e ∈ E and j ∈ Vp and
j ∈ Vw since unrelated objects have zero incidence
values, i.e. Hp(v, e) or Hw(v, e). There are several
normalization terms in the above equation. We use
δp(e)/δw(e) to normalize w(e) in that if a Web page
contains many people/words, then the connection
between any of those people/words and person i in e

should be weak. We use the connectivity (i.e. d′(v)) of
a vertex to normalize its heat to assure that each ver-
tex has the same ability of diffusing heat. Otherwise,
vertices with high connectivity will diffuse heat more
easily, which would suppress experts since experts
usually have high connectivity. “Connectivity” does
not necessarily mean “degree.” For example, we can
define the connectivity of a person as the number of
distinct people who co-occur with him/her. Details of
the choice of d′(v) will be discussed in Section 4.1.

Similarly, for each word i ∈ Vw , the amount of heat
it receives from neighboring vertices in a small time
period ∆t starting from t is

fw
i (t + ∆t) − fw

i (t)

=
∑

e∈E

Hw(i, e)
w(e)

δw(e)

∑

j∈Vw

Hw(j, e)[
fw

j (t)

d′(j)
−

fw
i (t)

d′(i)
]γww∆t

+
∑

e∈E

Hw(i, e)
w(e)

δp(e)

∑

j∈Vp

Hp(j, e)[
fp

j (t)

d′(j)
−

fw
i (t)

d′(i)
]γpw∆t.

(5)

Eq. (4) can be transformed as follows

fp
i (t + ∆t) − fp

i (t)

= γpp∆t

(

∑

e∈E

∑

j∈Vp

fp
j (t)

Hp(i, e)Hp(j, e)w(e)

δp(e)d′(j)

−
fp

i (t)

d′(i)

∑

e∈E

Hp(i, e)w(e)

)

+ γpw∆t

(

∑

e∈E

∑

j∈Vw

fw
j (t)

Hp(i, e)Hw(j, e)w(e)

δw(e)d′(j)

−
fp

i (t)

d′(i)

∑

e∈E

Hp(i, e)w(e)

)

= γpp∆t

(

∑

j∈Vp

fp
j (t)

∑

e∈E

Hp(i, e)Hp(j, e)w(e)

δp(e)d′(j)
− fp

i (t)
d(i)

d′(i)

)

+ γpw∆t

(

∑

j∈Vw

fw
j (t)

∑

e∈E

Hp(i, e)Hw(j, e)w(e)

δw(e)d′(j)
− fp

i (t)
d(i)

d′(i)

)

Similarly, we can transform Eq. (5) as

fw
i (t + ∆t) − fw

i (t)

= γww∆t

(

∑

j∈Vw

fw
j (t)

∑

e∈E

Hw(i, e)Hw(j, e)w(e)

δw(e)d′(j)
− fw

i (t)
d(i)

d′(i)

)

+ γpw∆t

(

∑

j∈Vp

fp
j (t)

∑

e∈E

Hw(i, e)Hp(j, e)w(e)

δp(e)d′(j)
− fw

i (t)
d(i)

d′(i)

)

We define an augmented vector f(t) =

[(fp(t))
T

(fw(t))
T
]T . Let We denote the diagonal

matrix containing edge weights in its main diagonal.
Let Dp and Dw be diagonal matrices containing
vertex degrees corresponding to people and words,
respectively. Let Dep and Dew represent diagonal
matrices containing degrees of hyperedges with
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respect to Vp and Vw, respectively. Let Dp′ and Dw′

represent diagonal matrices containing normalization
terms for people and words, respectively. Notice that
∑

e∈E Hp(i, e)Hp(j, e)w(e),
∑

e∈E Hw(i, e)Hw(j, e)w(e)
and

∑

e∈E Hp(i, e)Hw(j, e)w(e) are the (i,j)-th elements
of matrices HpWeH

T
p , HwWeH

T
w and HpWeH

T
w,

respectively. Combining all i ∈ Vp, we can represent
Eq. (4) in matrix-vector form:

f
p(t + ∆t) − f

p(t) =
[

Lpp Lpw

]

f(t)∆t, (6)

where

Lpp = γppHpWeD
−1
ep H

T
p D

−1
p′ −(γpp+γpw)DpD

−1
p′ , (7)

and
Lpw = γpwHpWeD

−1
ewH

T
wD

−1
w′ . (8)

Similarly, we can compute f
w(t+∆t)−f

w(t) as follows

f
w(t + ∆t) − f

w(t) =
[

Lwp Lww

]

f(t)∆t, (9)

where
Lwp = γpwHwWeD

−1
ep H

T
p D

−1
p′ , (10)

and

Lww = γwwHwWeD
−1
ewH

T
wD

−1
w′ − (γww + γpw)DwD

−1
w′ .

(11)
Combining Eq. (6) and (9), and letting ∆t → 0, finally
we obtain the differential equation for f(t):

d

dt
f(t) = Lf(t), (12)

where L has the following block structure:

L =

[

Lpp Lpw

Lwp Lww

]

. (13)

Solving Eq. (12), we obtain

f(t) = etL
f(0), (14)

where f(0) = [(fp(0))T (fw(0))T ]T . Especially, we have

f(1) = eL
f(0). (15)

The exponential of a square matrix L is defined as

eL =

∞
∑

k=0

1

k!
L

k. (16)

In practice, it is difficult to obtain the exact value of
eL. Therefore, a discrete approximation is used and
Eq. (15) becomes

f(1) = (I +
L

n
)n

f(0). (17)

To determine the parameter n, Yang et al. proposed
a heuristic method which chooses n so that the dif-
ference between the eigenvalues of (I + L

n )n and eL

is less than a threshold [37]. In this paper we also
employ this heuristic method to find proper values
of n. In experiments, we find 100 iterations is usually
sufficient for achieving good performance.

