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Static and Dynamic Structural Correlations
in Graphs
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Abstract—Real-life graphs not only contain nodes and edges, but also have events taking place, e.g., product sales in social networks.
Among different events, some exhibit strong correlations with the network structure, while others do not. Such structural correlations
will shed light on viral influence existing in the corresponding network. Unfortunately, the traditional association mining concept is not
applicable in graphs since it only works on homogeneous datasets like transactions and baskets.
We propose a novel measure for assessing such structural correlations in heterogeneous graph datasets with events. The measure
applies hitting time to aggregate the proximity among nodes that have the same event. In order to calculate the correlation scores for
many events in a large network, we develop a scalable framework, called gScore, using sampling and approximation. By comparing
to the situation where events are randomly distributed in the same network, our method is able to discover events that are highly
correlated with the graph structure. We test gScore’s effectiveness by synthetic events on the DBLP co-author network and report
interesting correlation results in a social network extracted from TaoBao.com, the largest online shopping network in China. Scalability
of gScore is tested on the Twitter network. Since an event is essentially a temporal phenomenon, we also propose a dynamic measure
which reveals structural correlations at specific time steps and can be used for discovering detailed evolutionary patterns.

Index Terms—Graph, structural correlation, hitting time.

✦

1 INTRODUCTION

THE rise of the Web, social networks, and bioin-
formatics has presented scientists with numerous

graphs, each consisting of millions of nodes and edges.
Hidden in these large datasets are the answers to impor-
tant questions in networking, sociology, business, and
biology. These graphs not only have topological struc-
tures, but also contain events/activities that occurred on
their nodes. For example, an eBay customer could sell or
bid on a product. A Facebook user could play a Zynga
game with friends. This complex combination raises new
research problems in graph data analysis [26], [21], [10].

Fig. 1. Structural Correlation

Among different events taking place in a network,
some exhibit strong correlations with the network struc-
ture, while others do not. Such structural correlations
might shed light on viral influence existing in the cor-
responding network, which is the key to many research
problems in product marketing [9], online advertisement
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[5], and recommendation [15]. Fig. 1 shows the distri-
bution of three different events over the same graph.
We can easily instantiate Fig. 1 into different application
scenarios. They could be three different products bought
by members in a social network, or three different intru-
sion alerts raised by computers in a computer network.
In terms of products, dark nodes in Fig. 1(A), 1(B) and
1(C) represent the members who purchased the products
A, B and C, respectively. Intuitively, Fig. 1 shows that
in this network, people who bought product A (or B)
are closer to each other. On the contrary, black nodes
for C seem to be randomly distributed. In this scenario,
the network would be suitable for promoting A and B
and we can promote A and B to people who have not
bought them. While it is hard to derive deterministic
relationships between sales and the network structure,
it is possible to study how the sales is correlated to
the structure. In fact, one can raise several interesting
questions related to the structure and events distributed
over the structure:

1) In regard to the sales of A and B, which one is
more related to the underlying social network?

2) Given two networks G and G′ for the same group
of users, e.g., their email network and Facebook
network, is the sales of A more related to G than
G′?

3) If we have snapshots of network G during dif-
ferent periods, can we measure how product A
was dispersed over the network over time? Was it
purchased by a small community at the beginning?

In order to answer the above questions, we need to
address the following research problems: (1) How to
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define and measure the correlation between the graph structure
and events? (2) How to compute the measure efficiently in
large graphs, if we want to rank all events according to the
measure?

Unfortunately, the classic association mining concept
is not applicable in this setting since it only works
on homogeneous datasets like transactions and baskets
[1], [27]. In this paper, we propose a novel measure to
assess structural correlations in a graph. The measure
aggregates the proximity among nodes on which the
same event has occurred, using a proximity function
such as hitting time [19]. We develop an efficient compu-
tation framework, gScore (Graph Structural Correlation
Estimation), to quickly calculate correlation scores in
large scale networks. By estimating the deviation from
the expected correlation score of a random situation, our
method is able to discover the events of nodes that are
highly correlated with the graph structure.

Our contributions. We propose a novel concept, struc-
tural correlation, to measure how an event is distributed
in a graph and address a key research problem in analyz-
ing the relation between structures and contents. While
many studies have demonstrated that social links could
significantly influence the behavior of human beings [7],
[16], [9], we suspect that such influence should be further
scrutinized for more fine-grained knowledge: in which
kind of social links (e.g., phone networks, email networks,
employee networks, etc.) and for which kind of behaviors
(e.g.,shopping, hobby, interest, and opinion) social influence
is observed, and how strong the influence is. In this study,
we quantify the correlation between link structures and
human behaviors, and make different behaviors’ cor-
relations comparable using statistical significance. We
discover that the correlation actually fluctuates dramati-
cally with regard to link types, event types, and time,
implying a need to further examine the cause of the
fluctuation. Note that in this work, we are not going to
perform a causality study of correlations [3]. Our prob-
lem can be viewed as a step before the causality problem
since the latter assumes the existence of correlations.

We systematically introduce a framework to define
and measure structural correlations in graphs. The prin-
ciple is to aggregate the proximity among nodes which
have the same event and compare the aggregated prox-
imity to the situations where the event is randomly
distributed in the graph. This framework can integrate
various graph proximity measures [8] such as hitting
time [19], personalized PageRank [23] and Katz [14].

We take hitting time as an example and propose a
modified version named Decayed Hitting Time (DHT)
to better and faster calculate structural correlation. We
develop scalable algorithms using sampling and ap-
proximation techniques to calculate DHT for individual
nodes and the average DHT for all the nodes which
share the same event. We investigate the expectation and
variance of the correlation when an event is randomly
distributed over a graph and develop several approxi-

mation techniques. These techniques can help us quickly
estimate the deviation from random cases, thus making
online computation of structural correlations possible.
We demonstrate gScore’s effectiveness by constructing
synthetic events on the DBLP co-author network. We
also report interesting correlated and uncorrelated prod-
ucts discovered from TaoBao.com, the largest online
shopping network in China. Scalability of gScore is
tested on the Twitter network.

Since an event is essentially a temporal phenomenon,
we also propose a dynamic measure which can be used
to estimate the fine-grained structural correlation of an
event at different time steps. The dynamic measure
computes the DHT from the currently “infected” node
to previously “infected” ones, and then estimates the
significance of the obtained DHT. It could be helpful for
setting up fine-grained promotion strategies for products
in an online shopping network. We compare the dynamic
measure with repeatedly applying the original correla-
tion measure on the evolving event node set on DBLP
and TaoBao and demonstrate its effectiveness.

2 PROBLEM FORMULATION
An attributed graph G = (V, E) has an event set Q. The
event set of a node v is written as Q(v) ⊆ Q. In this work,
we consider undirected and unweighted graphs. Never-
theless, the proposed measure and algorithms could be
generalized to weighted and/or directed graphs.

Suppose an event q (e.g. purchasing a specific product)
is taking place in G. Each node v can take two values in
terms of q: fq(v) = 1 if q ∈ Q(v); otherwise, fq(v) = 0.
Let m =

∑
v fq(v) denote the number of nodes where q

occurred. Let n = |V | be the number of nodes in G. We
could formulate the following two research problems:

Problem 1: Determine whether there is a correlation between
q and the graph structure of G. If not, q is just randomly
distributed in G.

Its associated ranking problem is as follows:
Problem 2: Given a set of different events Q = {qi} on G,

rank {qi} according to their correlation strength with respect
to the graph structure of G.

To address these problems, we need a measure that
captures the distribution of an event in a graph, and then
assess the significance of the observed measure score. A
simple measure could be to assess the probability that
a node’s neighbors have q given that the node has q.
However, this 1-neighborhood event fraction measure
could not well capture the distribution of an event in
a graph since it only considers direct neighbors. We will
show this drawback in experiments.