3.3 Interpretation of the Model

By constructing the matrix L, we intrinsically aggre-
gate the co-occurrence information among people and
words in different Web pages to reflect the connection
strength between each pair of objects. This aggregation
could be helpful for dealing with noises on the Web. After
the construction of L, we propagate heat from query
keywords (i.e. Eq. (17)) on this aggregated structure.
Intuitively, names having strong connection not only
with query keywords but also with other related
names and words will be ranked high.

4 DIFFUSION FOR EXPERT SEARCH

In this section we study how to apply the proposed
diffusion model to our expert search problem.

4.1 Normalization Design

In Eq. (4) and (5), the heat normalization term d′(v)
assures that each vertex has the same ability to diffuse
heat. Furthermore, we can also use d′(v) to emphasize
those vertices which we deem important (i.e. heat will
flow to the vertex more easily). Since our goal is to
rank people (names), in the following we will focus on
the design of d′(v) for people. For words, we simply
set d′(v) = d(v).

Intuitively, an expert should expose himself/herself
more frequently than non-experts. Therefore, we con-
sider d(v) as a factor in d′(v) for a name. Another
characteristic of experts is that they tend to co-occur
with many different people on the Web, e.g., a pro-
fessor would co-occur with many students and other
professors. Thus, we should also count in the number
of distinct co-occurring names for a name (denoted
by Co(i) for name i). The heat normalization term for
name i is defined as d′(i) = d(i)Co(i). Fig. 4 shows a
simple toy problem which illustrates the effect of heat
normalization for people. Suppose our query is w1,
and we want to rank four people a, b, c and d. Assume
that the four pages have the same weight. Intuitively,
we expect c and d to be ranked higher than a since
they co-occur with more people than a. If we use
d(v) as the normalization term we get {a : 0.109, c :
0.109, d : 0.109, b : 0.055} as the ranking result, while
we can get {c : 0.135, d : 0.135, a : 0.106, b : 0.067}
when d(v)Co(v) is used. To summarize, we define
d′(v) as

d′(v) =

{

d(v)(Co(v) + 1) v ∈ Vp

d(v) v ∈ Vw
. (18)

Here (Co(v) + 1) is used to avoid zero normalization
when a name never co-occurs with other names.

By preliminary experiments, we find that some
popular names, e.g., Bill Gates, tend to be ranked
high for a variety of queries. Since these names occur
much more frequently than other names, their abso-
lute degree of “connection” with a query topic is also
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a

w1

a

w2

b
c
d

c
d

Fig. 4. A toy problem which illustrates the effect of heat

normalization term d′(v) for people.

likely to be high. However, if we consider their global
occurrences, we can find they are actually connected
with a variety of topics and the connection with each
topic should be weakened. A similar analysis can be
derived for words: general words tend to be related
with a variety of topics and we should weaken their
connection to each topic. To address this problem,
we use a vertex’s degree to normalize the weight of
each edge from which it receives heat (called global
normalization). Eq. (4) becomes:

fp
i (t + ∆t) − fp

i (t)

=
∑

e∈E

Hp(i, e)
w(e)

√

d(i)δp(e)

∑

j∈Vp

Hp(j, e)[
fp

j (t)

d′(j)
−

fp
i (t)

d′(i)
]

∗ γpp∆t +
∑

e∈E

Hp(i, e)
w(e)

√

d(i)δw(e)

∑

j∈Vw

Hw(j, e)[
fw

j (t)

d′(j)

−
fp

i (t)

d′(i)
]γpw∆t. (19)

Eq. (5) is modified similarly. The reason that we adopt
√

d(i) as the normalization term is that d(i) can overly
benefit names which only appear in a small number of
related pages. Regarding the matrix-vector form, this

corresponds to left-multiplying D
−1/2
p to Lpp and Lpw ,

and left-multiplying D
−1/2
w to Lww and Lwp. Fig. 5

shows another toy problem which illustrates the idea
of global normalization. w1 is treated as the query. We
can see although a co-occurs more frequently with
w1 than other people, he/she also appears in pages
for other topics (w2 and w3). Therefore, we should
suppress a in the ranking result. Without global nor-
malization, the final ranking is {a : 0.328, c : 0.207, d :
0.207, b : 0.103, e : 0.069, f : 0.008}, while with global
normalization the ranking is {c : 0.197, d : 0.197, a :
0.192, b : 0.124, e : 0.085, f : 0.004}.

4.2 Algorithm

The algorithm CoDiffusion is shown in Algorithm 1. It
has two phases: “Model Construction” and “Diffusion
and Ranking”. In the Model Construction phase, we
use the given data and parameters to construct matrix
L, which is then used in the Diffusion and Ranking
phase to generate the ranked list of people names

a

w1a w2

b
c
d

c
d

ae

w3

a

a

af

Fig. 5. A toy problem which illustrates the effect of

global normalization.