3 STRUCTURAL CORRELATIONS
Intuitively, if the m event nodes of q are close to one
another, then the correlation is high. Otherwise, it will
be more similar to a random situation where q is ran-
domly distributed in G. Therefore, we propose using the
average proximity between one node in those m nodes
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and the remaining m − 1 nodes to assess the structural
correlation between q and G,

ρ(Vq) =

∑
v∈Vq

s(v, Vq \ {v})

|Vq|
, (1)

where Vq is the set of m nodes on which q occurred and
s(v, Vq \{v}) is the closeness of the remaining nodes to v.
s(·) can be any graph proximity measure that measures
the proximity between a node and a set of nodes in a
graph topology notion. We could rewrite s(·) as the sum
of the contribution of each node in Vq \ {v},

s(v, Vq \ {v}) =
∑

u∈Vq\{v}

sq(v � u), (2)

where sq(v � u) is the contribution of u to s(v, Vq \{v}).
We can divide proximity measures into two categories:
pairwise and holistic. Pairwise measures are defined
on node pairs, e.g. shortest distance and personalized
PageRank, while holistic measures explicitly estimate the
proximity of a node to a set of nodes. The set of nodes is
reached if any node in the set is reached. One example
is hitting time: starting from node v, it calculates the
expected number of steps needed to reach one node in
Vq \{v}. For pairwise measures, sq(v � u) is invariant to
q, while for holistic measures sq(v � u) depends on the
distribution of q in G. For example, in Fig. 2 suppose we
want to measure the proximity of v to other black nodes.
If we use shortest distance, u’s contribution is 4. If hitting
time is adopted, u does not even influence the measure
score, since v always hits other black nodes in one step.
Hitting time is less influenced by remote black nodes
and anomalies, and more focused on graph local areas.
This is desirable since we may have correlation patterns
on the graph which are distant to one another, as shown
in Fig. 2. Holistic proximity measures could help detect
correlations better. In this work, we will focus on hitting
time. Nevertheless, our framework is applicable to other
proximity measures too.

vu

w

Fig. 2. Measuring Structural Correlations

Having the measure ρ, we should also consider how
the ρ value is distributed for random cases, i.e. there
is no correlation. Let ρ(V̂m) denote the correlation score
for a randomly selected set V̂m of m nodes where m =

|V̂m| = |Vq|. As m increases, there will be an increasing
chance for m randomly selected nodes to be close to one
another (in the extreme case m = n, nodes are obviously
very close). Thus, we should estimate the significance
(denoted by ρ̃(Vq)) of ρ(Vq) compared to ρ(V̂m). Since it
is hard to obtain the distribution of ρ(V̂m), we propose to
estimate the expectation and variance of ρ(V̂m) (denoted

by E[ρ(V̂m)] and V ar[ρ(V̂m)], respectively), and then
estimate ρ̃(Vq). More details are presented in Section 5.2.
We refer to this framework as gScore (Graph Structural
Correlation Estimation).

3.1 Random Walk and Hitting Time
A random walk is a Markov chain. If in the t-th step we are
at node vt, we move to a neighbor of vt with probability

1
d(vt)

, where d(vt) is the degree of node vt. Let A denote
the adjacency matrix of G. Aij equals 1 if there is an
edge between node vi and vj , and 0 otherwise. We use
P = [pij ]n×n to denote the transition probability matrix
of the random walk. We have P = D

−1
A where D is a

diagonal matrix with Dii = d(vi). We use Pr(pa1�l) =
p12p23 . . . p(l−1)l to denote the probability that a random
walk takes path v1, v2, . . . , vl, starting from v1 (also called
the probability of that path).

Let B be a subset of V . The hitting time (also called
access time) [19] from a node vi to B is defined as the
expected number of steps before a node vj ∈ B is visited
in a random walk starting from vi. Let h(vi, B) denote
the hitting time from vi to B and xt denote the position
of the random walk at time step t. By definition, we have

h(vi, B) =

∞∑
t=1

t Pr(TB = t|x0 = vi), (3)

where Pr(TB = t|x0 = vi) is the probability that the
random walk starting from vi first hits a node in B
after t steps. Hitting time is a weighted average path
length where each considered path is weighted by its
probability. One can easily derive [19]

h(vi, B) =
∑

vk∈V

pikh(vk, B) + 1. (4)

Eq. (4) expresses a one step look-ahead property of
hitting time. The expected time to reach a node in B from
vi is equivalent to one step plus the mean of hitting times
of vi’s neighbors to a node in B. By the definition of
hitting time (i.e. Eq. (3)), we have h(vi, B) = 0 for vi ∈ B.
From the above analysis, we obtain a linear system for
computing hitting time from all nodes to B:{

h(vi, B) = 0 vi ∈ B
h(vi, B) =

∑
vk∈V pikh(vk, B) + 1 vi /∈ B

. (5)

It can be shown that this linear system has a unique
solution [19]. Hitting time can be used to measure a
notion of asymmetrical proximity among nodes in a
graph with respect to graph topology, with applications
such as Web query suggestion [20], recommendation [6]
and link prediction [22]. However, hitting time has one
drawback: its value range is [1, +∞). That is, if there is
no path between two nodes u and v, the hitting time
from v to u is +∞. This also results in infinite value of
ρ(Vq) (Eq. (1)). In this work, we propose decayed hitting
time, which inverses the range of [1, +∞) to [0, 1]. The
meaning of hitting time also changes slightly.
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TABLE 1
Common Notations in this paper.

n Number of nodes in graph G

P Transition probability matrix of G

q The event
Vq The set of nodes having q

m Size of Vq

V̂m A random set of m nodes
h̃(v, B) Decayed hitting time from node v to node set B

ρ(Vq)/ρ̃(Vq) Correlation score/significance score of q

E[ρ(V̂m)]/V ar[ρ(V̂m)] Expectation/Variance of the correlation of a ran-
domly selected set of m nodes

3.2 Decayed Hitting Time
Decayed Hitting Time (DHT) is defined as follows

h̃(vi, B) =
∞∑

t=1

e−(t−1) Pr(TB = t|x0 = vi). (6)

For DHT, when nodes in B are close to vi, h̃(vi, B) will
be high. The reason for the substitution of the expo-
nentially decaying term for the number of steps is two-
fold. First, by doing this we avoid the infinite measure
score problem mentioned above. Second, in our prob-
lem setting, we want to emphasize the importance of
neighbors and discount the importance of longer range
weak relationships. Although hitting time is shown to
be empirically effective in practical applications [6], [22],
solving a linear system for a large scale graph can be
computationally expensive (i.e. O(n3)). To address this
issue, Sarkar et al. proposed truncated hitting time (THT)
[24] and developed sampling techniques to approximate
hitting time [25]. However, a drawback of THT is that
it sets an arbitrary upper bound T (the truncated path
length) for the actual hitting time. For THT, although
long paths have small probabilities, they have high
weights, i.e. their lengths. Therefore, the contribution
of these long paths to the hitting time measure may
not be negligible. In an extreme case where vi cannot
reach any node in B, THT will return T , while the true
hitting time is +∞! In DHT, longer paths not only have
lower probabilities, but also have lower weights, i.e.
e−(t−1). Hence, we can properly bound the contribution
of long paths. This facilitates approximating DHT. We
summarize the common notations used throughout this
paper in Table 1.

4 COMPUTING DECAYED HITTING TIME
We develop techniques for efficiently estimating DHT.
In Section 4.1 we propose an iterative matrix-vector
multiplication algorithm for estimating DHT. Lemma 1
and Theorem 1 give bounds for real DHT after t itera-
tions. In Section 4.2 we present a sampling algorithm for
estimating DHT and develop its bounds in Theorem 2
and 3. Finally Section 4.3 analyzes the complexity of the
two approximation algorithms.

4.1 Iterative Approximation
From the definition in Eq. (6), we know if we can obtain
Pr(TB = t|x0 = vi), t = 1, 2, . . . , then we can compute
h̃(vi, B). Let Pr(TB̄,vj

= t|x0 = vi) be the probability that
the random walk starting from vi hits vj after t steps
without visiting any node in B. We have

Pr(TB = t|x0 = vi) =
∑

vj∈B

Pr(TB̄,vj
= t|x0 = vi).

The problem becomes how to compute Pr(TB̄,vj
= t|x0 =

vi). In particular, we have

Pr(TB̄,vj
= t|x0 = vi) =

∑
vk /∈B

Pr(TB̄,vk
= t−1|x0 = vi)pkj ,

which implies that one can first get to vk /∈ B using
t − 1 steps (without visiting any vj ∈ B), and then
move from vk to vj with probability pkj . It takes the
sum over all possible vk’s. Therefore, we can derive
the following iterative computation method: let PB be
a modification of P where rows corresponding to the
nodes in B are set to zeros. Let ut be a n × 1 vector
containing Pr(TB̄,vk

= t|x0 = vi) as its k-th element.
u0 is the vector with i-th element set to 1 and all other
elements to 0. One can easily verify ut =

(
P

T
B

)t
u0. In

fact, PB and u0 define the corresponding random walk
model for computing DHT from vi to B. Let zB be the
vector with elements corresponding to nodes in B set to
1 and all other elements to 0. We can rewrite Eq. (6) as

h̃(vi, B) = e0
z

T
Bu1 + e−1

z
T
Bu2 + . . .

We can iteratively compute u1,u2, . . . and accumulate
elements corresponding to nodes in B from these vectors
(multiplied by e0, e−1, . . . respectively). If we stop after
a number of iterations, it results in an estimate of the ac-
tual DHT. In the remaining part of this section, we derive
bounds for DHT from such an estimate using Lemma 1
and Theorem 1. We use dB(vk) to denote the number of
neighbors of vk which are in B and λkB = dB(vk)/d(vk)
to denote the corresponding fraction.

i

k
Hitting

Hitting

Non-hitting
Non-hitting

Non-hitting

Fig. 3. Bounds for One Path

Lemma 1: Let pal
i�k be a length-l path from vi to vk

which has not yet hit any node in B. Let Pr(pal
i�k)

be the probability that a random walk takes this path.
We define subpaths of pal

i�k as length-(l + 1) paths
sharing pal

i�k as a prefix. The contribution of pal
i�k

to h̃(vi, B) is upper bounded by λkB Pr(pal
i�k)e−l +

(1 − λkB) Pr(pal
i�k)e−(l+1) and lower bounded by

λkB Pr(pal
i�k)e−l.

Proof: Since pal
i�k has not hit any node in B, the

probability Pr(pal
i�k) will be further distributed to sub-

paths of pal
i�k. By querying the neighbors of vk, we
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know the probability λkB Pr(pal
i�k) will be distributed

on length-(l + 1) hitting subpaths which have certain
contribution λkB Pr(pal

i�k)e−l. The remaining probabil-
ity (1 − λkB) Pr(pal

i�k) will be distributed on length-
(l + 1) non-hitting subpaths, as illustrated in Fig. 3. The
contribution of this part is lower bounded by 0 and
upper bounded by (1 − λkB) Pr(pal

i�k)e−(l+1) (i.e. all
subpaths of those length-(l + 1) non-hitting subpaths
of pal

i�k hit targets). Combining the two parts, the
conclusion follows.

Theorem 1: Let h̃t(vi, B) = e0
z

T
Bu1 + · · · + e−(t−1)

z
T
But

be the estimate of h̃(vi, B) after ut is computed. Then
h̃(vi, B) can be bounded as follows

h̃t(vi, B) +
∑

vk /∈B

Pr(TB̄,vk
= t|x0 = vi)λkBe−t ≤ h̃(vi, B)

≤ h̃t(vi, B) +
∑

vk /∈B

Pr(TB̄,vk
= t|x0 = vi)

(
λkBe−t

+ (1 − λkB)e−(t+1)
)
.

Proof: We can view the random walk process defined
by computing h̃(vi, B) as distributing probability 1 onto
all paths which start from vi and end once a node vj ∈ B
is hit. We use pathsiB to denote the set of all such paths.
Examining the definitions of ut and zB , we can find
h̃t(vi, B) is the contribution of all paths in pathsiB whose
lengths are less than or equal to t. We use paths1→t

iB to
denote the set of these paths. Paths in paths1→t

iB have
certain contribution to h̃(vi, B). In the meantime, let
pathst

iB̄ denote the set of all length-t paths starting from
vi which have not yet hit any node in B. The probabili-
ties accounted for by paths in paths1→t

iB and pathst
iB̄ are

Pr(paths1→t
iB ) =

∑
vj∈B

∑t
l=1 Pr(TB̄,vj

= l|x0 = vi) and
Pr(pathst

iB̄) =
∑

vk /∈B Pr(TB̄,vk
= t|x0 = vi), respectively.

By examining the iterative computation of ut, one can
verify that Pr(paths1→t

iB ) + Pr(pathst
iB̄) = 1. It means

Pr(pathst
iB̄) is the remaining probability that has not

been contributed to h̃(vi, B). According to Lemma 1, we
can derive lower and upper bounds of the contribution
for each pa ∈ pathst

iB̄ . Aggregating those bounds and
adding the certain contribution of paths1→t

iB , the conclu-
sion follows.

4.2 A Sampling Algorithm for h̃(vi, B)

We propose a standard Monte Carlo sampling method
for estimating h̃(vi, B). A straightforward sampling
scheme is as follows: we run c independent random
walk simulations from vi and in each random walk we
stop when a node in B is encountered. Suppose these
random walks’ path lengths are l1, . . . , lc. Then we use
the average h̃(vi, B) =

∑c
j=1 e−(lj−1)/c as the estimate

of h̃(vi, B). However, this scheme is not a wise choice
due to the following two reasons: 1) if we cannot reach
any node in B from vi, the random walk will never
stop; 2) for a large scale graph, if we do not impose
a maximum number of steps that a random walk can

take, the sampling algorithm will be time consuming. In
fact, since we adopt an exponentially damping factor (i.e.
e−(t−1)), the contribution of long paths are negligible.

With the above concerns, we adopt a variant sampling
scheme: we run c independent random walk simulations
from vi and in each random walk we stop when a node
in B is visited or a maximum number of s steps is
reached. We provide bounds for h̃(vi, B) by this sam-
pling scheme in Theorem 2.

Theorem 2: Consider a simulation of c independent
random walks from node vi with a maximum number
of s steps for each random walk. Suppose out of c runs,
ch random walks hit a node in B and the corresponding
path lengths are l1, . . . , lch

. Let c̄ = c− ch be the number
of random walks which reach s steps and do not hit
any node in B. Then the sample mean h̃(vi, B) in the
sampling scheme without the constraint of maximum
number of steps can be bounded as follows

∑ch

j=1 e−(lj−1)

c
≤ h̃(vi, B) ≤

∑ch

j=1 e−(lj−1) + e−sc̄

c
.

Proof: In the sampling scheme with the constraint of
maximum number of steps, only ch random walks have
certain contribution to h̃(vi, B). Hence, we turn to the
bounds for the contribution of the remaining c̄ random
walks which do not hit any node in B. For each of these
c̄ random walks, the contribution to h̃(vi, B) is upper
bounded by e−s (i.e. hitting a node in B at (s + 1)-
th step). Aggregating those c̄ random walks, we have
h̃(vi, B) ≤ (

∑ch

j=1 e−(lj−1) + e−sc̄)/c. A lower bound for
the contribution of those c̄ random walks is 0. This leads
to

∑ch

j=1 e−(lj−1)/c ≤ h̃(vi, B).
We use h̃′

iB and h̃′′
iB to represent the above lower and

upper bounds for h̃(vi, B), respectively. The following
theorem provides the lower bound for the sample size c
in order to obtain an ε-correct answer for h̃(vi, B) with
respect to [h̃′

iB , h̃′′
iB] with probability 1 − δ.