Algorithm 1: Co-occurrence Diffusion

Input: Hp: weighted incidence matrix between people and pages;
Hw : weighted incidence matrix between words and pages;
We: diagonal matrix containing PageRank scores of pages; f :
the query vector; γpp, γww , γpw: thermal conductivity between
people, between words, between people and words, respectively

Output: a ranked list of names according to the query
1 Model Construction
2 Compute the number of distinct co-occurring people Co(i) for each

person i from Hp

3 Construct degree matrices Dp, Dw , Dep, Dew by Hp, Hw , We

4 Construct heat normalization matrices Dp′ by Dp and Co(i)’s, and
Dw′ = Dw

5 Lpp = γppD
−

1
2

p HpWeD
−1
ep H

T
p D

−1

p′
− (γpp + γpw)D

1
2
p D

−1

p′

6 Lpw = γpwD
−

1
2

p HpWeD
−1
ewH

T
wD

−1

w′

7 Lwp = γpwD
−

1
2

w HwWeD
−1
ep H

T
p D

−1

p′

8 Lww = γwwD
−

1
2

w HwWeD
−1
ewH

T
wD

−1

w′
− (γww + γpw)D

1
2
w D

−1

w′

9 Construct L by Lpp, Lpw , Lwp and Lww

10 Diffusion and Ranking
11 for k = 1 to n do
12 f = (I + L

n
)f

13 end
14 Rank people names according to f

by iteratively multiplying the heat distribution vector
f (line 12). Initially, f is set so that only elements
corresponding to the query keywords equal to 1 and
all other elements equal to 0.

4.3 Global Ranking vs. Local Ranking

There are two possible schemes to implement our
algorithm: (1) we perform “Model Construction” on
the entire Web collection and for each query we only
need to perform the “Diffusion and Ranking” part
in Algorithm 1. In other words, the first phase of
Algorithm 1 needs to be done only once. Then the
constructed model is used for all queries. We call this
scheme Global Ranking; (2) we first obtain related Web
pages for a query by querying the Web collection.
Then we construct the model on the related pages
and do diffusion. Regarding Algorithm 1, the input
Hp, Hw and We only contain entries for pages related
to the query. Both phases are performed in an online
fashion. We call this scheme Local Ranking. For Lo-
cal Ranking, we cannot use the global normalization
technique proposed in Section 4.1 since all the pages
are related to the query. Therefore, we use

√

d(i)
of person i in the entire collection to normalize f

p

directly.
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Algorithm 2: One-Time Re-Ranking

Input: Hp, Hw , We, γpp, γww , γpw : as defined in Algorithm 1;
Top: top k names after the first run of CoDiffusion; Scores:
corresponding ranking scores of the top k names

Output: a ranked list of people names
1 Initialize query vector f = 0

2 for i = 1 to k do
3 fT op(i) = Scores(i)
4 end
5 Invoke CoDiffusion without global normalization using parameters

Hp, Hw , We, f , γpp, γww and γpw

6 Return the ranked list generated by CoDiffusion

Compared to Local Ranking, Global Ranking could
be more efficient for online ranking. However, in
Global Ranking the algorithm can diffuse heat to
partially relevant or even irrelevant pages, while Lo-
cal Ranking can perform more focused diffusion. In
Local Ranking, we can also compute more focused
heat normalization term d′(i) for people. Thus, Local
Ranking could perform better than Global Ranking.

4.4 Algorithm Complexity

The major cost in CoDiffusion is incurred by matrix
multiplications. Let np, nw and ne be the number of
people names, words and pages, respectively. Sup-
pose Hp, Hw and L have mp, mw and ml nonzero
elements, respectively. For multiplication of two di-
agonal matrices, the time cost is linear in np, nw

or ne. Multiplying Hp or Hw by a diagonal ma-
trix cost O(mp) or O(mw), respectively. The dom-
inant cost is due to HpH

T
p , HpH

T
w and HwH

T
w,

where using the simple sparse matrix multiplica-
tion method [40] the corresponding time costs are
O(mpnp), O(min(mpnw, mwnp)) and O(mwnw), re-
spectively. The cost of “Diffusion and Ranking” phase
is O(mln) where n is the number of iterations. The
major space cost is the model matrix L. When stored
as a sparse matrix, the cost is O(ml + np + nw). To
give an intuition about how sparse the matrices are,
the typical density of Hp is 0.003% and that of L is
0.38% in our experiments.

4.5 Refinement by Re-Ranking

The diffusion process employed in Algorithm 1 only
sets query keywords as heat sources (i.e. queries).
This can overly emphasize word-name diffusion and
reduce the effect of name-name diffusion. Here we
propose two re-ranking algorithms to refine the rank-
ing results by setting top ranked people names as
heat sources (i.e. queries), in order to boost reputable
names for the query.

The first re-ranking algorithm is named One-Time
Re-Ranking. The idea is that we set top k names
from the ranking result generated by CoDiffusion
as queries and invoke CoDiffusion (without global
normalization) a second time. The intuition is that the
top k names can be regarded as expert candidates

Algorithm 3: Iterative Re-Ranking

Input: Hp, Hw , We, γpp, γww , γpw : as defined in Algorithm 1;
Top, Scores: as defined in Algorithm 2; k0: deduction of k in
each iteration; Iter num: number of iterations

Output: a ranked list of people names
1 for j = 1 to Iter num do
2 Initialize query vector f = 0

3 for i = 1 to Length(Top) do
4 fT op(i) = Scores(i)
5 end
6 Find pages containing at least two names in Top and construct

corresponding H
′

p, H′

w and W
′

e

7 Invoke CoDiffusion without global normalization using
parameters H

′

p, H′

w , W′

e, f , γpp, γww and γpw

8 Set Top and Scores to the top k − j ∗ k0 names and their
corresponding scores outputted by CoDiffusion

9 end
10 Return a ranked list according to Top

and we could boost reputable experts by diffusing
heat from these candidates. In the second re-ranking
algorithm, we use an iterative process to gradually
refine ranking results: initially we choose top k names
from the result of CoDiffusion and use pages which
contain at least two names in the top k names to
build the diffusion model. Then we set these k names
as queries and invoke CoDiffusion (without global
normalization); in the j-th iteration we perform the
same process with top k − (j − 1)k0 names from the
last iteration, where k0 is a small value (e.g. 50). By the
second algorithm, we try to perform more and more
focused diffusion in the community to find reputable
experts. The second algorithm is named Iterative Re-
Ranking. We summarize the two algorithms in Algo-
rithm 2 and 3, respectively. For Iterative Re-Ranking,
we discard names other than names in Top to better
focus on top ranked names. We use the corresponding
ranking scores outputted by CoDiffusion as query
weights. In this way, the final ranking result will not
deviate too much from the original one.

4.5.1 Ambiguous Names

It is common that the same name can refer to different
people. The global normalization technique proposed
only considers the situation where all (or almost all)
occurrences of a name refer to the same person, e.g.
Bill Gates. It could hinder names which often refer to
different people on the Web. For example, “Michael
Jordan” can refer to a famous basketball player or a
reputable professor in machine learning. By the re-
ranking algorithms, we could find back those ambigu-
ous names which are also reputable names for the
query. In this paper, we concentrate on the problem
of retrieving reputable names for a query based on
ordinary Web pages. Certainly, as a preprocessing
step, name disambiguation is helpful for our problem.
However, it is a standalone ongoing research topic [1],
[39], [35], [11] which is out of scope of this work.
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Fig. 6. Top five domains in our dataset.

5 EXPERIMENTS

5.1 Data Preparation

Our experimental datasets were extracted from the
ClueWeb09 Web collection which is a result of recent
Web crawl and consists of about 1.04 billion Web
pages in ten languages. We only considered the 500
million English Web pages. PageRank scores were
computed based on the link graph among all the 500
million English Web pages. For people names, we
extracted author names from the DBLP (Digital Bibli-
ography & Library Project) bibliography dataset3. The
reasons that we use DBLP author names are: (1) it con-
tains a large number of names, ∼800K names; (2) it is
easy to construct ground truth datasets for evaluation.
The process for generating our experimental datasets
is as follows: first we did a sequential scan through
all the 500 million English Web pages to extract all
the occurrences of author names, where simple rules,
“First Middle Last” and “Last, First Middle”, are used
to find name occurrences. We discarded names which
did not appear in those English pages. After this step
we got 520,971 distinct people names and 37 million
pages, each of which contains at least one person
name. We extracted and processed those pages’ text
content and built index for them. Then we selected,
from the remainder, the Web pages that contain at
least 5 distinct people names and at least 30 distinct
words, in order to reduce dataset size. This yields
3,608,265 pages and 478,896 names. Our task is to find
top-10 or 20 among these names for a given query. To
provide a notion of where these 3,608,265 pages come
from, we show the top five domains of those pages in
Fig. 6. We can see that a large amount of Web pages
do not come from academic Websites (e.g. .edu). We
formulated three datasets from these pages: (1) DATA-
3M: which contained all 3,608,265 pages; (2) DATA-
1M: which consisted of a random subset of 1 million
pages from the 3,608,265 pages; and (3) DATA-0.2M:
which consisted of a random subset of 200k pages
from the 3,608,265 pages. We used DATA-1M for most
of the experiments. DATA-3M and DATA-0.2M were
used to investigate the influence of data sizes on the
performance (Section 5.5).

3. http://www.informatik.uni-trier.de/∼ley/db/

5.2 Evaluation Methodology

We employ four baseline algorithms for performance
comparison. The first two algorithms are simple
heuristics which follow the intuition about topical
experts discussed in Section 1. The first one, which is
called NameFreq, computes the total number of times
a name appears in pages that contain all the query
keywords. Frequency in each page is weighted by
the corresponding PageRank score. Thus, NameFreq
actually computes the d(i) for a person name i in a
query-dependent local context. For NameFreq we also
use

√

d(i) to normalize the obtained ranking scores.
The second one, NameCoFreq, counts the number of
distinct names which co-occur with a name in pages
containing all the query keywords. The third one
is the language model based algorithm proposed in
[2], which is one of the most prominent methods
for organizational expert search, denoted by LM. The
document-centric scheme is adopted. LM sorts people
names by the probability of generating the query Q
given the name i (i.e. Pr(Q|i)), which marginalizes
over all the documents associated with i. The last
one, RW, is a random walk based approach proposed
in [34] which performs random walks on a name-
document bipartite graph. We adopt the finite random
walk scheme since it showed good performance for
organizational expert search. We also tried to use
√

d(i) to normalize NameCoFreq, LM and RW, but
the performance declines. The reason may be that
ranking scores generated by those algorithms are not
well correlated with d(i).

TABLE 1
Three example queries from each of our two

benchmark datasets.