Theorem 3: Suppose we simulate c independent ran-
dom walks for estimating h̃(vi, B) and impose a maxi-
mum number of s steps for each random walk. Then for
any ε > 0 and δ > 0, in order to obtain Pr(h̃′

iB − ε ≤
h̃(vi, B) ≤ h̃′′

iB + ε) ≥ 1− δ, c should be at least 1
2ε2 ln(2

δ ).
Proof: From the sampling scheme without the con-

straint of maximum number of steps, we have h̃(vi, B) =∑c
j=1 e−(lj−1)/c where lj is the path length of the j-th

random walk. It is obvious that E(h̃(vi, B)) = h̃(vi, B).
Since random walks are independent and 0 ≤ e−(lj−1) ≤
1 for j = 1, . . . , c, according to Hoeffding’s inequality
[13] we have Pr(|h̃(vi, B) − h̃(vi, B)| ≤ ε) ≥ 1 − 2e−2cε2 .
From Theorem 2 we know h̃′

iB ≤ h̃(vi, B) ≤ h̃′′
iB .

Therefore, we have

−ε ≤ h̃(vi, B) − h̃(vi, B) ≤ ε

⇔ h̃′
iB − ε ≤ h̃(vi, B) ≤ h̃′′

iB + ε
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We can further obtain

Pr(h̃′
iB − ε ≤ h̃(vi, B) ≤ h̃′′

iB + ε)

= Pr(|h̃(vi, B) − h̃(vi, B)| ≤ ε) ≥ 1 − 2e−2cε2.

Setting 1 − 2e−2cε2 ≥ 1 − δ gives us c ≥ 1
2ε2 ln(2

δ ).

4.3 Complexity
Hereafter, we use Iterative-alg and Sampling-alg to denote
the iterative algorithm and sampling algorithm devel-
oped above, respectively. Suppose we use adjacency lists
to store graphs and matrices. The space complexity of
the two algorithms is O(|E|). The major time-consuming
parts of Iterative-alg are the iterative matrix-vector mul-
tiplication and the construction of PB . The correspond-
ing time complexity is O(t|E|), where t is the number of
iterations. For Sampling-alg, the major time cost in each
random walk step is the membership judgement of the
current node v to B. We can either sort B and use binary
search, or build an index array for B. The corresponding
time costs are O(cs log |B|+ |B| log |B|) and O(cs + |V |),
respectively.

5 ASSESSING STRUCTURAL CORRELATIONS
In this section, we first propose a sampling method
for estimating ρ(Vq) and develop the lower bound for
the sample size in order to get ε′-correct answers (Sec-
tion 5.1). Then we describe our methodology for assess-
ing the significance of the observed ρ score, i.e. ρ̃(Vq).

5.1 Estimating ρ(Vq)

To compute ρ(Vq), we need to compute h̃(vi, Vq \ {vi})
for all vi ∈ Vq . However, for large scale graphs, Vq may
also have a large size, posing a challenge for efficient
computation of ρ(Vq). Although these h̃’s are dependent
on each other, they form a finite population. We can
still use sampling techniques to efficiently estimate ρ(Vq)
by applying Hoeffding’s inequality for finite populations
[13]. Specifically, we randomly select c′ nodes from Vq ,
denoted by v1, . . . , vc′ , to estimate their DHTs to the
remaining nodes and take the average ρ(Vq) as an es-
timate for ρ(Vq). Here we can use either Iterative-alg
or Sampling-alg for estimating each h̃(vi, Vq \ {vi}). If
Iterative-alg is used, from Theorem 1 we obtain bounds
for each h̃(vi, Vq \ {vi}) in the sample set. Aggregating
those bounds, we can get bounds for ρ(Vq). Following
the same manner for the proof of Theorem 3 and ap-
plying Hoeffding’s inequality for finite populations [13],
we can obtain the lower bound for c′ in order to obtain
an ε′-correct answer. We omit the details due to space
limitation. When Sampling-alg is used, we provide the
lower bound for c′ in the following theorem.

Theorem 4: Suppose we randomly select c′ nodes from
Vq to estimate their DHTs to the remaining nodes and
take the average ρ(Vq) as an estimate of ρ(Vq). For the
sake of clarity, let Bi = Vq \ {vi}. Suppose we have

used Sampling-alg to obtain an ε-correct answer for each
h̃(vi, Bi) (i = 1, . . . , c′) with respect to [h̃′

iBi
, h̃′′

iBi
]. Then

for any ε′ > 0 and δ′ > 0, in order to obtain

Pr(

∑c′

i=1 h̃′
iBi

c′
−ε−ε′ ≤ ρ(Vq) ≤

∑c′

i=1 h̃′′
iBi

c′
+ε+ε′) ≥ 1−δ′,

c′ should satisfy (1 − δ)c′(1 − 2e−2c′ε′2) ≥ 1 − δ′.
Proof: From the conditions we have

Pr(h̃′
iBi

− ε ≤ h̃(vi, Bi) ≤ h̃′′
iBi

+ ε) ≥ 1− δ, i = 1, . . . , c′.

Notice ρ(Vq) =
∑c′

i=1 h̃(vi, Bi)/c′. Since h̃’s are estimated
independently, multiplying those probability inequalities
together we obtain

Pr(

∑c′

i=1 h̃′
iBi

c′
− ε ≤ ρ(Vq) ≤

∑c′

i=1 h̃′′
iBi

c′
+ ε) ≥ (1 − δ)c′ .

Since 0 ≤ h̃(vi, Bi) ≤ 1 for i = 1, . . . , c′, according
to Hoeffding’s inequality for finite populations [13] we
know Pr(|ρ(Vq) − ρ(Vq)| ≤ ε′) ≥ 1 − 2e−2c′ε′2 . Since
the underlying estimation of ρ(Vq) is independent from
Hoeffding bounds, we have

Pr(

∑c′

i=1 h̃′
iBi

c′
− ε − ε′ ≤ ρ(Vq) ≤

∑c′

i=1 h̃′′
iBi

c′
+ ε + ε′)

≥ (1 − δ)c′(1 − 2e−2c′ε′2).

Setting (1 − δ)c′(1 − 2e−2c′ε′2) ≥ 1 − δ′, we get the
inequality c′ should satisfy. Note δ should be large
enough so that (1 − δ)c′(1 − 2e−2c′ε′2) can go beyond
1 − δ′ as c′ increases.

5.2 Estimating the Significance of ρ(Vq)

After obtaining the estimate of ρ(Vq), we need to mea-
sure the deviation of ρ(Vq) from the expected ρ value
of V̂m (i.e. a set of randomly selected m nodes from
the graph), in order to distinguish structural correlations
from random results. In particular, we have

E[ρ(V̂m)] =

∑
Vm⊆V ρ(Vm)

Cm
n

, (7)

where Vm is any set of m nodes. The ideal solution is
to obtain the distribution of ρ(V̂m) and use the ratio
between the number of node sets with size m whose
ρ values are greater than or equal to ρ(Vq) and Cm

n

as the significance score for q. However, for a large
scale graph it is very hard to get the distribution since
Cm

n is very large. Here we propose an approximation
method. Notice ρ(V̂m) is defined as the average of
h̃(vi, V̂m \ {vi}) where vi ∈ V̂m. If we assume these h̃’s
are independent, according to Central Limit Theorem,
ρ(V̂m) can be approximated by a normal distribution,
where V ar[ρ(V̂m)]=V ar[h̃(vi, V̂m \ {vi})]/m. If we obtain
E[ρ(V̂m)] and V ar[ρ(V̂m)], we can calculate the adjusted
structural correlation ρ̃ for q as follows

ρ̃(Vq) =
ρ(Vq) − E[ρ(V̂m)]√

V ar[ρ(V̂m)]
. (8)
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Fig. 4. Comparison of sampling and geometric distribu-
tion heuristic for estimating E[ρ(V̂m)].

This idea is similar to using z-scores to assess the sig-
nificance of data mining results [11]. Eq. (8) can be used
to derive the significance of q for a hypothesis that q
is not randomly distributed over G. The independence
assumption should work well as long as the dependence
between those h̃’s is weak. This could be true because
DHT focuses on local areas of the graph. Each black node
only has high dependence on nearby black nodes. In
the remaining part of this section, we provide efficient
methods for estimating E[ρ(V̂m)] and V ar[ρ(V̂m)].

We propose two methods to efficiently estimate
E[ρ(V̂m)]. The first one is a sampling method. Eq. (7)
suggests sampling ρ values for different sets of m nodes.
However, computing ρ is costly since m could be large.
Using the sampling method proposed in Section 5.1 to
estimate ρ introduces another layer of sampling and
would introduce more estimation error. Therefore, we
propose to sample h̃ directly. Specifically, we have

E[ρ(V̂m)] =

∑
Vm

∑
vi∈Vm

h̃(vi,Vm\{vi})

m

Cm
n

=

∑
vi,Vm−1

h̃(vi, Vm−1)

C1
nCm−1

n−1

where vi /∈ Vm−1. It means E[ρ(V̂m)] is equal to the
expected DHT from a random vi to a random Vm−1

which does not contain vi. Thus, we can directly sam-
ple (vi, Vm−1) pairs and take the average DHT among
those pairs as an estimate of E[ρ(V̂m)]. Given that we
have already obtained ε-correct h̃’s by Theorem 3, we
can derive a very similar sample size lower bound in
the same manner for Theorem 4’s proof, by applying
Hoeffding’s inequality [13]. We omit the details due to
space limitation. For a fixed graph, we can pre-compute
E[ρ(V̂m)] for a number of different m values and employ
interpolation to estimate E[ρ(V̂m)] for arbitrary m.

Alternatively, we can derive an approximation method
for E[ρ(V̂m)] by a geometric distribution. This approxima-
tion method is empirical. A geometric distribution is
a probability distribution of the number t of Bernoulli
trials needed to get one success. When we randomly
generate V̂m, each node of G has probability m

n to be
chosen. In the following discussion, we assume each

node of G is chosen independently with probability m
n .

With this relaxation, |V̂m| becomes a binomial random
variable with m as its expected value. Consider we start
from a node vi ∈ V̂m to hit the remaining nodes in V̂m.
Let p = m−1

n−1 be the probability of each node other than vi

being in V̂m. The probability that we first hit (i.e. stop) a
target node after one step is

∑
j pijp = p. The probability

that we stop after two steps is
∑

j,k pijpjk(1 − p)p =
(1−p)p. We do not consider cases where the surfer comes
back to vi in this approximation. This forms a geometric
distribution where the probability that we “succeed”
after t steps is (1 − p)t−1p. By the definition of DHT
(i.e. Eq. (6)), h̃(vi, V̂m \ {vi}) is actually the expectation
of e−(t−1) under the geometric distribution described
above:

h̃(vi, V̂m\{vi}) =

∞∑
t=1

e−(t−1)(1−p)t−1p =
p

1 − e−1(1 − p)
.

(9)
Since vi is an arbitrary node in V̂m, we have

ρ(V̂m) =
p

1 − e−1(1 − p)
. (10)

Since we assume each node of G is chosen inde-
pendently, the obtained ρ(V̂m) is an approximation of
E[ρ(V̂m)]. In case the graph contains 0-degree nodes,
we just need to multiply Eq. (10) by the probability
that a randomly selected node is not a 0-degree node.
We empirically compare this heuristic approximation
method with the sampling method on the DBLP co-
author network. The results are shown in Fig. 4. Re-
garding the sampling method, we sample 1500 (vi, Vm−1)
pairs for each m and use Sampling-alg to estimate DHT.
The error bars on the curve of the sampling method
represent lower and upper bounds for the estimates of
E[ρ(V̂m)]. We can see that results obtained by sampling
roughly fit the curve of the heuristic method. Therefore,
we can either use sampling method and interpolation
or the heuristic method to estimate E[ρ(V̂m)]. In our
experiments we employ the heuristic method.

Regarding V ar[ρ(V̂m)], we also propose a sampling
method. Directly estimating V ar[ρ(V̂m)] by sample vari-
ance again requires computing ρ for each sampled Vm

and is time consuming since m could be large. Recall
that we assume h̃(vi, V̂m \ {vi})’s in the numerator of
the definition of ρ(V̂m) are independent. We approximate
V ar[ρ(V̂m)] by V ar[h̃(vi, V̂m\{vi})]/m. For a given m, we
just sample (vi, Vm−1) pairs and take the sample variance
of the corresponding DHTs divided by m as an estimate
of V ar[ρ(V̂m)]. Again, pre-computation and interpolation
can be used here to estimate V ar[ρ(V̂m)] for arbitrary m.

We summarize the gScore framework in Algorithm 1.
Step 2 and 4 can use either Iterative-alg or Sampling-alg
to estimate DHT.

6 DYNAMICALLY MEASURING CORRELATIONS
The ρ measure in Eq. (1) captures an event’s overall
degree of correlation. However, an event is essentially
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Algorithm 1: The gScore framework
Offline Phase

1 Choose a set of m values.
2 For each m value, sample (vi, Vm−1) pairs to estimate

V ar[h̃(vi, Vm−1)]/m as the variance estimate.
Online Phase

3 Randomly choose a sample of c nodes from Vq .
4 For each of c nodes, estimate its DHT to the remaining nodes in Vq .
5 Compute sample mean ρ(Vq) =

∑
c
i=1

h̃(vi, Vq \ {vi})/c.
6 Estimate E[ρ(V̂m)] by Eq. (10).
7 Estimate V ar[ρ(V̂m)] by interpolating the pre-computed variances.
8 Compute approximate z-score by Eq. (8).

a temporal phenomenon and people may want to know
the detailed evolutionary patterns of events. For exam-
ple, some products may exhibit high correlations in spe-
cific periods of a year1, which could be helpful for setting
up fine-grained promotion strategies for those products.
In this section, we develop a measure to capture the
dynamic aspect of events.

6.1 A Dynamic Measure

We reformulate the event set as Vq = {v1, v2, . . . , vt}
where the node subscripts represent time steps. The idea
is that at time step l, we compute the proximity of node
vl to the previous nodes v1, . . . , vl−1. Specifically, the
measure is defined as

ρD
l (Vq) = h̃(vl, {v1, . . . , vl−1}). (11)

In this way, the correlation scores form a time series
where we have a correlation measurement after each
node turns “black”.

We can also capture the time factor by a straight-
forward method which makes use of ρ in Eq. (1): for
each time step l we take {v1, . . . , vl} as an event set
and compute the ρ score. However, this method cannot
well capture the correlation change in each time step. To
illustrate this point, we show two examples in Fig. 5.
The node sequences for events are shown below the
two graphs. In Fig. 5(a), before node e turns black the
event was randomly occurring on the graph. Node e is
probably influenced by node c since c is the only neigh-
bor of e. The DHT from e to {a, b, c, d} is 1, while the
averaged DHT among the five nodes is still near those
of random cases. Regarding Fig. 5(b), let us consider two
different sequences which are different at the last step. If
we compute the averaged DHT at the last step, the two
sequences will have the same correlation score. However,
sequence (2) should have a lower correlation score than
sequence (1) regarding the last step, since c is a well
connected node and is less likely to be influenced by d.
ρD

l can reflect this difference.

1. For instance, we find game cards tend to exhibit high correlations
in Spring Festival, the most important holiday in China, since students
have more time to play and it is easier to invite their friends to play
the game.

� � � � � � � � 	 
 � � 

�
�

� �

(a)

� � � � � � � � � � � � �

�

 

!
�

" # $ % & ' ( ) * + , - .

(b)

Fig. 5. Two examples illustrating the drawbacks of ρ for
dynamically measuring structural correlations.

6.2 From Measure to Significance
For the dynamic measure, we also need to assess the
significance of the observed score. The null hypothesis
is “node vl+1 at time step l + 1 is just randomly selected
from V \ {v1, . . . , vl}”. Since the finite population of this
distribution is not prohibitively large (the size is equal
to the number of nodes not in {v1, . . . , vl}), we directly
estimate the p-value of the observed score.