Libra-GT Manual-GT
Information Retrieval Natural Language Processing
Machine Learning Support Vector Machine
Algorithm and Theory Reinforcement Learning

Two ground truth datasets are used to evaluate ex-
pert search algorithms. The first one is collected from
Libra4. We crawl the Website to obtain the top 100
authors for each of the 24 research areas of computer
science. The 24 area names are treated as test queries
and the corresponding top 100 authors are taken as
ground truth expert lists. This is reasonable since
the top author lists are computed by structural bib-
liography data including the number of publications,
citations and H-index, and we are trying to predict
them from unstructured Web data. The other one is
a manually labeled ground truth dataset used in [18],
which contains 17 queries and the averaged number
of experts for each query is 29.35. We refer to the
two benchmark datasets as Libra-GT and Manual-GT,
respectively. Libra-GT contains more general queries

4. http://libra.msra.cn/
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while Manual-GT contains more specific ones. There
are 41 queries in total. Table 1 shows some example
queries. Three metrics are used for performance eval-
uation: Precision@n (P@n), Mean Average Precision
and Normalized Discount Cumulative Gain (NDCG).
P@n is the precision at rank n, which is defined as

P@n =
# of relevant experts in top n results

n
. (20)

Average Precision (AP) is the average of precision
scores after each correctly identified relevant expert:

AP =

∑

i P@i× corri

# of correctly identified relevant experts
,

(21)
where corri = 1 if the person at position i is a
relevant expert, otherwise corri = 0. MAP is the mean
of average precision scores over all the test queries.
NDCG at position n is defined as

NDCG@n = Zn

n
∑

i=1

(2ri − 1)/ log2(i + 1), (22)

where ri is the relevance rating of the person at rank
i. In our case, ri is 1 if the corresponding person is
a relevant expert and 0 otherwise. Zn is chosen so
that the perfect ranking has a NDCG value of 1, i.e.
all the relevant experts in the list are ranked at the
highest positions. We investigate the top 20 results for
each algorithm and report P@10, P@20, NDCG@10,
NDCG@20 and MAP.

5.3 Performance Comparison

We compare CoDiffusion with the baseline algo-
rithms. As aforementioned, we can implement CoD-
iffusion in two schemes: Global Ranking and Local
Ranking. We can also run the baseline algorithms
in these two schemes. In Global Ranking, we just
run the algorithms on the entire dataset, while in
Local Ranking, for each query we first search the
index to get the set of related pages (which is a
subset of the 1,080,259 pages in DATA-1M) and then
run the algorithms on those related pages. We set
γpp = 700, γpw = 160, γww = 2.5 for CoDiffusion.
How these parameters influence the performance will
be explored in Section 5.4. The significance test in this
subsection is based on all the 41 query topics from our
two benchmark datasets.

The experimental results are shown in Tables 2
and 3, for Libra-GT and Manual-GT, respectively. We
have the following observations. Firstly, our algorithm
significantly outperforms the baseline algorithms in
the context of Local Ranking (by t-test with α = 0.05).
NameFreq and NameCoFreq are simple heuristics
and only use partial information. Although LM is a
principled method, it treats people individually and
therefore cannot capture the reputation knowledge
contained in people co-occurrences. RW can capture
reputation to some degree. However, it just relies on

TABLE 2
Performance comparison of expert search algorithms

with respect to Libra-GT. Results for both Local

Ranking and Global Ranking are reported. “N@n” is
an abbreviation for NDCG@n.

Algorithm P@10 P@20 MAP N@10 N@20
Local Ranking:
CoDiffusion .4125 .3625 .4977 .5220 .6816
NameFreq .1542 .1208 .2420 .3060 .4004
NameCoFreq .1875 .1688 .3127 .3234 .4428
LM .2125 .1833 .3344 .3635 .4863
RW .1500 .1417 .2082 .2276 .3441
Global Ranking:
CoDiffusion .1542 .1458 .2647 .2836 .4231
NameFreq .1083 .0979 .1843 .2268 .3386
NameCoFreq .0875 .0813 .1459 .1824 .2661
LM .0708 .0792 .1899 .2040 .3047
RW .1250 .1292 .2458 .2515 .3961

TABLE 3
Performance comparison of expert search algorithms

with respect to Manual-GT. Results for both Local
Ranking and Global Ranking are reported. “N@n” is

an abbreviation for NDCG@n.

Algorithm P@10 P@20 MAP N@10 N@20
Local Ranking:
CoDiffusion .3765 .3088 .5031 .5387 .7066
NameFreq .1176 .1088 .1933 .2449 .3609
NameCoFreq .1529 .1353 .2244 .2521 .3870
LM .2176 .1824 .3773 .4353 .5644
RW .1882 .1971 .3307 .3492 .5410
Global Ranking:
CoDiffusion .1176 .1324 .2178 .2031 .3564
NameFreq .0647 .0794 .1363 .1432 .2767
NameCoFreq .0882 .0853 .1812 .2052 .3285
LM .1353 .1059 .2149 .2480 .3448
RW .1412 .1265 .4067 .4299 .5574

name-document bipartite relationships to propagate
scores and does not explicitly model co-occurrence
information. In Section 5.4, we will demonstrate that
people co-occurrence information does contribute to
the performance of CoDiffusion. By using a hpyer-
graph model, our algorithm successfully leverages the
co-occurrence information contained in Web pages to
find the experts related to a query. Secondly, CoD-
iffusion does not show superior performance with
the Global Ranking scheme, compared to LM and
RW. The reason is that CoDiffusion treats each query
keyword independently, which means heat can be
diffused to partially relevant or even irrelevant pages.
Our algorithm benefits a lot from Local Ranking since
(1) we can perform more focused heat propagation
in Local Ranking than in Global Ranking; (2) we can
calculate more focused heat normalization scores for
people. Therefore, Local Ranking is a better choice
for CoDiffusion. Regarding efficiency, although we
need to build the diffusion model for each query in
Local Ranking, in practice CoDiffusion can still be
faster in Local Ranking than in Global Ranking, since
model scales are quite different (typically, each query
only requires about 15000 relevant pages for model
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construction). We adopt the Local Ranking scheme for
all the following experiments.