We develop two methods for this task. The first
method is based on matrix-vector multiplications. Let
Bl = {v1, . . . , vl} contain the nodes of event q up to
the l-th step. Let PBl

be a modification of the transition
probability matrix P where rows corresponding to nodes
in Bl are set to zeros, and Pr(TB̄l,vj

= t|x0 = vi) be the
probability that the random walk starting from vi hits
vj after t steps without visiting any node in Bl. We can
expand Pr(TB̄l,vj

= t|x0 = vi) as
∑

vk /∈Bl
Pr(TB̄l,vk

=
t−1|x0 = vi)pkj . It is easy to verify that the (j, i)-element
of (PT

Bl
)t is equal to Pr(TB̄l,vj

= t|x0 = vi). Therefore, we
can compute the estimates of DHTs from all nodes not
in Bl to Bl by the following equation:

h̃
T = e0

z
T
Bl

P
T
Bl

+ e−1
z

T
Bl

(PT
Bl

)2 + · · · + e−(t−1)
z

T
Bl

(PT
Bl

)t,
(12)

where zBl
has the same definition as zB in Section 4.1

and h̃ is a vector containing the estimates of DHTs.
Eq. (12) indicates that we can iteratively compute
z

T
Bl

(PT
Bl

)t to obtain the distribution of the decayed hit-
ting time from a randomly selected node v /∈ Bl to Bl.
Given the distribution {h̃1, . . . , h̃n−|Bl|}, the p-value of
the observed score h̃(vl+1, Bl) in the (l + 1)-th step is

1

n − |Bl|
|{i|h̃i ≥ h̃(vl+1, Bl)}| (13)

The second method is a sampling method: we simply
sample k nodes from V \ Bl and estimate their DHTs
to Bl. These k DHTs form an empirical distribution for
the decayed hitting time from a randomly selected node
v /∈ Bl to Bl. Supposing that we independently sample
nodes and that k is large enough2 so that the sampled
DHTs give a good approximation of the real distribution,
the empirical p-value of h̃(vl+1, Bl) is estimated similarly
as in Eq. (13).

2. In practice, we find usually k = 10000 is enough to give a good
approximation.
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Compared to the sampling method, the matrix-vector
multiplication method gives us a more accurate distri-
bution. However, the matrix-vector method has a higher
computational cost, O(t|E|) in our case, where t is
the number of iterations. When the graph is large, the
sampling method could be more efficient since it only
estimates DHTs for a sample of nodes. In experiments we
adopt the sampling method for significance estimation.

Smoothing In practice we find correlated black nodes
and uncorrelated black nodes tend to appear alternately,
making the evolution curve fluctuate drastically. To
better facilitate finding useful correlation evolutionary
patterns, we propose to use smoothing techniques for
drawing the evolution curve. Specifically, we put a slid-
ing window of size r over {v1, v2, . . . , vt} and compute
the average (

∑l+ r−1

2

i=(l− r−1

2
)
ρD

i (Vq))/r as the score in the l-th
step (we truncate the range of index i so that i is within
[1, t]). Two schemes for deciding the window size r can
be adopted, according to specific applications: (1) equal
depth, where every window contains the same number of
nodes; (2) equal time, where windows span time periods
of the same length. Intuitively, if {v1, v2, . . . , vt} are
evenly distributed along the time line, we can use either
equal depth or equal time. There is no big difference.
If there are many big gaps in the time line distribution,
it would be better to use equal time since event nodes
separated by time gaps could exhibit different correlation
patterns.

7 EMPIRICAL STUDIES
This section presents experimental results on three
real world datasets: DBLP, TaoBao and Twitter, as
well as synthetic events. We first investigate the
performance of two DHT approximation algorithms
proposed in Section 4. We then verify gScore’s
effectiveness on synthetic events. In Section 7.4 we
report interesting correlated and uncorrelated products
discovered from the TaoBao network. Section 7.5
focuses on dynamic evolution of structural correlation.
Finally, we analyze the scalability of gScore with
the Twitter network. All experiments are run on
a PC with Intel Core i7 CPU and 12GB memory.
The source code of gScore can be downloaded at
“http://www.cs.ucsb.edu/∼xyan/software/gScore.html”.

7.1 Datasets

DBLP The DBLP snapshot was downloaded on Oct. 5th,
2010 (http://www.informatik.uni-trier.de/∼ley/db). Its
paper records were parsed to obtain the co-author social
graph. Keywords in paper titles are treated as events
associated with nodes (authors) on the graph. The first
time an author used a keyword was also recorded.
It contains 815,940 nodes, 2,857,960 edges and 171,614
events.
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Fig. 6. Exploring the convergence of (a) Iterative-alg, and
(b) Sampling-alg.

TaoBao The TaoBao dataset was obtained from China’s
most famous customer-to-customer shopping Website
named TaoBao (http://www.taobao.com). By the end of
2009, TaoBao has about 170 million users and 1 billion
products. We extracted users from three cities (Beijing,
Shanghai and Hangzhou) with their product purchase
history, and constructed the friend social graph among
them. It consists of 794,001 nodes, 1,370,284 edges. We
selected 100 typical products from TaoBao to show the
effectiveness of our measure.

Twitter The Twitter dataset has about 40 million nodes
and 1.4 billion edges (http://twitter.com). We do not
have events for this dataset. It is mainly used to test
the scalability of gScore.

7.2 Performance of DHT Approximation
We investigate the convergence and running time of the
two DHT approximation algorithms: Iterative-alg and
Sampling-alg. Iterative-alg has one parameter (number
of iterations t) and Sampling-alg has two parameters
(maximum number of steps s and number of random
walks c). For Iterative-alg, we investigate its converging
speed with respect to t. For Sampling-alg, we find when
c > 600, increasing c hardly improves the obtained
bounds. Thus, we set c = 600 and investigate the
converging speed of Sampling-alg with respect to s. The
results are shown in Fig. 6 with various m values (the
number of nodes that have the same event). For each
m value, we randomly select a node v and a set B of
m − 1 nodes and apply the two algorithms to estimate
h̃(v, B). This process is repeated 50 times and the av-
eraged results are reported. As shown in Fig. 6, both
algorithms converge quickly after about 5 iterations.
Note that Iterative-alg gives lower and upper bounds
for h̃, while Sampling-alg gives bounds for an estimate
of h̃, i.e. h̃. Comparing Fig. 6(a) and Fig. 6(b), one can
find that the two algorithms converge to roughly the
same values. It means empirically Sampling-alg provides
a good estimation of h̃.

The running time of Iterative-alg and Sampling-alg for
estimating one DHT under different m values is shown
in Fig. 7. For Iterative-alg, we report the running time
for t = 1 and t = 9 and for Sampling-alg, s = 1 and
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Fig. 7. Comparison of Iterative-alg and Sampling-alg with
respect to the time used to estimate one DHT.

s = 17. It shows that Sampling-alg is much faster than
Iterative-alg. Note that regarding Iterative-alg, the time
cost of “s=9” is not 9 times of that of “s=1”. This is
because not only matrix-vector multiplication but also
the construction of PB account for time cost. In fact,
Iterative-alg runs even faster when m increases: less rows
of P are needed to construct the desired matrix. Since
Sampling-alg is much faster than Iterative-alg and also
provides reasonable estimates for DHTs, for the follow-
ing experiments we employ Sampling-alg to estimate
DHT. gScore also refers to Sampling-alg. Hereafter, we
set s = 12 and c = 600.