We show the top 10 names returned by CoDif-
fusion in Local Ranking for the query “Information
Retrieval” in Table 4. It shows that most of these
researchers are in the “top authors in Information
Retrieval” provided by Libra. Note that the order of
names does not totally conform to the ranking list in
Libra since we make use of ordinary Web pages to
rank authors. We would like to point out that among
the 3,608,265 Web pages we use in experiments, there
are only 22,567 coming from the DBLP Website. Two
names are not in the Libra top author list. They
are also IR researchers and co-occur frequently with
senior IR researchers in our dataset. Consequently
they also gain a lot of heat.

TABLE 4

Top 10 names returned by CoDiffusion for the query
“Information Retrieval” in Local Ranking scheme.

Q: Information Retrieval
Norbert Fuhr Mounia Lalmas
Hsin-Hsi Chen Jamie Callan
Alan F. Smeaton Carol Peters
Gerard Salton Saadia Malik
Iadh Ounis W. Bruce Croft

5.4 Model Parameters

The proposed diffusion model has three parameters,
i.e. γpp, γww and γpw, which control the heat con-
ductivity among people, among words and between
people and words, respectively. To explore the in-
fluence of these parameters on the performance of
CoDiffusion, we vary each parameter in turn and
run our algorithm with Local Ranking scheme. When
varying each parameter, the other two are fixed at
1. The results are averaged over all the 41 queries
from Libra-GT and Manual-GT. Fig. 7 shows the
plots. We report the performance in terms of P@10
and P@20. As one can see, the performance of our
algorithm increases when increasing γpp (Fig. 7(a))
and γpw (Fig. 7(b)). We can interpret γpp and γpw as
representing the importance of people co-occurrence
information (reputation) and that of people-words co-
occurrence information (relevance), respectively. This
demonstrates that our observations about topical ex-
perts are effective in practice, i.e. an expert related
to a query should co-occur frequently not only with
query keywords, but also with many other people
related to the query. Although we can improve further
the performance by increasing γpp and γpw, we also
need a larger n to get proper approximation of eL,
which leads to more iterations in our algorithm (line
11-13 of Algorithm 1). This is a tradeoff between
effectiveness and efficiency. We find the performance
starts to decrease when γpp and γpw is set to a rel-
atively large value (e.g. 5000), indicating there is a

broad range of safe values. Regarding γww, there is
a performance increase at the early stage. The reason
may be that semantically related words could help
identifying experts. However, further increasing γww

can decrease the performance. This is intuitive since
Web pages are noisy and some general words (e.g.
polysemy) could gain more heat and blur the ranking
results. In practice, we can perform cross-validation
on benchmark datasets to select proper parameters.

5.5 Impact of Data Size

We investigate the impact of data sizes on search
performance. Specifically, we run CoDiffusion (Local
Ranking) on three datasets DATA-1M, DATA-3M and
DATA-0.2M with the same parameter setting used
in Section 5.3. Results are shown in Tables 5 and 6
for Libra-GT and Manual-GT, respectively. We find
the situations are different for the two benchmark
datasets. When increasing the dataset size (i.e. from
DATA-1M to DATA-3M), the performance on queries
in Manual-GT increases, while that on queries from
Libra-GT decreases. This is because when data size
grows, we see not only more co-occurrence evidences,
but also more noises and ambiguous expertise ev-
idences. Since most queries in Manual-GT are spe-
cific ones, the performance increase indicates we can
obtain more useful co-occurrence information from
DATA-3M than from DATA-1M. To the contrary,
Libra-GT consists of very general research area names.
Hence, we may already get enough co-occurrence in-
formation from DATA-1M. In DATA-1M, the averaged
number of relevant pages for a query in Libra-GT is
16,188, while that for a query in Manual-GT is only
8,787. The results indicate that (1) for specific queries
it is important that we obtain a large enough dataset
in order to get enough co-occurrence information; (2)
however, “the larger the better” is not the case for
this general expert search problem. A solution could
be that we first retrieve a moderate number of top
relevant documents from a traditional search engine
and run CoDiffusion.

TABLE 5

Performance comparison of CoDiffusion on different

sizes of datasets with respect to Libra-GT. “N@n” is
an abbreviation for NDCG@n.

Dataset P@10 P@20 MAP N@10 N@20
DATA-3M .3935 .3563 .4864 .4742 .6769
DATA-1M .4125 .3625 .4977 .5220 .6816
DATA-0.2M .2935 .2643 .4872 .4858 .6658

On the other hand, when the dataset size is reduced
(i.e. from DATA-1M to DATA-0.2M), the performance
decreases dramatically for both benchmark datasets.
This means our algorithm requires a large amount
of co-occurrence information to achieve good perfor-
mance. This is not the case for organizational expert
search, where the data size is much smaller (e.g.
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Fig. 7. Exploring the influence of three conductivity parameters (a) γpp, (b) γpw and (c) γww on the performance

of CoDiffusion. For each parameter, the other two parameters are fixed at 1. Results are averaged over all the
41 queries.

the W3C dataset has only 331,037 documents) and
consequently there is not much people co-occurrence
information. Therefore, our algorithm is not suitable
for the traditional organizational expert search prob-
lem, where traditional methods (e.g. language model
based methods) are better choices.

TABLE 6
Performance comparison of CoDiffusion on different

sizes of datasets with respect to Manual-GT. “N@n” is

an abbreviation for NDCG@n.

Dataset P@10 P@20 MAP N@10 N@20
DATA-3M .4000 .3352 .5088 .5373 .7083
DATA-1M .3765 .3088 .5031 .5387 .7066
DATA-0.2M .2176 .1617 .4581 .5293 .6191

5.6 Beyond Research Queries

So far, we have used research related queries to
evaluate our algorithm. However, unlike previous
academic expert search based on bibliography data
(e.g. [19]), we consider a more general expert search
problem. Our algorithm can handle arbitrary queries
as long as we have enough related pages. Hence,
we show here some exploratory experimental results
for queries which are irrelevant to academic research.
Although our people names are from DBLP, there
are many names which can refer to different people.
Consequently, we have a lot of research irrelevant
pages in the extracted pages from ClueWeb09. Table 7
shows the top 4 names returned by CoDiffusion for
three queries: “USA Justice”, “Basketball” and “Swim-
ming”. Our algorithm is able to retrieve senior people
for the query topic at the highest positions. For “USA
Justice”, John Roberts is the current Chief Justice of
the United States. John Paul should be referring to
John Paul Stevens5, who is a former Associate Justice
of the Supreme Court of the United States. John
Marshall is the 4th Chief Justice of the United States.

5. http://en.wikipedia.org/wiki/John Paul Stevens

Eric Holder6 had joined the U.S. Justice Department
and is the current Attorney General of the United
States. For “Basketball”, the names correspond to
senior basketball players or coaches. Names returned
for “Swimming” correspond to top swimmers who
have won Olympic gold medals.

TABLE 7

Top 4 names returned by CoDiffusion for three queries

which are irrelevant to academic research.

Q: USA Justice Q: Basketball Q: Swimming
John Roberts Michael Jordan Michael Phelps
John Paul Abdul Jabbar Ian Crocker
John Marshall Tim Duncan Gary Hall
Eric Holder Dean Smith Alain Bernard

It is not trivial to obtain the above ranking re-
sults. To demonstrate this, we show the top 4 names
returned by the baseline algorithms for the query
“Swimming” in Table 8. Clearly, these ranking lists are
not as good as the ranking list generated by CoDiffu-
sion, although they all put the most famous swimmer
“Michael Phelps” at the top position. In particular,
“Mike James” is a popular name and shows up rel-
atively frequently in the related pages. Ana Ivanovic
is a former World No. 1 tennis player7. However, we
can also find many co-occurrences between her name
and “Swimming”. For example, her Wikipedia page
says “she admitted that she trained in an abandoned
swimming pool...”. Although these two names appear
frequently in related pages, they do not get into top
4 of NameCoFreq. “St. Thomas” appears frequently
on the Web as an university name, although it is an
author name in DBLP. “Juan Carlos” is a popular
Spanish name and it also refers to different things
(e.g., it is a part of a university8 name). Hence, they
co-occur with a lot of different names. Nevertheless,
they do not get into the top 4 of NameFreq. Our

6. http://en.wikipedia.org/wiki/Eric Holder
7. http://en.wikipedia.org/wiki/Ana Ivanovi%C4%87
8. http://www.urjc.es/
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algorithm successfully makes use of different kinds
of co-occurrence information to return top swimmers
in the highest positions.

TABLE 8

Top 4 names by the baseline algorithms for
“Swimming”.

Q: Swimming
NameFreq NameCoFreq LM RW
Michael
Phelps

Michael
Phelps

Michael
Phelps

Michael
Phelps

Mike James St. Thomas St. Thomas St. Thomas
Ian Crocker Gary Hall Gary Hall Gary Hall
Ana Ivanovic Juan Carlos Ana Ivanovic Ian Crocker

We also try to build quantitative evaluation of how
well our algorithm does for arbitrary queries. We
consider two queries “Nobel Physics” and “Apolo
astronauts”. For “Nobel Physics”, we obtain names
of Nobel laureates in Physics from http://nobelprize.
org/nobel prizes/physics/laureates/; for “Apolo as-
tronauts” we get the list of all Apolo astronauts from
Wikipedia. These names are treated as the ground
truth. Our name set is extended to include all the
ground truth names. Although adding ground truth
names can lead to optimistic ranking results, it is
fair for all the algorithms. The experimental results
are shown in Table 9. As can be seen, for “Nobel
Physics” almost all the algorithms can achieve good
performance. NameFreq and LM do as good as CoD-
iffusion in terms of P@20. However, CoDiffusion has
a better MAP, indicating it gives a better ranking.
Regarding “Apolo astronauts”, CoDiffusion performs
much better than the baseline algorithms.

TABLE 9
Performance comparison of expert search algorithms

on two queries: “Nobel Physics” and “Apolo

astronauts”.

Algorithm
Nobel Physics Apolo astronauts
P@20 MAP P@20 MAP

CoDiffusion .9500 .9537 .8500 .9511
NameFreq .9500 .9471 .3000 .4128
NameCoFreq .5000 .7053 .2000 .6396
LM .9500 .9396 .6500 .7669
RW .8000 .9460 .7500 .8196

5.7 Effect of Re-Ranking

This subsection investigates the performance of two
re-ranking algorithms proposed in Section 4.5. For
both algorithms, we need to determine the number
of top names we choose from the first run of CoD-
iffusion. Another important parameter for Iterative
Re-Ranking is the number of iterations. We show
their performance under different parameter values.
In Iterative Re-Ranking, k0 is set to 50.

Fig. 8(a) shows the performance of One-Time Re-
Ranking on Libra-GT. We can see that One-Time
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Fig. 8. The performance of (a) One-Time Re-Ranking

and (b) Iterative Re-Ranking on Libra-GT.