7.3 Effectiveness on Synthetic Events
To evaluate the effectiveness of our measure, we generate
synthetic events on the DBLP graph using the cascade
model for influence spread [16]: at first a random set
of 100 nodes is chosen as the initial Vq ; then in each
iteration nodes joining Vq in the last iteration can activate
each currently inactive neighbor with probability pac; we
stop when |Vq| > 10000. pac can be regarded as repre-
senting the level of participation in an event. Intuitively,
higher pac would lead to higher correlation. For all the
following experiments, we report the significance estimates
as the measure of structural correlation, i.e. ρ̃ in Eq. (8). ρ̃
can be regarded as approximate z-scores. Higher scores mean
higher (more significant) correlations, while a score close to 0
indicates that there is no correlation.

The results are shown in Fig. 8. “Random” means
we expand the initial 100 random nodes with randomly
selected nodes from the remaining nodes in order to
match the corresponding event sizes of cascade model.
We can see as pac increases, the curve of cascade model
goes up, while that of “Random” remains around 0.

We further test the performance of gScore by adding
noises to the above cascade model. pac is set to 0.2.
Specifically, we break the correlation structure by relocat-
ing each black node to a random node in the remaining
graph with probability pn (noise level). pn = 1 means
all black nodes are randomly redistributed. We report
results for different event sizes (m), i.e. spread levels.

gScore is applicable to other graph proximity mea-
sures. Here we also instantiate gScore with pairwise
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Fig. 8. Applying gScore on synthetic events.
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Fig. 9. Comparison of DHT and pairwise shortest dis-
tance as the proximity measure by adding noises into the
cascade model.

shortest distance for comparison. In this case, Eq. (1)
becomes the average shortest distance among all pairs of
black nodes. For large scale graphs, computing shortest
distances for all pairs of black nodes is usually very
costly. Pre-computing and storing pairwise shortest dis-
tances for the whole graph is not practical either. Hence,
we sample black node pairs to estimate the correlation
measure. By applying Hoeffding’s inequality for finite
populations [13], we can easily derive a lower bound
for the sample size in order to get ε-correct answers. The
significance estimation methodology in Section 5 is also
applicable. The expectation of the correlation measure
for V̂m) is the average shortest path length of the graph.
Its variance can be approximated by the variance of
shortest path length divided by the event size m. We
use sampling to estimate mean and variance. We use the
reciprocal of shortest distances to avoid infinite distances
when no path exists between two nodes.

We show results in Fig. 9. For a good proximity
measure, the correlation significance should decrease
smoothly, as the noise level increases. As we see, the
curves of DHT gradually decrease with increasing noises
and get around 0 when pn = 1, indicating DHT can
well capture structural correlations, while the curves of
shortest distance are not stable and fluctuate a bit when
increasing noises. The reason should be that pairwise
shortest distance is affected by long distances among
black nodes, as mentioned in Section 3. The relocation of
one node will affect all remaining m − 1 nodes equally
and the independent assumption in normal approxima-
tion and variance estimation may not work very well. In
Fig. 9(b), we find the correlation scores for m = 500 is
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Fig. 10. Comparison of DHT and 1-neighborhood event
fraction as the proximity measure by generating more
general correlations in local neighborhoods.

TABLE 2
Structural correlation for top five correlated products in

category “Laptops and tablets” in TaoBao.

# Product Bounds for ρ̃ ρ (×10−2) |Vq|
1 ThinkPad T400 [554.43, 554.47] [6.2396, 6.2400] 47
2 Apple iPad [227.56, 227.57] [6.7979, 6.7984] 698
3 ThinkPad X200 [91.39, 91.42] [1.0799, 1.0802] 60
4 Toshiba L600 [20.36, 20.41] [0.2009, 0.2014] 31
5 ThinkPad T410 [−1.13,−1.09] [0.0004, 0.0009] 72

much lower than that for m = 50000. This is also due to
long distances. Recall that the cascade model chooses
initial black nodes randomly, which means different
threads of influence spread could be distant from one
another. When m is small, long distances could show
high impact.

We also compare DHT with the 1-neighborhood event
fraction measure described in Section 2. We find the 1-
neighborhood measure performs as well as DHT with
the cascade model. This is because the cascade model
always generates correlation patterns in 1-neighborhood.
However, more general correlation patterns can occur
in a graph, e.g. products can be attractive to specific
communities in a graph, but purchases may not always
occur among direct neighbors. We use a new model
to generate more general correlation patterns: we first
randomly select 500 nodes as seed black nodes; then a%
nodes (minimum 1) in each seed node’s k-hop neighbor-
hood are painted black. Their distances to the seed node
are distributed as gaussian with mean μ and variance
0.25. Distances out of range are reset to the nearest value
within range. We explore k = 2, 3 and set a = 0.1. μ
controls the average distance to seed nodes. The results
are shown in Fig. 10. As μ increases, the curves of the 1-
neighborhood measure drop to around 0 (no correlation),
while those of DHT stay around 22 (2-hop) and 9 (3-hop).
This means DHT can detect more general correlations,
while the 1-neighborhood measure cannot. If the user
only considers correlations in 1-hop neighborhoods, 1-
neighborhood event fraction is preferred since it is more
efficient.

TABLE 3
Structural correlation for top five correlated products in

category “Other” in TaoBao.

# Product Bounds for ρ̃ |Vq|
1 Mamy Poko baby diapers [238.50, 238.51] 4892
2 Beingmate Infant milk powder [227.71, 227.72] 163
3 EVE game cards [198.56, 198.58] 374
4 Mabinogi game cards [189.56, 189.58] 446
5 Gerber cookies [149.51, 149.52] 1491

7.4 Real Event Structural Correlation

We apply gScore on real events occurring on graphs and
report interesting highly correlated events and uncorre-
lated events. Using Eq. (8), we obtain an estimate (lower
and upper bounds) of ρ̃ for each event. A ranked list of
events can be generated according to these bounds. If
the bounds of two events overlap, we increase sample
numbers and the maximum steps to break a tie. For this
experiment, we omit the results for DBLP keywords due
to space limitation. Readers can refer to [12] for details.
We group products from TaoBao into two categories:
Laptops and tablets and Other and show top five products
for each case. Before presenting the results, we would
like to emphasize that our correlation findings are just
for the specific social networks involved in this study.

TABLE 4
Structural correlation for the five most uncorrelated

products in category “Other” in TaoBao.

# Product Bounds for ρ̃ |Vq|
1 Tiffany rings [2.71,2.72] 1092
2 Jack&Jones suits [−0.48,−0.46] 311
3 Ray-Ban sunglasses [−0.78,−0.77] 4958
4 Swarovski anklets [−0.88,−0.84] 72
5 Jack&Jones shirts [−3.28,−3.27] 1606

Table 2 shows the ranked lists for top five products in
“Laptops and tablets”. We also show ρ values in Table 2.
ThinkPad and Apple products usually have high cor-
relation with the underlying network, indicating there
are fan communities for these brands. An interesting
exception is ThinkPad T410, which is a new version of
Thinkpad T400. In comparison with T400, its correlation
score is very close to that of random cases. The reason
may be that people in the fan community already bought
T400 and they would not further buy a new version for
T400 since they are quite similar and not cheap.

The ranked list for top five products from cate-
gory “Other” is shown in Table 3. Here “EVE” and
“Mabinogi” are two online games and players in China
must buy game cards to obtain gaming time. We find
products for infants, like diapers and powder tend to be
correlated with the network. This indicates people tend
to follow friends’ recommendations when choosing this
kind of products. Game card are also highly correlated
with the network. Intuitively, playing with friends is an
important attractive feature of online games.
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Fig. 11. Correlation Evolution of two keywords in DBLP:
(a) the dynamic measure, and (b) ρ̃ with evolving Vq.

Finally, we show the ρ̃ scores for the five most un-
correlated products from category “Other” in Table 4.
These products’ scores are very close to those of random
cases (some scores deviate a little from random cases due
to estimation errors in variance). This indicates that for
clothing and accessories, people usually follow their own
preferences.

7.5 Structural Correlation Evolution
We apply the dynamic correlation measure ρD

l proposed
in Section 6 on selected keywords and products from
DBLP and TaoBao. We also compare ρD

l with the static
measure ρ computed on the event occurrences before a
time point. We demonstrate that ρ cannot reflect dynamic
correlation well.