Re-Ranking achieves the best performance when the
number of name queries is around 500. Too few or too
many name queries do not lead to good performance.
Hence, for Iterative Re-Ranking we also set the initial
name query number to 500 and vary the number
of iterations. The experimental results are shown in
Fig. 8(b). We find for most test instances in Libra-
GT the best performance is achieved with one or two
iterations. The reason may be that there are fewer
and fewer Web pages when increasing the number
of iterations. Lack of data is harmful to our method
(Section 5.5). In Fig. 8 we also show the performance
of the first run of CoDiffusion for comparison. We
perform t-test with significance level α = 0.05. Re-
garding P@20 and MAP, One-Time Re-Ranking does
not show significant better performance, while Itera-
tive Re-Ranking is significantly better than the first
run of CoDiffusion. For P@10, the two re-ranking
algorithms are as good as the first run of CoDiffusion.
One-Time Re-Ranking and Iterative Re-Ranking have
better NDCG@10, though the increases are not signif-
icant. Moreover, we would like to point out that for
query “Machine Learning and Pattern Recognition”
we can boost “Michael Jordan” from rank 208 to
rank 2 by applying Iterative Re-Ranking. The two re-
ranking algorithms do not show better performance
on Manual-GT, which may be due to lack of data.

5.8 Running Time

We show in Fig. 9 the running time of CoDiffusion
when varying the number of relevant pages in Local
Ranking. The experiment is run on a PC with Intel
Core i7 CPU and 12GB memory. The number of itera-
tions is set to 100, which is sufficient for all the queries
in our experiments. We can see the running time of
CoDiffusion grows approximately linearly with the
number of relevant pages. This is consistent with
our complexity analysis in Section 4.4. Varying the
number of Web pages only changes the number of
nonzero elements in Hp, Hw and L. Diffusion and
Ranking costs more time than Model Construction.
This is because L is not only larger, but also much
denser (see Section 4.4) than Hp and Hw. CoDiffusion
cannot outperform the baseline algorithms in terms
of running time. The running time of RW is shown in
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Fig. 9. Running time when varying the number of

relevant Web pages (Local Ranking).

Fig. 9. RW is more efficient since its time cost depends
on the number of nonzero elements in Hp which is
much sparser than L. We will discuss the scalability
issue shortly. The running time of Global Ranking on
DATA-1M are 190s and 245s, for Model Construction
and Diffusion, respectively. This is because L with
more pages is much denser. As shown in Section 5.3,
with a typical number of 15K relevant pages, Local
Ranking significantly outperforms Global Ranking.
Thus, Local Ranking is a better choice in practice.

6 DISCUSSIONS

Expert search on the Web is intrinsically different
from enterprise expert search. As shown in Fig. 1
and Fig. 2, ordinary Web pages could be noisy and
contain vague expertise evidences. The types of noises
may not be limited to those given in Fig. 1. It is
nearly impossible to do accurate entity and rela-
tion extraction in the Web setting. By using a large
amount of co-occurrence information, noises could
be suppressed since noisy co-occurrences would not
appear frequently. The vague evidence issue can be
alleviated by people co-occurrences: for the example
in Fig. 2, Ana Ivanovic does not co-occur frequently
with salient swimmers and therefore is not ranked
high by our algorithm (Table 7).

This work’s main focus is to answer the following
research question: whether we can retrieve experts for
arbitrary topics from disparate contents and structures
on the Web based on simple co-occurrence information.
We demonstrated that it was indeed feasible. The
reason of using co-occurrence information is to avoid
any complicated information extraction algorithm.
The proposed diffusion model is general in that (1)
association scores among people and words can be
further adjusted by advanced techniques such as
NLP through customizing the thermal conductivity
for each pair of objects [10]; (2) other page quality
measures [43] can be integrated through the hyper-
edge weighting scheme. However, we are not going
to explore these possible enhancements in this work.

In the enterprise expert search, person identification
is not difficult: we can obtain e-mail addresses or em-
ployee identifiers to uniquely identify an employee.

The complete list of employees is known in advance.
However, it is difficult to identify people on the Web
as names are more available than email addresses.
In this work, we generate a ranked list of people
names and leave the person identification problem to
users. With a returned name list, users can identify
experts by searching their names together with the
query topic through a Web search engine. We also
use a set of names extracted from DBLP to bypass
the name extraction problem, which is certainly an
important research problem.

Scalability is important for Web scale problems. The
Local Ranking method could be used for large scale
Web expert search: we retrieve a moderate number
(e.g. 20k) of top relevant pages from a traditional
search engine and run CoDiffusion. The running time
depends on the number of relevant pages, but not
the size of the Web collection in the index. In our
current implementation, we did not optimize the per-
formance using multi-threading, multi-core, MapRe-
duce or sampling techniques. There is room to further
improve the running speed.

7 CONCLUSIONS

In this paper we studied a general expert search
problem on the Web. We proposed not to deep-
parse Web pages for expert search. Instead, it is
possible to leverage co-occurrence relationships such
as name-keyword co-occurrences and name-name co-
occurrences to rank experts. A ranking algorithm
called CoDiffusion was developed based on this con-
cept. CoDiffusion adopts a heat diffusion model on
heterogeneous hypergraphs to capture expertise in-
formation encoded in these co-occurrence relation-
ships. Experiments on ClueWeb09 and two bench-
mark datasets consisting of research queries demon-
strated that CoDiffusion outperformed the baseline
algorithms significantly. Experiments on conductivity
coefficients verified that co-occurrences were indeed
useful. We also explored queries other than research
related topics and showed that CoDiffusion could
return good results and outperform baselines. Finally,
we tried using re-ranking to boost performance.
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