First let us focus on the DBLP dataset. Since the time
unit is year in DBLP dataset, we do not know the
specific ordering of nodes on which the event occurred
in the same year. Thus, we treat the nodes obtaining
the event in the same year as a whole and compute
the DHT from each of those nodes to nodes obtaining
the event in previous years. Then the significance scores
(Eq. (13)) are computed and averaged to represent the
correlation score for that year. The evolution curves for
two keywords, “Microarray” and “Virus”, are shown in
Fig. 11. Fig. 11(a) shows the results of the proposed
dynamic correlation measure while Fig. 11(b) shows
those obtained by repeatedly computing ρ̃ on evolving
Vq . We show (1 − p-value) for the dynamic measure for
easy comparison. We can see that the evolution curves
generated by ρ̃ decline first and then stay relatively
stable at the end, while the curves generated by the
dynamic measure have more complicated patterns. This
is because ρ̃ computes the averaged proximity among
all nodes before a time step and it is hard to capture
the correlation at a specific time step. The dynamic
measure has a more natural definition for estimating
the structural correlation for a specific time step. Taking
“Virus” as an example, one can see from Fig. 11(a) that
the correlation first decreases and then increases. The
decrease represents the topic dispersion phenomenon:
at the beginning, several researchers proposed the topic;
then more and more researchers started to pursue this
topic, making the keyword less correlated with the social
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Fig. 12. Correlation Evolution of two products in TaoBao:
(a) the dynamic measure, and (b) ρ̃ with evolving Vq.

network. The increase means there are many collabora-
tions between newly emerged nodes and previous nodes
for the keyword. This may indicate the flourishing of this
topic: professors engaged in the topic hire many new
students to pursue that topic.

The evolution curves for two products in TaoBao
are shown in Fig. 12. Since we have the specific time
information for each product purchase, we show the
correlation evolution with respect to the node sequence.
Regarding smoothing, we adopt equal depth with win-
dow size 51 (we do not smooth the curves for DBLP
since each year’s score is already an average). As is
shown in Fig. 12, the curves generated by the dynamic
measure exhibit more complicated patterns than those
generated by ρ̃. For example, the dynamic correlation
of iPad fluctuates several times, which could be help-
ful for setting up a fine-grained promotion strategy in
terms of time, while regarding its static correlation there
are no apparent correlation peaks after the one at the
very beginning. It is difficult to discover fine-grained
patterns of correlation evolution by the static measure. In
conclusion, the proposed dynamic measure is useful for
investigating step-by-step correlation evolution which
cannot be well described by the static measure.

7.6 Scalability of Sampling-alg
Finally, we investigate the scalability of Sampling-alg
when the graph size n increases. The Twitter graph is
used to perform this experiment. We extract subgraphs
with different sizes (i.e. n) and for each n, different
values of m are tested. Results are averaged over 50
sampled DHTs. Fig. 13 shows that Sampling-alg is scal-
able and only needs 0.17s to estimate one DHT on a
graph with 10 million nodes. Although the time cost
of Sampling-alg is linear in n, it only involves creating
an index array of size n in memory. Regarding ρ, the
estimation time is only 8.5s on a graph with 10 million
nodes if we set the number of samples c′ = 50. Note that
this can also be regarded as the time used for computing
one adjusted correlation ρ̃ since E(ρ) and V ar(ρ) can be
obtained from pre-computed results. Intuitively, when
n is fixed and m increases, the running time should
decrease since it is easier to hit a target node (most
random walks do not need to reach the maximum steps,
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Fig. 13. Running times of Sampling-alg for estimating one
DHT when varying the graph size.

s). This is the reason that the curve of m = 0.05n is below
that of m = 0.005n. Since we only store the adjacency
list, the memory cost is linear in the number of edges in
the graph. We do not show the curve here due to space
limitation.

8 RELATED WORK
Our work is related to attributed graph mining. Recently,
researchers have incorporated node attributes in graph
mining. For example, Ester et al. found attribute data
can be used to improve clustering performance [10].
Zhou et al. constructed clustering algorithms based on
structural and attribute similarities [28]. Silva et al. [26]
proposed a novel structural correlation pattern mining
problem which aims to find pairs (S, V ) in which S
is a frequent attribute set and V is a dense subgraph
where each node contains all the attributes in S. The
key difference between this problem and ours is that
we study the correlation between an attribute and the
entire network structure globally. In [21], the authors
examined how to find dense subgraphs where nodes
had homogeneous attributes. Again, they also focused
on local patterns but not global structural correlations
studied in this work. In bioinformatics, researchers have
studied how to remove gene correlation of gene ontology
graphs in order to better assess gene ontology term
significance [2]. However, they consider a notion of
correlation defined by reachability, while our structural
correlation is based on proximity. Moreover, their goal is
correlation elimination, rather than detection.

Our work is also related to research in social influence.
In social networks, behaviors of two people tend to be
related if they are friends. Anagnostopoulos et al. [3]
studied the problem of distinguishing social influence
from other sources of correlation using time series of
people behaviors. La Fond and Neville [18] presented
a randomization technique for distinguishing social in-
fluence and homophily for temporal network data. Our
work is different from theirs in two aspects. First, these
studies assume the existence of correlation (direct neigh-
borhoods), while we try to determine if there is a correla-
tion. Second, they are concerned with direct friendships,
while our structural correlation is defined in a more
general graph proximity notion. For example, in [3] the

parameter α in the logistic function is used to indicate
the degree of correlation. If a correlated event occurs
in local areas of the graph but has not got a chance to
occur on two adjacent nodes, their model cannot even
learn α since α is multiplied by 0. gScore can cope
with this situation since it considers graph proximity,
rather than direct neighbors. The structural correlation
problem addressed in this paper can be treated as a step
before the above correlation causality (e.g. influence vs.
homophily) analysis problem, since the latter problem
usually assumes the existence of correlations and the
goal is to find out whether it is due to influence or not.

There are many graph proximity measures proposed
in the literature. Here we name a few. Common neighbors
and Jaccard’s coefficient are two measures based on node
neighborhood [22]. Common neighbors computes the
number of common neighbors of two nodes. Jaccard’s
coefficient is defined as the number of common neigh-
bors divided by the number of all distinct neighbors of
two nodes. Katz [14] defined a measure which sums over
all paths between two nodes, exponentially damped by
their length to make short paths more important. Hitting
time [19] and personalized PageRank [23] are random
walk based graph proximity measures. Our structural
correlation framework can adopt any graph proximity
measure. We use hitting time in this work since it is a
more holistic measure.

The randomization and sampling techniques used in
this work have been studied extensively. Gionis et al.
used swap randomization to assess data mining results
[11], while [17] provided a rigorous bound for identi-
fying statistically significant frequent itemsets. We suc-
cessfully extended related techniques to the graph do-
main and showed that these techniques with appropriate
modifications are scalable in large-scale graphs. Random
walk simulation has been used to estimate PageRank [4].
Their truncation length is a random variable depending
on the teleportation parameter, while in our case we use
fixed truncation length since our target is hitting time.

9 CONCLUSIONS
In this paper, we studied the problem of measuring how
strongly an event that took place in a graph is correlated
to the graph structure. A novel measure, called structural
correlation, was introduced to assess this correlation. It
can also be used to derive statistical significance to test
if an event is randomly distributed over a graph or not.
We proposed using hitting time to instantiate our frame-
work and derived a set of sampling and approximation
algorithms so that the correlation score can be estimated
very quickly in large-scale graphs. By comparing the
score with the situation where the event is randomly
distributed in the same network, our method is able to
discover the events of nodes that are highly correlated
with the graph structure. Our method is scalable and
successfully applied to the co-author DBLP network and
a social network extracted from TaoBao.com, the largest
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online shopping network in China, with many exciting
discoveries. We also proposed a dynamic measure which
revealed structural correlations at specific time steps and
can be used to discover detailed evolutionary patterns.
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